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Abstract— State-of-the-art machine learning models have
achieved impressive feats of narrow intelligence, but have yet
to realize the computational generality, adaptability, and power
efficiency of biological brains. Thus, this work aims to improve
current neural network models by leveraging the principle
that the cortex consists of noisy and imprecise components in
order to realize an ultra-low-power stochastic spiking neural
circuit that resembles biological neuronal behavior. By utilizing
probabilistic spintronics to provide true stochasticity in a
compact CMOS-compatible device, an Adaptive Ring Oscillator
for as-needed discrete sampling, and a homeostasis mechanism
to reduce power consumption, provide additional biological
characteristics, and improve process variation resilience, this
subthreshold circuit is able to generate sub-nanosecond spik-
ing behavior with biological characteristics at 200mYV, using
less than 80nW, along with behavioral robustness to process
variation.

I. INTRODUCTION

Research towards more brain-like spiking neural networks
have typically utilized Leaky-Integrate-and Fire (LIF) models
or more complex Hodgkin-Huxley models [1]-[3], which do
not intrinsically integrate the ubiquitous stochasticity found
in brains [4]-[6]. Although stochasticity can be worked into
such models, it comes at the cost of additional circuitry, such
as Pseudo-Random-Number Generators (PRNGs) [7]. Some
recent works have proposed intrinsically stochastic spiking
neuron circuits utilizing emerging devices, such as mem-
ristors [8]-[10], phase-change devices [11], or spintronic
devices [12]-[15]. However, these circuits typically utilize
the stochasticity of the switching behavior for such devices,
and thus, requires write-read-reset cycling with extraneous
power and delay overheads. Accordingly, the Subthreshold
Spintronic Stochastic Spiking Neuron (S4N) delineated herein
is designed to naturally generate stochastic spiking signals
in-situ, at ultra-low-power and high speed.

The organization of the remainder of this paper is as fol-
lows. Section II introduces background information relevant
to the design of the S4N. Section III describes the S4N
circuitry and operation, Section IV contains the results and
analysis of the S4N. Section V concludes the paper.

II. BACKGROUND

Neural Sampling is a concept from computational neu-
roscience that gives weight to the computational abilities
of stochastic neurons. Probabilistic spintronics utilizes the
thermally-driven stochastic behavior of low-energy-barrier
magnetic devices for in-circuit true randomness at high
speed. A brief discussion on previous stochastic spiking
circuits is provided in this section.

A. Neural Sampling

Neural Sampling is a theoretical framework in compu-
tational neuroscience which postulates that the stochastic
firing behavior of in-vivo cortical neurons corresponds to
samples of an underlying conditional distribution [16]. By
leveraging networks of such stochastically sampling neurons,
probabilistic inference can be carried out on variables of
interest. Furthermore, additional work has demonstrated that
stochastic spiking neurons within cortical network motifs
combined with Hebbian learning approximates an online
version of Expectation Maximization, an effective statistical
tool for realizing generative models, which is key for unsu-
pervised learning [17], [18]. Therefore, stochastically spiking
neurons implementing Neural Sampling can be a powerful
model for achieving unsupervised learning in neuromorphic
circuits and architectures, which is not compatible with LIF
neurons. Thus, this work aims to enable such neural motifs
at ultra-low-power.

B. Probabilistic Spintronics

The spintronic device utilized herein originates from a
novel probabilistic adaptation of the Magnetic Tunnel Junc-
tion (MTJ) first proposed as part of a 1-Transistor-with-1-
MT]J structure called an embedded probabilistic bit (p-bit)
[19]. The MTJ of the p-bit stochastically switches between
its Anti-Parallel (AP) and Parallel (P) states due to the very
low energy barrier (A) of the free layer, where the mean
retention time for an MTJ (7) is given by (1).

7 = 1pexp(A/kT) (1)

Where 73 is a material dependent parameter called the
attempt time, k is Boltzmann’s constant, and 7T is the
temperature in Kelvin [19]. The stochastic MTJ (sMTJ)
used herein is not the same as the p-bit device. The p-bit
device contains specific circuitry besides the sMTJ which is
different to what is used for the S4N.

C. Stochastic Spiking Neurons in Hardware

Stochastically spiking neural circuits have been realized
using digital CMOS approaches as well as emerging devices
of which we review a recent selection. Digital CMOS ap-
proaches, such as IBM’s TrueNorth chip [7], rely on PRNG
circuits for generating stochasticity, which have a large area
and energy cost, in addition to lacking true randomness.
The work developed in [15] leverages the tunably-stochastic
behavior of p-bits to realize a high-speed asynchronous
stochastically spiking neuron, but the power is still rather
large, and the requirement for nearly-zero energy barrier



MTlJs is quite strict. Thus, the S4N is introduced herein,
which is capable of high-speed stochastic spiking behavior
at extremely low power.

III. CIRCUIT OVERVIEW

The S4N is motivated by the desire to realize a minimal-
complexity, ultra-low-power circuit that intrinsically behaves
similar to the noisy heterogeneous neurons in the cortex, such
that it can be relevant for implementing Neural Sampling.
This has lead to a circuit that appears rather different than
traditional rate-based spiking neuron schemes where the
output is purely a Poissonian spike rate yet, the S4N is still
relevant for cortically inspired computations in the following
ways:

1) The S4N generates samples (or spikes) where the
rate is somewhat deterministic and periodic, but the
’strength’ of the samples is determined by a sigmoidal
relationship with the input voltage and a random vari-
able.

2) The S4N output bears little resemblance to the spike
signals found in typical spiking neuron designs, but
they strongly resemble the double-exponential Post-
Synaptic-Potentials (PSPs) found in biology that result
from pre-synaptic spike trains.

3) A fast homeostasis mechanism not only modulates the
sample strength in a fashion that closely resembles
spike-frequency-adaptation found in biology [20], but
also assists in balancing the network to be reasonably
sensitive, even in the presence of process variation.

4) Process variation effects do not cause the circuit to fail,
but simply modify the sigmoidal relationship between
the input and output, such that the behavior of multiple
neurons is heterogeneous, which is found in cortical
neurons of the exact same type and region [21].

The S4N circuit shown in Figure 1 is implemented by
what is essentially a voltage divider between an sMTJ and
three transistors, M7 — M3, modulating the input to My,
which acts like a voltage-controlled current source since it
is operating in the subthreshold region. The input voltage,
Vinput, modulates the resistance of M; in an exponential
fashion, while also modulating the Adaptive Ring Oscillator
(ARO). The ARO, which is a five-inverter ring oscillator with
an additional nmos transistor in the second inverter controlled
by Vinput, as shown in Figure 1, oscillates at a frequency
depended upon Vj,,,.:, generating voltage pulses applied to
Ms, which are considered to be samples. The ARO is used
in place of a standard ring oscillator in order to save energy
by sampling more frequently only when V;,,,,; is significant,
and less when it is not. The resistance of M3 is related to
the homeostasis mechanism and modulated by V;, which is a
leaky exponential inverted integration of the output activity.
During periods of high activity, V,,,; reduces the resistance
of Mj enough to pull down V}, increasing the resistance of
Mg, increasing Viqte, and lowering the current through My
during samples, resulting in a negative feedback to balance
periods of high activity. By leveraging the high resistance
of subthreshold CMOS devices, which results in low current
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Fig. 1. The S4N circuit developed herein.

operation, an ultra-low-power scheme is realized.

The stochasticity of the circuit arises from the stochas-
tic switching of the sMTJ between Anti-Parallel (Rp;qp)
and Parallel (R;,,,) resistance states due to thermal noise.
Although the ratio of (Rhigh — Riow)/Riow is typically
100-150% in MT]J devices, which is small compared to the
exponential resistance changes of subthreshold CMOS, when
the resistance of the lower branch is close to that of the sSMT]J,
the state of the sSMTJ becomes significant in determining the
strength of the output current through M, where R;,,, will
result in a significantly weaker signal than [}, . This results
in three primary operating regions of the S4N that resembles
the saturating and linear regions of a sigmoid:

1) When the resistance of the lower branch is >> Rpsgn,
such as when the ARO output is low, Vi, is low,
or V; is low, then the output is saturated at the lower
bound, providing little to no activity regardless of the
sMT] state.

2) When the resistance of the lower branch is << Rjow,
such as when the ARO output is high, Vi, is high,
and V}, is high, then the output is saturated at the upper
bound, providing maximum output activity regardless
of the sMT]J state.

3) When the lower branch is ~ [Rjow, Rhign], such as
when the ARO output is high and Vj,p.:, V3 take
intermediate values, the state of the sSMTJ has a large
influence on the output signal, resulting in stochastic
spiking behavior.

An interesting observation detailed in the following section
is that when a large constant input voltage is applied for a
long enough time, the homeostasis mechanism balances V},
so that the resistance of the lower branch remains sensitive
to the state of the sMTJ.

The output resistor Ry, is used to leak V,,; over time, and



the output capacitor C';, is a very small value used in place
of downstream CMOS devices in synaptic circuits that the
circuit may drive. The signals shown above Vi, and Vi,
in Figure 1 give an example of a single sample whereby
a brief pulse equivalent to Vpp is applied to the input for
enough time to elicit a single sample, and the resulting output
waveform is shown, resembling a PSP.

IV. RESULTS AND ANALYSIS

This Section analyzes the results of our simulations, which
were performed using HSPICE with high-performance 7nm
FinFET PTM Transistor models [22]. The sMTJ was mod-
eled using physically benchmarked spintronic modules from
the Modular Spintronic Library [23], [24]. The other circuit

parameters are listed in Table 1.
TABLE I

CIRCUIT PARAMETERS

Parameter Value
Vbbp 200mV
Riow> Rpign  6MQ, 15MQ
Ry, 2MSQ
Cr 0.5fF
Ry 5M)

Cy 2fF

A. Circuit Analysis
Figure 2 illustrates the S4N circuit behavior when applying

voltage pulses of S0mV, 100mV, 150mV, and 200mV to
Vinput for 20ns, 20ns, 50ns, and 50ns, respectively, with 15ns
periods of OV in between. Since square voltage pulses are
not the typical input voltage signals that would be propagated
in networks of S4N circuits, the output of the S4N, V.1,
is connected to another S4N, and the output of that S4N,
Vouto, 1s shown to illustrate how the circuit operates with
in-situ signals. This can be considered a 1-to-1 network
with a synaptic weight of 1. As shown, V,..q, Which is
the output of the ARO, oscillates with a rate proportional to
Vinput, and when the input is too low, such as for 50mV and
100mV, almost no output signal is generated at V1. For
the case where V¢ is 150mV, it takes a few samples from
Vyead before V.1 reaches its peak at just below 200mV,
which is when the homeostasis mechanism reduces V} so
that V41 decreases and stochastically jitters from higher and
lower voltages due to the interplay between the homeostasis
mechanism and the sSMTJ, which corresponds to operational
region 3 described in the previous Section; V.2 appears
to only generate a single significant spike when V,,; is at
its highest, although there are additional minor fluctuations.
For the case where Vi, is 200mV, only a single sample
is needed to elicit a maximum voltage at V,,;;, which
subsequently reduces Vj, such that the circuit operates in
region 3 as described in the Previous Section; V,,, ;2 generates
a larger initial spike than the 150mV case, and has additional
minor stochastic fluctuations.
B. Variation Analysis

In order to analyze the effects of process variations on
the S4N circuit, we performed monte-carlo analysis with
50 samples for values of Vj,,y: ranging from OmV to
200mV with 10mV increments for 50ns, varying the thresh-
old voltage of each transistor with a standard deviation of
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Fig. 2. The operational waveforms of the S4N circuit.
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Fig. 3. The mean output voltage of the S4N versus input voltage under
process variation.

75mV and all resistances and capacitances listed in Table
I with a standard deviation of 20%. As shown in Figure
3, the mean output voltage follows a sigmoidal behavior,
which is commensurate with biological characteristics, and
the behavior is maintained even in the presence of process
variation. We argue that this does not constitute an issue for
biologically-inspired computational paradigms since neurons
of the exact same type and similar location in the brain have
similar heterogeneous sigmoidal spiking responses to inputs
[25].
C. Power Analysis

The S4N circuit, operating at 200mV, in the presence of
process variation, uses a maximum power of just 77nW,
as shown in Figure 4, which is incredibly efficient for a
spiking neuron design operating at the nanosecond time-
scale. Additionally, the power consumption scales in an
almost sigmoidal fashion to the input voltage, using up to
about an 8 x reduction in power at low input voltages, which
would be the most likely operating region for most S4Ns in
a large network architecture.
D. Area Overhead

We compared the area overhead on the proposed neu-
ron with different CMOS spiking neurons including the
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Fig. 4. The mean power consumption of the S4N versus input voltage
under process variation.

oscillatory models (Resonate-and-Fire type with 24-T and
Hindmarsh-Rose type with more than 40-T) [25], [26],
and conductance-based neuron model (Hodgkin-Huxley type
with more than 40-T) [27]. The S4N requires only 16
transistors and one sMTJ, which is more compact than the
aforementioned neurons. Since the bulk of the device count
is due to the ARO, further area reductions could be achieved
with novel sampling circuitry used to replace the ARO unit,
which is left for future work.

V. CONCLUSIONS

This work demonstrates that circuits of noisy and imprecise
components can realize biologically-inspired computational
primitives at ultra-low-power. The Subthreshold Spintronic
Stochastic Spiking Neuron circuit combines an Adaptive
Ring Oscillator for as-needed sampling, probabilistic spin-
tronics for thermally-driven stochasticity, and a homeostasis
mechanism in order to realize biologically-inspired signals
at nanosecond time scales using less than 80nW. Good
behavioral robustness to process variation in line with bi-
ological observations is also demonstrated. Additionally, the
presented neuron exhibits area improvements compared to
CMOS based neurons. The area and power efficiency of
this design is especially important since the neuron circuit is
intended to be used in a large-scale VLSI neural networks
consisting many thousands of neurons. Such circuit could
pave the way to realizing improved efficiency in neuromor-
phic circuits.
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