
iDev: Enhancing Social Coding Security by Cross-platform User Identification
Between GitHub and Stack Overflow

Yujie Fan1,2 , Yiming Zhang1,2 , Shifu Hou1,2 , Lingwei Chen2 , Yanfang Ye1,2∗
Chuan Shi3 , Liang Zhao4 and Shouhuai Xu5

1Department of CDS, Case Western Reserve University, OH, USA
2Department of CSEE, West Virginia University, WV, USA

3School of CS, Beijing University of Posts and Telecommunications, Beijing, China
4Department of IST, George Mason University, VA, USA

5Department of CS, University of Texas at San Antonio, TX, USA

Abstract
As modern social coding platforms such as GitHub
and Stack Overflow become increasingly popular,
their potential security risks increase as well (e.g.,
risky or malicious codes could be easily embed-
ded and distributed). To enhance the social cod-
ing security, in this paper, we propose to automate
cross-platform user identification between GitHub
and Stack Overflow to combat the attackers who
attempt to poison the modern software program-
ming ecosystem. To solve this problem, an im-
portant insight brought by this work is to lever-
age social coding properties in addition to user at-
tributes for cross-platform user identification. To
depict users in GitHub and Stack Overflow (at-
tached with attributed information), projects, ques-
tions and answers as well as the rich semantic rela-
tions among them, we first introduce an attributed
heterogeneous information network (AHIN) for
modeling. Then, we propose a novel AHIN rep-
resentation learning model AHIN2Vec to efficiently
learn node (i.e., user) representations in AHIN for
cross-platform user identification. Comprehensive
experiments on the data collections from GitHub
and Stack Overflow are conducted to validate the
effectiveness of our developed system iDev inte-
grating our proposed method in cross-platform user
identification by comparisons with other baselines.

1 Introduction
As computing devices and the Internet become increasingly
ubiquitous, software has played a vital role in people’s ev-
eryday lives. Recently, there has been an exponential growth
in the number of software whose market has grown into a
multi-billion dollars industry [Statista, 2018]. Unlike con-
ventional software development ecosystem where developers
significantly rely on code handbooks to create software from
scratch, more and more software products are now created
with the support from a highly interoperable and collaborative

∗Corresponding author: yanfang.ye@mail.wvu.edu

social coding platforms consisting of social coding reposito-
ries (e.g., GitHub - the largest source code repository hosting
more than 100 million software projects maintained by over
31 million registered developers [GitHub, 2019]) and on-
line programming discussion platforms (e.g., Stack Overflow
- the largest online programming discussion platform with
about 50 million visits each month [StackOverflow, 2018]).
Within this software programming ecosystem, developers can
reuse code snippets and libraries or adapt existing ready-to-
use projects to expedite software development. However, the
popularity and openness of such social coding environment
not only attract developers to contribute legitimate codes but
also attackers to disseminate malicious codes through ready-
to-use applications [Ye et al., 2018]. For example, according
to a recent study [Chen et al., 2016], 117 potentially harmful
libraries on Android scattered in GitHub were found to infect
98,308 Google Play apps, which contain risky behaviors such
as stealthily recording audio and video. To maintain a safe
and productive ecosystem against malicious attacks, GitHub
provides a security bug bounty site for code vulnerability re-
porting [Ducklin, 2017]. Nevertheless, such security policy is
limited and there still lacks a principled approach toward ad-
dressing those security-related concerns. For example, from a
social engineering perspective, humans are generally thought
to be the weakest link in the security chain - attackers could
utilize the interplay between GitHub and Stack Overflow to
poison the overall ecosystem of software development.

Figure 1: Interplay between GitHub and Stack Overflow.

Figure 2: System overview of iDev for cross-platform user identification between GitHub and Stack Overflow.

Recent studies [Vasilescu et al., 2013; Silvestri et al., 2015;
Baltes et al., 2017] have shown that the interplay between the
development process in GitHub and Stack Overflow activities
is more active than we had thought. That is, GitHub com-
mitters often ask/answer questions on Stack Overflow; mean-
while, they can also engage in Stack Overflow to provide
their knowledge and codes to others. This observation has
the subtle implication from a security point of view: attack-
ers might deliberately post questions/answers on Stack Over-
flow to lure innocent users to download and embed malicious
codes hosted in GitHub. As shown in Figure 1: user “S***n”
provides a risky RootShell library in GitHub which offers a
root access to Android devices (Figure 1.(a)); to promote this
code, the user with username “P***p” posts an answer thread
in Stack Overflow, including the link directing into the Root-
Shell library hosted in GitHub, to answer a question related to
system file copy (Figure 1.(b)). In such case, the questioner or
other less experienced users may be directed into using the al-
leged solution without maintaining a healthy skepticism; once
they reuse this library to generate the production software, the
victim devices might be compromised (e.g., system opera-
tions being disrupted, or sensitive information being leaked).
This finding implies the importance of cross-platform user
identification to detect attackers who attempt to poison the
modern software programming ecosystem. Given the large
number of user accounts in the growing GitHub and Stack
Overflow, it is simply impossible to manually link suspicious
accounts for cross-platform user identification. Though some
users in Stack Overflow do provide their GitHub links, this
portion is very small (i.e., about 0.44% based on our data col-
lections described in Section 3.1). To automate the process,
unfortunately, there have been few works with the exception
of [Silvestri et al., 2015] which merely used user attributes
(e.g., user profiles) for identification. Therefore, to combat
the attacks in modern software programming ecosystem and
to enhance its security, it is highly desirable to develop novel
methodologies that can automate cross-platform user identi-
fication between GitHub and Stack Overflow.

To address the above challenges, an important insight
brought by this work is to leverage social coding properties
in addition to user attributes for cross-platform user identifi-
cation. As social coding platforms, both GitHub and Stack
Overflow are characterized by user activities and communi-
cations, i.e., a rich source of heterogeneous information are
available including users, projects, questions, answers, and

their semantic relations. To utilize such social coding prop-
erties and user attributes, in this paper, we first introduce
an attributed heterogeneous information network (AHIN) [Li
et al., 2017] for modeling. Then, we propose AHIN2Vec
to efficiently learn node (i.e., user) representations in AHIN
for cross-platform user identification. We develop a system
called iDev (shown in Figure 2) which integrates our pro-
posed method for cross-platform user identification between
GitHub and Stack Overflow. iDev has the following merits:
• It introduces AHIN as an abstract representation of

GitHub and Stack Overflow data for the first time.
• It presents a novel yet elegant AHIN embedding model

(i.e., AHIN2Vec) to efficiently learn low-dimensional
representations for nodes (i.e., users) in AHIN.
• Comprehensive experimental studies demonstrate the

performance of iDev in cross-platform user identifica-
tion for enhancing social coding security.

2 Proposed Method
In this section, we introduce the proposed method integrated
in iDev for cross-platform user identification in detail.

2.1 Feature Extraction
User Attributed Features. To fingerprint a user, we con-
sider both his/her profile information and posted text content.
In GitHub and Stack Overflow, user profile plays an important
role in resolving his/her identity. Thus, we extract three kinds
of features from user profile to depict each user: username,
location and contact information (e.g., email address, twit-
ter account). Note that, for username, we first apply standard
string matching techniques to measure the similarity of two
usernames; if their similarity is greater than a user-specific
threshold, we regard these two usernames as the same (e.g.,
“D**Tomas” and “D**T0mas”). Then, we apply one-hot en-
coding to convert the extracted features to a binary feature
vector. To obtain better user representations, for GitHub user,
we further consider the description of each project he/she
creates; for Stack Overflow user, we consider his/her posted
questions and answers. To deal with such text content, we
propose to exploit doc2vec [Le and Mikolov, 2014] to con-
vert each text of variant size into a fixed-length feature vector
(i.e., we empirically set it as 100). Accordingly, we concate-
nate these two feature vectors to form an attributed feature
vector for each user.

Social Coding Properties. To comprehensively depict
users in GitHub and Stack Overflow, we not only utilize the
above attributed features, but consider the rich social cod-
ing properties among them including: (1) GitHub relations:
i) R1: the user-create-project relation describes whether a
GitHub user creates a project; ii) R2: user-star-project re-
lation means a user stars a project, denoting his/her interest
to keep track of the project; iii) R3: user-fork-project rela-
tion denotes a user either proposes changes to someone else’s
project or uses someone else’s project as a starting point for
his/her own idea; iv) R4: the user-contribute-project relation
describes if a user contributes to a project. (2) Stack Overflow
relations: the user-post-question relation (R5) and the user-
supply-answer relation (R6) denote if a user posts a question
or supplies an answer respectively; to denote the Q&A rela-
tionship, we build the answer-echo-question relation (R7) to
indicate if an answer responds (i.e., echoes) to a particular
question. (3) Cross-platform relations: a question or answer
thread may have a link directing into a GitHub project, we ac-
cordingly extract the question-link-project relation (R8) and
the answer-link-project relation (R9) for representations.

2.2 AHIN Construction
Though heterogeneous information network (HIN) [Sun et
al., 2011] has shown the success of modeling different types
of entities and relations, it has limited capability of modeling
additional attributes attached to entities. To solve this prob-
lem, we present attributed HIN (AHIN) for modeling.

Definition 1 Attributed Heterogeneous Information Net-
work (AHIN) [Li et al., 2017]. Let T = {T1, ..., Tm} be a set
of m entity types. For each entity type Ti, let Xi be the set of
entities of type Ti and Ai be the set of attributes defined for
entities of type Ti. An entity xj of type Ti is associated with
an attribute vector fj = (fj1, fj2, ..., fj|Ai|). An AHIN is de-
fined by a graph G = (V, E ,A) with an entity type mapping
φ: V → T and a relation type mapping ψ: E → R, where
V =

⋃m
i=1 Xi denotes the entity set and E is the relation set,

T denotes the entity type set and R is the relation type set,
A =

⋃m
i=1 Ai, and the number of entity types |T | > 1 or the

number of relation types |R| > 1. The network schema for
an AHIN G, denoted by TG = (T ,R), is a graph with nodes
as entity types from T and edges as relation types from R.

For our case, we have five types of entities and nine types
of relations among them while nodes with entity type of
user are further attached with an extracted feature vector rep-
resenting its associated attributes. Based on the definition
above, the network schema for AHIN in our application is
shown in Figure 3.(a). To formulate the higher-order rela-
tionships among entities, the concept of meta-path [Sun et
al., 2011] has been proposed: a meta-path P is a path de-
fined on the network schema TG = (A,R), and is denoted in

the form of A1
R1−−→ A2

R2−−→ ...
RL−−→ AL+1, which defines

a composite relation R = R1 · R2 · . . . · RL between types
A1 and AL+1, where · denotes relation composition opera-
tor, and L is the length of P . In our application, we design
ten meaningful meta-paths (i.e., PID1-PID10 shown in Fig-
ure 3.(b)) to jointly characterize the relatedness between two
users in GitHub and Stack Overflow from different views.

Figure 3: Network schema and meta-paths for AHIN.

PID5 is one of the examples: user(S)
supply−−−−→ answer

link−−−→
project

create−1

−−−−−−→ user(G) which denotes that a user in
Stack Overflow is connected with a user in GitHub if the
Stack Overflow user(S) supplies an answer including a link
directing into a project created by the Github user(G).

2.3 AHIN2Vec
Given an AHIN G = (V, E ,A), the AHIN representa-
tion learning [Dong et al., 2017] task is to learn a func-
tion f : V → R

D that maps each node v ∈ V to a vec-
tor in a D-dimensional space R

D, D � |V| that are ca-
pable of preserving both structural and semantic relations
among them. Although many network embedding methods
[Perozzi et al., 2014; Tang et al., 2015; Dong et al., 2017;
Fu et al., 2017] have been proposed recently, few of them deal
with node embeddings in AHIN. Here, we propose a novel
AHIN embedding model AHIN2Vec to learn node representa-
tions: we first map the constructed AHIN to a multi-view net-
work consisting of a set of single-view attributed graphs; we
then efficiently fuse such single-view graphs into an unified
attributed graph via subspace analysis on Grassmann mani-
folds; afterwards, we propose a graph auto-encoder model to
learn user embeddings for cross-platform user identification.

Multi-view network built from AHIN. We first de-
fine a multi-view network [Shi et al., 2018] as GM =
(V, {E i}Mi=1,A) consisting of a set V of nodes and M views,
where E i consists of all edges in view i ∈ {1, ...,M}. If a
multi-view network is weighted, then there exists a weight
mapping w : {E i}Mi=1 → R such that wi

vv′ := w(eivv′) is the

weight of the edge eivv′ ∈ E i, which joints nodes v ∈ V and
v′ ∈ V in view i ∈ {1, ...,M}. Based on this definition, we
then map the constructed AHIN to a multi-view network con-
sisting of a set of single-view attributed graphs encoding the
relatedness over users depicted by different meta-paths. More
specifically, given an AHIN G = (V, E ,A) and M meta-
paths, a multi-view network with M single-view attributed
graphs Gi = (V , E i,A) is built where the i-th view graph is
generated based on meta-path Pi (i = {1, ...,M}). These
single-view attributed graphs depict different kinds of inter-
actions among users, which can reflect different-views of user
representations. In our case, each node in Gi denotes a user

in GitHub or Stack Overflow and an edge between two users
denotes if they can be connected under meta-path PIDi. The
user feature matrix X in Gi can be represented as:

X = u1 ⊕ u2 ⊕ ... ⊕ uN , (1)

where N is the number of users in GitHub and Stack Over-
flow, ⊕ is the concatenation operator, ui ∈ Rf is the f -
dimensional attributed feature vector for the i-th user.
Fusing multiple single-view attributed graphs. Given a
multi-view network with M single-view attributed graph Gi
(i = {1, ...,M}), we aim to effectively fuse them into an
unified graph via a two-phase procedure: representing each
single-view graph in an individual subspace and then com-
bining the multiple subspaces to generate an unified space.

Let Ai and Di be the adjacency matrix and degree matrix
of i-th view graph respectively, inspired by the spectral clus-
tering [Ng et al., 2002], we map i-th view graph into a sub-
space via solving the following trace minimization problem:

min
Ui∈RN×k

tr(UT
i LiUi), s.t. UT

i Ui = I. (2)

where Li = D
− 1

2
i (Di − Ai)D

− 1
2

i is the normalized graph
Laplacian; Ui contains the first k eigenvectors (correspond-
ing to the k smallest eigenvalues) of Li. This optimiza-
tion problem can be solved by the Rayleigh-Ritz theorem
[Von Luxburg, 2007]. By adopting the above spectral em-
bedding, we can define a meaningful subspace representation
for each single-view graph. Then, to effectively make a com-
bination of the learned multiple subspaces, following [Dong
et al., 2014], we propose to find a representative subspace that
is close to all the individual subspaces and its representation
U preserves the information about node connectivity in each
single-view graph. Based on Grassmann manifold theory, the
projection distance between two subspaces can be defined as
a set of principal angles {θi}ki=1 between these subspaces:

d2proj(U1,U2) =
k∑

i=1

sin2 θi = k− tr(U1U
T
1 U2U

T
2). (3)

Accordingly, the projection distance between the target rep-
resentative subspace U and the M individual subspaces
{Ui}Mi=1 is calculated as:

d2proj(U, {Ui}Mi=1) = kM −
M∑
i=1

tr(UUTUiU
T
i). (4)

Minimization of Eq. (4) enforces the representative subspace
to be close to all the individual subspaces. Further, to preserve
the node connectivity in each single-view graph, we minimize
the Laplacian quadratic form in Eq. (2). Finally, we solve the
following optimization problem to fuse multiple subspaces:

min
U∈RN×k

M∑
i=1

tr(UTLiU) + α[kM −
M∑
i=1

tr(UUTUiU
T
i)],

(5)
subject to UTU = I, where α is a regularization parameter
that balances the trade-off between the two terms. By ignor-
ing constant terms and rearranging the trace form, we have:

min
U∈RN×k

tr[UT (
M∑
i=1

Li − α
M∑
i=1

UiU
T
i)U]. (6)

As stated before, this trace minimization problem can be
solved by Rayleigh-Ritz theorem with a modified Laplacian:

Lmod =
M∑
i=1

Li − α
M∑
i=1

UiU
T
i . (7)

Graph auto-encoder. In order to learn robust node embed-
dings for the fused attributed graph, we propose to exploit
the graph auto-encoder model [Kipf and Welling, 2016b]
which consists of an encoder aiming at encoding graph data
to a compact representation, and a decoder to reconstruct the
topological graph information from such representation.

Encoder: Since graph convolutional network (GCN) has
shown its power to capture the graph topological structure
and the node attributed features [Kipf and Welling, 2016a],
we employ GCN as an encoder to learn a latent representa-
tion. Let A ∈ RN×N be the adjacency matrix generated
from Lmod and X is the user feature matrix. Following the
idea of GCN, the convolutional layer:

Zl+1 = σ (ÃZl Wl), (8)

where Ã is a symmetric normalization of A with self-loop,
i.e. Ã = D̂−

1
2 ÂD̂−

1
2 with Â = A+I. Here I is the identity

matrix and D̂ is the diagonal node degree matrix of Â. The
Zl and Wl denote the l-th hidden layer and the layer-specific
parameters, Z0 = X and σ denotes an activation function,
such as the ReLU(·) = max(0, ·). In this paper, we employ a
two-layer GCN as encoder:

Z = q(Z|X,A) = ÃReLU (ÃXW0)W1. (9)

Decoder: The decoder model is used to reconstruct graph
topological structure A. More specifically, we train a decoder
to predict whether there is a link between two nodes based on
the graph embedding learned from encoder:

p(A|Z) =
N∏
i=1

N∏
i=1

p(Aij |zi, zj), (10)

p(Aij = 1|zi, zj) = σ(zTi zj), (11)
where σ(x) = 1/(1 + ex) is a sigmoid function.

Optimization: Based on the description above, we mini-
mize the reconstruction error as following:

L = Eq(Z|X,A)[log p(A|Z)]. (12)

We then perform stochastic gradient descent for training.
Algorithm 1 illustrates our proposed AHIN representation

learning model AHIN2Vec. After employing AHIN2Vec, we
apply average pooling on each pair of GitHub and Stack
Overflow user embeddings, which are then fed to the clas-
sifier (i.e., we employ support vector machine (SVM) in our
application) for cross-platform user identification.

3 Experimental Results and Analysis
In this section, we fully evaluate the performance of our de-
veloped system iDev by comparisons with other baselines.

Algorithm 1: AHIN2Vec.

Input: G = (V, E ,A): AHIN, {Pi}Mi=1: meta-paths,
α: regularization parameter; T : the number of
iterations.

Output: Z: node representations for AHIN.

for i = 1→M do
Generate single-view graph Gi based on Pi;
Learn the subspace representation Ui for Gi via
solving Eq. (2);

end
Compute the merged Laplacian Lmod using Eq. (7);
for i = 1→ T do

Generate latent representations Z through Eq. (9);
Update the graph auto-encoder with its stochastic
gradient by Eq.(12);

end
Return Z;

3.1 Data Collection
We collect the data from GitHub and Stack Overflow. For
Stack Overflow, we collect its public data dump [StackEx-
change, 2019] including 9,737,249 users; for those Stack
Overflow users who provide the GitHub links in their pro-
files (i.e., 42,840 users), we develop a set of crawling tools
to further obtain the related information in GitHub. We ob-
tain the ground-truth under a pseudo setting: we first ran-
domly subsample 10% Stack Overflow users who provides
GitHub links (i.e., 4,284 users) and regard these 4,284 user
pairs as positive examples, then randomly match each Stack
Overflow user to a GitHub user to generate 4,284 negative
examples. In this pseudo setting, the contact information at-
tached to each user is set as null. Based on the extracted fea-
tures and designed network schema, the constructed AHIN
has 25,875 nodes (i.e., 4,284 nodes with type of GitHub user,
4,864 nodes with type of project, 4,284 nodes with type of
Stack Overflow user, 2,184 nodes with type of question, and
10,259 with type of answer) and 75,824 edges including re-
lations of R1-R9. In the following experiments, we use accu-
racy (i.e., ACC) and F1 measure for evaluations.

3.2 Baseline Methods
We validate the performance of our proposed method for
cross-platform user identification in GitHub and Stack Over-
flow by comparisons with different groups of baseline meth-
ods. First, we evaluate different types of features:
• User Attributes. This category only considers the ex-

tracted user attributed features described in Section 2.1,
denoted as f-1;
• Different AHIN-based Features. This type of features

augment user attributes with the AHIN-based relations
in three different ways: (1) f-2 concatenates user at-
tributes and relations represented by the best performed
single-view graph; (2) f-3 concatenates user attributes
and relations represented by simply merging the edges
of ten different single-view graphs; and (3) f-4 concate-
nates user attributes and relations which are formulated

by employing our proposed fusion method to merge dif-
ferent single-view graphs into an unified one.

Second, we evaluate our proposed AHIN embedding method
AHIN2Vec by comparisons with following baselines.

• DeepWalk [Perozzi et al., 2014] learns node vectors
by capturing node pairs within w-hop neighborhood via
uniform random walks in the network.

• LINE [Tang et al., 2015] learns embeddings by preserv-
ing first and second order proximities between nodes.

• metapath2vec [Dong et al., 2017] embeds the semantic
information based on a single meta-path.

• HIN2Vec [Fu et al., 2017] learns embeddings to capture
rich relation semantics in HIN via a neural network.

For DeepWalk and LINE, we ignore the heterogeneous
property and directly feed the network for embedding. Note
that, since all baselines are incapable of dealing with at-
tributed features attached to the nodes (i.e., users), here we
simply concatenate the node embedding learned by each
method with the user attributed feature vector to represent a
user. In our method, we train graph auto-encoder as suggested
in [Kipf and Welling, 2016b]. To facilitate the comparisons,
we use the experimental procedure as in [Perozzi et al., 2014;
Tang et al., 2015; Dong et al., 2017]: we set vector dimension
d = 200 and randomly select a portion of data (ranging from
10% to 90%) for training and the remaining one for testing.

3.3 Comparisons and Analysis
Based on our data collection, we show the comparison re-
sults for all the baseline methods introduced above for cross-
platform user identification. We first evaluate the perfor-
mance of different types of features using ten-fold cross vali-
dations. From Table 1, we can observe that different features
show different performances: (1) feature engineering (f-2, f-3
and f-4) helps the performance of machine learning since the
rich semantics encoded in AHIN-based relations can bring
more information; (2) two augmented features formulated
from the merged graphs (f-3 and f-4) outperform f-2 using
user relations extracted from a single-view graph; further, the
proposed method to fuse different single-views (f-4) indeed
performs better than the simple graph merging (f-3); (3) our
proposed method achieves the best result. The reason behind
this is that iDev leverages user attributes and AHIN-based
relations in an expressive and comprehensive way, which is
more informative than the simple augmented features.

Metric Attrs Attrs+Relations iDev
f-1 f-2 f-3 f-4

ACC 0.868 0.902 0.916 0.921 0.936
F1 0.863 0.898 0.915 0.917 0.934

Table 1: Comparisons of different types of features

We also show the comparisons in Table 2 for different net-
work embedding models. From the results, we can see that
our proposed AHIN2Vec outperforms all baselines in terms of
ACC and F1. That is to say, AHIN2Vec learns significantly

better node (i.e., user) representations in AHIN than cur-
rent state-of-the-art methods. The success of AHIN2Vec lies
in: (1) the proper consideration and accommodation of the
heterogeneous property of AHIN (i.e., the multiple types of
nodes and relations), (2) the advantage of graph auto-encoder
to incorporate both graph structure and node attributes for
representation learning.

Metric Method 10% 30% 50% 70% 90%

ACC

Deepwalk 0.812 0.854 0.873 0.892 0.906
Line 0.823 0.864 0.874 0.892 0.909

metapath2vec 0.849 0.870 0.891 0.913 0.929
Hin2vec 0.855 0.875 0.897 0.915 0.926

AHIN2Vec 0.866 0.886 0.911 0.919 0.939

F1

Deepwalk 0.809 0.850 0.869 0.889 0.904
Line 0.821 0.860 0.871 0.889 0.906

metapath2vec 0.846 0.867 0.888 0.911 0.927
Hin2vec 0.851 0.871 0.894 0.912 0.924

AHIN2Vec 0.862 0.882 0.908 0.916 0.938

Table 2: Comparisons of different embedding methods

3.4 Parameter Sensitivity and Scalability
In this set, we first conduct parameter sensitivity analysis of
how different choices of dimension d will affect the perfor-
mance of iDev in cross-platform user identification by ten-
fold cross validations. As shown in Figure 4.(a), iDev is not
strictly sensitive to dimension d and is able to reach high per-
formance under a cost-effective parameter choice. For scala-
bility, we further evaluate the running time of iDev with dif-
ferent sizes of the dataset. Figure 4.(b) shows that the running
time is quadratic to the number of sampled users. When deal-
ing with more data, parallel algorithms can be developed.

Figure 4: Parameter sensitivity and scalability

3.5 Case Studies
To better understand and gain deeper insights into the
security-related risks of modern social coding ecosystem, we
further apply our developed system iDev for cross-platform
user identification in the wild. For the identified user pairs,
we sample 565 pairs and validate them using conclusive evi-
dences. Among these 565 pairs, 502 pairs (88.85%) are with
high confidence that they are the same individuals and 15
pairs are uncertain (2.65%). For example, one of our identi-
fied user pairs “a***2” in GitHub and “a***r” in Stack Over-
flow have different usernames, locations and contact infor-
mation; meanwhile the user profile in Stack Overflow doesn’t
provide GitHub link. However, “a***r” in Stack Overflow
posts a question linking into a GitHub project which offers

OTA updater for unofficial ROMs created by “a***2”. After
further investigation, we find that these two users are the same
one in developing this GitHub project. The studies based on
the identified user pairs could help understand and thus pre-
vent the dissemination of risky or malicious codes cross dif-
ferent social coding platforms.

4 Related Work
There have been many works on enhancing code security
such as malicious code detection [Ye et al., 2007; Ye et al.,
2011; Hou et al., 2017; Ye et al., 2017; Chen et al., 2017;
Fan et al., 2018; Ye et al., 2018]. With the popularity of so-
cial coding platforms, there have been several studies on the
interplay between GitHub and Stack Overflow [Vasilescu et
al., 2013; Silvestri et al., 2015; Baltes et al., 2017]. Though
the results are promising, most of them fail to consider the
social coding properties in solving their problems. Differ-
ent from the existing works, in this paper, to conduct cross-
platform user identification, we propose to utilize not only
user attributes, but also various kinds of relationships among
users, projects, questions and answers.

HIN has shown the success of modeling different types of
entities and relations [Sun et al., 2011], but it has limited ca-
pability of modeling additional attributes attached to entities.
To tackle this challenge, AHIN is proposed for representation
[Li et al., 2017]. To better address representation learning for
HIN, many efficient network embedding methods have been
proposed such as metapath2vec [Dong et al., 2017], HIN2vec
[Fu et al., 2017]. However, these models are unable to deal
with the attributed information associated with the entity. To
address this issue, we propose AHIN2Vec to learn the desir-
able node representations in AHIN.

5 Conclusion
We develop a system named iDev to automate cross-platform
user identification between GitHub and Stack Overflow. In
iDev, to depict a rich source of heterogeneous information
and user attributes, we present a structural AHIN for repre-
sentation and use a meta-path based approach to character-
ize the semantic relatedness over users. To efficiently learn
node representations in AHIN, we propose a novel AHIN em-
bedding model AHIN2Vec which first maps the constructed
AHIN to a multi-view network, then applies subspace anal-
ysis to obtain an unified attributed graph and later exploits
graph auto-encoder to learn the node embeddings. After that,
we apply average pooling on each pair of GitHub and Stack
Overflow user embeddings which are then fed to the classifier
for cross-platform user identification. The promising experi-
mental results on the collected datasets demonstrate that iDev
outperforms other baseline methods.

Acknowledgments
Y. Fan, Y. Zhang, S. Hou, L. Chen and Y. Ye’s work
is partially supported by the NSF under grants CNS-
1618629, CNS-1845138 and OAC-1839909; the DoJ/NIJ
under grant NIJ 2018-75-CX-0032; the WV HEPC Grant
(HEPC.dsr.18.5); and WVU RSA (R-844). Y. Ye and S. Xu’s
work is partially supported by the NSF CNS-1814825.

References
[Baltes et al., 2017] Sebastian Baltes, Richard Kiefer, and

Stephan Diehl. Attribution required: Stack overflow code
snippets in github projects. In ICSE, pages 161–163, 2017.

[Chen et al., 2016] Kai Chen, Xueqiang Wang, Yi Chen,
Peng Wang, Yeonjoon Lee, XiaoFeng Wang, Bin Ma, Ao-
hui Wang, Yingjun Zhang, and Wei Zou. Following devil’s
footprints: Cross-platform analysis of potentially harm-
ful libraries on android and ios. In S&P, pages 357–376.
IEEE, 2016.

[Chen et al., 2017] Lingwei Chen, Shifu Hou, and Yanfang
Ye. Securedroid: Enhancing security of machine learning-
based detection against adversarial android malware at-
tacks. In ACSAC, pages 362–372. ACM, 2017.

[Dong et al., 2014] Xiaowen Dong, Pascal Frossard, Pierre
Vandergheynst, and Nikolai Nefedov. Clustering on multi-
layer graphs via subspace analysis on grassmann mani-
folds. IEEE Trans. Signal Process, 62(4):905–918, 2014.

[Dong et al., 2017] Yuxiao Dong, Nitesh V Chawla, and
Ananthram Swami. metapath2vec: Scalable representa-
tion learning for heterogeneous networks. In KDD, pages
135–144, 2017.

[Ducklin, 2017] Paul Ducklin. Github starts scanning
millions of projects for insecure components. https:
//nakedsecurity.sophos.com/2017/11/21/github-starts-
scanning-millions-of-projects-for-insecure-components/,
2017. Accessed February 11, 2019.

[Fan et al., 2018] Yujie Fan, Shifu Hou, Yiming Zhang, Yan-
fang Ye, and Melih Abdulhayoglu. Gotcha-sly malware!:
Scorpion a metagraph2vec based malware detection sys-
tem. In KDD, pages 253–262. ACM, 2018.

[Fu et al., 2017] Tao-yang Fu, Wang-Chien Lee, and Zhen
Lei. Hin2vec: Explore meta-paths in heterogeneous in-
formation networks for representation learning. In CIKM,
pages 1797–1806. ACM, 2017.

[GitHub, 2019] GitHub. Github: Built for developers. https:
//github.com/about, 2019. Accessed February 11, 2019.

[Hou et al., 2017] Shifu Hou, Yanfang Ye, Yangqiu Song,
and Melih Abdulhayoglu. Hindroid: An intelligent an-
droid malware detection system based on structured het-
erogeneous information network. In KDD, pages 1507–
1515. ACM, 2017.

[Kipf and Welling, 2016a] Thomas N Kipf and Max
Welling. Semi-supervised classification with graph
convolutional networks. arXiv:1609.02907, 2016.

[Kipf and Welling, 2016b] Thomas N Kipf and Max
Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016.

[Le and Mikolov, 2014] Quoc Le and Tomas Mikolov. Dis-
tributed representations of sentences and documents. In
ICML, pages 1188–1196, 2014.

[Li et al., 2017] Xiang Li, Yao Wu, Martin Ester, Ben Kao,
Xin Wang, and Yudian Zheng. Semi-supervised cluster-
ing in attributed heterogeneous information networks. In
WWW, pages 1621–1629, 2017.

[Ng et al., 2002] Andrew Y Ng, Michael I Jordan, and Yair
Weiss. On spectral clustering: Analysis and an algorithm.
In NIPS, pages 849–856, 2002.

[Perozzi et al., 2014] Bryan Perozzi, Rami Al-Rfou, and
Steven Skiena. Deepwalk: Online learning of social rep-
resentations. In KDD, pages 701–710. ACM, 2014.

[Shi et al., 2018] Yu Shi, Fangqiu Han, Xinwei He, Xinran
He, Carl Yang, Jie Luo, and Jiawei Han. mvn2vec: Preser-
vation and collaboration in multi-view network embed-
ding. arXiv:1801.06597, 2018.

[Silvestri et al., 2015] Giuseppe Silvestri, Jie Yang, Alessan-
dro Bozzon, and Andrea Tagarelli. Linking accounts
across social networks: the case of stackoverflow, github
and twitter. In KDWeb, pages 41–52, 2015.

[StackExchange, 2019] StackExchange. Stackexchange data
dump. https://archive.org/details/stackexchange, 2019.
Accessed January 5, 2019.

[StackOverflow, 2018] StackOverflow. Developer survey
results 2018. https://insights.stackoverflow.com/survey/
2018/, 2018. Accessed February 11, 2019.

[Statista, 2018] Statista. Statistics and market data on soft-
ware. https://www.statista.com/markets/418/topic/484/
software/, 2018. Accessed February 11, 2019.

[Sun et al., 2011] Yizhou Sun, Jiawei Han, Xifeng Yan,
Philip S Yu, and Tianyi Wu. Pathsim: Meta path-based
top-k similarity search in heterogeneous information net-
works. VLDB Endowment, 4(11):992–1003, 2011.

[Tang et al., 2015] Jian Tang, Meng Qu, Mingzhe Wang,
Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-
scale information network embedding. In WWW, pages
1067–1077, 2015.

[Vasilescu et al., 2013] Bogdan Vasilescu, Vladimir Filkov,
and Alexander Serebrenik. Stackoverflow and github:
Associations between software development and crowd-
sourced knowledge. In ICSC, pages 188–195. IEEE, 2013.

[Von Luxburg, 2007] Ulrike Von Luxburg. A tutorial on
spectral clustering. Statistics and computing, 17(4):395–
416, 2007.

[Ye et al., 2007] Yanfang Ye, Dingding Wang, Tao Li, and
Dongyi Ye. Imds: Intelligent malware detection system.
In KDD, pages 1043–1047. ACM, 2007.

[Ye et al., 2011] Yanfang Ye, Tao Li, Shenghuo Zhu, Wei-
wei Zhuang, Egemen Tas, Umesh Gupta, and Melih Ab-
dulhayoglu. Combining file content and file relations for
cloud based malware detection. In KDD, pages 222–230.
ACM, 2011.

[Ye et al., 2017] Yanfang Ye, Tao Li, Donald Adjeroh, and
S Sitharama Iyengar. A survey on malware detection using
data mining techniques. ACM CSUR, 50(3):41, 2017.

[Ye et al., 2018] Yanfang Ye, Shifu Hou, Lingwei Chen, Xin
Li, Liang Zhao, Shouhuai Xu, Jiabin Wang, and Qi Xiong.
Icsd: An automatic system for insecure code snippet de-
tection in stack overflow over heterogeneous information
network. In ACSAC, pages 542–552. ACM, 2018.

https://nakedsecurity.sophos.com/2017/11/21/github-starts-scanning-millions-of-projects-for-insecure-components/
https://nakedsecurity.sophos.com/2017/11/21/github-starts-scanning-millions-of-projects-for-insecure-components/
https://nakedsecurity.sophos.com/2017/11/21/github-starts-scanning-millions-of-projects-for-insecure-components/
https://github.com/about
https://github.com/about
https://archive.org/details/stackexchange
https://insights.stackoverflow.com/survey/2018/
https://insights.stackoverflow.com/survey/2018/
https://www.statista.com/markets/418/topic/484/ software/
https://www.statista.com/markets/418/topic/484/ software/

	Introduction
	Proposed Method
	Feature Extraction
	AHIN Construction
	AHIN2Vec

	Experimental Results and Analysis
	Data Collection
	Baseline Methods
	Comparisons and Analysis
	Parameter Sensitivity and Scalability
	Case Studies

	Related Work
	Conclusion

