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Abstract
The increasingly sophisticated Android malware
calls for new defensive techniques that are capa-
ble of protecting mobile users against novel threats.
In this paper, we first extract the runtime Applica-
tion Programming Interface (API) call sequences
from Android apps, and then analyze higher-level
semantic relations within the ecosystem to com-
prehensively characterize the apps. To model dif-
ferent types of entities (i.e., app, API, device, sig-
nature, affiliation) and rich relations among them,
we present a structured heterogeneous graph (HG)
for modeling. To efficiently classify nodes (e.g.,
apps) in the constructed HG, we propose the HG-
Learning method to first obtain in-sample node em-
beddings and then learn representations of out-of-
sample nodes without rerunning/adjusting HG em-
beddings at the first attempt. We later design a
deep neural network classifier taking the learned
HG representations as inputs for real-time Android
malware detection. Comprehensive experiments on
large-scale and real sample collections from Ten-
cent Security Lab are performed. Promising results
demonstrate that our developed system AiDroid
which integrates our proposed method outperforms
others in real-time Android malware detection.

1 Introduction
Due to the mobility and ever expanding capabilities, smart
phones have become increasingly ubiquitous in people’s ev-
eryday life performing tasks such as social networking and
online banking. Android, as an open source and customiz-
able operating system (OS) for smart phones, is currently
dominating the smart phone market by 75.16% [Statcounter,
2018]. However, due to its large market share and open
source ecosystem of development, Android attracts not only
the developers for producing legitimate Android applications
(apps), but also attackers to disseminate malware (malicious
software) that deliberately fulfills the harmful intent to the
smart phone users (e.g., stealing user credentials, pushing un-
wanted apps or advertisements). Driven by the considerable

∗Corresponding author: yanfang.ye@mail.wvu.edu

economic profits, there has been explosive growth of An-
droid malware which posed serious threats to the smart phone
users; it’s reported that there have been 4, 687, 008 newly
generated Android malware that infected more than 61 mil-
lion smart phones in the first half of 2018 [TencentSecurity,
2018]. To evade the detection by mobile security products,
Android malware has turned to be increasingly sophisticated.
For example, as shown in Figure 1, the “TigerEyeing” trojan
is a new kind of Command and Control (C&C) malware that
pretends to be a legitimate app (e.g., mobile game, system
tool) and only executes to perform the profitable tasks on-
demand. The explosive growth and increasing sophistication
of Android malware call for new defensive techniques that
are capable of protecting mobile users against novel threats.

Figure 1: Increasingly sophisticated Android malware.

To combat the evolving Android malware attacks, in this
paper, we first extract the Application Programming Inter-
face (API) call sequences from runtime executions of An-
droid apps in users’ smart phones to capture their behaviors.
We further analyze higher-level semantic relationships within
the ecosystem, such as whether two apps have similar be-
haviors, whether they co-exist in the same smart phone that
can be identified by its unique International Mobile Equip-
ment Identity (IMEI) number, whether they are signed by the
same developer or produced by the same company (i.e., affil-
iation), etc. To depict such complex relationships, we present
a structured heterogeneous graph (HG) [Sun and Han, 2012]

for modeling. To efficiently classify nodes (e.g., apps) in the
constructed HG, HG embedding methods [Fu et al., 2017;
Dong et al., 2017; Fan et al., 2018] have been proposed;
unfortunately, most of these existing methods are primarily
designed for static HGs, where all nodes are known before



Figure 2: Overview of the developed system AiDroid for real-time Android malware detection.

learning. Systems such as HinDroid [Hou et al., 2017] and
Scorpion [Fan et al., 2018] have demonstrated the success of
HG based models in malware detection; however, they are
also developed based on static HGs and thus fail to deal with
the problem of out-of-sample node representation learning.
As our application requires real-time prediction of new com-
ing nodes (i.e., unknown apps), it is infeasible to rerun HG
embeddings whenever new nodes arrive, especially consid-
ering the fact that rerunning HG embeddings also results in
the need of retraining the downstream classifier. How to ef-
ficiently learn the representations of out-of-sample nodes in
HG remains largely unanswered. To solve this problem, we
propose the HG-Learning method to first obtain in-sample
node embeddings and then learn representations of out-of-
sample nodes without rerunning/adjusting HG embeddings at
the first attempt. Afterwards, we design a deep neural net-
work (DNN) classifier leveraging the advantages of convo-
lutional neural networks (CNNs) and Inception for Android
malware detection. We develop a system AiDroid (shown in
Figure 2) integrating our proposed method for real-time An-
droid malware detection, which has major merits of:

• Besides runtime behaviors, we further analyze the com-
plex relations within the ecosystem to characterize An-
droid apps. Then, we present a structured HG for model-
ing. This provides a comprehensive solution that is more
resilient against Android malware’s evasion tactics.

• To solve the node (i.e., app) classification problem in
HG, we propose the HG-Learning method to efficiently
learn representations of out-of-sample nodes in HG us-
ing in-sample node embeddings while without rerun-
ning/adjusting them for the first time, which makes the
downstream classifier feasible for classifying new arriv-
ing nodes without retraining. Though it’s proposed for
real-time Android malware detection, the HG-Learning
method is a general framework to learn desirable node
representations in HG (i.e., especially for out-of-sample
nodes) and thus it can be further applied to various
speed-sensitive dynamic graph/network mining tasks.

• We provide comprehensive experimental studies based
on the large-scale and real sample collections from Ten-
cent Security Lab, which demonstrate the performance
of AiDroid. It has been incorporated into Tencent Mo-
bile Security product that protects millions of users.

2 Proposed Method
In this section, we introduce the proposed method which is
integrated in AiDroid in detail.

2.1 Feature Extraction
Dynamic Behavior Extraction. API calls are used by An-
droid apps in order to access Android OS functionality and
system resources. Therefore, we extract the sequences of
API calls in the application framework from runtime exe-
cutions of Android apps to capture their behaviors. For ex-
ample, a sequence of API calls (StartActivity, checkConnect,
getPhoneInfo, receiveMsg, sendMsg, finishActivity) extracted
from the previous mentioned “TigerEyeing” trojan represents
its typical behaviors of connecting to the C&C server in or-
der to fetch the configuration information; while another se-
quence of its extracted API calls (startActivity, checkConnect,
sendSMS, finishActivity) denotes its intention of sending SMS
messages without user’s concern.

Relation-based Feature Extraction. Besides the above ex-
tracted API call sequences that can be used to represent an
app’s behaviors, to detect the increasingly sophisticated An-
droid malware, we further consider various kinds of relations:
i) R1: the app-invoke-API relation describes whether an app
invokes an API call in runtime execution; ii) R2: the app-
exist-IMEI relation describes whether an app exists (i.e., is
installed) in a smart phone (i.e., IMEI); iii) R3: the app-
certify-signature relation means an app is certified by a sig-
nature, denoting that it’s signed by a developer; iv) R4: pack-
age name (a.k.a. Google Play ID) is an unique identifier for
an Android app; since companies conventionally use their
reserved domain name to begin their package names (e.g.,
“com.tencent.mobileqq”), we extract the domain name from
the package name and build app-associate-affiliation to in-
dicate the relation between an app (e.g., “mobileqq”) and
its affiliation (e.g., “tencent.com”); v) R5: the IMEI-have-
signature relation represents if a smart phone has a set of apps
signed by a particular developer; vi) R6: the IMEI-possess-
affiliation relation denotes if a smart phone installs a set of
apps associated with a specific affiliation.

2.2 Heterogeneous Graph Construction
In order to depict apps using the extracted features, we in-
troduce heterogeneous graph (HG) to model them in a proper



way so that different kinds of entities and relations can be bet-
ter handled. We first present the related concepts as follows.

Definition 1 A heterogeneous graph (HG) [Sun and Han,
2012] is defined as a graph G = (V, E) with an entity type
mapping φ: V → A and a relation type mapping ψ: E → R,
where V denotes the entity set and E is the relation set, A
denotes the entity type set and R is the relation type set, and
the number of entity types |A| > 1 or the number of relation
types |R| > 1. The network schema [Sun and Han, 2012]
for a HG G, denoted as TG = (A,R), is a graph with nodes
as entity types from A and edges as relation types from R.

Based on the definition above, the network schema in our
application with five entity types and six types of relations
among them is shown in Figure 3, which enables the apps
to be represented in a comprehensive way that utilizes their
semantic and structural information.

Figure 3: Network schema for HG in our application.

To formulate the relatedness among entities in HG, the con-
cept of meta-path has been proposed [Sun and Han, 2012]:
a meta-path P is a path defined on the graph of network

schema TG = (A,R), and is denoted in the form of A1
R1−−→

A2
R2−−→ ...

RL−−→ AL+1, which defines a composite relation
R = R1 · R2 · . . . · RL between types A1 and AL+1, where
· denotes relation composition operator, and L is length of
P . In our application, based on the HG schema shown in Fig-
ure 3, incorporated the domain knowledge from anti-malware
experts, we design six meaningful meta-paths to character-
ize the relatedness over apps at different views (i.e., PID1-
PID6 shown in Figure 4). For example, PID1 depicts that
two apps are related if they both invoke the same API (e.g.,
two malicious mobile video players both invoke the API of
“requestAudioFocus”); while PID4 depicts that two apps are
connencted if they are developed by the same developer.

Figure 4: Meta-paths built for Android malware detection.

2.3 HG-Learning: Representation Learning of
Out-of-Sample Nodes in HG

Traditional network representation learning mainly focuses
on factorizing the matrix (e.g., adjacency matrix) of network
to generate latent-dimension features for the nodes. However,

the computational cost of decomposing a large-scale matrix
is usually very expensive, and also suffers from its statistical
performance drawback [Grover and Leskovec, 2016]. Since
Android malware detection is a speed sensitive application
and requires cost-effective solutions, scalable representation
learning method for HG, especially for out-of-sample nodes,
is in need. To address these challenges, we first formalize HG
representation learning.

Definition 2 HG Representation Learning [Fu et al., 2017;
Dong et al., 2017]. Given a HG G = (V, E), the represen-
tation learning task is to learn a function f : V → R

d that
maps each node v ∈ V to a vector in a d-dimensional space
R

d, d � |V| that are capable to preserve the structural and
semantic relations among them.

To solve the problem of HG representation learning, due
to the heterogeneous property of HG (i.e., graph consisting
of multi-typed entities and relations), it is difficult to directly
apply the conventional homogeneous graph embedding tech-
niques [Perozzi et al., 2014; Tang et al., 2015; Grover and
Leskovec, 2016] to learn the latent representations for HG. To
address this issue, HG embedding methods [Fu et al., 2017;
Dong et al., 2017; Fan et al., 2018] have been proposed,
which are capable to preserve the semantic and structural cor-
relations between different types of nodes. However, most of
these existing models are primarily designed for static HGs,
where all nodes are known before learning. In our applica-
tion (i.e., real-time Android malware detection), it is infea-
sible to rerun HG embeddings whenever new nodes arrive,
especially considering the fact that rerunning HG embed-
dings also results in the need of retraining the downstream
classifier. How to efficiently learn the representations of
out-of-sample nodes in HG, i.e., nodes that arrive after the
embedding process, remains largely unanswered. To solve
this problem, we propose HG in-sample node embedding
model (i.e., HGiNE) to learn in-sample node embeddings that
is able to preserve the heterogeneous property of HG; and
then we devise HG2Img model to learn out-of-sample node
representations and also enrich in-sample node representa-
tions using learned in-sample node embeddings without re-
running/adjusting HG embeddings.

In-sample node embedding (HGiNE). We first propose a
random walk strategy guided by different meta-paths to map
the word-context concept into a HG; then exploit skip-gram
to learn effective in-sample node representations for a HG.

Given a source node vj in a homogeneous graph, the tradi-
tional random walk is a stochastic process with random vari-

ables v1j , v
2
j , ..., v

k
j such that vk+1

j is a node chosen at random
from the neighbors of node vk. The transition probability

p(vi+1
j |vij) at step i is the normalized probability distributed

over the neighbors of vij by ignoring their node types. How-
ever, this mechanism is unable to capture the semantic and
structural correlations among different types of nodes in a
HG. Here, we show how we use different built meta-paths
to guide the random walker in a HG to generate the paths of
multiple types of nodes. Given a HG G = (V, E) with schema
TG = (A,R), and a set of different meta-paths S = {Pj}nj=1,
each of which is in the form of A1 → ...At → At+1... → Al,



we put a random walker to traverse the HG. The random
walker will first randomly choose a meta-path Pk from S and
the transition probabilities at step i are defined as:

p(vi+1|viAt
,S) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ
|S|

1
|NAt+1

(vi
At

)|
if (vi+1, viAt

) ∈ E , φ(viAt
) = Aapp, φ(v

i+1) = At+1
1

|NAt+1
(vi

At
)|

if (vi+1, viAt
) ∈ E , φ(viAt

) �= Aapp,

φ(vi+1) = At+1, (At, At+1) ∈ Pk

0 otherwise,

(1)

where NAt+1
(viAt

) denotes the At+1 type of neighborhood

of node viAt
, Aapp is entity type of app, and λ is the number

of meta-paths starting with Aapp → At+1 in the given meta-
path set S . The walk paths generated by the above strategy
are able to preserve both the semantic and structural relations
between different types of nodes in the HG.

After mapping the word-context concept in a text corpus
into a HG via the above proposed meta-path guided random
walk strategy (i.e., a sentence in the corpus corresponds to a
sampled path and a word corresponds to a node), skip-gram
[Mikolov et al., 2013a; Perozzi et al., 2014] is then applied
on the paths to minimize the loss of observing a node’s neigh-
borhood (within a window w) conditioned on its current rep-
resentation. The objective function of skip-gram is:

argmin
X

∑

−w≤k≤w,j �=k

− log p(vj+k|X(vj)), (2)

where X(vj) is the current representation vector of vj , and
p(vj+k|X(vj)) is defined using the softmax function:

p(vj+k|X(vj)) =
exp(X(vj+k) ·X(vj))∑|V|
q=1 exp(X(vq) ·X(vj))

. (3)

Due to its efficiency, we first apply hierarchical softmax tech-
nique [Mikolov et al., 2013b] to solve Eq. 3, and then employ
the stochastic gradient descent to train the skip-gram.

Out-of-sample node representation learning (HG2Img).
Can we use in-sample node embeddings learned by the above
proposed HGiNE to efficiently learn representations of out-
of-sample nodes in HG and also enrich in-sample node rep-
resentations? To answer this question, we first present the
concept of k-order neighbors in HG as following.

Definition 3 k-order Neighbors in HG. Given a HG G =
(V, E), let 1-order neighbors of a node vi ∈ V be S(1)(vi) so
that S(1)(vi) = {vj |(vi, vj) ∈ E}; then, k-order neighbors
S(k)(vi) of a node vi (k > 1) can be denoted as S(k)(vi) =
{S(1)(vz) \ S(k−2)(vi), vz ∈ S(k−1)(vi)}.

Based on the above definition, each node (i.e., in-sample
or out-of-sample) in HG can be represented by the following
representation matrix, which leverages not only the embed-
ding of itself but also the information of its k-order neighbors:

X(vi) = [X(vi), X(S(1)(vi)), ..., X(S(k)(vi))], (4)

where X ∈ R
t×d, each of which denotes d-dimensional node

embedding. In our application, as illustrated in Figure 5, for

each k, we exploit breadth-first search (BFS) method to find
tk neighbors in the order of type of app, signature, package,

IMEI and API, and t = 1 +
∑k

1 tk. Empirically we find
k = 2 and t = d perform the best, and apply them to our
problem. Note that we zero-pad the representation matrix in
the corresponding rows when the node embeddings cannot be
found (i.e., out-of-sample nodes) or t < d.

Figure 5: HG-Learning: node representation learning in HG.

Resting on the in-sample node embeddings which can be
learned offline using the proposed HGiNE, when a new node
(e.g., a testing app) arrives, it only takes O(t× d) time to ob-
tain its representation using the proposed HG2Img; further-
more, the representation learning for the new arriving node
doesn’t require rerunning HG embeddings, which makes the
downstream classifier workable for classifying the new arriv-
ing node without retraining. Note that, to enrich the repre-
sentation of each in-sample-node, after exploiting HGiNE to
obtain its embedding, we further apply HG2Img to generate
a t× d matrix X as its final representation.

2.4 Deep Neural Network Classifier
CNNs [LeCun et al., 2015] have achieved great success in
learning salient features for classification tasks; while the
crafty architecture of Inception [Szegedy et al., 2015] has
shown high performance and low cost under strict constraints
on memory and computational budget. Therefore, taking the
generated representations of Android apps from previous sec-
tion as inputs, we devise our deep learning framework lever-
aging the advantages of CNNs [Huang et al., 2018] and In-
ception for real-time Android malware detection, which is il-
lustrated in Figure 2.(d). In our designed DNN: (1) for train-
ing, each in-sample node with type of app in HG represented
by a t×d matrix X will be fed as an input to the multilayer ar-
chitecture to learn the higher level concept and train the clas-
sification model; (2) for prediction, each new arriving node
(i.e., out-of-sample node with type of app) will first obtain
its representation in real-time by using the embeddings of its
k-order neighbors (i.e., in-sample-nodes) and then it will be
predicted by the trained model as either benign or malicious.
Algorithm 1 illustrates the implementation of our developed
system AiDroid which integrates the above proposed method.

3 Experimental Results and Analysis
In this section, we fully evaluate the performance of AiDroid
for real-time Android malware detection.



Algorithm 1: AiDroid for malware detection.
Input: HG G = (V, E) with schema TG = (A,R),

traning data set: DI (in-sample apps), testing
data set: DO (out-of-sample apps).

Output: y: The labels for the testing data set.

Learn in-sample node embeddings X(vi) ∈ Rd

(i = 1, ..., |V|) using HGiNE;
for i = 1→ |DI | do

Apply HG2Img: for each k, find k-order neighbors
X(S(k)(vi)) and then generate the t× d matrix
X(vi) = [X(vi), X(S(1)(vi)), ..., X(S(k)(vi))];

end
Train DNN using Xs ∈ Rt×d;
for j = 1→ |DO| do

Use HG2Img to generate X(vj);
Obtain the label yvj

using trained DNN;
end
return y;

3.1 Data Collection
We obtain the large-scale and real sample collections from
Tencent Security Lab, which contain 190,696 training apps
(i.e., 83,784 benign and 106,912 malicious). After feature ex-
traction, the constructed HG has 286,421 nodes (i.e., 190,696
nodes with type of app, 331 with type of API, 70,187 with
type of IMEI, 8,499 with type of signature, and 16,708 with
type of affiliation) and 4,170,047 edges including relations of
R1-R6. The new coming 17,746 unknown apps with their ex-
tracted features are used as testing data (to obtain the ground
truth, they are further analyzed by the anti-malware experts,
where 13,313 are benign and 4,433 are malicious).

3.2 Baseline Methods
We validate the performance of our proposed method in
AiDroid by comparisons with different groups of baselines.

First, based on the constructed HG described above, we
evaluate our proposed HG-Learning method by comparisons
with following baselines: (1) In-sample node embedding.
We compare our proposed HGiNE with other graph embed-
ding methods including: i) DeepWalk and LINE: for Deep-
Walk [Perozzi et al., 2014] and LINE [Tang et al., 2015], we
ignore the heterogeneous property of HG and directly feed
the HG for embedding; ii) metapath2vec: we use meta-path
scheme separately to guide random walks in metapath2vec
[Dong et al., 2017]. For HGiNE, we divide the designed
meta-paths into three sets (i.e., S1 = {PID1}, S2 = {PID3,
PID4}, S3 = {PID2, PID5, PID6}) and use the proposed
strategy to guide random walks. The parameter settings used
for HGiNE are in line with the baselines, which are empir-
ically set as: vector dimension d = 64 (LINE: 64 for each
order (1st- and 2nd-order)), walks per node r = 20, walk
length l = 50 and window size w = 5. (2) Out-of-sample
node representation learning. We compare our proposed
HG2Img for out-of-sample node representation learning with
following baselines: i) LocalAvg: the out-of-sample nodes
are represented by averaging embeddings of neighboring in-

sample nodes; ii) LabelProp: label propagation for multivari-
ate regression problem can be used to learn the representa-
tions of out-of-sample nodes; as it has been demonstrated
[Ma et al., 2018] that the vanilla version [Zhu and Ghahra-
mani, 2002] outperforms others, we hence use it as a base-
line; iii) Rerunning: for comparisons, we also run a baseline
by rerunning all node embeddings when new nodes arrive.

Second, we evaluate different types of features for An-
droid malware detection. Our proposed method is general
for HGs. Thus, a natural baseline is to see whether the
knowledge we add in should be represented as HG instead
of other features. Here we compare two types of features as
follows: (1) Behavioral Sequences (f-1). We devise three
baselines based on the extracted API call sequences of An-
droid apps: i) we build support vector machine (SVM) clas-
sifier based on binary (i.e., if an API call is invoked by an
app) feature vectors (i.e., Bin+SVM); ii) we exploit Long
Short-term Memory (LSTM) [Sutskever et al., 2014] for se-
quence modeling, based on which SVM classifier is then built
(i.e., LSTM+SVM); and iii) we also train our proposed DNN
based on the extracted API call sequences for evaluation (i.e.,
Seq+DNN). (2) HG-based Features (f-2). Based on the con-
structed HG, the proposed HG-Learning is applied for rep-
resentation learning (i.e., both in-sample and out-of-sample
nodes), based on which the designed DNN is used to train the
classification model for prediction (i.e., AiDroid).

3.3 Comparisons and Analysis
Based on the constructed HG, using the in-sample-nodes for
training and the new coming nodes (i.e., apps) for testing, the
results of different methods are shown in Table 1.

Metric
In-sample Out-of-sample Learning

Rerunning
Embedding LocalAvg LabelProp HG2Img

ACC

DeepWalk 0.9057 0.9214 0.9506 0.9516
LINE 0.9111 0.9307 0.9690 0.9602

metapath2vec 0.9289 0.9448 0.9799 0.9722
HGiNE 0.9389 0.9533 0.9908 0.9843

F1

DeepWalk 0.8267 0.8547 0.9055 0.9076
LINE 0.8364 0.8705 0.9398 0.9234

metapath2vec 0.8669 0.8954 0.9606 0.9459
HGiNE 0.8849 0.9094 0.9817 0.9691

Table 1: Comparisons of different methods.

From Table 1, we can observe that different combinations
of in-sample node embedding and out-of-sample representa-
tion learning show different performances in Android mal-
ware detection: (1) For in-sample node embedding methods,
our proposed HGiNE outperforms all baselines in terms of
accuracy (ACC) and F1. That is to say, HGiNE learns sig-
nificantly better node (i.e., app) representation in HG than
current state-of-the-art methods. (2) For out-of-sample rep-
resentation learning, our proposed HG2Img significantly out-
performs all baselines (i.e., the detection performance achieve
superb 0.9908 ACC and 0.9817 F1), which even surpasses the
rerunning HG embeddings. Obviously, t × d representation



matrices learned by HG2Img utilizing 1- and 2-order neigh-
bors are more expressive than other embeddings in depicting
the apps for the problem of Android malware detection.

The comparisons of different features in Android malware
detection are shown in Table 2, from which we can see that:
(1) Based on the extracted API call sequences (i.e., f-1),
LSTM provides significant improvement in sequence model-
ing while our proposed DNN outperforms others in Android
malware detection. (2) Compared by content-based features
only, HG-based features (i.e., f-2) indeed perform better. The
reason behind this is that HG-based features are more expres-
sive to characterize complex relatednesses over apps which
consist of relations between apps and their invoked API calls,
and higher-level semantics within the ecosystem.

Feature Method TP TN FP FN

f-1
Bin+SVM 3,926 11,828 1,485 507

LSTM+SVM 4,115 12,339 974 318
Seq+DNN 4,168 12,504 809 265

f-2 AiDroid 4,395 13,188 125 38

Feature Method Recall Precision ACC F1

f-1
Bin+SVM 0.8856 0.7255 0.8877 0.7976

LSTM+SVM 0.9282 0.8086 0.9271 0.8642
Seq+DNN 0.9402 0.8374 0.9394 0.8858

f-2 AiDroid 0.9914 0.9723 0.9908 0.9817

Table 2: Comparisons of different types of features.

3.4 Parameter Sensitivity, Scalability and Stability
In this set of experiments, we evaluate the system perfor-
mance of AiDroid. As shown in Figure 6.(a) and (b), we
can see that AiDroid is not strictly sensitive to the parameters
and is able to reach high performance under a cost-effective
parameter choice. We then run the experiments using new
arriving apps over a long time span (i.e., 10 days) to assess
the average detection time and accuracy. Figure 6.(c) and (d)
demonstrate AiDroid is scalable and stable over a long time
span in detecting newly generated Android malware (i.e., pre-
diction time on average: 4.3 ms/app and ACC on average:
0.9891). Figure 6.(e) shows the ROC curve of AiDroid based
on the data described in Section 4.1 which achieves an im-
pressive 0.9914 true positive rate (TPR) at 0.0094 false posi-
tive rate (FPR). We can conclude that AiDroid is indeed feasi-
ble in practical use for real-time Android malware detection.

4 Related Work
In recent years, there have been many malware detection sys-
tems developed using machine learning techniques [Ye et al.,
2010; Ye et al., 2011; Wu et al., 2012; Wu and Hung, 2014;
Hou et al., 2016; Chen et al., 2017; Ye et al., 2017; Saracino
et al., 2018]. In particular, systems such as HinDroid [Hou et
al., 2017] and Scorpion [Fan et al., 2018] have demonstrated
the success of HG based models in malware detection; how-
ever, they are developed based on static HGs without consid-
ering the new arriving nodes after the HG embedding process.
To solve the problem of HG representation learning, HIN2vec

Figure 6: Parameter sensitivity, scalability and stability.

[Fu et al., 2017], metapath2vec [Dong et al., 2017], meta-
graph2vec [Fan et al., 2018], snippet2vec [Ye et al., 2018],
and PME [Chen et al., 2018] have been proposed; however,
few of them can deal with out-of-sample nodes. To tackle
this problem, though algorithms such as [Chang et al., 2015;
Zhao et al., 2018] were proposed to infer embeddings for out-
of-sample nodes in HG, they necessitated adjusting in-sample
node embeddings and also the downstream classifier retrain-
ing. Efficient representation learning for out-of-sample nodes
in HG without rerunning/adjusting HG embeddings is in need
for the application of real-time Android malware detection.
This work is the first attempt to bridge this gap.

5 Conclusion
To combat the evolving Android malware attacks, in this pa-
per, we first extract the API call sequences from runtime exe-
cutions of Android apps and then analyze higher-level seman-
tic relations within the ecosystem. To depict the complex re-
lations among multi-typed entities, we introduce HG for mod-
eling. To efficiently classify nodes (i.e., apps) in HG, we pro-
pose the HG-Learning method to first obtain in-sample node
embeddings and then learn representations of out-of-sample
nodes without rerunning/adjusting HG embeddings for the
first time. Afterwards, we design a DNN classifier leveraging
the advantages of CNNs and Inception for real-time Android
malware detection. Comprehensive experiments on the large-
scale and real data collections from Tencent Security Lab
demonstrate that our developed system AiDroid outperforms
others in real-time Android malware detection. AiDroid has
already been incorporated into Tencent Mobile Security prod-
uct that protects millions of users worldwide.
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