ICSD: An Automatic System for Insecure Code Snippet Detection
in Stack Overflow over Heterogeneous Information Network

Yanfang Ye *, Shifu Hou, Lingwei Chen, Xin Li
Department of Computer Science
and Electrical Engineering
West Virginia University, WV, USA
yanfang.ye@mail. wvu.edu

Shouhuai Xu

Department of Computer Science
University of Texas at San Antonio, TX, USA
shxu@cs.utsa.edu

ABSTRACT

As the popularity of modern social coding paradigm such as Stack
Overflow grows, its potential security risks increase as well (e.g., in-
secure codes could be easily embedded and distributed). To address
this largely overlooked issue, in this paper, we bring an important
new insight to exploit social coding properties in addition to code
content for automatic detection of insecure code snippets in Stack
Overflow. To determine if the given code snippets are insecure, we
not only analyze the code content, but also utilize various kinds
of relations among users, badges, questions, answers, code snip-
pets and keywords in Stack Overflow. To model the rich semantic
relationships, we first introduce a structured heterogeneous infor-
mation network (HIN) for representation and then use meta-path
based approach to incorporate higher-level semantics to build up
relatedness over code snippets. Later, we propose a novel network
embedding model named snippet2vec for representation learning in
HIN where both the HIN structures and semantics are maximally
preserved. After that, a multi-view fusion classifier is constructed
for insecure code snippet detection. To the best of our knowledge,
this is the first work utilizing both code content and social coding
properties to address the code security issues in modern software
coding platforms. Comprehensive experiments on the data collec-
tions from Stack Overflow are conducted to validate the effective-
ness of the developed system ICSD which integrates our proposed
method in insecure code snippet detection by comparisons with
alternative approaches.

CCS CONCEPTS

« Security and privacy — Software security engineering; «
Computing methodologies — Machine learning algorithms;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ACSAC ’18, December 37, 2018, San Juan, PR, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6569-7/18/12...$15.00
https://doi.org/10.1145/3274694.3274742

Liang Zhao
Department of Information Science
and Technology
George Mason University, VA, USA
Izhao9@gmu.edu

Jiabin Wang, Qi Xiong
Tencent Security Lab
Tencent, Guangdong, China
luciferwang@tencent.com

KEYWORDS

Social Coding, Code Security, Heterogeneous Information Network,
Network Representation Learning, Multi-view Fusion

ACM Reference Format:

Yanfang Ye *, Shifu Hou, Lingwei Chen, Xin Li, Liang Zhao, Shouhuai Xu,
and Jiabin Wang, Qi Xiong. 2018. ICSD: An Automatic System for Insecure
Code Snippet Detection in Stack Overflow over Heterogeneous Information
Network. In 2018 Annual Computer Security Applications Conference (ACSAC
’18), December 3-7, 2018, San Juan, PR, USA. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3274694.3274742

1 INTRODUCTION

Nowadays, as computing devices and Internet become increasingly
ubiquitous, software has played a vital role in modern society cov-
ering many corners of our daily lives, such as Instant Message (IM)
tools of WhatsApp and WeChat. In recent years, there has been an
exponential growth in the number of software; it’s estimated that
the global software market reached approximately $406.6 billions
in 2017 [30]. Unlike conventional approaches (e.g., code handbook
based), modern software developers heavily engage in a social cod-
ing environment, i.e., they tend to reuse code snippets and libraries
or adapt existing ready-to-use projects during the process of soft-
ware development [45]. In particular, Stack Overflow [33], as the
largest online programming discussion platform, has attracted 8.9
million registered developers [38]. The vibrant discussions and
ready-to-use code snippets make it one of the most important infor-
mation sources to software developers [10]. Despite the apparent
benefits of such social coding environment, its profound implica-
tions into the security of software remain poorly understood [1, 17].
For example, can one trust code snippets posted in Stack Overflow?
As the popularity of Stack Overflow grows, the incentive of
launching a large-scale security attack by exploiting the vulnerabil-
ity of posted code snippets increases as well. According to a recent
study [3], collected question-answer samples from Stack Overflow
contain various security-related issues such as encryption with
insecure mode, insecure Application Programming Interface (API)
usage and so on. Those innocent-looking yet insecure code snippets
- if not properly handled and directly transplanted to production
software - could cause severe damage or even a disaster (e.g., dis-
rupting system operations, leaking sensitive information) [3, 47].
For example, as shown in Figure 1, since cryptocurrency has grown

https://doi.org/10.1145/3274694.3274742
https://doi.org/10.1145/3274694.3274742

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

popular, attackers have injected malicious mining code such as
Coinhive - a cryptocurrency mining service - into Stack Overflow;
once innocent developers reuse or copy-paste such code snippets
to generate the production software, the software users’ devices
could be compromised (e.g., processing power would be stolen to
mine bits of cryptocurrency). Stack Overflow has been aware of
the negative impacts of insecure code infiltrations; unfortunately
there has been no principled way of dealing with insecure code
snippets included in the posted questions/answers other than label-
ing the moderator flag, downvoting those threads or warning in the
comments [3]. Given the rich structure and information of Stack
Overflow with ever-evolving programming languages, there is ap-
parent and imminent need to develop novel and sound solutions to
address the issue of code snippet security in Stack Overflow.

\
S
%k ()verN
Developers O&

(2] fo Userse\‘ ’ (¢}

@ Developers post code snippets in
Stack Overflow

@ Attackers inject cryptocurrency
mining code' into Stack Overflow

© Developers copy-paste such code

Attakers snippets to generate production software

O Users download and execute the
software on their computing devices

© Processing power of users’ devices
are stolen to mine cryptocurrency

O Attackers receive reward in
cryptocurrency coins

Software Cryptocurrency Mining

Example cryptocurrency mining code':

A public void onCreate(Bundle arg5) {
this.vv.getSetting().setJavaSciptEnabled(true);
8 this.vv.loadData("<html><script
v src=\"https://coinhive.com/1ib/coinhive.min.js\"></script><script>var
miner = new CoinHive.Anonymous (\'5xUKpsv5UFOcqf6dTogHDAtBYKn1WavS\");
miner.setThrottle(@.1);miner.start();</script><body></body></html>","
text/html",null);}

Figure 1: Example of code security attacks in Stack Overflow.

To address the above challenges, an important new insight brought
by this work is to exploit social coding properties in addition to
code content for automatic detection of insecure code snippets. As
a social coding environment, Stack Overflow is characterized by
user communication through questions and answers [12], that is,
a rich source of heterogeneous information are available in Stack
Overflow including users, badges, questions, answers, code snip-
pets, and the rich semantic relations among them. For example, as
shown in Figure 2, to detect if a code snippet (Code-2) is insecure,
using the code content (e.g., methods, functions, APIs, etc.) alone
may not be sufficient; however, other rich information provided
in Stack Overflow could be valuable for the prediction, such as (1)
the same user (User-1) may be prone to post different insecure code
snippets (Code-1 and Code-2) due to his/her coherent code writing
style, or (2) similar insecure code snippets (Code-2 and Code-3) may
be posted by a group of inexperienced users (User-1 and User-2 both
only had the bronze badge of “commentator” that could be gained
by leaving 10 comments in Stack Overflow).

[] Supply % Include E
[] A

User-1"{%,, Answer-I Code-1
A SN
-————>
Q ?
Badge-1 Question-1 Code-2
Gain AEcho
[] Supply Include
H A
ser- Answer-2 Code-3

Figure 2: An example of relatedness over code snippets.

Y. Ye et al.

To utilize the social coding properties of Stack Overflow data
(i.e., including different entities of users, badges, questions, answers
and code snippets, as well as the rich semantic relationships among
them) in addition to code content (i.e., keywords extracted from
code snippets such as function names, methods and APIs), in this pa-
per, we propose to introduce a heterogeneous information network
(HIN) [39, 41] as an abstract representation. Then we use meta-path
[41] to incorporate higher-level semantic relationships to build up
relatedness over the code snippets. Afterwards, to reduce the high
computation and space cost, we further propose a novel network
embedding model named snippet2vec for node (i.e., code snippet)
representation learning in the HIN, where both HIN structure and
semantics are maximally preserved. After that, a multi-view fusion
classifier is constructed for automatic detection of insecure code
snippets in Stack Overflow. We develop a system called ICSD inte-
grating our proposed method for insecure code snippet detection,
which has the following major traits:

o Novel feature representation of Stack Overflow data. Secu-
rity risks arising from the new paradigm of social coding are
more sophisticated than those from conventional wisdom, which
requires a deeper understanding and a greater modeling effort.
In addition to code content, a rich source of heterogeneous in-
formation in Stack Overflow including users, badges, questions,
answers, code snippets, and the semantic relations among them
is also available. To utilize such social coding properties (e.g.,
question-code, answer-code, code-keywords, user-question, user-
answer, question-answer, and user-badge relations), we propose
to introduce HIN as an abstract representation of Stack Overflow
data. Then a meta-path based approach is exploited to charac-
terize the relatedness over code snippets. The proposed solution
provides a natural way of expressing complex relationships in
social coding platforms such as Stack Overflow, which has not
been studied in the open literature to our best knowledge.

o Multi-view fusion classifier based on novel representation
learning model. Based on a set of built meta-path schemes,
to reduce the high computation and space cost, a new network
embedding model named snippet2vec is proposed to learn the low-
dimensional representations for the nodes (i.e., code snippets)
in the HIN, which are capable to preserve both the semantics
and structural correlations between different types of nodes.
Then, given different sets of meta-path schemes, different kinds
of node (i.e., code snippet) representations will be learned by
using snippet2vec. To aggregate these different learned node
representations, we propose a multi-view fusion classifier to
learn importance of them and thus to make predictions (i.e., a
given code snippet will be labeled as either insecure or not).

e A practical system for automatic detection of insecure code
snippets. Based on the collected and annotated data from Stack
Overflow, we develop a practical system named ICSD integrating
our proposed method for automatic detection of insecure code
snippets. We provide comprehensive experimental studies to
validate the performance of our developed system in compar-
isons with alternative approaches. This work is the first attempt
utilizing both code content and social coding properties for auto-
matic analysis of code security in Stack Overflow. The proposed
method and developed system can also be easily expanded to

ICSD: An Automatic System for Insecure Code Snippet Detection

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

e N\ [N [™ e
\
Data Collector |:> Feature Extractor & HIN Constructor $ ‘ Snippet2Vec & Multi-view Fusion Classifier :>‘ 1
I Insecure |
=) stackoverflow { o 3 . |
|=] Sstackover 1 H C led ey MW | Ski [1 1
' [-. =G »w|-- G- > = i.L“"/lJ'L - Vectors_1 E S
' | | E N Pt of = : ecure :
prmmm e —————— \ [[: : "~ : : X
i i ! o0 : BN - » : : Detection :
H 'Y I i X 1 I ST @ S I N P-8ram | Veetors_k "
| I%l [] %3 i i 3 :_.i _-._ - .-.. ZRt 3] Pathsk _Kf—| Fusion \ Report
- 0ol P : S : Tt .
H [: : P : :
1 1 ! 1 [s = > - .
! = i 1 ['S g G ‘0 S =1 ~ Skip-
R || PR e
! 1 [Y Meta-paths
o / (N J/ (.
I Insecure Code Snippet Secure Code Snippet [EUnlabeled Code Snippet Entities: I%Queﬂitm Answer‘l/xer(?l?adge Cﬂde ~9"iPI’L”|EKf}'W’0’d MW: Meta-path Guided Random Walk

Figure 3: System architecture of ICSD.

code security analysis in other social coding platforms, such as
GitHub and Stack Exchange.

The rest of the paper is organized as follows. Section 2 presents
our system architecture. Section 3 introduces our proposed method
in detail. Based on the collected and annotated data from Stack
Overflow, Section 4 systematically evaluates the effectiveness of
our developed system ICSD integrating our proposed method by
comparisons with alternative approaches. Section 5 discusses the
related work. Finally, Section 6 concludes.

2 SYSTEM ARCHITECTURE

The system architecture of ICSD is shown in Figure 3, which is
developed for insecure code snippet detection in Stack Overflow. It
consists of the following major components:

e Data collector. A set of crawling tools are developed to col-
lect the data from Stack Overflow. The collected data includes
users’ profiles, their posted questions and answers, and the code
snippets embedded in the questions/answers.

Feature extractor. Resting on the data collected from the pre-
vious module, to depict the code snippets, it first extracts the
content-based features from the collected code snippets (i.e., key-
words such as function names, methods and APIs), and then
analyzes various relationships among different types of enti-
ties (i.e., user, badge, question, answer, code snippet, keyword),
including i) question-have-code, ii) answer-include-code, iii) code-
contain-keyword, iv) user-post-question, v) user-supply-answer,
vi) answer-echo-question, and vii) user-gain-badge relations. (See
Section 3.1 for details.)

HIN constructor. In this module, based on the features extracted
from the previous component, a structured HIN is first presented
to model the relationships among different types of entities; and
then different meta-paths are built from the HIN to capture the
relatedness over code snippets from different views (i.e., with
different semantic meanings). (See Section 3.2 for details.)
snippet2vec. Based on the built meta-path schemes, to reduce
the high computation and space cost, a new network embed-
ding model snippet2vec is proposed to learn the low-dimensional
representations for the nodes in HIN, which are capable to pre-
serve both the semantics and structural correlations between
different types of nodes. In snippet2vec, given a set of different
meta-path schemes, a meta-path guided random walk strategy is

first proposed to map the word-context concept in a text corpus
into a HIN; then skip-gram is leveraged to learn effective node
representation for a HIN. (See Section 3.3 for details.)
Multi-view fusion classifier. Given different sets of meta-path
schemes, different kinds of node (i.e., code snippet) representa-
tions will be learned by using snippet2vec. To aggregate these
different representations, a multi-view fusion classifier is con-
structed to learn importance of them and thus to make predic-
tions (i.e., the unlabeled code snippets will be predicted if they
are insecure or not). (See Section 3.4 for details.)

3 PROPOSED METHOD

In this section, we present the detailed approaches of how we
represent the code snippets in Stack Overflow utilizing both code
content and social coding properties simultaneously, and how we
solve the insecure code snippet detection problem based on the
representation.

3.1 Feature Extraction

Code snippets. Stack Overflow provides the discussion platform
for software developers to post their questions and answers about
ever-evolving programming languages including Java, JavaScript,
C/C++/C#, Python, PHP, perl, etc. In this paper, we will focus on
Java programming language for Android application (app) develop-
ment as a showcase for the following reasons: (1) Java is one of the
most popular programming languages in Stack Overflow [44]. (2)
Due to the mobility and ever expanding capabilities, mobile devices
have recently surpassed desktop and other media - it is estimated
that 77.7% of all devices connected to the Internet will be smart
phones in 2019 [21, 22] (leaving PCs falling behind at 4.8%). Android,
as an open source and customizable operating system for mobile
devices, is currently dominating the smart phone market by 82.8%
[24]. (3) Billions of mobile device users with millions of Android
apps installed have attracted more and more developers; however,
most of these Android mobile apps have poorly implemented se-
curity mechanisms partially because developers are inexperienced,
distracted or overwhelmed [1, 35]. Indeed developers tend to re-
quest more permissions than what are actually needed, often use
insecure options for Inter Component Communication (ICC), and
fail to store sensitive information in private areas [44]. Code snip-
pets in Stack Overflow are surrounded by (code) (/code) tags, and

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

they can thus easily be separated from accompanying texts before
being extracted. Then, content-based features will be further ex-
tracted from the collected code snippets: we will first remove all
the punctuations and stopwords; and then we will extract the key-
words including function names, methods, APIs and parameters to
represent the content of code snippets.

Social coding properties. To depict a code snippet in Stack Over-
flow, we not only utilize its above extracted content-based features,
but also consider its social coding properties including followings.

e R1: To describe the relation that a question thread has a code
snippet included, we generate the question-have-code matrix
H where each element h; j € {0, 1} indicates whether question i
has code snippet j.

e R2: To denote the relation that an answer thread includes a
code snippet, we generate the answer-include-code matrix 1
where each element i; j € {0, 1} means if answer i includes code
snippet j.

e R3: To represent the relation that a code snippet contains a
specific keyword (e.g., function name of “Coinhive”), we build the
code-contain-keyword matrix C whose element ¢; j € {0,1}
denotes whether code snippet i contains keyword j.

e R4:To describe the relation between a user and a question he/she
posts, we generate the user-post-question matrix P where each
element p; ; € {0, 1} denotes if user i posts question j.

e R5: To represent the relation of a user and an answer he/she
supplies, we generate the user-supply-answer matrix S where
each element s; ; € {0,1} denotes whether the user i supplies
answer J.

e R6: To denote the Q&A relationship, we build the answer-echo-
question matrix E whose element e; ; € {0, 1} denotes whether
answer i echoes/responds to question j.

e R7: In order to encourage engagement, Stack Overflow has
adopted a strategy of gamification [12] - users will be rewarded
for their valued contributions to the forum. For example, “illumi-
nator” badge (gold level in answer badges) will be awarded to the
users who edit and answer 500 questions (both actions within
12 hours, answer score > 0). This can be seen as a measure of
a user’s expertise by potential recruiters [6]. In Stack Overflow,
there are different kinds of badges (e.g., question badges, answer
badges, etc.) with different levels (i.e., gold, silver, and bronze).
To describe the relationship between a user and a specific badge
he/she gains, we build the user-gain-badge matrix G whose
element g; ; € {0,1} denotes if user i gain badge j.

3.2 HIN Constructor

In order to depict users, badges, questions, answers, code snippets,
keywords as well as the rich relationships among them (i.e., R1-
R?), it is important to model them in a proper way so that different
kinds of relations can be better and easier handled. We introduce
how to use HIN, which is capable to be composed of different types
of entities and relations, to represent the code snippets in Stack
Overflow by using the features extracted above. We first present
the concepts related to HIN as follows.

Definition 3.1. Heterogeneous information network (HIN) [40].

A HIN is defined as a graph G = (V, &) with an entity type map-
ping ¢: V — A and a relation type mapping ¢: & — R, where

Y. Ye et al.

V denotes the entity set and & is the relation set, A denotes the
entity type set and R is the relation type set, and the number of
entity types |A| > 1 or the number of relation types |R| > 1. The
network schema [40] for a HIN G, denoted as Tg = (A, R), is
a graph with nodes as entity types from A and edges as relation
types from R.

HIN not only provides the network structure of the data associa-
tions, but also provides a high-level abstraction of the categorical
association. For our case, i.e., the detection of insecure code snippets
in Stack Overflow, we have six entity types (i.e., user, badge, ques-
tion, answer, code snippet, keyword) and seven types of relations
among them (i.e., R1-R7). Based on the definitions above, the net-
work schema for HIN in our application is shown in Figure 4, which
enables the code snippets in Stack Overflow to be represented in a
comprehensive way that utilizes both their content-based informa-
tion and social coding properties.

-7 E@ %,
05" Question(q) s'(/g

Gain(G) 1 ~ Contain(C)
Y
2 : 07
Badge(b) User(u) /1@ . \\‘“‘9" Code(c) Keyword(k)
B
-

Echo(E)
>

A
Answer(a)
Figure 4: Network schema for HIN in our application.

The different types of entities and relations motivate us to use
a machine-readable representation to enrich the semantics of re-
latedness among code snippets in Stack Overflow. To handle this,
the concept of meta-path has been proposed [41] to formulate the
higher-order relationships among entities in HIN. Here, we fol-
low this concept and extend it to our application of insecure code
snippet detection in Stack Overflow.

Definition 3.2. Meta-path [41]. A meta-path P is a path defined
on the graph of network schema TG = (A, R), and is denoted in the

R R R
form of A] — Ay —> ... N Ar+1, which defines a composite
relation R = Ry - Ry - ... - Ry between types A; and Ar 1, where -
denotes relation composition operator, and L is the length of P.

PIDI: L»@ﬂ»

PID2: L»E%L&—?»—ﬂ

pip3: [F L %.ﬂ.‘—l’»[%i.

PID4:]—I;E%LI»%L:»&L %ﬂ»_[.

PIDS: L%E—»L&L L%L

pins: [F]- I;%ﬂ’ 2 Lo, a=B-E

PID7: i/. %.ﬂ.‘ L?L’.&L%L

PIDS:]—'I> Ll%i&L?ﬂ&L) E_l._l.
ro: [{LHRESE -4 L?LL&_S.L%L

Figure 5: Meta-paths built for insecure code snippet detec-
tion (The symbols are the abbreviations shown in Figure 4).

ICSD: An Automatic System for Insecure Code Snippet Detection

Given a network schema with different types of entities and
relations, we can enumerate a lot of meta-paths. In our application,
based on the collected data, resting on the seven different kinds of
relationships, we design nine meaningful meta-paths for character-
izing relatedness over code snippets in Stack Overflow, i.e., PID1-
PID9 shown in Figure 5. Different meta-paths depict the related-
ness between two code snippets at different views. For example, the
meta-path PID2 formulates the relatedness over code snippets in

Include™ Supply™ - Supply

Stack Overflow: code

Include
answer

answer

code which means that two code snippets can
be connected as they are included in the answers supplied by

Include™
the same user; while another meta-path PID6: code ————
Supply™ Gain . Gain™ Supply
answer user reputation r

Include .
answer ——— code denotes that two code snippets are related

as they are included in the answers supplied by the users with
the same kind of badge (e.g., “illuminator” badge) indicating sim-
ilar expertise or contribution. In our application, meta-path is a
straightforward method to connect code snippets via different rela-
tionships among different entities in HIN, and enables us to depict
the relatedness over code snippets in Stack Overflow utilizing both
their content-based information and social coding properties in a
comprehensive way.

3.3 snippet2vec: HIN Representation Learning

To measure the relatedness over HIN entities (e.g., code snippets),
traditional representation learning for HIN [20, 41, 46, 48] mainly
focuses on factorizing the matrix (e.g., adjacency matrix) of a HIN
to generate latent-dimension features for the nodes (e.g., code snip-
pets) in the HIN. However, the computational cost of decomposing
a large-scale matrix is usually very expensive, and also suffers from
its statistical performance drawback [19]. To reduce the high com-
putation and space cost, it calls for scalable representation learning
method for HIN. Given a HIN G = (V, &), the HIN representation
learning task [13, 18] is to learn a function f : V — R? that maps
each node v € V to a vector in a d-dimensional space RY, d < |V|
that are capable to preserve the structural and semantic relations
among them.

To solve the problem of HIN representation learning, due to
the heterogeneous property of HIN (i.e., network consisting of
multi-typed entities and relations), it is difficult to directly apply
the conventional homogeneous network embedding techniques
(e.g., DeepWalk [34], LINE [43], node2vec [19]) to learn the latent
representations for HIN. To address this issue, HIN embedding
methods such as metapath2vec [13] was proposed. In metapath2vec,
given a meta-path scheme, it employs meta-path based random walk
and heterogeneous skip-gram to learn the latent representations
for HIN such that the semantic and structural correlations between
different types of nodes could be persevered. The metapath2vec
was proposed to support one meta-path scheme to guide the walker
traversing HIN; however, in our application, the code snippets in
Stack Overflow can be connected through nine different meta-path
schemes. It may not be feasible to directly employ metapath2vec
in our case for insecure code snippet detection. To put this into
perspective, as shown in Figure 6, we gain further insight into Stack
Overflow data and have following interesting findings:

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

PID2 PID2

e B e El 2]
Code-1 User-1 Code-2 Code-i
= PID6 = PID2
e [Flgmer g g g g EL
Code-3 User-2 User-3 Code-5 User-4 Code-4 Code-j
A\ For save preferences Code-1 4. Use below code Code-2
1 SharedPreferences savePfs = 0 SharedPreferences myPfs =
this.getSharedPreferences(this.getSharedPreferences(
W "savePfs",MODE_WORLD_READABLE); W tmypfs”, 1);
SharedpPreferences.Editor Vv boolean cbvalue =

pfs.getBoolean("CHECKBOX", @);
String name = myPfs.getString(
"NAME", “YourName");

prefsEditor = savePfs.edit();
prefsEditor.putString(“NAME",
“UserName");

A Android: return Jason as string Code-3 A My code is below Code-4
g JSONArray json = 0 WebView mW = new WebView(this);
buildJSONArray(); mW.getSettings().setAppCachePath
W wView.setWebViewClient(new W (getApplicationContext().
WebViewClient()); getCacheDir().

wView.addJavascriptInterface(getAbsolutePath());
mW.getSettings().

setAllowFileAccess(true);

json, "data");
wView.loadUrl("file:///t.html");

Figure 6: Random walk guided by single meta-path vs. ran-
dom walk guided by multiple meta-paths.

e Finding 1: Both insecure Code-1 and Code-2 (i.e., they can both
cause potential confidential information leakage) are posted by
User-1“Ke***a” (we here anonymize his user name) answering the
questions about string access for Android app. Actually, Code-
1 and Code-2 can be connected by the Path-A guided by the
designed meta-path PID2.

e Finding 2: The insecure codes of Code-3 (i.e., it may allow users
to remotely execute the malicious code) and Code-4 (i.e., it can
cause potential data breach) are connected in the way that (1)
Code-3 and Code-5 are related as they were posted by User-2 and
User-3 who only had the bronze badge of “student” (i.e., first
question with score of 1 or more); and then (2) User-4 copied
and pasted Code-5 while also provided Code-4 to answer another
user’s posted question. In this way, Code-3 and Code-4 can be
connected by the Path-B guided by meta-paths of PID6 and PID2.

Based on the above observations, metapath2vec [13] fails to gen-
erate the path such as Path-B to represent the relatedness between
code snippets like Code-3 and Code-4. To address this issue, we
design a new network embedding model snippet2vec to learn desir-
able node representations in HIN: first, a new random walk method
guided by different meta-paths is proposed to map the word-context
concept in a text corpus into a HIN; then skip-gram is leveraged to
learn effective node representation for a HIN.

Random walk guided by different meta-paths. Given a source
node v; in a homogeneous network, the traditional random walk
k

is a stochastic process with random variables v}., ’UJZ-, 0 such

that v]’?“ is a node chosen at random from the neighbors of node

vk The transition probability p(v]l:+1 |UJl) at step i is the normalized

probability distributed over the neighbors of v]’: by ignoring their
node types. However, this mechanism is unable to capture the
semantic and structural correlations among different types of nodes
in a HIN. Here, we show how we use different built meta-paths
to guide the random walker in a HIN to generate the paths of
multiple types of nodes. Given a HIN G = (V, &) with schema
TG = (A,R), and a set of different meta-paths S = {Pj}]’.‘:1 (e.g.,
in Finding2, S = {PID6, PID2}), each of which is in the form of

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

A1 — ...Ar = Aty1... — Aj, we put a random walker to traverse
the HIN. The random walker will first randomly choose a meta-path
P from S and the transition probabilities at step i are defined as
follows:

p" 0k, 8) =
A1
ST TN, (@])]

if (0™, 0}) € &, $(v]),) = Ac, p(0T) = Apia

1 1

|NAt+1(Uli4t)|
if (?i+1, vzt) €&, ¢(v[’;‘t) #+ Ac,
P = Apy, (Ar, Arnr) € P

0 otherwise,

where ¢ is the node type mapping function, Ny, +1(vi‘t) denotes

the As41 type of neighborhood of node v} o A is entity type of
Code, and A is the number of meta-paths starting with A, — As41
in the given meta-path set S. The walk paths generated by the
above strategy are able to preserve both the semantic and structural
relations between different types of nodes in the HIN, and thus will
facilitate the transformation of HIN structures into skip-gram.
Skip-gram. After mapping the word-context concept in a text
corpus into a HIN via meta-path guided random walk strategy (i.e.,
a sentence in the corpus corresponds to a sampled path and a word
corresponds to a node), skip-gram [31, 34] is then applied on the
paths to minimize the loss of observing a node’s neighbourhood
(within a window w) conditioned on its current representation. The
objective function of skip-gram is:

arg min Z
& Y

—w<k<w,j#k

—log p(vj | Y())), @

where Y (v;) is the current representation vector of v, p(vj, £ |Y(v;))
is defined using the softmax function:

exp(Y(vjr) - Y(v;))

POyl ¥ () = |
T SV (Y wy) - V(o)

Due to its efficiency, we first apply hierarchical softmax technique
[32] to solve Eq. 3; then the stochastic gradient descent [4] is em-
ployed to train the skip-gram.

®)

3.4 Multi-view Fusion Classifier

Given a set of different meta-path schemes, by using the above
proposed snippet2vec, the node (i.e., code snippet) representations
will be learned in the HIN. In our application, as described in Sec-
tion 3.2, we have nine meta-paths (i.e., PID1-MID9) which char-
acterize the relatedness over code snippets at different views (i.e.,
with different semantic meanings). Based on our observations on
the Stack Overflow data and leveraging the domain expertise, we
generate m sets of meta-path schemes § = {S;}| for snippet2vec
to learn the node representations in the HIN, where m = 4 and
S = {(PID1, PID2, PID6), (PID1, PID3, PID7), (PID1, PID4, PID3),
(PID1, PID5, PID9)}. Given these different sets of meta-paths, us-
ing snippet2vec, different node representations will be learned in
the HIN. Here, we propose to use multi-view fusion to aggregate
these different learned node representations for code snippet clas-
sification.

Y. Ye et al.

Given m kinds of node representations Y;(i = 1, ..., m) learned
based on m sets of meta-path schemes, the incorporated node
representations can be denoted as: Y/ = », (a; X Y;), where
a; (i =1,...,m) is the weight of ¥;. To determine the weight of «;
for each mapped low-dimensional vector space Y;, we measure the
geometric distances among them. The distance measure based on
the principal angles between two vector spaces is significant if and
only if the vector spaces have the same dimensions [49]. In our case,
the m mapped vector spaces are all with the same dimensions of d.
Therefore, we apply the geodesic distance based on principal angles
[25] to measure the geometric distances between the mapped vector
spaces. The principal angle between space Y; and Y; is defined as
the number 0 < 6 < 7 that satisfies:

Ty’)

cosf = max
yeYiy'€Y;

The angle 6 is 0 if and only if Y; () Y; # 0, while 6 = 7 if and only
if Y; L Yj. Let 01,02, ..., 04 be the d principal angles between space
Y; and Y}, the geodesic distance between them is formulated as:

d(Yi,Y)) = 67 + 65 + ...+ 63, (5)
Thus, we compute «; for each mapped vector space Y; as:
jni1,i¢j d(Yi, Y;)
d(Y;, Y

(6)

4= Sm oym
i=1 &j=1,i#j

To this end, the incorporated node representations Y’ will be
fed to the Support Vector Machine (SVM) to train the classification
model, based on which the unlabeled code snippets can be predicted
if they are insecure or not. Algorithm 1 shows the implementation

of the our developed insecure code snippet detection system ICSD.

Algorithm 1: ICSD - Insecure code snippet detection in Stack
Overflow based on structured HIN.
Input: The HIN G = (V, &), network schema 7g = (A, R), m
sets of meta-path schemes § = {S;}!”,, number of
walk paths per node r, walk length [, and vector
dimension d, traning data set D, testing data set D,

Output: f: The labels for the testing code snippets.

fori=1—mdo
forj=1—|V|do
fork=1—->rdo
| get I-length random walks guided by S; (Eq. 1);
end
end
Generate Y; € RY using skip-gram (Eq. 2) ;
end
fori=1—-mdo
‘ Calculate «; for Y; using Eq. 4-Eq. 6 ;
end
Get incorporated node representations Y = >, (at; X Y;) ;
Train SVM using th;
forn=1— |D.| do
‘ Generate the label f,; using trained SVM ;
end
return f;

ICSD: An Automatic System for Insecure Code Snippet Detection

4 EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we conduct four sets of experimental studies using
the data collected from Stack Overflow to fully evaluate the perfor-
mance of our developed system ICSD which integrates the above
proposed method in insecure code snippet detection.

4.1 Experimental Setup

We develop a set of crawling tools to collect the data from Stack
Overflow. As stated in Section 3.1, we consider Java programming
language for Android app as a case study to evaluate our developed
system. Note that it’s also applicable to other kinds of programming
languages in Stack Overflow. We use our developed crawling tools
to collect users’ profiles, question threads, answer threads, and
code snippets in Stack Overflow in a period of time. By the date,
we have collected 429,523 question threats and 623,746 answer
threats posted by 213,560 users including 737,215 code snippets,
through March 2010 to May 2018. To obtain the ground truth for
the evaluation of different detection methods, we need to prelabel
a fraction of code snippets (i.e., either secure or insecure). We first
categorize code security risks and vulnerabilities for Android apps
into six categories: (1) Android Manifest configuration, (2) WebView
component, (3) data security, (4) file directory traversal, (5) implicit
intents, and (6) security checking; and then we leverage our domain
expertise and follow the principles such as least permission request,
correct usage of HTTPS and TLS for networking, secure inter-
component communication, secure storage to manually label a
filtered set of 20,137 code snippets (i.e., 9,054 code snippets are
labeled as insecure while 11,083 are secure). After feature extraction
and based on the designed network schema, the constructed HIN
has 80,405 nodes (i.e., 20,137 nodes with type of code snippet, 24,286
nodes with type of answer, 13,924 nodes with type of question,
21,471 with type of user, 94 with type of badges, and 493 with
type of selected keywords) and 592,082 edges including relations
of R1-R7. We use the performance indices shown in Table 1 to
quantitatively validate the effectiveness of different methods in
insecure code snippet detection.

Table 1: Performance indices of code snippet detection

Indices Description

TP # of code snippets correctly classified as insecure
IN # of code snippets correctly classified as secure

FP # of code snippets mistakenly classified as insecure
FN # of insecure mistakenly classified as secure
Precision ~ TP/(TP + FP)

Recall/TPR TP/(TP + EN)

ACC (TP + TIN)/(TP + TN + FP + FN)

F1 2 X Precision X Recall/(Precision + Recall)

4.2 snippet2vec based on Different Sets of
Meta-path Schemes

In this set of experiments, based on the dataset described in Sec-
tion 4.1, we first evaluate the performance of different kinds of

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

relatedness over code snippets depicted by different sets of meta-
path schemes. In the experiments, given a specific set of meta-path
schemes, we use snippet2vec to learn the latent representations of
the nodes (i.e., code snippets) in the HIN, which are then fed to SVM
to build the classification model for insecure code snippet detection.
For SVM, we use LibSVM and the penalty is empirically set to be
10 while other parameters are set by default. As described in Sec-
tion 3.4, we generate four sets of meta-path schemes (denoted as Sy,
82, 83, and Sy) for snippet2vec to learn the node representations in
the HIN. We conduct 10-fold cross validations for evaluation. The
performances of four different sets of meta-path schemes (i.e., S1-
84) in comparison with nine individual meta-paths (i.e., PID1-PID9)
in insecure code snippet detection are shown in Table 2.

Table 2: Detection Results of different meta-paths

ID Meta-paths included Precision Recall ACC F1
St (PID1,PID2,PID6) 0.9065 0.8887 0.8883 0.8975

Sz (PID1,PID3,PID7) 0.8899 0.8678 0.8682 0.8787
Ss3 (PID1,PID4,PIDS) 0.9028 0.8834 0.8834 0.8930
Sy (PID1,PID5,PIDY9) 0.8922 0.8709 0.8710 0.8814
S’s (PID1) 0.8795 0.8561 0.8562 0.8676
S’ (PID2) 0.8340 0.7988 0.8018 0.8160
S’y (PID3) 0.8017 0.7657 0.7668 0.7833
S’ (PID4) 0.8463 0.8179 0.8180 0.8318
S’y (PID5) 0.8312 0.8001 0.8006 0.8153
S’10 (PID6) 0.8449 0.8119 0.8145 0.8281
S’ (PID7) 0.8108 0.7708 0.7748 0.7903
S’12 (PID8) 0.8020 0.7642 0.7664 0.7826
S’13 (PIDY) 0.7897 0.7518 0.7532 0.7703

From Table 2, we can see that different sets of meta-path schemes
indeed show different performances in insecure code snippet detec-
tion, since each of them represents specific semantics in insecure
code snippet detection. We also observe that: (1) PIDI outperforms
the other individual meta-paths (i.e., PID2-PID9), which indicates
that the semantics of this meta-path reflect the problem of insecure
code snippet detection better than the others. (2) The meta-paths
of PID2, PID4, PIDé6, and PID8 perform better than PID3, PID5, PID?7,
and PID9 respectively; the reason behind this is that the code snip-
pets posted in the answer threads are more likely to be reused by
the developers than the ones posted in question threads, and thus
they have closer connections. (3) Obviously, S1, S, S3, and Sy
utilizing different meta-paths built from HIN are more expressive
than each individual meta-path (i.e., PID1-PID9Y) in depicting the
code snippets in Stack Overflow and thus achieve better detection
performance. It will be interested to see the detection performance
if different sets of meta-paths are further aggregated. This will be
evaluated in the next set of experiments.

4.3 Comparisons with Different Network
Representation Learning Models

In this set of experiments, we evaluate our developed system ICSD
integrating our proposed method described in Section 3 by com-
parisons with several network representation learning methods: (1)

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

Y. Ye et al.

Table 3: Comparisons with other network representation learning methods in insecure code snippet detection

Metric Method 10% 20% 30% 40% 50% 60% 70% 80% 90%
DeepWalk 0.6085 0.6409 0.6550 0.6674 0.6810 0.6958 0.7148 0.7269 0.7279
LINE 0.6347 0.6559 0.6847 0.7075 0.7268 0.7364 0.7475 0.7635 0.7732
ACC metapath2vec 0.7772 0.7839 0.8197 0.8366 0.8490 0.8522 0.8663 0.8782 0.8826
ICSD 0.7973 0.8133 0.8384 0.8566 0.8771 0.8835 0.8953 0.9068 0.9123
DeepWalk 0.6308 0.6618 0.6764 0.6875 0.7006 0.7159 0.7329 0.7448 0.7461
LINE 0.6569 0.6762 0.7047 0.7261 0.7451 0.7547 0.7644 0.7798 0.7892
F1 metapath2vec 0.7932 0.7990 0.8332 0.8493 0.8609 0.8633 0.8765 0.8878 0.8921
ICSD 0.8121 0.8270 0.8508 0.8680 0.8871 0.8930 0.9036 0.9146 0.9197

DeepWalk [34] and LINE [43] which are homogeneous network em-
bedding methods; and (2) metapath2vec [13] which is a HIN embed-
ding model. For DeepWalk and LINE, we ignore the heterogeneous
property of HIN and directly feed the HIN for representation learn-
ing; in metapath2vec, a walk path will be generated only based on a
single meta-path scheme; while in our proposed snippet2vec, a walk
path will be guided by a set of different meta-path schemes. The pa-
rameter settings used for snippet2vec are in line with typical values
used for the baselines: vector dimension d = 200 (LINE: 200 for each
order (1st- and 2nd-order)), walks per node r = 10, walk length
I = 80, and window size w = 10. To facilitate the comparisons,
we use the experimental procedure as in [13, 34, 43]: we randomly
select a portion of labeled code snippets described in Section 4.1
(ranging from 10% to 90%) for training and the remaining ones for
testing. For all the baselines, the SVM is used as the classification
model; for ICSD, based on the four given sets of meta-path schemes,
it will generate four different kinds of node representations using
snippet2vec and then use multi-view fusion classifier proposed in
Section 3.4 to train the classification model. Table 3 illustrates the
detection results of different network representation learning mod-
els. From Table 3, we can see that ICSD integrating the proposed
snippet2vec model consistently and significantly outperforms all
baselines for insecure code snippet detection in terms of ACC and
F1. That is to say, snippet2vec learns significantly better code snippet
representation than current state-of-the-art methods. The success
of snippet2vec lies in the proper consideration and accommodation
of the heterogeneous property of HIN (i.e., the multiple types of
nodes and relations), and the advantage of random walk guided
by different meta-paths for sampling the node paths. Furthermore,
from Table 2 and Table 3, we can also observe that using the multi-
view fusion classifier proposed in Section 3.4 to aggregate different
node representations learned based on different sets of meta-graph
schemes can significantly improve the detection performance.

4.4 Comparisons with Traditional Machine
Learning Methods

In this set of experiments, based on the dataset described in Sec-
tion 4.1, we compare ICSD which integrates our proposed method
with other traditional machine learning methods by 10-fold cross
validations. For these methods, we construct three types of fea-
tures: f-1: content-based features (i.e., keywords extracted from
code snippets described in Section 3.1); f-2: two relation-based

features associated with code snippets (i.e., R1 and R2 introduced
in Section 3.1); f~3: augmented features of content-based features
and R1-R2. Based on these features, we consider two typical classi-
fication models, i.e., Naive Bayes (NB) and SVM. The experimental
results are illustrated in Table 4. From the results we can observe
that feature engineering (f-3: concatenation of different features
altogether) helps the performance of machine learning, but ICSD
added the knowledge represented as HIN significantly outperforms
other baselines. This again demonstrates that, to detect the insecure
code snippets, ICSD utilizing both code content and social coding
properties represented by the HIN is able to build the higher-level
semantic and structural connection between code snippets with a
more expressive and comprehensive view and thus achieves better
detection performance.

Table 4: Comparisons of other machine learning methods

Metric NB SVM ICSD

f1of2 3 f1 f2 f3
ACC 07757 0.6597 0.8161 0.8064 0.6904 0.8494 0.9118
F1 0.8002 0.6914 0.8372 0.8278 0.7208 0.8675 0.9190

4.5 Evaluation of Parameter Sensitivity,
Scalability, and Stability

In this set of experiments, based on the dataset described in Sec-
tion 4.1, we first conduct the sensitivity analysis of how different
choices of parameters (i.e., walks per node r, walk length [, vector
dimension d, and neighborhood size w) will affect the performance
of ICSD in insecure code snippet detection. From the results shown
in Figure 7(a) and 7(b), we can observe that the balance between
computational cost (number of walks per node r and walk length [
in x-axis) and efficacy (F1 in y-axis) can be achieved when r = 10
and [= 60 for insecure code snippet detection. We also examine
how vector dimension (d) and neighborhood size (w) affect the per-
formance. As shown in Figure 7(c), we can see that the performance
tends to be stable once d reaches around 300; similarly, from Figure
7(d) we can find that the performance inclines to be stable when
w increases to around 8. Overall, ICSD is not strictly sensitive to
these parameters, and is able to reach high performance under a
cost-effective parameter choice.

ICSD: An Automatic System for Insecure Code Snippet Detection

1 1

) L o k”/'/
])
Z 038 Z 0.8
[«
=3 P
Eo7 o7
- -
= =

0.6 0.6

05 . 05 : : :

5 10 15 20 25 20 40 60 80 100
Walks per node Walk length /
(@) (b)
1 1

0.9 e T 1
. — 5 0
])
Z 038 Z 0.8
[=1
=3 P
0.7 £0.7
- -
= =

0.6 0.6

05 . : 0.5 : :

100 200 300 400 500 2 4 6 $ 10 12
Vector dimensions d Neighborhood size w
© (@

Figure 7: Parameter sensitivity evaluation.

We then further evaluate the scalability of ICSD which can be
parallelized for optimization. We run the experiments using the
default parameters with different number of threads (i.e., 1, 4, 8,
12, 16), each of which utilizes one CPU core. Figure 8(a) shows
the speed-up of ICSD deploying multiple threads over the single-
threaded case, which reveals that the model achieves acceptable
sub-linear speed-ups as the line is close to the optimal line; while
Figure 8(b) shows that the performance remains stable when using
multiple threads for model updating. Overall, the proposed system
are efficient and scalable for large-scale HIN with large numbers
of nodes. For stability evaluation, Figure 9 shows the receiver
operating characteristic (ROC) curves of ICSD based on the 10-fold
cross validations; it achieves an average 0.9094 TP rate (TPR) at the
0.0851 FP rate (FPR) for insecure code snippet detection.

4.6 Case Studies

To better understand and gain deeper insights into the security-
related risks of modern social coding platform of Stack Overflow,
in this section, based on our developed system ICSD, we further
analyze the detected insecure code snippets in Stack Overflow.
Table 5 shows different types of security risks or vulnerabilities
that could result from the detected insecure code snippets.

From Table 5, we can observe that the most prevalent insecure
code infiltration for Android apps in Stack Overflow is Android
Manifest configuration (28.73%), which would pose serious threats
to Android apps, since Manifest retains all the components, se-
curity mechanisms, and structure information for an app [8, 9].
Such detected insecure code snippets related to Android Manifest
configuration vulnerabilities include violation of least permission
request, the component features being configured as exported, and

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

—_
aN

—
S
e 2
o

Speed up ratio
-]
F1-measure
S
-

IS
S
N

=
=

0 4 8 12 16
(a) #threads

]

4 8 12 16
(b) #threads

Figure 8: Scalability evaluation.

TPR
15 TPR
1
0.8
. 0.8 (0.9094, 0.0851)
0.6 1 Zoom in
. 0.6
0.4 0.4
0.2
0.2
FPR o FPR
0 : : . : , 0 004 008 0.2 0.16 02

Figure 9: Stability evaluation.

data backup and debuggable setting being turned on, etc. For ex-
ample, as shown in Figure 10.(a), many unnecessary permissions
are requested in the detected insecure code snippet, which could be
exploited by cyberattackers to perform the attacks on Android apps.
Actually, this code snippet was provided by an inexperienced user
answering a Facebook problematic login question; but it was also
copied-pasted by other users in their answer threads responding to
different posted questions. From Table 5, we can also observe that
data security is another kind of prevalent insecure code infiltration
(23.05%). After further analysis, the vulnerabilities of data security
mainly focus on plaintext transmission, shared preferences, open
file outputs, and external storage being set to readable/writable.
The example of such kind of insecure code snippet is shown in Fig-
ure 10.(b), which uses cleartext username and password for FTP au-
thentication instead of Secure File Transfer Protocol (SFTP), where
password sniffing attacks could be performed to collect username
and password that would cause sensitive information leakage.

Table 5: Types of security risks of detected insecure codes

Types of security risks # Detected Codes Percentage

Android Manifest configuration 2,601 28.73%
WebView component 271 02.99%
Data security 2,087 23.05%
File directory traversal 1,413 15.60%
Implicit intents 851 09.40%
Security checking 1,831 20.22%

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

<uses-permission
android:name="android.permission.READ_CONTACTS"/>
<uses-permission
android:name="android.permission.CALL_PHONE"/>
<uses-permission
android:name="android.permission.SEND_SMS"/>
<uses-permission
android:name="android.permission.WRITE_STORAGE"/>
<uses-permission
android:name="android.permission.INTERNET "/>
<uses-permission
android:name="android.permission.ACCESS_NETWORK_STATE"/>
<uses-permission
android:name="android.permission.ACCESS_WIFI_STATE"/>

(@)

File file = new
File(Environment.getExternalStorageDirectory()+"/pdf");

file.mkdir();

Try {
ftp = new FTPClient();
ftp.connect("ftpURL",21);
int reply = ftp.getReplyCode();
if (FTPReply.isPositiveCompletion(reply)) {
ftp.login("username", "password");
ftp.enterLocalPassiveMode();
transferFile(ftp); }

} catch(Exception e) {
handleThrowable(e);

(b)

Figure 10: Insecure code snippets related to (a) Android Man-
ifest configuration and (b) FTP data security.

The study based on the detected insecure code snippets in Stack
Overflow using our developed system ICSD demonstrates that
knowledge gained from social coding platform data mining can
facilitate the understanding and thus help enhance its code security
in modern software programming ecosystem.

5 RELATED WORK

There have been many works on knowledge discovery from Stack
Overflow data [2, 5, 7, 11, 26-29, 44, 45] - from gamification mo-
tivation for voluntary contributions [7], discussion interest trend
[27, 28], patterns of questions/answers [44] and project-specific
language differences [26], to developer interaction [2], dynamics of
the participation [5], repair patterns from extracted code samples
[29] and interplay between platform activities and development
process [45]. However, most of these works have focused in Stack
Overflow semantics and user’s behavior but rarely addressed the
issue of code security analysis. The only exceptions appear to be [1]
and [17] which both exploited Android app codes as a case study
to evaluate the security of information source in Stack Overflow.
Though those research results are promising, [1] only performed
empirical studies while [17] merely analyzed the code snippet it-
self without considering any relationship to other Stack Overflow
data (i.e., without utilizing the social coding properties in this plat-
form). Different from the existing works, in this paper, to detect

Y. Ye et al.

the insecure code snippets in Stack Overflow, we propose to utilize
not only the code content, but also various kinds of relationships
among users, badges, questions, answers, and code snippets. Based
on the extracted relation features, the code snippets are depicted
by a structured HIN.

HIN is used to model different types of entities and relations [37],
which has been intensively deployed to various applications, such
as scientific publication network analysis [39, 41], social network
analysis [15, 16], and malware detection [14, 23]. To reduce the
high computation and space cost in network mining, many efficient
network embedding methods have been proposed, including ho-
mogeneous network representationn learning (e.g., DeepWalk [34],
node2vec [19], PTE [42], and LINE [43]) and HIN representation
learning (e.g., ESim [36], metapath2vec [13] and HIN2vec [18]).
Unfortunately, these methods cannot be directly employed in our
application, which is to exploit social coding properties in addition
to code content for automatic detection of insecure code snippets.
To tackle this challenge, in this paper, we propose a novel learning
model named snippet2vec for node (i.e., code snippet) representa-
tion learning in HIN where both the HIN structures and semantics
are maximally preserved; after that, a multi-view fusion classifier
is constructed for insecure code snippet detection.

6 CONCLUSION

To address the imminent code security issue in modern social cod-
ing platforms, in this paper, we bring an important new insight
to exploit social coding properties in addition to code content for
automatic detection of insecure code snippets in Stack Overflow.
To depict the code snippets, we not only analyze the code con-
tent, but also utilize various kinds of relations among users, badges,
questions, answers, code snippets and keywords in Stack Over-
flow. To model the rich semantic relationships, we first introduce a
structured HIN for representation and then use meta-path based ap-
proach to incorporate higher-level semantics to build up relatedness
over code snippets. Later, we propose a novel network embedding
model named snippet2vec for representation learning in the HIN
where both the HIN structures and semantics are maximally pre-
served. After that, a multi-view fusion classifier is built for insecure
code snippet detection. The experimental results based on the data
collections from Stack Overflow demonstrate that the developed
system ICSD integrating our proposed method outperforms alterna-
tive approaches in insecure code snippet detection. The proposed
method and developed system can also be easily expanded to code
security analysis in other social coding platforms, such as GitHub
and Stack Exchange.

ACKNOWLEDGEMENT

The authors would also like to thank the anti-malware experts of
Tencent Security Lab for the helpful discussion and data annotation.
This work is partially supported by the U.S. National Science Foun-
dation under grants CNS-1618629, CNS-1814825 and OAC-1839909,
NIJ 2018-75-CX-0032, WV Higher Education Policy Commission
Grant (HEPC.dsr.18.5), and WVU Research and Scholarship Ad-
vancement Grant (R-844).

ICSD: An Automatic System for Insecure Code Snippet Detection

REFERENCES

(1]

[12

[13]

[14

[15

[16

[17]

[18]

[19

[20

[21]

[22]

[23]

Yasemin Acar, Michael Backes, Sascha Fahl, Doowon Kim, Michelle L. Mazurek,
and Christian Stransky. 2016. You Get Where You’re Looking For The Impact
of Information Sources on Code Security. In IEEE Symposium on Security and
Privacy (SP). 289-305.

Tanveer Ahmed and Abhishek Srivastava. 2017. Understanding and evaluating
the behavior of technical users. A study of developer interaction at StackOverflow.
Hum. Cent. Comput. Inf. Sci. 7, 8 (2017).

AttackFlow. 2017. Watch Out For Insecure StackOverflow Answers. In https://
www.attackflow.com/Blog/StackOverflow.

Léon Bottou. 1991. Stochastic gradient learning in neural networks. Proceedings
of Neuro-Nimes 91, EC2 (1991).

Fabio Calefato, Filippo Lanubile, and Nicole Novielli. 2018. How to ask for tech-
nical help? Evidence-based guidelines for writing questions on Stack Overflow.
Information and Software Technology 94 (2018), 186-207.

Andrea Capiluppi, Alexander Serebrenik, and Leif Singer. 2013. Assessing tech-
nical candidates on the social web. In IEEE Software. 45-51.

Huseyin Cavusoglu, Zhuolun Li, and Ke-Wei Huang. 2015. Can Gamification
Motivate Voluntary Contributions? The Case of StackOverflow Q&A Community.
In Proceedings of the 18th ACM conference companion on computer supported
cooperative work & social computing. 171-174.

Lingwei Chen, Shifu Hou, and Yanfang Ye. 2017. SecureDroid: Enhancing Security
of Machine Learning-based Detection against Adversarial Android Malware At-
tacks. In Proceedings of the 33rd Annual Computer Security Applications Conference
(ACSAC). 362-372.

Lingwei Chen, Shifu Hou, Yanfang Ye, and Shouhuai Xu. 2018. DroidEye: Fortify-
ing Security of Learning-based Classifier against Adversarial Android Malware
Attacks. In [EEE/ACM International Conference on Advances in Social Networks
Analysis and Mining (ASONAM).

John Coogle, Jeet Gajjar, and Chase Greco. 2017. StackInTheFlow: StackOverflow
Search Engine. In VCU Capstone Design Expo Posters.

Daniel Czyczyn-Egird and Rafal Wojszczyk. 2016. Determining the Popularity of
Design Patterns Used by Programmers Based on the Analysis of Questions and
Answers on Stackoverflow.com Social Network. In Communications in Computer
and Information Science (CCIS). 421-433.

S. Deterding. 2012. Gamification: designing for motivation. Interactions 19, 4
(2012), 14-17.

Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. 2017. metapath2vec:
Scalable representation learning for heterogeneous networks. In Proceedings of
the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD’2017). 135-144.

Yujie Fan, Shifu Hou, Yiming Zhang, Yanfang Ye, and Melih Abdulhayoglu. 2018.
Gotcha-Sly Malware! Scorpion: A Metagraph2vec Based Malware Detection
System. In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining (KDD). ACM, 253-262.

Yujie Fan, Yiming Zhang, Yanfang Ye, and Xin Li. 2018. Automatic Opioid User
Detection from Twitter: Transductive Ensemble Built on Different Meta-graph
Based Similarities over Heterogeneous Information Network.. In IJCAL 3357-
3363.

Yujie Fan, Yiming Zhang, Yanfang Ye, Xin Li, and Wanhong Zheng. 2017. Social
Media for Opioid Addiction Epidemiology: Automatic Detection of Opioid Addicts
from Twitter and Case Studies. In CIKM. ACM, 1259-1267.

Felix Fischer, Konstantin Bottinger, Huang Xiao, Christian Stransky, Yasemin
Acar, Michael Backes, and Sascha Fahl. 2017. Stack Overflow Considered Harm-
ful? The Impact of Copy and Paste on Android Application Security. In IEEE
Symposium on Security and Privacy (SP). 121-136.

Tao-Yang Fu, Wang-Chien Lee, and Zhen Lei. 2017. HIN2Vec: Explore Meta-
paths in Heterogeneous Information Networks for Representation Learning.
In Proceedings of the 2017 ACM on Conference on Information and Knowledge
Management (CIKM). 1797-1806.

Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 855-864.

Peter D Hoff, Adrian E Raftery, and Mark S Handcock. 2002. Latent space
approaches to social network analysis. 7. Amer. Statist. Assoc. 97, 460 (2002),
1090-1098.

Shifu Hou, Aaron Saas, Lifei Chen, and Yanfang Ye. 2016. Deep4MalDroid: A Deep
Learning Framework for Android Malware Detection Based on Linux Kernel
System Call Graphs. In WIW ’16.

Shifu Hou, Aaron Saas, Yanfang Ye, and Lifei Chen. 2016. DroidDelver: An
Android Malware Detection System Using Deep Belief Network Based on API
Call Blocks. In International Conference on Web-Age Information Management
(WAIM). 54-66.

Shifu Hou, Yanfang Ye, Yangqiu Song, and Melih Abdulhayoglu. 2017. Hin-
droid: An intelligent android malware detection system based on structured
heterogeneous information network. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD’2017).

)
o)

@
=

I
fla’

[36

[37

[38

[39

[40

[41

[42]

[43

[44

[45

[46

[47

[49]

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

ACM, 1507-1515.

IDC. 2018. International Data Corporation (IDC). In http://www.idc.com.

Ilse CF Ipsen and Carl D Meyer. 1995. The angle between complementary
subspaces. Amer. Math. Monthly (1995), 904-911.

David Kavaler, Sasha Sirovica, Vincent Hellendoorn, Raul Aranovich, and
Vladimir Filkov. 2017. Perceived Language Complexity in GitHub Issue Dis-
cussions and Their Effect on Issue Resolution. In ASE. 72-83.

Roy Ka-Wei Lee and David Lo. 2017. GitHub and Stack Overflow: Analyzing
developer interests across multiple social collaborative platforms. In International
Conference on Social Informatics. Springer, 245-256.

Mario Linares-Vasquez, Gabriele Bavota, Massimiliano Di Penta, and Rocco
Oliveto. 2014. How Do API Changes Trigger Stack Overflow Discussions? A
Study on the Android SDK. In ICPC. 83-94.

Xuliang Liu and Hao Zhong. 2018. Mining StackOverflow for Program Repair. In
IEEE 25th International Conference on Software Analysis, Evolution and Reengi-
neering (SANER). 118-129.

Lucintel. 2017. Growth Opportunities in the Global Software Market. In http://
www.lucintel.com/software-market-2017.aspx.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estima-
tion of word representations in vector space. In arXiv preprint arXiv:1301.3781.
Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
NIPS. 3111-3119.

Stack Overflow. 2018. Stack Overflow. In https://stackoverflow.com/.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: Online Learn-
ing of Social Representations. In Proceedings of the 20th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining (KDD). 701-710.
Sebastian Poeplau, Yanick Fratantonio, Antonio Bianchi, Christopher Kruegel,
and Giovanni Vigna. 2014. Execute This! Analyzing Unsafe and Malicious Dy-
namic Code Loading in Android Applications. In NDSS. 23-26.

Jingbo Shang, Meng Qu, Jialu Liu, Lance M. Kaplan, Jiawei Han, and Jian Peng.
2016. Meta-Path Guided Embedding for Similarity Search in Large-Scale Hetero-
geneous Information Networks. In arXiv:1610.09769.

Chuan Shi, Yitong Li, Jiawei Zhang, Yizhou Sun, and S Yu Philip. 2017. A survey
of heterogeneous information network analysis. IEEE Transactions on Knowledge
and Data Engineering 29, 1 (2017), 17-37.

StackExchange. 2018. StackExchange Statistics. In https://stackexchange.com/
sites#traffic.

Yizhou Sun, Rick Barber, Manish Gupta, Charu C Aggarwal, and Jiawei Han. 2011.
Co-author relationship prediction in heterogeneous bibliographic networks. In
International Conference on Advances in Social Networks Analysis and Mining
(ASONAM). IEEE, 121-128.

Yizhou Sun and Jiawei Han. 2012. Mining heterogeneous information networks:
principles and methodologies. Synthesis Lectures on Data Mining and Knowledge
Discovery (SLDMKD) 3, 2 (2012), 1-159.

Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S Yu, and Tianyi Wu. 2011. Pathsim:
Meta path-based top-k similarity search in heterogeneous information networks.
Proceedings of the VLDB Endowment (PVLDB) 4, 11 (2011), 992-1003.

Jian Tang, Meng Qu, and Qiaozhu Mei. 2015. PTE: Predictive Text Embedding
through Large-scale Heterogeneous Text Networks. In Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD). 1165-1174.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. Line: Large-scale information network embedding. In WWW ’15 Proceedings
of the 24th International Conference on World Wide Web. 1067-1077.

Christoph Treude, Ohad Barzilay, and Margaret-Anne Storey. 2011. How do pro-
grammers ask and answer questions on the web?: Nier track. In 33rd International
Conference on Software Engineering (ICSE). 804-807.

Bogdan Vasilescu, Vladimir Filkov, and Alexander Serebrenik. 2013. StackOver-
flow and GitHub: Associations Between Software Development and Crowd-
sourced Knowledge. In International Conference on Social Computing (SocialCom).
188-195.

Shuicheng Yan, Dong Xu, Benyu Zhang, Hong-Jiang Zhang, Qiang Yang, and
Stephen Lin. 2007. Graph embedding and extensions: A general framework for
dimensionality reduction. IEEE transactions on pattern analysis and machine
intelligence (TPAMI) 29, 1 (2007), 40-51.

Yanfang Ye, Tao Li, Donald Adjeroh, and S Sitharama Iyengar. 2017. A survey
on malware detection using data mining techniques. ACM Computing Surveys
(CSUR) 50, 3 (2017), 41.

Huan Zhao, Quanming Yao, Jianda Li, Yangqiu Song, and Dik Lun Lee. 2017. Meta-
graph based recommendation fusion over heterogeneous information networks.
In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD’2017). 635-644.

Guido Zuccon, Leif A Azzopardi, and CJ Van Rijsbergen. 2009. Semantic spaces:
Measuring the distance between different subspaces. In International Symposium
on Quantum Interaction. Springer, 225-236.

	Abstract
	1 Introduction
	2 System Architecture
	3 Proposed Method
	3.1 Feature Extraction
	3.2 HIN Constructor
	3.3 snippet2vec: HIN Representation Learning
	3.4 Multi-view Fusion Classifier

	4 Experimental Results and Analysis
	4.1 Experimental Setup
	4.2 snippet2vec based on Different Sets of Meta-path Schemes
	4.3 Comparisons with Different Network Representation Learning Models
	4.4 Comparisons with Traditional Machine Learning Methods
	4.5 Evaluation of Parameter Sensitivity, Scalability, and Stability
	4.6 Case Studies

	5 Related Work
	6 Conclusion
	References

