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Reactive Velocity Control Reduces Energetic Cost of Jumping with a
Virtual Leg Spring on Simulated Granular Media

Abstract
Robots capable of dynamic locomotion behaviors and high-bandwidth sensing with their limbs have a high
cost of transport, especially when locomoting over highly dissipative substrates such as sand. We formulate the
problem of reducing the energetic cost of locomotion by a Minitaur robot on sand, reacting to robot state
variables in the inertial world frame without modeling the ground online. Using a bulk-behavior model of
high-velocity intrusions into dry granular media, we simulated single jumps by a one-legged hopper using a
Raibert-style compression-extension virtual leg spring. We compose this controller with a controller that
added damping to the leg spring in proportion to the intrusion velocity of the robot's foot into the simulated
sand while the robot is pushing off in the second half of stance. This has the effect of both reducing the torque
exerted by the motors because the added virtual "active damping" force acts in opposition to the virtual leg
spring force, and reducing the transfer of energy from the robot to the sand by slowing the intrusion velocity
of the foot. Varying the simulated robot's initial conditions and the simulated ground parameters, we gained a
consistent 20% energy savings by adding active damping with no cost in apex height.
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Reactive velocity control reduces energetic cost of jumping with a
virtual leg spring on simulated granular media

Sonia Roberts1 and Daniel E. Koditschek1

Abstract—Robots capable of dynamic locomotion behaviors
and high-bandwidth sensing with their limbs have a high cost
of transport, especially when locomoting over highly dissipative
substrates such as sand. We formulate the problem of reducing
the energetic cost of locomotion by a Minitaur robot on sand,
reacting to robot state variables in the inertial world frame
without modeling the ground online. Using a bulk-behavior
model of high-velocity intrusions into dry granular media, we
simulated single jumps by a one-legged hopper using a Raibert-
style compression-extension virtual leg spring. We compose this
controller with a controller that added damping to the leg
spring in proportion to the intrusion velocity of the robot’s foot
into the simulated sand while the robot is pushing off in the
second half of stance. This has the effect of both reducing the
torque exerted by the motors because the added virtual “active
damping” force acts in opposition to the virtual leg spring
force, and reducing the transfer of energy from the robot to the
sand by slowing the intrusion velocity of the foot. Varying the
simulated robot’s initial conditions and the simulated ground
parameters, we gained a consistent 20% energy savings by
adding active damping with no cost in apex height.

I. INTRODUCTION

A. The Ghost Minitaur robot can be used to measure ground
erodibility but cannot locomote effectively on sand

To collect data relevant to geoscientific experiments in
hostile environments such as deserts, we employ a het-
erogeneous team of robots, including both a “pack mule”
X-RHex [1] robot carrying large payload of sensors [2],
[3] and a fast, dynamic Minitaur [4] robot with legs that
can be used as force sensors to quickly measure ground
properties relevant to erodibility over a large area [5]. Here,
we target the Ghost Minitaur robot,1 a quadrupedal robot
with direct-drive legs that can be programmed for purposes of
locomotion using the composition of virtual damped springs
[6]. The proprioceptive transparency [7] of the direct-drive
legs allows their use as force sensors to study the erodibility
of soils under mechanical shear stress, a measure of interest
for desert research [5]. However, due to the inefficiency of
motors in the high-torque, low-velocity regime required for
direct-drive legged robot locomotion, Minitaur is currently
unable to run in the highly taxing desert environment. Force-
sensing experiments in the field are currently conducted with
a single direct-drive Minitaur leg mounted on the back of a
heavily geared X-RHex, leaving little room for additional
sensors.

1Electrical and Systems Engineering, University of Pennsylvania,
Philadelphia, PA. Contact: soro at seas dot upenn dot edu

1Ghost Robotics, 3401 Grays Ferry Ave, Philadelphia, PA 19146
http://www.ghostrobotics.io

In previous experiments using robots to collect data in
deserts, X-RHex was made desert-ready with an increase to
its gearbox ratio, wider feet, and stiffer legs [5], but these
options are undesirable choices for Minitaur. The addition of
a gearbox would reduce actuator transparency [7] and make
the robot unable to act as a force sensor; the foot size can
be increased by about a factor of two, but too large a foot
and the inertia will again render the force sensor useless;
and stiffening the legs comes at a high cost from the battery,
since the spring force is virtual rather than mechanical. The
increase in gearbox ratio has also slowed X-RHex down
significantly: whereas a standard X-RHex can keep up with
a jogging or running human on rugged terrain [8], the highly
geared desert version has a top speed at best closer to human
walking speed [5].

B. Previous research has produced bulk-behavior models
with predictive power for locomotion on granular media

Bulk-behavior models of granular media developed for the
purposes of modeling animal and robot locomotion charac-
terize ground reaction forces in response to intrusion by a
limb [9], [10]. In general, bulk-behavior models of the plastic
flows of granular media are accurate when the size of the
intruder far exceeds the size of the grains [11], and the results
scale well with different sizes and masses of intruders [12].
Bulk-behavior models can now predict the terrain response
with sufficient accuracy to allow optimal control methods
to generate robot motion trajectories that result in jumps
to a desired height [13], [14]. Although powerful, results
using optimal control have limited applicability to robot
locomotion on real deserts, as they assume granular media
preparations that are homogeneous within and between steps
– an assumption which cannot be made for locomotion in real
deserts with unknown ground properties [5], [3], [2] – and
experiments in the laboratory are not much affected by the
dissipation of electrical energy to heat, which is a very real
concern for a robot running long distances in a desert.

We use the same added-mass bulk-behavior model [9] that
was validated in the highly dynamic regime by its use in
optimal control experiments. Three forces comprise the bulk-
behavior model: A stiffness function only of depth, kg(x);
an inertial drag energy dissipation term which is a function
of depth and velocity, dg(x)ẋ2; and an added mass term,
ma(x)ẍ, which describes the mass of the grains recruited
to a stagnant “cone”-shaped clump of grains accelerated
underneath the intruding robot foot. The full model [9] is



therefore:

Fg = kg(x) + dg(x)ẋ
2 +ma(x)ẍ.

We describe the three terms in detail.
1) The depth-dependent stiffness function, kg(x): The

depth-dependent force described in the added-mass model
uses Resistive Force Theory (RFT) [10], a bulk-behavior
model describing the hydrostatic-like forces of granular me-
dia in response to intrusion. The force response is transiently
nonlinear when depths are very low, which is attributed to
the growth of the cone of grains accelerating along with
the intruding foot. Once the cone is fully formed, the force
response is linear in depth, with kg(x) = kgc · x for some
constant kgc. The force response scales with the surface
area of the foot, and thus the projected area of the cone
of grains moving under the foot, with a larger foot surface
area for a given animal or robot significantly improving
locomotion capability [15]. RFT models the force response at
arbitrary depths and angles using experimentally determined
or measured parameters about the individual grains. These
hydrostatic-like forces during vertical intrusion have recently
been modeled in a universally scalable form using only the
internal friction angle, that is, the angle relative to the normal
force obtained at the point of failure of the granular media
in response to a shearing stress [16].

2) The depth-dependent inertial drag term, dg(x)ẋ
2:

This term describes the hydrodynamic-like forces arising
from the inertia of the grains accelerated underneath the
robot’s foot and recruited into the cone of added mass. The
form of the term arises from the rate at which the mass
is added through the recruitment of grains and then the
shearing (and continued recruitment and shedding) of grains
along the sides of the cone. While the cone is forming, the
depth-dependent function describing the rate of recruitment
of grains contributes a transient nonlinearity to the dg(x)
term. Once the cone is formed, this term is constant in
depth and quadratic in velocity. Studies of energy dissipation
from high-velocity vertical collisions [17], [18] support the
interpretation of this term as a dissipation function.

3) The added mass term, ma(x): The added mass term
describes the mass of the developing cone of grains that are
accelerated along with the robot’s foot. The development of
this cone of grains, and the shearing forces along the cone
once it is fully developed, are also modeled in the depth-
dependent inertial drag energy dissipation term: the transient
non-linearity in dg(x) is explained as the growth of the cone,
and the linearity thereafter is explained as the recruitment and
shedding of grains along the shearing plane of the cone of
grains pushed down under the foot.

C. We reduce the energetic cost of jumping on granular
media without assuming knowledge of its properties, reacting
locally to inertial-frame robot state

As our nominal comparison controller for Minitaur run-
ning on sand, we use a simple compression-extension spring
control law proposed originally by Raibert [19] and used
for a suite of behaviors and applications, including recently,

Fig. 1: (Left) A Raibert-style compression-extension spring con-
troller on rigid (top) and compressible ground (bottom). The soft
(thin) virtual leg spring compresses easily. When fully compressed,
the virtual spring is instantaneously switched to a very stiff (thick)
virtual spring. (Right) The kinematic diagram of the simulated one-
legged hopper shows the virtual spring created by a simple linkage
using two opposing motors, and the forces from the robot’s leg, the
ground, and the masses of the body and foot during stance.

parallel compositions of behaviors [6], [20], [21]. A soft
compliance gain during the first part of stance allows the
virtual leg spring to compress. Once the rate of change of
the leg length goes to zero, the programmed leg stiffness
increases by a large amount instantaneously, injecting a
large quantity of potential energy into the virtual spring.
This causes the robot to jump. During the switch from soft
compression spring to stiff extension spring on sand, in
addition to causing the robot’s body to accelerate upwards,
the forces from the leg spring also push the foot further into
the sand. (See Figure 1.)

The energetic cost is considered to be the cost in joules
from a battery required to perform a single hop. In simulation
experiments, a simple motor model, battery model, and the
kinematics of the leg are used to estimate the cost in joules.
A hopping robot constrained to a linear rail was used to
relate the estimated cost used in simulations to the cost of
jumping as measured by the power drawn from a battery.

II. METHODS

A. Granular media simulation in Matlab

Computer simulations were performed in Matlab using
a discrete-time dynamical system with a small time-step
(dt = 1 × 10−6s).2 The added-mass bulk-behavior model
uses measured parameters about the individual grains of the
granular media, and has two additional scalars in the dissipa-
tion function describing the hydrodynamic-like forces: One

2In [9], where a Matlab simulation was also used to simulate the
bulk-behavior of granular media using this added-mass model, Zeno-like
switching between unjammed and jammed granular modes was addressed by
switching the simulated granular media from a mode in which compression
is allowed to a rigid “jammed” mode by watching the acceleration of the
foot. We selected our time-step to be small enough that there was no Zeno-
like switching in the behavior of the robot, but allowed Zeno-like switching
from the granular media. We then recalculated the values of the ground’s
stiffness, dissipation, and added mass terms afterwards based on the robot
foot’s simulated behavior, which did not have this switching. This approach
allowed the granular media to jam, unjam, and re-jam an arbitrary number
of times during stance as the forces from the leg changed.



Bulk-behavior granular media model used in simulation

Fig. 2: The stiffness, dissipation, and added mass functions of
the simulated granular media. The stiffness function is transiently
nonlinear while the cone of grains accelerated with the foot is still
forming. The depth-dependent dissipation function is quadratic in
velocity, with a higher coefficient while the cone forms. The added
mass function is not constant after the cone forms because the cone
continues to shed and gain material throughout intrusion.

a linear scaling parameter which was experimentally fitted in
[14], and one a constant from integration. The constant from
integration arises from the derivation of the added mass term
in [9], which was integrated from a change in added mass and
reflects the inertia of the grains accelerated along with the
intruding foot. To ease comparison with and extension from
previous results, for our nominal granular media we used
parameters that were measured for poppyseeds [10], and the
same linear scaling parameter (bg = 17.2) as in [14]. We set
the integration constant C = 1. As the difference between the
contributed and the nominal controllers occurs only after the
transient nonlinearities during the formation of the cone of
added material in the stiffness, dissipation, and added mass
functions of the ground, these details do not greatly affect
the results (see Section II-F.2 and Figure 9).

The three component terms kg(xf ), dg(xf )ẋ
2, and

ma(xf ) used to simulate the granular media response to
intrusion by the robot’s foot are plotted in Figure 2. The
ground reaction model exerts no forces when the robot’s
foot velocity is positive, and all added mass is lost when
the foot lifts off. This simulates the plastic deformation of
the ground and allow for continued deformation during leg
extension with a stiff virtual extension spring following the
initial deformation under the soft virtual compression spring.

B. Nonlinear two-spring model of Minitaur locomotion on
granular media

We consider a one-dimensional hopping robot with a body
mass of 1.75 kg and a foot mass of 0.175 kg (10% of body
mass) constrained to move vertically. The robot is modeled
on one quarter of a lightweight, desert-ready version of the
Minitaur robot currently under development. Connecting the
body and foot masses is a programmable leg spring with
rest length l = 0.27m which can measure its own length
and velocity, with an update loop of 1 kHz (achievable on
Minitaur robots [4]) and a stiffness of kl. The leg spring has
a small linear dissipation coefficient, dl > 0. To implement
the contributed controller, we assume that the robot can sense
the depth of its foot in an inertial frame.

A hop has two modes: Stance, during which time the
robot’s foot is in contact with the ground, and flight, when

the robot’s body and foot are both aerial. The dynamics of
the two modes are as follows:

1) Stance: The accelerations of the body and foot are
governed by a two-mass, two-spring nonlinear dynamical
system. Letting xn

b , x
n
f be the robot body and foot centers of

mass at time n, kl and dl the linear stiffness and damping
coefficients of the robot leg, with g the gravitational constant,
we can define first the forces of the virtual leg spring,

Fbf = −kl(xb − xf − l)− dl(ẋb − ẋf ). (1)

Adding now mb,m
n
f = mf (x

n
f ) the masses of the robot

body and foot respectively and kng = kg(x
n
f ), d

n
g = dg(x

n
f )

and with it, we define the accelerations of body and foot at
time n in stance:

ẍn
b =

Fbf

mb
− g

ẍn
f =

Fbf

mn
f

−
kng
mn

f

xn
f −

dng
mn

f

(ẋn
f )

2 − g.

The switch from stance to flight mode occurs when the
following condition is met, for δ the leg spring compression
due to gravity from the body’s mass: kl(x

n
b − xn

f − (l −
δ)) + dl(ẋ

n
b − ẋn

f ) > mn
f g. In flight, the ground stiffness

and dissipation functions go to zero, and the added mass is
immediately lost.

2) Ballistic flight: Once the foot lifts off from the com-
pressed ground, the virtual leg spring switches to its soft
compression gain. The body and foot are considered to be
in free flight and their trajectories determined by standard
flight dynamics. The transition from flight to stance occurs
when the foot touches the ground, xf = 0, and the body
velocity is negative.

C. The contributed “active damping” controller adds damp-
ing to the leg spring when the foot continues to compress the
ground while pushing off

The nominal compression-extension controller and the
contributed active damping controller differ only in the
extension portion of stance and only when the velocity of
the foot in the inertial world frame is negative. Under these
conditions, the active damping controller adds this force:

FAD = −(bAD · ẋf ) · (ẋb − ẋf ), ẋf < 0.

We used bAD = kl, which during extension is the stiff gain.

D. Kinematics and motor model used for energy estimates

We used the kinematics of the virtual leg spring created
by the simple linkage to estimate the motor torques and
therefore the current draw from the battery required to
exert the forces at the foot in the simulated experiments.
The kinematics were simplified by the assumption that the
leg and foot are constrained to move vertically. For l1, l2
the leg linkage lengths, r the length from the center of
mass of the motors to the foot, and β the angle of the
first link relative to the vertical, the inverse kinematics are
π − β = cos−1

(
l21−l22+r

2l1r

)
. The torque for leg spring force

Fbf is then τ = Df |rFbf . (See Figure 1.) To estimate losses,



we assumed that the leg looked mechanically like a perfect
linear spring, calculated the torques at the motors required
to produce the forces at the foot, and then calculated the
additional energy lost to heat and electromechanical drag in
order to achieve those torques.

A simple motor model relating the current draw to the
torque consisting of a linear portion with instantaneous
saturation at the stall torque was used. For Kτ the motor
torque constant, τn the torque from the motor at time-step
n, and In the estimated current draw at time-step n, we
have τn = Kτ · In. For any torques requested by the
simulation above the stall torque for two motors working
together to rotate the first leg links, 2 · τs, we provided the
stall torque of the leg instead. Losses to heat were calculated
as PRm

= I2Rm and losses to electromechanical drag were
calculated as Pv = KτKv

Rm
β̇2, for Kv

V
rad/s the motor velocity

constant and Rm Ω the motor resistance. The electrical
power converted to mechanical power was calculated as β̇τ .
The values forKτ = 0.0955Nm

A , the stall torque τs = 3.5Nm,
and motor resistance Rm = 0.186Ω for the T-motor U-8
series motors used on Minitaur were reported in a previous
study on actuator sizing [7].

With T the number of time-steps, In the current draw of
the motor, βn the motor angle, and τn the torque at the motor
at time-step n, the energetic cost J of a single jump is then:

J = dt
T∑

n=1

[
RmI2n + β̇nτn +

KτKv

Rm
β̇2
n

]
. (2)

This is the sum of the losses to heat through the resistance
of the motor, losses to electromechanical drag, and the
mechanical energy converted from electrical energy over
each time-step. Direct-drive motors operating at high torques
and low velocities are inefficient, and the cost is dominated
by the dissipation to heat.

E. Test of simulation by hopping a robot with different
extension gains on a force plate

To validate the energy cost estimates of the simulated
robot, we compared simulated costs with energy costs mea-
sured from a battery used to power a 2.0kg one-legged
robot hopping on a Bertec force plate3 while constrained
to a vertical rail. These experiments serve as a ground
truth for the robot model used in simulations. The robot
was programmed to jump using the compression-extension
controller with four extension virtual stiffness gains, and
completed 80 jumps during each experiment. The battery
used to power the robot was fully charged before and after
each experiment, and the mAh required to fully recharge the
battery after the experiment as reported by the ThunderPower
charger was recorded as the cost of 80 jumps using that
virtual stiffness gain during extension.

To control for variability due to changing motor resistance
as the motors warm up, we allowed the robot to jump for
approximately 2 minutes before any experimental data was

3Bertec FP4060-07 force plate, leveled to within 1 degree in either axis of
the horizontal plane; data recorded using Bertec Acquire version 4.0.12.411.

taken. We also used block experiment ordering to prevent
an interaction between time and leg stiffness. For extension
gains kl = {300, 400, 500, 600}, we performed experiments
in this order: {300, 600, 500, 400}. Each experiment began
with the robot leg held just above the force plate, such that
when it was released the soft virtual leg spring immediately
compressed under the weight of the body. When the robot’s
body velocity reached zero, the robot switched to its stiff
extension gain and jumped. Within a few hops (two or three),
the robot reached a consistent jumping height in all extension
gain conditions. The robot was allowed to jump 80 times and
was caught by the experimenter while in flight after the 80th
jump. The battery was immediately disconnected to avoid
any additional power draw.
In addition to vertical axis force data (N) recorded from the

force plate, we collected leg extension position and velocity
data as reported by the Ghost SDK. For ground truth, we
recorded the height of the robot’s body through the SDK
using a spring potentiometer, and took record-keeping videos
which were not analyzed as data. The force plate data was
recorded at 1kHz, and robot data was logged at 333Hz.
The force plate data was lightly smoothed with a low-pass
filter to reduce noise (moving average filter, window size
of 15 samples = 0.015s). The window size was chosen by
plotting the sum of absolute differences between filtered and
unfiltered data for a range of window sizes, and picking the
window size at which the difference between one filtered
force profile and the next becomes (and stays) small.
The force plate and leg extension data were automatically

aligned at the leg touchdown for each hop, which was
automatically detected in the robot by leg deflection and
on the force plate by a large spike in the raw force plate
readings (Figure 3). The force plate data, which was zeroed
from the mass of the robot resting on the force plate, was
used to determine liftoff at the end of stance. For each hop,
the leg lengths and ground reaction forces from the force
plate were fed directly into the kinematic model and the
motor model described in Section II-D. An estimate for the
number of joules required to exert the forces at the foot
as reported by the force plate at the leg lengths reported
by the SDK was calculated. Assuming the leg was moving
only vertically, we first estimated β̂ (see Figure 1) using
the reported leg length r, and then calculated τ̂ = DfrFfp

using the force plate data Ffp. (In computer simulations,
the force exerted by the toe was determined by the leg
spring constant and damping coefficient.) β̂ was used to
estimate the losses to electromechanical drag and we used
the inverse motor model to calculate the estimated losses
to heat P̂Rm

. The motor models used for simulation and
for validation experiments differed only in that we did not
assume a stall torque in the validation experiments, so that
the forces measured by the force plate could supersede the
theoretical maximum forces the leg could exert based on the
stall torque. This estimated joules Ĵ (see Eqn 2) for each hop
was then plotted against the measured average joule cost J̄
for a single jump in that condition (Figure 3). The measured
and estimated joules had a strong correlation that was close



Estimated and measured joules cost per hop

Fig. 3: The force plate data (left, top) and leg position data
(left, bottom) were both repeatable between jumps. The force plate
readings were zeroed from the weight of the robot. The black
vertical bars indicate the automatically detected onset of stance.
The mean measured joules per hop J̄ was well correlated with the
estimate of the joules cost Ĵ (Eqn 2; Section II-E) calculated using
the forces measured by the force plate and the leg position data
(right), Ĵ = 1.35J̄ , RMSE/IQR = 0.63. The variability comes
from the force plate data, which is only lightly filtered.

to unity (Ĵ = 1.35J̄ , RMSE/IQR = 0.63).

F. Computer simulations using the bulk-behavior force
model show little effect of ground parameter or initial
condition variation on energy savings

We performed computer simulations in Matlab of a one-
legged hopper with a virtual leg spring performing a single
jump on granular media using the added-mass bulk-behavior
model, varying ground parameters and initial conditions.

1) The active damping controller consistently loses less
energy than the compression-extension controller under dif-
ferent initial conditions: We varied the initial velocity of the
body and foot, assuming that both were starting at the same
velocity and with a neutral leg length. Since the virtual spring
stiffness gain during the initial compression phase of stance
is very anemic, and the foot has only 10% of the mass of the
body, there are only small effects on the estimated energy
costs from varying either initial positions or different initial
velocities for the body and foot, and the largest effects are
seen by varying the amount of kinetic energy that the robot
starts with at the beginning of stance. Plotting the energy
cost of a jump using the active damping and compression-
extension controllers with a variety of initial body velocities
(Figure 4), we see a consistent savings of 20%.
2) The active damping controller consistently loses less

energy than the compression-extension controller under dif-
ferent ground conditions: In the stiffness function, we varied
σ, the parameter describing the stress in the vertical direction.
Once the cone of added material is formed and the stiffness
function becomes linear in depth, this parameter is the scalar
coefficient determining the stiffness of the ground.

Dissipation and efficiency, varying initial velocity

Fig. 4: The simulated dissipation of energy (left; see Eqn 2) over a
whole hop for the compression-extension (blue) and active damping
(red) controllers is plotted under different initial velocities, with the
difference between dissipated energy for the compression-extension
and active damping controllers (black). The efficiency of the motors
(right; Eqn 2), is plotted for the compression-extension (blue) and
active damping (red) controllers, with their difference (black).

Apices and mechanical energy, varying initial velocity

Fig. 5: The apex heights of a simulated robot jumping with the
compression-extension controller (blue) and the active damping
controller (red; difference in black) are remarkably similar, though
the compression-extension controller requires about twice as much
mechanical energy to achieve these apex heights.

In the dissipation function, we varied the linear scaling
parameter that multiplies the rate of change of the added
mass, bg . When the cone is fully formed and the dissipation
function is quadratic in velocity, this parameter becomes a
scalar directly multiplying ẋ2

f .
Using the same initial conditions (leg spring at rest length

at start of stance, −1m
s velocity at body and foot) for all

simulations comparing ground conditions, the compression-
extension controller uses about 20% more energy than the
active damping controller (see Figure 6).

III. ANALYSIS

A. Mechanical energy losses to the ground are incurred
both from the ground’s dissipation function and from plastic
ground deformation

To understand why the compression-extension controller
loses more energy than the active damping controller, we
must first understand where the energy is lost during a jump
on granular media. Examining the total mechanical energy
of the system, there are six relevant energies:

1) LSP (leg spring potential): 0.5 · kl · (xb − xf − l)2

2) KB (kinetic energy of body): 0.5 ·mb · ẋ2
b

3) GB (gravitational potential energy of body): mb ·g ·xb



Dissipation and efficiency, varying ground parameters

Fig. 6: The simulated dissipated energy (left) over a whole hop
for the compression-extension (blue) and active damping (red)
controllers is plotted under different ground conditions, with their
difference (gray). Here, σ indicates the stiffness of the ground, and
bg is the linear coefficient on the ground’s dissipation function.
The efficiency of the motors (right; see Eqn 2) is plotted for the
compression-extension (blue) and active damping (red) controllers,
with their difference (gray). As when varying initial conditions (Fig.
4), we see that even though the compression-extension controller
uses its motors more than twice as efficiently as the active damp-
ing controller, the compression-extension controller still dissipates
almost 20% more energy.

Apices and mechanical energy,
varying ground parameters

Fig. 7: The apex heights of a simulated jump (left) under the
compression-extension (blue) and active damping (red) controllers
are almost indistinguishable (difference in gray). However, the
mechanical energy output of the motors (right) required to achieve
that height is more than twice as large when using the compression-
extension (blue) controller as when using the active damping
controller (red). Difference in gray.

4) GSP (ground “spring potential”):
∫ |xf |
0

kg(z)dz
(recall that xf is negative)

5) KT (kinetic energy of foot): 0.5 ·mf · ẋ2
f

6) GT (gravitational potential energy of foot): mf · g ·xf

The total mechanical energy of the body, leg and foot is then

Ebf = LSP +KB +GB +KT +GT, (3)

which is the sum of all of these energies except for the
ground’s “potential” energy, since the ground plastically
deforms and any energy transferred to it is immediately lost.

The total energy for one jump in this simulation using
the compression-extension and active damping controllers
along with all component energies is plotted in Figure 8. The
dissipation function of the ground contributes to the initial
drop in total energy (black line in plot). The robot’s leg,
which has a very soft compliance gain during compression,
initially deflects more quickly than the ground. This is

Mechanical energy over a single hop

Fig. 8: The total mechanical energy (Eqn 3; black line) during
stance is plotted along with the component kinetic (red), spring
potential (magenta), and gravitational potential (blue) energies for
the body-leg (dotted) and foot-ground (solid) subsystems. The
vertical thin gray lines indicate the switch from soft virtual leg
spring to stiff at the midpoint of stance and back at toe liftoff.

reflected in the quantity of energy being stored in the robot’s
virtual leg spring (dotted magenta line), which is larger
than the quantity lost to ground compression (solid magenta
line). The trajectory of the body during compression is also
reflected in the gravitational potential energy of the robot’s
body mass (blue dotted line).

When the leg stops compressing, ẋb − ẋf → 0 (first
gray line), the compliance gain of its virtual spring suddenly
changes to the extension value, injecting a large quantity of
spring potential energy (dotted magenta line). Much of this
energy is quickly lost to the ground, both through further
compression (bump in the solid magenta line) and to the
ground’s dissipation function. Notice that a small amount of
gravitational potential energy is gained by the foot at liftoff
(second gray line), because negative gravitational potential
energy is lost when the foot mass, which is below 0 height,
is suddenly reduced to its nominal value.

Ultimately, the difference in mechanical energy loss be-
tween the compression-extension and active damping con-
trollers is very similar, which is reflected in the similar
apex heights (Figures 5, 7). Notice also that while from the
point of view of the physical world the robot’s leg looks
like a spring-mass damper system, because the leg spring is
virtual, the forces that produce this behavior will cost more
or less energy from the battery to create depending on the
leg’s kinematics and the efficiency of its motors. The total
mechanical energy is concerned only with the mechanical
behavior of virtual springs.

B. Electrical energy cost of locomotion is mitigated by
purposefully dissipating energy into the virtual leg damper

Recall that the ground is modeled as a transiently nonlinear
spring with nonlinear dissipation (Sections I-B.1, I-B.2) and
no restoring forces. In addition to losing all energy dissipated
into the ground, the deeper the robot’s foot penetrates into
the ground, the higher the robot must jump to achieve the
same world-frame height at its apex.

To explore why twice as much mechanical energy is
required to jump to the same apex height under the



compression-extension controller, let us focus for a moment
on the mechanical energy in the physical subsystem involv-
ing just the foot and ground. We conceptually isolate this
subsystem by “zeroing out” the forces from the leg, Fbf

(Eqn 1), and consider the energy just of the foot-ground
subsystem, Ef = KT +GT , which interacts with the vector
field defined over the foot dynamics, {xf , ẋf}. The energy
used to plastically deform the ground cannot be recovered, so
there is only contribution from the kinetic and gravitational
potential energy of the foot. The mechanical power loss
function of the foot-ground subsystem (Figure 9) is then

Ėf = −dg(xf ) · |ẋf
3| − kg(xf )|ẋf |. (4)

Since the dissipation function is quadratic in velocity, the
power function is cubic and the ground will dissipate a
large amount of energy when the velocity is high. The depth
dependence of the first term is due to the formation of the
cone of added material, so we expect to see a different slope
to the power loss function for high velocities when depths
are low. Notice too that this power loss function involves the
stiffness function of the ground, kg(xf ), because the ground
deforms plastically and does not store energy. Looking at
the surface plots in Figure 9, we can see the appropriate
dips in the power loss landscape as we vary the depth and
the velocity of the foot. Qualitatively, we surmise that if a
robot can keep its foot away from these higher-cost parts of
its state space in inertial world-frame coordinates, it will lose
much less mechanical energy to the ground during stance.

Comparing sample trajectories of the robot’s foot through
its state space under the compression-extension and active
damping controllers (Figure 9), the mechanism of the re-
ported mechanical energy savings for the added damping
controller becomes clear. Three sample initial conditions
are plotted (black circles). In each initial condition, the
initial body and foot velocities are the same, the foot is
just touching the ground, and the virtual leg spring is at its
rest length. During compression mode, which is the same
for the two controllers, the virtual leg spring compresses
quickly and the foot’s velocity quickly drops as it sinks into
the granular media. The foot’s velocity goes to zero when
the granular media “jams” and returns an equivalent reaction
force. When the leg length velocity goes to zero after this
point, the virtual leg spring switches to its stiff extension
gain, causing a sudden increase in velocity as the forces
from the leg spring are now stronger than those exerted by
the ground. This enables the foot to continue compressing
the ground. The ground jams a second time when the foot’s
velocity again goes to zero, and the robot’s foot begins to
lift from the compressed ground, entering ballistic flight.

When the robot leg switches from compression to ex-
tension modes, its virtual spring changes stiffness instan-
taneously and exerts a large force to both push the body
up and the foot down further into the ground, as reflected
in the large swoop down into the high-depth, high-velocity
portion of the foot’s state space in the compression-extension
trajectory plots in Figure 9. The compression-extension con-
troller injects a large amount of energy into the foot-ground

Sample trajectories in the foot’s state space under
compression-extension and active damping controllers

Fig. 9: The power function of the ground (yellow surface; Eqn 4)
shows large losses during high-velocity intrusions because of the
dissipation function of the ground and during high-depth intrusions
because of its plastic deformation. The steep dip in the low-depth
portion of the power loss function is due to the formation of the
cone of material accelerated with the foot. A comparison of sample
trajectories from three initial conditions (black circles) through the
foot’s state space in the inertial world frame using the compression-
extension (blue) and the active damping (red) controllers shows
decreased losses for the active damping controller during extension.

system when the velocity of the leg length goes to zero,
but loses most of this energy immediately to the ground. In
contrast, the active damping controller punishes negative foot
velocities, pushing the state of the foot back towards zero
velocity. Since the foot’s velocity is negative for a smaller
amount of time, it does not penetrate as far into the ground
and does so less quickly, and thus loses less mechanical
energy.

The energy being lost by the foot-ground subsystem during
stance is largely energy that is injected into it by the leg
spring force Fbf (Eqn 1). Kinetic energy losses to mechanical
dissipation in the leg spring may be significant when its
damping coefficient is high. However, recall that the spring
and damper in the leg are both virtual, and all forces exerted
by a virtual leg spring come at a cost from the battery.
This includes leg spring potential energy storage, which in
a mechanical system is free. Virtual damping forces acting
in opposition to virtual spring forces that reduce the torque
requested from the motors will therefore use less energy from
the battery.

While the added damping force in the virtual leg spring
does potentially come at a cost in kinetic energy, the invest-
ment is rewarded immediately in two ways: First, the ground
compresses less, so that the robot does not need to jump as
high from the point underneath the surface of the granular
media at which it enters flight mode in order to achieve
the same apex height in an inertial frame; and second, the
power function of the ground has a lower magnitude when



the foot’s depth and velocity are lower, so less mechani-
cal energy is dissipated to the ground. In fact, the apex
heights of the compression-extension and active damping
controllers are comparable, and in some cases higher when
active damping is used (see Figures 5, 7), even though the
compression-extension controller requires more than twice
as much mechanical energy to achieve those heights across
different initial conditions and ground parameters.

IV. CONCLUSIONS

We suggest using computer simulations of a monoped
jumping on granular media that well studied and robust con-
trollers with good extensibility like the Raibert compression-
extension controller can be composed with simple reactive
controllers like the active damping controller introduced here
to produce significant energy cost reductions for locomo-
tion on plastically deforming ground with high dissipation,
without needing to model the ground online. The mitigation
of mechanical energy loss to the ground through purposeful
energy dissipation by the leg spring also provides context for
previous results on robot jumping in granular media.

Because the active damping controller reduces the energy
loss to dissipation and requires half the mechanical power
of the compression-extension spring to jump to the same
height for a range of ground and initial conditions, and
because the energy savings occur after the cone of added
material is already fully formed, it is possible that the
results may extend to locomotion on other types of fragile
ground. Of most relevant to the present research application
is performance on inclined granular media. On inclines,
although the gravity vector is not normal to the surface of the
ground, the media exhibit similar qualitative bulk behavior
[22], suggesting that energetic costs may also be reduced
using the active damping controller. We plan to follow up this
work with experimental studies using a sandproofed desert-
ready Minitaur to demonstrate the efficacy of this method in
aiding desert research.
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