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Abstract—Storage systems have a strong need for substan-
tially improving their error correction capabilities, especially
for long-term storage where the accumulating errors can exceed
the decoding threshold of error-correcting codes (ECCs). In this
work, a new scheme is presented that uses deep learning to
perform soft decoding for noisy files based on their natural
redundancy. The soft decoding result is then combined with
ECCs for substantially better error correction performance.
The scheme is representation-oblivious: it requires no prior
knowledge on how data are represented (e.g., mapped from
symbols to bits, compressed, and combined with meta data)
in different types of files, which makes the solution more
convenient to use for storage systems. Experimental results
confirm that the scheme can substantially improve the ability
to recover data for different types of files even when the bit
error rates in the files have significantly exceeded the decoding
threshold of the ECC. The code of this work has been publicly
released. 1

I. INTRODUCTION

The amount of data in storage systems is increasing at
an accelerating speed in the big data era. Storage systems
have a strong need for substantially improving their error
correction capabilities, especially for long-term storage where
the accumulating errors can exceed the decoding threshold of
error-correcting codes (ECCs) [2]. Memory scrubbing alone
is not a sufficient solution: even for nonvolatile memory
systems such as SSDs (solid-state drives) that have fast
read/write speeds, scrubbing all data periodically is still
too costly due to the volume of the data. Therefore it is
highly necessary to find new techniques to assist ECCs and
substantially enhance their error correction performance.

One promising technique is to use the internal redundancy
in data for error correction, and combine it with ECC’s
decoding algorithm. This type of redundancy, called nat-
ural redundnacy, has been explored in recent works [11],
[14], [18], [20]. In practical storage systems, many files are
either uncompressed or compressed imperfectly, especially
for languages and images because their highly complex
data models make perfect compression infeasible due to
prohibitively high computational complexities. The residual
redundancy (i.e., natural redundnacy) in data can then be
combined with the redundancy artificially added by ECCs
(i.e., parity-check bits) for joint error correction. There is
often plenty of natural redundancy in data. For instance,
for the English language, state-of-the-art compression algo-
rithms (e.g., syllable-based Burrows-Wheeler Transform) can
compress it to 2 bits/character [9], which is still far from
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Shannon’s estimation of 1.34 bits/character as the entropy of
printed English [17]. For images, their true entropy remains
unknown. But recent progress in deep learning, such as the
inpainting techniques for completing images [21], suggests
that the natural redundancy in even compressed images is still
substantial. In [18], [20], natural redundancy has been used to
help ECCs – including LDPC codes and polar codes – correct
errors and achieved significant performance improvement.
Those works have addressed both languages and images, but
mainly for texts in English compressed by Huffman codes or
fixed-codebook LZW codes [11].

In this paper, we study how to use natural redundancy
for error correction in a more practical setting. We con-
sider noisy file segments from files of different types (e.g.,
HTML, LaTeX, PDF and JPEG), and correct errors in them
even when their bit error rates (BERs) have significantly
exceeded the decoding threshold of the ECC. The scheme is
representation-oblivious: it requires no prior knowledge on
how data are represented in those different file types, e.g.,
how symbols/characters are mapped to bits, how/whether
data are compressed, and how meta data are used in those
files. This approach makes the solution more convenient to
use for storage systems. It is different from the previous
works (e.g., [11], [18]), where the data (e.g., texts) are com-
pressed by known compression algorithms (e.g., Huffman
or LZW code) and without any additional data formatting
(e.g., meta data or file formats) that brings more complexity.
(In those works, the codebook of Huffman or LZW code
is used for decoding. In this paper we do not use any
codebook.) We take this representation-oblivious approach
because in storage systems (such as SSDs), many file types
have proprietary compression algorithms or file formats that
are often unrevealed to the public, including to storage device
manufacturers. Also, since error correction is a low-layer
function in the storage architecture, the controllers of storage
devices do not necessarily have access to file systems to
get information on file types, data formats or compression
algorithms. By taking the representation-oblivious approach,
we can explore error correction schemes based on natural
redundancy that are more widely usable in storage systems.

The coding scheme of this paper is illustrated in Fig. 1.
When files are stored, each file is partitioned into segments of
k bits, and each file segment is encoded by a systematic (n, k)
ECC into a codeword of n bits. Then each ECC codeword
passes through a noisy channel, which models the errors in a
storage device. During decoding, first, a deep neural network
(DNN) uses the k noisy information bits to recognize the file



Fig. 1. Encoding and decoding scheme for a noisy file segment of an initially unknown file type. The k-bit file segment is encoded by a systematic (n, k)
ECC into an n-bit codeword. The codeword is transmitted through a channel to get a noisy codeword. Two neural networks use natural redundancy to
decode the k noisy information bits: the first network determines the file type of the file segment, and then a corresponding neural network for that file
type performs soft decoding for the k noisy information bits. The soft decoding result and the noisy codeword are both given to the ECC decoder for
further error correction.

type (e.g. HTML, LaTeX, PDF or JPEG) of the file segment.
Then, a second DNN for that file type performs soft decoding
on the k noisy information bits based on natural redundancy,
and outputs k probabilities, where for i = 1, 2, · · · , k, the i-
th output is the probability for the i-th information bit to be 1.
The k probabilities are given as additional information to the
ECC’s decoder. The ECC decoder then performs its decoding
and outputs the final result. (In our experiments, the ECC is a
systematic LDPC code, and the k probabilities are combined
with the initial LLRs (log-likelihood ratios) for information
bits to obtain their updated LLRs. The LDPC code then runs
its belief-propagation (BP) decoding algorithm.)

The above scheme can be extended to the case where the
two decoders – the decoder based on natural redundancy (NR
decoder) and the ECC decoder – perform iterative decoding
between them. That is, each decoder’s output is given to the
other decoder as input, and the decoding process iterates
between the two decoders. Iterative decoding of this type
for the English language compressed by known compression
algorithms has been studied in [14], [18]. The scheme can
also be extended to the case where an ECC codeword may
contain multiple file segments of multiple file types. For
simplicity, such extensions are not explored in this paper.

This work has several contributions. First, it designs a
deep neural network that recognizes file types with high
accuracy from noisy bits. For error correction, this DNN
helps recognize the type of natural redundancy in the noisy
data.

Second, it designs deep neural networks for decoding data
with natural redundancy, where the data have errors from the
binary-symmetric channel (BSC). The DNNs perform soft
decoding instead of hard-decision decoding, which can be
more useful for ECCs such as LDPC codes. Since the data
used to train the DNNs do not contain soft decoding results,
we design a new portfolio theory-based approach to train
the DNNs. The results show that the DNNs can learn soft
decoding with high accuracy, even though the training data
are extremely sparse compared to possible data patterns.

Third, the paper presents a scheme that combines the natu-
ral redundancy based decoding, which applies deep learning
to noisy file segments of different file types, with ECC

decoding. The experimental results confirm that the scheme
substantially improves the reliability of different types of
files.

There have been numerous recent works on using deep
learning for information theory [7], [22], especially for wire-
less and optical communications. They mainly focus on using
deep learning to model complex channels, design codes, and
approximate or improve decoding algorithms [8], [16]. In
contrast to those works, this paper focuses on using deep
learning for data with complex structures, and explore error
correction for such complex data. These different directions
can complement each other in a communication or storage
system with both complex data and complex channels.

The rest of the paper is organized as follows. In Section
II, we develop deep neural networks for recognizing file
types from noisy bits. In Section III, we present a portfolio
theory-based method that teaches a deep neural network soft
decoding. We then design deep neural networks that perform
soft decoding on file segments. In Section IV, we combine
the natural redundancy (NR) decoder with an LDPC decoder
for substantially enhanced error correction performance. In
Section V, we present concluding remarks.

II. FILE TYPE RECOGNITION USING DEEP LEARNING

In this section, we present a Deep Neural Network (DNN)
for file type recognition. The DNN takes a noisy file segment
of k bits, (y1, y2, · · · , yk), as input, and outputs one of T
file types (e.g., HTML, LaTeX, PDF or JPEG). The errors
in the file segment come from a binary-symmetric channel
(BSC) of bit-error rate (BER) p. We first introduce the
architecture of the DNN and its training method. We then
present the experimental results, which show that it achieves
high accuracy for file type recognition.

A. DNN Architecture and Training

Our DNN architecture is shown in Fig. 2. It is a Convolu-
tional Neural Network (CNN) that takes the k bits of a noisy
file segment as input. In our experiments, we let k = 4095.
(The LDPC code we use is a (4376, 4095) code designed by
MacKay [15], which can tolerate BER of 0.2%. Both the code
length and the BER are in the typical range of parameters for
storage systems.) The CNN has T outputs that correspond to



Fig. 2. Architecture of the CNN (convolutional neural network) for File Type
Recognition. Its input is a noisy file segment of 4095 bits, and its output
corresponds to 4 candidate file types (HTML, LaTex, PDF and JPEG). The
numbers beside each layer (namely, 4095 × 1, 4093 × 32, · · · , 4 × 1) are
the dimension sizes of the layer’s output data. The numbers inside each
layer (namely, 3× 1 or 2× 1) are the dimension sizes of the corresponding
feature-map filter or pooling window.

the T possible file types, namely, the T classification results.
The output with the highest value leads to the selection of
the corresponding file type. In our experiments, we consider
four file types: HTML, LaTeX, PDF and JPEG. So T = 4.
Note that HTML and LaTeX files are both text sequences
but have different file structures; PDF files contain both texts
and images; and JPEG files are images. In the following, we
will present DNNs and experiments using those parameters
for the convenience of presentation. Note that the designs
can be extended to other file-segment lengths and more file
types.

In Fig. 2, there are L = 9 convolution layers
{C1, C2, ...CL} where each layer Cd (for d = 1, 2, · · · , L)
is followed by a max pooling layer Md. The last max
pooling layer ML is followed by a dense layer D. For
d = 1, 2, · · · , L, let nd denote the number of feature maps
of the convolution layer Cd. (In Fig. 2, n1 = 32 and
n2 = n3 = · · · = n9 = 64.) Those feature maps are
obtained by taking convolution on the output of the previous
layer using nd filters of size ld = 3. In its subsequent max
pooling layer Md, pooling windows of size 2 are applied
to each feature map of Cd with a stride of two. Let Kd

denote the length of each feature map (in the dimension of
the CNN’s input) of the layer Cd. Then K1 = k − ld + 1,
and Kd = bKd−1

2 c − ld + 1 for 2 ≤ d ≤ L.
The CNN uses ReLU and sigmoid as the activation

function of its convolutional layers and output layer, re-
spectively. It uses cross entropy as its loss function. (Let
(z1, z2, z3, z4) ∈ {0, 1}4 denote the desired output; where
zi = 1, if the correct file type is type i, and zj = 0 for any
j 6= i. Let (z′1, z

′
2, z
′
3, z
′
4) be the actual output of the network.

Then cross entropy is defined as −
T∑

i=1

zilogz
′
i.) Its optimizer

is chosen to be an Ada Delta Optimizer, whose parameters
are: learning rate = 1.0, ρ = 0.95, ε = none and decay = 0.

TABLE I
BIT ERROR RATE (BER) VS TEST ACCURACY FOR FILE TYPE

RECOGNITION (FTR). HERE THE “OVERALL TEST ACCURACY” IS FOR
ALL 4 TYPES OF FILES TOGETHER. THE LAST FOUR COLUMNS SHOW THE

TEST ACCURACY FOR EACH INDIVIDUAL TYPE OF FILES. (THEIR
AVERAGE VALUE IS THE OVERALL TEST ACCURACY.)

Bit Error Overall HTML JPEG PDF LaTeX
Rate Test Test Test Test Test
(BER) Accuracy Accuracy Accuracy Accuracy Accuracy
0.2% 99.61% 99.98% 99.52% 99.17% 99.77%
0.4% 99.69% 99.96% 99.60% 99.25% 99.96%
0.6% 99.60% 99.94% 99.48% 99.06% 99.90%
0.8% 99.69% 99.98% 99.50% 99.35% 99.92%
1.2% 99.66% 99.96% 99.23% 99.48% 99.96%
1.6% 99.58% 99.96% 99.60% 98.83% 99.92%

During training, each mini-batch has 100 training samples,
where each training sample consists of a noisy file segment
and its file-type label (i.e., one of the T file types).

A large dataset has been used to train and test the CNN.
For each of the T = 4 file types, 24,000 noiseless file
segments are used for training data, 4,000 noiseless file
segments are used for validation data, and 4,800 noiseless file
segments are used for test data. During training and testing,
random errors of BER p are added to each file segment,
where each file segment uses an independently generated
error pattern.

B. Experimental Performance

The (4376, 4095) LDPC code used in our experiments can
correct errors of BER up to 0.2% by itself. (That is, when
it is used in the conventional way without the extra help of
natural redundancy, it has a decoding threshold of 0.2%.)
Our goal is to use the natural redundancy in file segments
to correct errors of substantially higher BERs. So we have
selected the target BER p with substantially higher values,
ranging from 0.2% to 1.6%. We then train the CNN with the
given target BER p.

We measure the performance of the CNN by the accuracy
of file type recognition (FTR), which is defined as the fraction
of file segments whose file types are recognized correctly.
The CNN is trained using the training and validation data.
Its final performance is measured using the test data, where
file segments of the T = 4 file types are randomly mixed.
The test performance is shown in Table I. It can be seen that
file types can be recognized by the CNN with high accuracy:
for all BERs, the accuracy is close to 1.

We can also examine the accuracy for recognizing each
file type, and see if there is variance in performance from
file type to file type. The results are shown in the last four
columns of Table I. It can be seen that overall, the accuracy
is constantly high for all file types.

The CNN’s performance compares favorably with existing
results on FTR, which has been studied previously for appli-
cations such as disk recovery. The work [3] considered a clas-
sification method for a pair of file types using Fisher’s linear
discriminant and longest common subsequence methods. The
accuracy ranges between 87% and 99% depending on which
pair of file types are considered. The work [6] introduced



an NLP (natural language processing) based method, where
unigram and bigram counts of bytes and other statistics
are used to generate feature representation, which is then
followed by support vector machine (SVM) for classification
of various file types. The classification accuracy varies from
17.4% for JPEG files, 62.5% for PDF files to 94.8% for
HTML files. The work [1] used PCA (principal component
analysis) and a feed-forward auto-associative unsupervised
neural network for feature extraction, and a three layer multi-
layer perceptron network for classification. The classification
accuracy is 98.33% for six file types while considering
entire files instead of file segments. Our deep-learning based
method can be seen to achieve high performance, without
the need to train separate modules for feature extraction and
classification.

The CNN has robust performance because it works well
not only for the BER it is trained for, but also for other
BERs in the considered range. (For example, a CNN trained
for BER = 1.2% also works well for other BERs in the
range [0.2%, 2.0%].) For succinctness we skip the details.
The robustness of the overall error correction performance
for different BERs will be presented in Section IV.

III. SOFT DECODING BY DEEP NEURAL NETWORKS

In this section, we study how to design DNNs that can
perform soft decoding on noisy file segments. For each of
the T file types, we will design and train a different DNN,
because different types of files have different types of natural
redundancy. Given a file type, we will design a DNN whose
input is a noisy file segment of k bits Y = (y1, y2, · · · , yk).
As before, the errors in the noisy file segment come from a
binary-symmetric channel (BSC) of bit-error rate (BER) p.
The output of the DNN is a vector Q = (q1, q2, · · · , qk),
where for i = 1, 2, · · · , k, the real-valued output qi ∈ [0, 1]
represents the DNN’s belief that for the i-th bit in the file
segment, the probability that its correct value should be 1 is
qi. In other words, if we use X = (x1, x2, · · · , xk) to denote
an error-free file segment, and let it pass through a BSC of
BER p to obtain a noisy file segment Y = (y1, y2, · · · , yk),
then qi is the DNN’s estimation for Pr{xi = 1 | Y, p}. Note
that the k bits are not independent of each other because
of the natural redundancy in them. So Pr{xi = 1 | Y, p}
depends on not only yi and p, but also the overall value of
Y . The goal of the DNN is to learn the natural redundancy in
file segments, and use it to make the probability estimation
qi be as close to the true probability Pr{xi = 1 | Y, p} as
possible, for each i and for each possible value Y of the
noisy file segment.

We treat this problem as a regression problem. Note that
since errors are random without an upper bound to it’s
Hamming weight, given a noisy codeword the corresponding
correct codeword is not unique in principle. So, the soft
decoding result for each codeword bit should really be a
probability (instead of a 0-or-1 label). However, the training
data only have binary codewords, so only 0-or-1 labels are
available for training.

In the following, we present a new approach based on
portfolio theory that teaches a DNN soft decoding. We first
present the idea, and verify its performance for data with
small samples spaces. We then extend it to file segments,
which have complex natural redundancy and a very large
sample space.

A. Portfolio Theory based Soft Decoding

Consider a channel, whose input is a variable X ∈
{ai | 1 ≤ i ≤ K}, and whose output is a single bit b ∈ {0, 1}.
For i = 1, 2, · · · ,K, let pi , Pr{b = 1 | X = ai} be the
probability that the channel’s output is 1 given that its input
is ai. Consider a sequence of N such input-output pairs of
the channel

(X1, b1), (X2, b2), · · · , (XN , bN )

where for j = 1, 2, · · · , N , Xj and bj are the input and
output of the channel, respectively, for the j-th use of the
channel. Now assume that we do not know the channel’s
transition probabilities p1, p2, · · · , pK . Instead, we have the
sequence of N input-output pairs, and want to use them
to estimate those transition probabilities. (We would like
to achieve this goal without counting how many times the
channel output is 1 for every given channel input value,
because when this method is applied to file segments later,
the channel will have K = 2k = 24095 possible input values,
which is too large for counting to work due to the sparsity
of training data and the memory constraint.)

Now suppose that we have derived a policy, which esti-
mates the probability Pr{b = 1 | X = ai} as qi (when its
true value should be pi). Consider the following game on
horse race, which is between two horses – a white horse and
a black horse – and takes X as its environment parameter
(e.g., the wind speed, temperature, etc. at the race). Let pi
(respectively, 1 − pi) denote the probability that the white
(respectively, black) horse wins when X = ai. We bet on
a sequence of N races. For j = 1, 2, · · · , N , for the j-
th race, if its environment parameter X = ai (for some
i ∈ {1, 2, · · · ,K}), we bet a fraction of qi of our money on
the white horse, and bet the remaining 1−qi of our money on
the black horse. If the white (respectively, black) horse wins
in that race – which corresponds to the channel output b = 1
(respectively, b = 0) – the money we get is the amount of
money we bet on the white (respectively, black) horse times
some constant c. Now let us define a variable Sj for the j-th
race: if the white horse wins, we let Sj = qi; otherwise, we
let Sj = 1− qi.

Suppose that we started with 1 dollar. After the N races,

the money we have is cN
N∏
j=1

Sj . Define the doubling rate as

R =
log2(

N∏
j=1

Sj)

N = 1
N

N∑
j=1

log(Sj).

Example 1. Let K = 4, and N = 5. Assume that we
get the following sequence: (X1, b1) = (a2, 0), (X2, b2) =
(a1, 1), (X3, b3) = (a3, 1), (X4, b4) = (a3, 0), (X5, b5) =



Fig. 3. Neural networks for K = 2 (left) and K = 200 (right).

(a4, 0). Then the doubling rate is R = 1
5 [log2(1 − q2) +

log2(q1) + log2(q3) + log2(1− q3) + log2(1− q4)].

By portfolio theory [5], when N →∞, the doubling rate R
is maximized only if qi = pi for i = 1, 2, · · · ,K. Therefore,
to learn the transition probabilities p1, p2, · · · , pK , we can
design a neural network (NN) that takes the sequence of N
channel input-output pairs

(X1, b1), (X2, b2), · · · , (XN , bN )

as training data, and define the loss function of the NN as −R
namely, the negative doubling rate. (It is interesting to see
that the loss function is in fact the cross entropy between the
codeword bits of the training data and the output probabilities
here, which means the problem can also be treated as a
classification problem.) For j = 1, 2, · · · , N , each Xj is an
input to the NN, and – assuming Xj = ai for some i – the
NN’s output is considered to be qi; and based on whether bj is
1 or 0, an additive term of log2 qi or log2(1−qi) is included in
the loss function. As the NN is trained, it minimizes the loss
function, which is equivalent to learning the correct transition
probabilities and maximizing the doubling rate R.

In practice, the NN needs to gradually train its weights as
it gets more and more training data, and N cannot be infinite.
So we need to partition the channel input-output pairs into
batches, and let the NN use every batch to compute its loss
functions and adjust its weights. To verify if the NN can learn
the true transition probabilities effectively using batches of
small sizes, we use the following experiments.

For K ≥ 2, we design a NN as follows. We take
N = K×50000 channel input-output pairs in total. (Here we
select each transition probability pi uniformly randomly from
the range (0, 1). Then, given p1, p2, · · · , pK , we generate the
N channel input-output samples following those transition
probabilities.) Let the batch size be K × 50. Let the NN
have three layers: an input layer, a hidden layer, and an
output layer. The input layer uses one-hot encoding for the
K possible values for X; so the size of the input layer is
K × 1. The size of the hidden layer is set to K × 1 and
is fully connected to the input layer. The size of the output
layer is 1×1 (namely, just one number). (For illustration, the
architectures of the NNs for K = 2 and K = 200 are shown
in Fig. 2.) After the NN is trained, for each input X = ai,
it can output the corresponding probability estimation qi (for
i = 1, 2, · · · ,K).

We measure the distance between the true channel transi-
tion probabilities and the NN’s estimation by their average

TABLE II
AVERAGE KL DIVERGENCE BETWEEN TRUE AND LEARNED TRANSITION

PROBABILITIES

K 2 4 10 100 200
∆K 0.000069 0.000022 0.00015 0.00023 0.00021

Kullback-Liebler (KL) divergence

∆K =
1

K

K∑
i=1

D(pi || qi),

where D(pi || qi) = pilog2
pi

qi
+ (1 − pi)log2

1−pi

1−qi . The
average KL divergence for different values of K are shown in
Table II. It can be seen that the KL divergence is very small,
which means that the NN has learned the true transition
probabilities well.

B. Soft Decoding for Noisy File Segments

In the previous subsection, we have shown that the portfo-
lio theory-based approach, which sets the NN’s loss function
as the negative doubling rate, works well for relatively simple
channel models. However, when we apply this approach to
file segments, several challenges appear. First, the output is
no longer the probability for only one bit b; instead, it consists
of k probabilities q1, q2, · · · , qk for the k bits in the file
segment. Our DNN needs to estimate them jointly using one
network architecture. Second, in the experiments of the last
subsection, the K transition probabilities p1, p2, · · · , pK are
chosen independently and therefore have a simple structure;
however, for file segments, the natural redundancy can be
very complex, which can make the channel’s transition prob-
abilities be highly correlated and exhibit complex structures.
Third, for file segments, the DNN’s input can theoretically
take K = 2k = 24095 possible values, which is a huge
number and makes the training data very sparse. So it is
not simple to see whether the DNN can learn the transition
probabilities well given the sparsity of training data.

In this subsection, we design DNNs for the soft decoding
of noisy file segments. Our DNN architecture is related to
auto-encoders. It consists of convolution layers followed by
deconvolution layers. (Deconvolution layers may be seen as
reverse operations of convolution layers. Interested readers
can refer to [4] for more details.) Auto-encoders are good
choices for various applications related to denoising [13],
[19].

We illustrate our DNN architecture through some exam-
ples. Let p be the BER of the binary-symmetric channel
that adds errors to file segments. Consider p = 0.8%,
1.2%, 1.6%. The DNN architecture for HTML (respectively,
LaTeX) files, for all the above values of p, is shown in Fig. 4
(a) (respectively, in Fig. 4 (b)). When p = 0.8%, the DNN
architecture for both PDF and JPEG files is shown in Fig. 4
(c). When p = 1.2%, 1.6%, the DNN architecture for PDF
(respectively, JPEG) files is shown in Fig. 4 (d) (respectively,
in Fig. 4 (e).

Since the transition probabilities corresponding to file
segments are unknown, we cannot measure the performance
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Fig. 4. Architectures of deep neural networks (DNNs) for soft decoding of noisy file segments. (a) DNN architecture for HTML files for p = 0.8%,
1.2%, 1.6%, (b) DNN architecture for LaTex files for p = 0.8%, 1.2%, 1.6%, (c) DNN architecture for PDF and JPEG files when p = 0.8%, (d) DNN
architecture for PDF files when p = 1.2%, 1.6%, (e) DNN architecture for JPEG files when p = 1.2%, 1.6%.

a)

b)

c)

d)

Fig. 5. Decoding success rate vs bit error rate for (a) pDNN = 1.0% , (b) pDNN = 1.2%, (c) pDNN = 1.4%, (d) pDNN = 1.6%

of the DNN directly using the KL divergence. However, the
experiments for error correction, which are to be presented
in the next section, will confirm that the soft decoding result
from the DNN is very useful for error correction.

IV. ERROR CORRECTION FOR NOISY FILE SEGMENTS

In this section, we combine the soft decoding output of the
DNN – which was presented in the previous section – with
an LDPC code for enhanced error correction performance.
We adopt a robust scheme here: the DNNs for file-type
recognition and for soft decoding have been trained with a
constant BER pDNN , but they are used for a wide range
of BERs p for the BSC channel. (For example, the DNNs
may be trained just for pDNN = 1.2%, but are used for
any BER p from 0.2% to 1.6% in experiments here.) We
choose this robust scheme because when DNNs are designed,
the future BER in data can be highly unpredictable. That is
exactly why errors may exceed ECC’s thresholds for long-
term storage, and why natural redundancy can become useful
for error correction.

Given a noisy systematic LDPC codeword, we first use
a DNN to recognize its file type based on its k noisy
information bits. Then a second DNN for that file type is
used to do soft decoding for the k noisy information bits, and
output k probabilities: for i = 1, 2, · · · , k, the i-th output pi
represents the estimated probability for the i-th information
bit to be 1. Those k probabilities can be readily turned into
LLRs (log-likelihood ratios) for the information bits using
the formula LLRDNN

i = log( 1−pi

pi
). For i = 1, 2, · · · , n,

let LLRchannel
i be the LLR for the i-th codeword bit (with

1 ≤ i ≤ k for information bits, and k + 1 ≤ i ≤ n for
parity-check bits) derived for the binary-symmetric channel,
which is either log( 1−p

p ) (if the received codeword bit is 0)
or log( p

1−p ) (if the received codeword bit is 1). Then we let
the initial LLR for the i-th codeword bit be

LLRint
i = LLRchannel

i + LLRDNN
i

for 1 ≤ i ≤ k, and LLRint
i = LLRchannel

i for k+1 ≤ i ≤ n.
We then do belief-propagation (BP) decoding using the initial
LLRs, and get the final result.



Note that there is a positive – although very small –
chance that the file type will be recognized incorrectly. In
that case, the incorrect soft-decoding DNN will be used. And
that is accounted for in the overall decoding performance.
We measure the performance of the error correction scheme
by the percentage of codewords that are decoded correctly,
which we call Decoding Success Rate. (Let us call the scheme
the NR-LDPC decoder, since it combines decoding based
on natural redundancy and the LDPC code.) We focus on
BERs that are beyond the decoding threshold of the LDPC
code, because natural redundancy becomes helpful in such
cases. Note that the (4376, 4095) LDPC code used in our
experiments has a decoding threshold of BER = 0.2%.
In our experiments, we focus on BERs p that are not only
beyond the decoding threshold, but also can be significantly
larger: p ∈ [0.2%, 1.6%].

The experimental results for pDNN = 1.0% is presented
in Fig. 5 (a). Here the x-axis is the channel error probability
p, and the y-axis is the decoding success rate. (For each p,
1000 file segments with independent random error patterns
have been used in experiments.) The curve for “ldpc” is
the performance of the LDPC decoder alone, and the curve
for “nr-lpdc” is for the NR-LDPC decoder. It can be seen
that the NR-LDPC decoder achieves significantly higher
performance. For example, as p = 0.6%, the decoding
success rate of the NR-LDPC decoder is approximately 4
times as high as the LDPC decoder.

The figure also shows the performance for each of the
4 file types. (The 4 curves are labelled by html, latex, pdf,
jpeg, respectively. Their average value becomes the curve for
“nr–ldpc”.) It shows that the error correction performance
for HTML and LaTex files are significantly better than for
PDF and JPEG files. It is probably because the former two
mainly consist of languages, for which the soft-decoding
DNNs are better at finding their patterns and mining their
natural redundancy, while PDF is a mixture of languages and
images and JPEG is image only. It is interesting to notice that
even for JPEG files, when p > 0.6%, the NR-LDPC decoder
again performs better than the LDPC decoder, which means
the DNNs can extract natural redundancy from images, too.
Fig. 5 (b) to Fig. 5 (d) show the performance for pDNN =
1.2%, 1.4% and 1.6%, respectively. The NR-LDPC decoder
performs equally well in those cases, which proves the value
of natural redundancy for decoding.

V. CONCLUSION

This paper presents a new scheme that combines natural
redundancy with LDPC codes for error correction. It is
applied to noisy file segments of initially unknown file types,
– which is the first of its kind to the best of our knowledge, —
and shows substantial performance improvement compared
to the original LDPC decoding scheme. The study can be
extended to more types of natural redundancy in various
types of files, more DNN architectures, and more ways
to combine the NR decoder and ECC decoder, such as
through iterative decoding between the two. When perfect
error correction is not necessary (e.g., for images), non-binary

LDPC codes and neural networks can also be combined
naturally[23]. Those remain as our future research directions.
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