
Elimination of Cyclic Stopping Sets for
Enhanced Decoding of LDPC Codes

Anxiao (Andrew) Jiang
Computer Science and Engineering Department

Texas A&M University
College Station, TX 77843-3112, USA

ajiang@cse.tamu.edu

Abstract—The Stopping-Set Elimination Problem is studied for
LDPC codes: how to remove the fewest number of erasures from
a stopping set such that the remaining erasures can be decoded
by belief propagation in k iterations (including k = ∞). The
problem is known to be NP-hard. Here efficient exact algorithms
and approximation algorithms are presented for stopping sets
whose induced graphs in Tanner graphs contain cycles.

I. INTRODUCTION

This work studies a basic theoretical problem for LDPC
codes introduced in [3]: when the erasures in an LDPC
codeword cannot be corrected by the decoder, how to remove
the fewest number of erasures so that the remaining erasures
become decodable? Here we consider the widely-used iterative
belief-propagation (BP) decoder: in each iteration, it uses
every parity-check equation involving exactly one erasure
to correct that erasure; and it stops when every equation
involves zero or at least two erasures. When decoding fails,
the undecodable erasures we are left with are called a stopping
set. A stopping set and its associated parity-check nodes in
the Tanner graph can be represented by a bipartite graph
G = (V ∪ C,E) as follows: V represents a set of variable
nodes that are erasures, C represents a set of check nodes each
of which is adjacent to at least two nodes in V in the Tanner
graph, and E represents the set of edges between them in the
Tanner graph. Here V is a Stopping Set and G is a Stopping
Graph. (An example of a stopping graph is shown in Fig. 1.)
Now let k be a positive integer. The problem we study, the
Stopping-Set Elimination Problem called SSEk, is defined as
follows [3], which differs from the many existing nice works
on stopping sets [2], [4].

Definition 1. Given a Stopping Graph G = (V ∪ C,E), how
to remove the minimum number of variable nodes from V
such that the remaining variable nodes can be decoded by BP
decoding within k iterations?

Here the parameter k controls the required time for decod-
ing. If we consider only decodability but not decoding time, k
can be seen as∞ and we call the problem the SSE∞ Problem.

The Stopping Set Elimination Problem has a number of
applications in data storage and communications. Consider
n blocks of data B1, B2, · · · , Bn, where each block Bi =
(bi,1, bi,2, · · · , bi,m) has m bits. Let them be m parallel LDPC

codewords: for 1 ≤ j ≤ m, the n bits (b1,j , b2,j , · · · , bn,j)
form an LDPC codeword. (The mn bits can be seen as an
n×m array, where each row is a block, and each column is
an LDPC codeword.) When some blocks are lost (i.e., erased),
they can be recovered by running the BP decoding algorithm
identically on the m binary LDPC codewords in parallel.
LDPC codes are an attractive option for erasure correction
due to their high rates, simple XOR-based decoding and good
locality (due to the low degrees of variable and check nodes).

If too many blocks are erased and BP decoding fails,
extra measures can be used to retrieve some erased blocks
from other sources so that the remaining erasures become
decodable. Two such examples are shown in [3]. The first
example is for distributed data storage, where the n blocks are
distributively stored on n servers at a company’s data center.
If too many blocks are lost, the company can retrieve some
blocks from its backup system – which is often at a remote
location – so that the remaining erased blocks can be decoded
locally. (Most big IT companies have such backup systems.)
The other example is for satellite-to-ground communication,
where too many lost packets (i.e., erased blocks) to the user
triggers the user’s request for the satellite to retransmit some
of those lost packets. Since retrieving erased blocks from
remote sites (e.g., remote backup system or satellite) is much
more expensive than decoding data locally, it is desirable to
minimize the number of retrieved blocks. This is the Stopping
Set Elimination Problem.

When a set of variable nodes S ⊆ V is removed from
the stopping graph G, if the remaining variable nodes be-
come decodable (we shall also say “the remaining graph is
decodable”), then we call S an Elimination Set. So the SSEk
Problem seeks a minimum-sized (i.e., optimal) elimination set.
In [3], the SSEk Problem is proved to be NP-hard, even when
k is very large (k = ∞) or small (k = 1). When the degrees
of the variable nodes and check nodes are upper bounded
by dv and dc, respectively, an approximation algorithm of
approximation ratio dv(dc−1) and time complexity O(d2

vd
2
cV)

is presented for the SSE1 Problem. When the stopping graph
is a tree (called a Stopping Tree), two efficient algorithms
of time complexity O(V + C) are presented for the SSE∞
and SSEk Problems, respectively, which finds an optimal
elimination set in the stopping tree.

The stopping graph can be trees when the number of

erasures is not too many. However, a more general case is that
the stopping graph can be cyclic but its number of cycles is
bounded. That also matches the most useful cases in practice,
where the number of erasures exceeds but is not far away
from the LDPC code’s decoding threshold. So we focus on
this more general case in this paper. Specifically, we focus on
p-Cyclic Stopping Graphs defined as follows.

Definition 2. For a Stopping Graph G = (V ∪C,E), if at most
p variable nodes can be removed to make the remaining graph
acyclic, then G is called a p-Cyclic Stopping Graph.

The main results of the paper are as follows. In Section
II, we analyze properties of the SSE∞ Problem and present a
scheme that finds optimal elimination sets for stopping graphs.
We present an efficient linear-complexity algorithm based on
the scheme for stopping graphs containing one cycle. We also
present an approximation algorithm for the SSE∞ Problem
for p-cyclic stopping graphs, which has approximation ratio
2p
c+1 + 1 and polynomial time complexity, where c ≥ 0 is
an integer parameter that can be selected freely. In Section
III, we present an extended polynomial-time approximation
algorithm with the same approximation ratio for the SSEk
Problem for p-cyclic stopping graphs. We further analyze the
SSEk Problem for dense stopping graphs, and show that for
high-rate LDPC codes with high erasure rates, all algorithms
can achieve good approximation ratios.

Fig. 1. Example of a stopping graph G = (V ∪ C,E).

II. SSE∞ PROBLEM FOR 1-CYCLIC AND p-CYCLIC
STOPPING GRAPHS

In this section, we study the SSE∞ Problem. We first
analyze the properties of stopping graphs, and present an (not
necessarily polynomial-time) algorithm that finds an optimal
elimination set for any stopping graph. We then present two
polynomial-time algorithms for stopping graphs with one
cycle and for p-cyclic stopping graphs, respectively, which are
variations of the first algorithm.

A. Properties of Stopping Graphs and SSE∞ Problem

Let us first define several concepts. We call a graph smooth
if every node in it is of degree at least two. We call a node
in a graph a smooth-node if it is either in a cycle, or on a
simple path that connects two cycles in the graph. We call a
node v in a graph G a tree-node if v has degree one, or if
removing v from G will break G into two or more disjoint
subgraphs and at least one of those subgraphs is a tree that
has only one node adjacent to v in G. Given a stopping graph
G = (V ∪C,E), if a node v in it is both a smooth-node and a
tree-node, then we call v a bridge-node; furthermore, if v ∈ V
is a variable node (resp., if v ∈ C is a check node), then we
call v a bridge-variable-node (resp., a bridge-check-node). We
let Λ(G) denote the set of bridge-variable-nodes of G, and let
Π(G) denote the set of bridge-check-nodes of G.

Given a stopping graph G = (V ∪C,E), let SG denote the
subgraph of G obtained by removing from G all the nodes that
are tree-nodes but not bridge-nodes. We call SG the smooth-
component of G. Furthermore, let CG denote the subgraph of
SG obtained by removing from SG all the nodes in Π(G). We
call CG the heart-component of G.

Lemma 3. For any stopping graph G = (V ∪ C,E), SG is
a smooth graph. All the cycles in G are also in SG, and vice
versa. The nodes in SG are exactly those smooth-nodes in G.
Furthermore, both SG and CG are stopping graphs (i.e., every
check node in them is of degree at least two).

Proof: For succinctness, we focus on the last property.
(The other properties are easy to see.) When nodes are
removed from G to get SG or CG, for SG, every node has at
least two neighbors since SG is smooth; for CG, every check
node in it has the same set of neighbors as it does in G, so
its degree remains unchanged and is at least two.

Consider a stopping graph G = (V ∪ C,E) and a bridge-
node v in it. By definition, removing v from G will break G
into multiple subgraphs, at least one of which is a tree with
exactly one node (say node u) adjacent to v in G. We call such
a tree a peripheral-tree Tpt,G(u) in G, and call u its root. Let
AG(v) denote the set of roots of peripheral trees adjacent to v
in G. Let Tbt,G(v) denote the subgraph of G containing these
nodes: v, and all the nodes of those peripheral trees whose
roots are in AG(v) (namely, are adjacent to v in G). It can
be seen that Tbt,G(v) is a tree, which we call a bridge-tree,
and call v its root. It is not hard to see that G contains a
smooth-component and a set of disjoint bridge-trees, where
each bridge-tree overlaps the smooth-component at its root (a
bridge node). See Fig. 1 for an illustration.

We will use the two algorithms in [3] that find optimal
elimination sets for stopping trees – one algorithm for the
SSE∞ Problem and the other for the SSEk Problem – in
the algorithms of this paper. Due to space limitation, we
do not include their details, and use them only as modules.
For convenience, let us call the two algorithms the Tree∞
Algorithm and Treek Algorithm, respectively. We note that the
Tree∞ Algorithm has a property: it can choose any variable

node v in the stopping tree and ensure that the optimal
elimination set it finds contains v. (v was seen as the tree’s
root in [3].) That property will be used in our future analysis.

We now present a recursive algorithm (called OPT∞(G))
that finds an optimal elimination set for any stopping graph for
the SSE∞ Problem. It takes a stopping graph G = (V ∪C,E)
as input, and outputs an elimination set E ⊆ V for G.

Algorithm 4. OPT∞(G):
1) If G is smooth, find an optimal elimination set E ⊆ V for

G, and return E .1 Otherwise, go to Step 2.
2) Eheart ← OPT∞(CG). (Namely, use the heart-

component CG as input to this algorithm to obtain an
elimination set Eheart for CG.)

3) For every bridge-node v ∈ Λ(G)∪Π(G), use the Tree∞
Algorithm to find an optimal elimination set F(v) for the
bridge-tree Tbt,G(v).

4) Return Eheart ∪
(
∪v∈Λ(G)F(v)− {v}

)
∪(

∪v∈Π(G)F(v)
)
.

Example 5. Consider the stopping graph G = (V ∪ C,E)
in Fig. 1. When we run Algorithm OPT∞(G), since G is
not smooth, we need to find an optimal elimination set for its
heart-component CG (the part shown in a dashed circle in the
figure) using Step 2, which is found by making another call to
the algorithm. (That recursive call will in turn find an optimal
elimination set for the heart-component of CG, which consists
of a path of three nodes and another isolated node.) The optimal
elimination sets for bridge-trees are found using the Tree∞
Algorithm. 2

We now analyze the algorithm OPT∞(G), and prove that
it returns an optimal elimination set for G = (V ∪ C,E).

First, let Gα = (Vα ∪ Cα, Eα) denote the subgraph of G
obtained by removing all peripheral trees rooted at nodes in
∪v∈Λ(G)AG(v), namely, peripheral-trees adjacent to bridge-
variable-nodes. (Here Vα ⊆ V and Cα ⊆ C.)

Lemma 6. Let G = (V ∪ C,E) be a stopping graph. For the
SSE∞ Problem, there exists an optimal elimination set E∗ ⊆
V such that E∗ ∩ Vα is an elimination set for Gα.

Proof: Let Ŝ ⊆ V be an optimal elimination set for G.
Consider a bridge-variable-node v ∈ Λ(G). Let Gγ(v) =
(Vγ(v) ∪ Cγ(v), Eγ(v)) denote the subgraph of G obtained
by removing the peripheral-trees adjacent to v. Consider the
bridge-tree Tbt,G(v) = (Vbt,G(v)∪Cbt,G(v), Ebt,G(v)). There
are two possible cases.

CASE 1: Ŝ ∩ Vbt,G(v) is an elimination set for Tbt,G(v).
In this case, by the property of the Tree∞ Algorithm

mentioned earlier, there exists an optimal elimination set P ⊆
Vbt,G(v) for Tbt,G(v) that contains the root v. So v ∈ P and
|P | ≤ |Ŝ∩Vbt,G(v)|. Consider the set S∗ , (Ŝ−Vbt,G(v))∪P.
Clearly, |S∗| ≤ |Ŝ|. By removing the nodes in S∗ from G,

1It will be analyzed later how to obtain E here (or approximate it) based
on properties of G to obtain a polynomial-time algorithm.

all the variable nodes in Tbt,G(v) become decodable (because
P ⊆ S∗ is an elimination set for Tbt,G(v)), and all the variable
nodes in G but not in Tbt,G(v) also become decodable (because
the bridge-variable-node v is the only connection between
Tbt,G(v) and the rest of G, so when v is removed, it only
helps decode the variable nodes in V −Vbt,G(v)). So S∗ must
be an optimal elimination set for G. Since v ∈ S∗, S∗∩Vγ(v)
must be an elimination set for Gγ(v) because once the bridge-
variable-node v is removed, the decoding of nodes in Gγ(v)
has got all the help it possibly could from the bridge-tree
Tbt,G(v).

CASE 2: Ŝ∩Vbt,G(v) is not an elimination set for Tbt,G(v).
In this case, since v is the only connection between Tbt,G(v)

and Gγ(v), after nodes in Ŝ are removed from G, the BP
decoding must recover the value of v by decoding nodes in
Gγ(v) (not by decoding nodes in Tbt,G(v)). So Ŝ∩Vγ(v) must
be an elimination set for Gγ(v).

So in both cases, G has an optimal elimination set S ⊆ V
(which is either S∗ or Ŝ in the above cases) such that S∩Vγ(v)
is an elimination set for Gγ(v). The above analysis handles
a single bridge-variable-node. It it not difficult to see that we
can handle all the bridge-variable-nodes in the same way, and
as a result, we get an optimal elimination set E ⊆ V such that
E ∩ Vα is an elimination set for Gα. So the conclusion holds.

Lemma 7. Let G = (V ∪ C,E) be a stopping graph, and let
CG = (Vheart ∪Cheart, Eheart) be its heart-component, where
Vheart ⊆ V and Cheart ⊆ C. Then for the SSE∞ Problem,
there exists an optimal elimination set F ⊆ V such that F ∩
Vheart is an elimination set for CG.

Proof: By Lemma 6, there exists an optimal elimination
set E∗ ⊆ V for G such that E∗ ∩ Vα is an elimination set for
Gα. (Note that CG is a subgraph of Gα and can be obtained
from Gα by removing all the trees in {Tbt,G(v) | v ∈ Π(G)}.)
∀ v ∈ Π(G), let BG(v) ⊆ AG(v) be the set of nodes with

this property: for every node u ∈ BG(v), after nodes in E∗ are
removed from G, if we run the BP decoding algorithm only
on the tree Tpt,G(u), the variable nodes in Tpt,G(u) would not
be fully decoded (which is equivalent to saying that the root u
would not be decoded, because nodes outside the tree can help
decode the tree only through u). Then, by the property of the
Tree∞ Algorithm, we can require E∗ to have this property:
∀ u ∈ AG(v)− BG(v), we have u ∈ E∗.

We now transform E∗ to another optimal elimination set
step by step as follows. In each step, consider a bridge-
check-node v ∈ Π(G) with |BG(v)| = 0, and let u be an
adjacent variable node in ∈ AG(v). Note that when nodes
in E∗ are removed from G and we run the BP decoding
algorithm, the check node v must be used to decode one of its
neighboring variable node w in the smooth-component SG,
because otherwise we can exclude u from E∗ and use v to
decode u instead, and get a smaller elimination set (which is a
contradiction). Now to transform E∗, we replace u by w in E∗.
After this transformation, the nodes outside Tpt,G(v) clearly

can still be decoded, and u will be decoded using v after
v’s other neighboring variable nodes are all decoded. So the
transformed E∗ is still an optimal elimination set; yet now we
have |BG(v)| = 1. So after we repeat the above transformation
step for every node v ∈ Π(G) with |BG(v)| = 0, we get an
optimal elimination set E∗ with this property: ∀ v ∈ Π(G),
we have |BG(v)| ≥ 1 (actually |BG(v)| = 1 because otherwise
some peripheral-trees adjacent to v will not be decodable). It
means that in BP decoding, first all the nodes in the heart-
component CG can be decoded; and then for every v ∈ Π(G),
the unique variable node u ∈ BG(v) can be decoded using
check node v; then all peripheral-trees can be decoded. So let
F be the transformed E∗, and the conclusion holds.

For any stopping graph G′, let χ(G′) denote the size of an
optimal elimination set for G′.

Theorem 8. Let G = (V ∪ C,E) be a stopping graph. Then

χ(G) = χ(CG)− |Λ(G)|+
∑

v∈Λ(G)∪Π(G)

χ(Tbt,G(v)).

Proof: Let CG = (Vheart ∪ Cheart, Eheart) be the heart-
component of G. By Lemma 7, there exists an optimal
elimination set F for G such that F ∩Vheart is an elimination
set for CG. So |F| = χ(G) and |F ∩ Vheart| ≥ χ(CG).

In any an elimination set for G, to decode any bridge-tree
Tbt,G(v) rooted at a bridge-variable-node v ∈ Λ(G), it is
necessary to remove at least χ(Tbt,G(v)) − 1 non-root nodes
(which, together with v, form an elimination set for Tbt,G(v)).
To decode any bridge-tree Tbt,G(v) rooted at a bridge-check-
node v ∈ Π(G), the nodes removed in Tbt,G(v) needs to
be an elimination set for Tbt,G(v), because other nodes in
G connected to Tbt,G(v) are all connected to the check node
v, which makes it no easier to decode Tbt,G(v) than running
BP decoding on Tbt,G(v) alone. So χ(G) = |F| ≥ |F ∩
Vheart|+

∑
v∈Λ(G)(χ(Tbt,G(v))−1)+

∑
v∈Π(G) χ(Tbt,G(v)) ≥

χ(CG) − |Λ(G)| +
∑
v∈Λ(G)∪Π(G) χ(Tbt,G(v)). It is not hard

to see that an elimination set whose size matches the above
lower bound can be constructed. So the conclusion holds.

Theorem 9. The algorithmOPT∞(G) returns an optimal elim-
ination set for G = (V ∪ C,E).

Proof: The proof is by induction. Note that OPT∞(G) is
a recursive algorithm. As the base case, if G is smooth, which
means the heart-component C(G) is the same as G (including
the special case that C(G) is an empty graph), the algorithm
will return an optimal elimination set in its Step 1. Now as the
inductive step, assume G is not smooth. The algorithm (in its
Step 2 through Step 4) constructs and returns an elimination
set whose size matches the optimal size shown in Theorem 8,
whose BP decoding process is as described in the end of the
proof of Lemma 7 (for the transformed elimination set E∗).
That completes the induction; so the conclusion holds.

B. Efficient Algorithm for Stopping Graph with One Cycle
The algorithm OPT∞(G) finds an optimal elimination set,

but it may not be a polynomial-time algorithm, because it

is NP-hard to find an optimal elimination set for a smooth
stopping graph (which can be derived from the NP-hardness of
the SSE∞ Problem). In this subsection, we study the SSE∞
Problem for stopping graphs containing just one cycle, which
is the basic case for cyclic stopping graphs, and show that an
efficient algorithm exists.

For a stopping graph G = (V ∪ C,E) that contains one
cycle, its heart-component CG is either a cycle (if |Π(G)| = 0)
or |Π(G)| disjoint paths (if |Π(G)| > 0). If CG is a cycle, then
its optimal elimination set contains a single variable node in
the cycle. If CG consists of |Π(G)| disjoint paths, then its
optimal elimination set contains |Π(G)| variable nodes (one
for each path). So based on Theorem 8, we see that an optimal
elimination set for G has size

χ(G) = max{|Π(G)|, 1}−|Λ(G)|+
∑

v∈Λ(G)∪Π(G)

χ(Tbt,G(v)).

Based on the above analysis, the algorithm OPT∞(G) can
be simplified accordingly. (We skip details of the algorithm
due to space limit.) Note that the Tree∞ Algorithm has linear
time complexity [3]. It is not hard to see that the algorithm
here also has linear time complexity O(V + C + E).

C. Approximation Algorithm for p-Cyclic Stopping Graph

We now present an approximation algorithm for p-cyclic
stopping graphs. It uses an approximation algorithm for the
Minimum Feedback Vertex Set (MFVS) Problem as a tool.
Given an undirected graph G′ = (V ′, E′), a feedback vertex
set (FVS) is a set of vertices S ⊆ V ′ such that every cycle
in G′ contains at least one vertex of S (namely, removing S
will turn G′ into an acyclic graph). The MFVS Problem is
defined as follows: given an undirected graph G′ = (V ′, E′)
where every vertex v ∈ V ′ has a non-negative cost c(v), find
an FVS in G′ whose cost is minimized. The MFVS Problem
has a 2-approximation algorithm [1], which we shall call the
MFVS Algorithm.

Our approximation algorithm for the SSE∞ Problem for a
p-cyclic stopping graph G = (V ∪ C,E) is a modification of
the Algorithm OPT∞(G). In Step 1 of OPT∞(G), instead
of finding an optimal elimination set E ⊆ V for the smooth
graph G, we find an approximate solution as follows:
• Step 1.1: Let c be a non-negative integer. Use exhaustive

search to check if G has an elimination set of size at
most c. If yes, return an optimal elimination set for G;
otherwise, go to Step 1.2.

• Step 1.2: In G, let all variable nodes have cost 1, and let
all check nodes have cost ∞. Run the MFVS Algorithm
to find an FVS F ⊆ V for G. (The high cost for check
nodes ensures that F contains only variable nodes.)

• Step 1.3: Remove the nodes in F from G, and use BP
decoding to further remove those nodes that become
decodable until we get a new stopping graph Ĝ =
(V̂ ∪ Ĉ, Ê). (Ĝ is acyclic because F is an FVS.) Then
find an optimal elimination set S∗ ⊆ V̂ for Ĝ using the
Tree∞ Algorithm. Return F ∪ S∗ as the elimination set
for G.

We let Step 2 through Step 4 of the algorithm OPT∞(G)
remain the same. Let us call the new algorithm Approx∞(G).
It has polynomial time complexity for constant parameter c
because all its elements (the MFVS Algorithm, the Tree∞ Al-
gorithm, the exhaustive search, the number of recursive calls)
are of polynomial time. We now analyze its approximation
ratio (define based on the size of the elimination set).

Theorem 10. AlgorithmApprox∞(G) has approximation ratio

2p

c+ 1
+ 1.

Proof: It is sufficient to analyze the approximation ratio
for the elimination set found by Step 1.1 through Step 1.3 of
the algorithm, because the elimination sets found in the other
steps are optimal. If the smooth graph G has an elimination set
of size at most c, an optimal elimination set for G is returned.

Now consider the case that G has no elimination set of size
at most c, which means χ(G) ≥ c + 1. In Step 1.2, we have
|F | ≤ 2p (because the smooth graph G here is also p-cyclic,
and the MFVS Algorithm has approximation ratio 2). In Step
1.3, we have |S∗| = χ(Ĝ) ≤ χ(G) (because having some
variable nodes removed will only be helpful for decoding the
remaining variable nodes). So the ratio |F∪S

∗|
χ(G) = |F |+|S∗|

χ(G) ≤
2p+χ(G)
χ(G) = 2p

χ(G) + 1 ≤ 2p
c+1 + 1.

So when p is small, the approximation ratio can be small.

III. SSEk PROBLEM FOR p-CYCLIC STOPPING GRAPHS
AND DENSE STOPPING GRAPHS

A. Approximation Algorithm for p-Cyclic Stopping Graph

The SSEk Problem is a generalization of the SSE∞
Problem. We present an approximation algorithm for it for
a p-Cyclic Stopping Graph G = (V ∪ C,E). It is the same
as Step 1.1 through Step 1.3 of the Algorithm Approx∞(G),
except that we use the Treek Algorithm to replace the Tree∞
Algorithm in Step 1.3; and we do not use the remaining
steps (namely Step 2 through Step 4 of OPT∞(G)). (That
is because here G is the original input to the algorithm, not
its smooth subgraph obtained during the recursion.) Let us call
the new algorithm Approxk(G).

Algorithm Approxk(G) also has an approximation ratio of
2p
c+1 +1 and polynomial time complexity. The analysis is very
similar to Algorithm Approx∞(G), so we skip it details. Note
that although the two algorithms have the same approximation
ratio (which considers the worst case performance) and Algo-
rithm Approxk(G) appears simpler (i.e., with fewer steps),
Algorithm Approx∞(G) is better optimized for the SSE∞
Problem because its extra steps can further reduce the size of
the output elimination set.

B. Approximation Algorithm for Dense Stopping Graphs

In this subsection, we analyze how an important factor,
RBER (raw bit-erasure rate), affects the performance of ap-
proximation algorithms. We show that for high-rate codes
with high actual erasure rates (which leads to dense stopping
graphs), all algorithms have good approximation ratios.

Consider an (N,K) LDPC code with N codeword bits and
K information bits (where K < N), whose code rate is R ,
K/N . Let G = (V ∪C,E) be its Stopping Graph, where V is
the Stopping Set. It is simple to show that the higher RBER
is, the greater |V | becomes on average. Let ε , |V |/N be
called the actual erasure rate relative to stopping set V .

Lemma 11. Let S ⊆ V be any solution (i.e., an Elimination
Set) to the SSEk Problem. If |V | ≥ N −K, then

|S| ≥ |V | −N +K.

Proof: The proof is by contradiction. If |S| < |V | −
N + K, then after the erased bits in the Elimination Set are
removed, the total number of codeword bits with known values
is (N − |V |) + |S| < (N − |V |) + (|V | −N +K) = K. Then
the BP decoder will not be able to recover the K bits of
information in the codeword.

Theorem 12. For the SSEk Problem, if ε > 1 − R, the
approximation ratio of any algorithm is at most

ε

ε− (1−R)
.

Proof: Let S∗ and S be an optimal solution and the
solution of an arbitrary algorithm, respectively, to the SSEk
Problem. If ε > 1 − R, then |V | = εN > (1 − K/N)N =
N −K. By Lemma 11, |S∗| ≥ |V | −N +K. Since S ⊆ V ,
we get |S||S∗| ≤

|V |
|V |−N+K = ε

ε−1+R .
So for high rate codes (where R approaches 1), if the RBER

is high (which approaches 1), then with high probability, ε
also approaches 1. In this case, ε

ε−(1−R) approaches 1, so all
algorithms have good approximation ratios.

IV. CONCLUSIONS

This paper studies the stopping set elimination problem
for LDPC decoding, which has various applications to data
storage and communication. It focuses on p-cyclic stopping
graphs, and presents a number of algorithms. The work can be
extended by studying more specific LDPC code constructions
(e.g., spatially-coupled codes, etc.), and design corresponding
SSEk algorithms.

ACKNOWLEDGMENT: This work was supported in part by
NSF Grant CCF-1718886.

REFERENCES

[1] V. Bafna, P. Berman and T. Fujito, “A 2-approximation algorithm for the
undirected feedback vertex set problem,” in SIAM J. Discret. Math., vol.
12, no. 3, pp. 289-297, 1999.

[2] C. Di, D. Proietti, I. E. Telatar, T. J. Richardson and R. L. Urbanke,
“Finite-length analysis of low-density parity-check codes on the binary
erasure channel,” in IEEE Trans. Inf. Theory, vol. 48, no. 6, pp. 1570–
1579, 2002.

[3] A. Jiang, P. Upadhyaya, Y. Wang, K. R. Narayanan, H. Zhou, J.
Sima and J. Bruck, “Stopping set elimination for LDPC codes,” in
Proc. 55th Allerton Conference on Communication, Control and Com-
puting, 2017. Available at http : //faculty.cse.tamu.edu/ajiang/
Publications/2017/StoppingSetElimination Allerton.pdf .

[4] A. McGregor and O. Milenkovic, “On the hardness of approximating
stopping and trapping sets,” in IEEE Trans. Inf. Theory, vol. 56, no. 4,
pp. 1640–1650, 2010.

