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ABSTRACT
Estimating an inverse regression space is especially important in suf-
ficient dimension reduction. However, it typically requires a tuning
parameter, such as the number of slices in a slicing method or band-
width selection in a kernel estimation approach. Such a requirement
not only affects the accuracy of estimates in a finite sample, but also
increases difficulties for multivariate models. In this paper, we use
a Fourier transform approach to avoid such difficulties and incor-
porate multivariate models. We further develop a Fourier transform
approach to deal with variable selection, categorical predictor vari-
ables, and large p, small n data. To test the dimension, asymptotic
results are obtained. Simulation studies and data analysis show the
efficacy of our proposed methods.
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1. Introduction

Sufficient dimension reduction (SDR) (Li 1991; Cook 1996) aims to find a few linear com-
binations of predictors so that using such linear combinations will preserve the regression
information. In the regression problem, suppose that Y ∈ R is the response variable and
X ∈ R

p is the predictor vector. If F(Y |X) = F(Y | ηTX), where η ∈ R
p×d, d ≤ p, then the

subspace spanned by the columns of η is called a dimension reduction subspace (DRS).We
are interested in the central subspace (CS), SY |X, which is defined as the intersection of all
DRSs if the intersection itself is a DRS. Undermild conditions (Cook 1996; Yin et al. 2008),
CS exists and is unique. In this paper, we assume the existence of CS. Let d = dim(SY |X)
be the dimension of CS, and β ∈ R

p×d be a basis of CS. Then Y ⊥⊥ X given βTX, where⊥⊥
indicates independence, is equivalent to saying the conditional distribution of Y givenX is
the same as the conditional distribution of Y given βTX. Along with this idea of CS, some
specific subspaces focus on regression mean, variance and quantiles (Cook and Li 2002;
Yin and Cook 2002; Zhu and Zhu 2009; Luo et al. 2014).

Many SDR methods have been developed over the past 30 years. Sliced inverse regres-
sion (SIR) (Li 1991) and sliced average variance estimation (SAVE) (Cook and Weis-
berg 1991) are the most well-known methods. SIR is preferred to recover a linear relation-
ship between the response and predictors, while SAVE can handle a symmetric relationship
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between them. Another approach is the principal Hessian direction (PHD) (Li 1992). SIR
and SAVE employ the inverse regression of X given Y, while PHD is a correlation type of
joint approach. All thesemethods use the spectral-decomposition-based procedure, which
follows two steps. The first step is to construct a nonnegative definite symmetric dimen-
sion reduction matrixM ∈ R

p×p, called a kernel dimension reduction matrix. The second
step involves conducting the spectral decomposition of a sample version M̂ ofM. Then, the
first d eigenvectors corresponding to the first d largest eigenvalues of M̂ are the estimator
of the CS.

For SIR or SAVE, the number of slices has to be chosen, and the choice of this number
could be problematic. Hsing and Carroll (1992) derived asymptotic properties for a spe-
cial case where each slice had only two observations, which was generalised by Zhu and
Ng (1995). The result of Zhu and Ng (1995) can be interpreted as the number of obser-
vations per slice must be large enough to yield efficient estimates, but still relatively small
when compared with the sample size. This suggests that slicing schemes with too many
slices that have too few observations per slice should be avoided. However, empirically it
is hard to establish a useful rule for selecting the number of slices. To avoid such difficul-
ties, Zhu et al. (2010b) developed the cumulative mean estimation, which uses a weighted
average of SIR kernel matrices from all possible slicing schemes with two slices. Further-
more, Cook and Zhang (2014) proposed fused estimators by cumulating different number
of slices: fused inverse regression estimator (FIRE) and degenerated inverse regression esti-
mator (DIRE). Another improvement for SIR is to use Fourier transform (Zhu et al. 2010c).
Fourier transform was first introduced by Zhu and Zeng (2006) to recover the dimensions
in central mean subspace and CS.

The concept of SDR for multivariate response Y ∈ R
q is simply to replace univatiate Y

by Y. The majority of SDR methods focuses on the univariate response, however, many
methods have been developed for multivariate regression as well. [For instance, slicing
the multi-dimensional Y into hypercubes similar to intervals in one-dimension, k-nearest
neighbourhood mean approaches (Aragon 1997; Hsing 1999; Setodji and Cook 2004),
and approaches combining all the marginal SDR for each component of Y to estimate
the multivariate CS (Cook and Setodji 2003; Saracco 2005; Yin and Bura 2006).] Li
et al. (2008) proposed a projective resampling (PR) method to avoid multivariate slicing
while effectively estimating the CS. When data have categorical variables, but SDR is only
on continuous predictors, then such an SDR approach leads to partial SDR (Chiaromonte
et al. 2002; Li et al. 2003). SDR is quite useful for reducing predictors and helping to build
a better model. However, it is still difficult to interpret the predictors in the model as the
linear combination consists of all the original variables. To this end, SDR with penalisa-
tion can help to select important variables, leading to sufficient variable selection (SVS).
One of the approaches is a general procedure by Li (2007), which developed a sparse SDR
estimator for a general dimension reduction kernel matrix by transforming the eigenvalue-
decomposition approach to a regression-type optimisation problem. Then a penalty term
(such as a L1 penalty) is added to shrink the number of parameters. Recently, Yin and
Hilafu (2015) developed a sequential SDR and SVS procedure to deal with the large p,
small n data with two effective algorithms, combining the techniques of SDR methods for
the univariate response, multivariate responses, partial SDR and penalisation.

In this paper, we provide further developments for Fourier transform (FT) in inverse
regression and focus on multivariate response. Differing from the forward motivation of
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Zhu et al. (2010c), our approach gives more detailed illustration of their inverse regression
link and significantly develops the idea. We have the following main contributions: (A).
We provide a result regarding the choice of the number of FTs, only a finite number, much
less than the sample size as suggested by Zhu et al. (2010c), which is sufficient enough.
Indeed, empirically, 50 FTs are sufficient, and the results are quite stable. This will not only
save computational time, but also ensure the accuracy of the estimate. (B). We obtain the
asymptotic tests for determining dimensions for FT. (C). We develop a partial SDR for
FT and obtain the respective asymptotic tests for estimating dimensions. (D). We further
propose SVS in two useful cases: D1. For n>p, we use the idea of Li (2007) to develop a
sparse SDR version of FT, which produces sparse and more accurate estimate. D2. Using
the sequential SDR and SVS of Yin andHilafu (2015), we develop a procedure of FT to deal
with large p, small n data.

The article is organised as follows: Section 2 provides the theoretical justifications for
FT estimator, comparison between SIR and FT in population and sample sense, properties
of choice of the number of FTs, and algorithms for estimating CS, along with the test for
dimension. Section 3 develops amethod for estimating the partial SDR using FT approach.
Section 4 proposes sufficient variable selection for two situations: large n, small p and large
p, small n data. Section 5 presents simulation studies and a real data analysis. Section 6
summarises our conclusion. All proofs are included in the Appendix.

2. Methodology

2.1. Estimationmethod

This section introduces FT estimator. To facilitate our discussion, we use standardised pre-
dictor Z of X, due to the equivalence of the CS of Y |X and the CS of Y |Z (Cook 1998).
Let Z = �−1/2(X − μ), where μ and � are the mean and covariance matrix of X. Under
the well-known linearity condition,m(y) = E(Z |Y = y) ∈ SY |Z (Cook 1998). Thus, esti-
mating the space spanned by m(y) (SE(Z |Y)) is to recover part of the CS. Let fY(y) be the
marginal density distribution of Y. Then, FT of the density-weighted conditional mean
m(y)fY(y) is ψ(ω) = ∫

eiω
Tym(y)fY(y) dy = a(ω)+ ib(ω),ω ∈ R

q, where a(ω), b(ω) are
the real, imaginary part of ψ(ω), respectively.

We claim that ψ(ω) = E(eiωTYZ) and SE(Z |Y) = Span{ψ(ω),ω ∈ R
q}. The first asser-

tion is due to

ψ(ω) =
∫

eiω
Tym(y)fY(y) dy =

∫
eiω

TyE(Z | y)fY(y) dy

=
∫

E(eiω
TyZ | y)fY(y) dy = E[E(eiω

TYZ |Y)]

= E(eiω
TYZ).

Note that SE(Z |Y) = Span{m(y), y ∈ supp(fY)} = Span{m(y)fY(y), y ∈ supp(fY)} ⊆
SY |Z, under the linearity condition. By its inverse transform of ψ(ω), then m(y)fY(y) =
(2π)−1 ∫ e−iωTyψ(ω) dω. Thus, SE(Z |Y) = Span{ψ(ω),ω ∈ R

q} = Span{a(ω), b(ω),ω ∈
R
q}, so the second assertion holds. Note that above derivation differs from the forward
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illustration of Zhu and Zeng (2006), but does agree with their comment on inverse regres-
sion approach (right above Proposition 1, p. 1295, Zhu et al. 2010c). Althoughwe givemore
details, both lead to the same estimator.

FT estimates the CS just as SIR does, but they might be different in estimation. In the
population sense, SIR and FT estimate the space spanned by E(Z |Y = y), regardless of
continuous or categorical Y. That is,

Span{ψ(ω),ω ∈ R
q} = Span{E(Z |Y = y), y ∈ R

q}.
When Y is a categorical variable, in the sample sense, SIR and FT are also equivalent (See
the Appendix). That is, for categorical Y, the left-hand side of the above equation does not
gain any useful information by changing the number of ω, comparing with the right-hand
side of the above equation. However, for continuous response Y, empirical estimates for
these two methods are different in accuracy, mainly due to the limited sample size. Note
that the left-hand side (using FT) needs to choose the number of ω, while the right-hand
side (using slices) needs to select the number of slices. The right-hand side has uncertainty
for selecting the number of slices. Theoretically, it should choose a large number of slices
due to its conditional mean, but practically it should use a small number of slices due to
limited sample size. It is also well-known that the number of slices will greatly affect the
accuracy of estimates. However, it seems that FT is quite stable for choosing the number
of ω, as long as it is large enough.

2.2. Property of covering and choice ofω

In Section 2.1, we assume that ωs are given. Practically, we need the number and the value
of ω for estimation. Note that ω ∈ R

q, but we cannot take the entire R
q. Proposition 2.1

below, however, indicates that a finite number of ω ∈ R
q will be enough to recover the

entire SE(Z |Y). Yin and Li (2011) used a general dense class of functions of Y to estimate
CS. FT is one of such dense classes, so the proof of Proposition 2.1 is similar to that of
Theorem 2.2 (Yin and Li 2011). Hence, we omit its proof.

Proposition 2.1:

(1) There exists a finite sequence of ωj ∈ R
q, j = 1, . . . , t, such that SE(Z |Y) =

Span{a(ω1), b(ω1), . . . , a(ωt), b(ωt)}.
(2) Consider a random sequence ωj, j = 1, 2, . . . , there exists an integer t0 such that for all

t ≥ t0, SE(Z |Y) = Span{a(ω1), b(ω1), . . . , a(ωt), b(ωt)}.

Since Proposition 2.1 only states the result on SE(Z |Y), we do not need the linearity
condition. But it does if it is used for SDR. Part 1 of Proposition 2.1 indicates that the
finite number of ω is enough to recover SE(Z |Y) and one could choose as small as half of
the dimension of SE(Z |Y). But typically, we do not know the dimension of SE(Z |Y). Part
2 of Proposition 2.1 indicates that if the number of selected ω is large enough, we can
then recover SE(Z |Y). This again in practice does not provide a useful rule. However, our
simulations later show that when the number of ω is large enough, the results are quite
stable. Indeed, we find that 50 ωs is enough for capturing the structure of CS, as well as
testing the dimension.
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Another related issue is how to select ω. Zhu et al. (2010c) provide an argument to
choose ω. For a multivariate Y, we choose a small s, say s = 0.1, with P(|ωTY| > π) ≤ s,
then randomly generate ω ∼ N(0, sπ2/E(YTY)I). Our limited simulations indicate that
such a method performed very stable.

2.3. Algorithm

In this section, we summarise what we have discussed above and show the algorithm for
the estimate using sample. Let � = (a(ω1), b(ω1), . . . , a(ωt), b(ωt)), for some t>0, and
V = ��T as the population kernel matrix. Recall, ψ(ω) = a(ω)+ ib(ω). Let (yi, xi), i =
1, . . . , n be a random sample, and assume that the dimension ofSE(Z |Y) is known as d. The
algorithm of FT, similar to that of Zhu, Zhu and Wen (2010), is the following:

(1) Standardize xi: ẑi = �̂
−1/2
X (xi − x̄), i = 1, . . . , n, where x̄ is the sample mean, and �̂X

is the sample covariance matrix of X.
(2) Choose {ωj}tj=1 as in Section 2.2 and for each ωj, calculate sample version of ψ(ωj):

ψ̂(ωj) = 1
n

n∑
k=1

eiω
T
j yk ẑk,

and â(ωj) = Real(ψ̂(ωj)) and b̂(ωj) = Image(ψ̂(ωj)).
(3) Form �̂ and V̂ as

�̂ = {â(ωj), b̂(ωj)}tj=1, V̂ = �̂�̂T,

where �̂ is a p × 2t matrix and V̂ is a p × p sample kernel matrix.
(4) The first d eigenvectors (η̂i, i = 1, . . . , d) of V̂ corresponding to the first d largest

eigenvalues λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂d are the estimated directions of SE(Z |Y). Transform
back to the X scale, β̂i = �̂

−1/2
X η̂i, i = 1, . . . , d.

2.4. Testingmethods for dimension

Previously we assume that d is known. However, practically, we do need to estimate d. We
then construct the following statistic

	̂m = n
p∑

j=m+1
λ̂j

to test the hypothesis of the form d=m versus d>m. The value ofm begins with 0, so we
test d=m by comparing sample 	̂m with the quantile of the asymptotic distribution of 	̂m
under the null hypothesis d=m. If we fail to reject, then d=m, otherwise we increasem by
1 and continue the same process until we fail to reject. The asymptotic distribution of 	̂d is
stated the below Proposition 2.2, of which proof is in the Appendix. Again, Proposition 2.2
is stated in terms of SE(Z |Y), the linearity condition is not necessary. However, it does need
this condition for its use of SDR.
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Proposition 2.2: Let d = dim[SE(Z |Y)] and assume that 2t>d+1 and p>d. Then the
asymptotic distribution of 	̂d is the same as the distribution of

C =
(p−d)(2t−d)∑

i=1
λiCi,

where the Cis are independent chi-square random variables each with one degree of freedom
and λ1 ≥ λ2 ≥ · · · ≥ λ(p−d)(2t−d) are eigenvalues of the covariance matrix 
, where 
 is
defined in the Appendix.

One can directly obtain the distribution of the weighted Chi-square Statistic C, how-
ever, simplification is possible. Following Bentler and Xie (2000), we consider two types of
simplified test statistics.
Scaled Statistic: T̄m = [trace(
̂n)/p∗]−1n

∑p
j=m+1 λ̂j ∼ χ2

p∗ , where 
̂n is a consistent esti-
mator of
 and p∗ = (p − m)(2t − m).
Adjusted Statistic: T̃m = [trace(
̂n)/d∗]−1n

∑p
j=m+1 λ̂j ∼ χ2

d∗ , where d∗ = [trace(
̂n)]2/
trace(
̂2

n).
Sparse Eigen-Decomposition estimation (SED) (Zhu et al. 2010a) is another method to esti-
mate d. We sketch SED here. Let V̂ be the sample kernel matrix in Section 2.3. The SED
procedure is the following:

(λ̂, α̂, β̂) = arg min
λ,α,β

n

∥∥∥∥∥V̂ −
p∑

i=1
λiαiβ

T
i

∥∥∥∥∥
2

+ ln
p∑

i=1
ŵi|λi|,

subject to βTβ = Ip, where λ = (λ1, . . . , λp)T be a p × 1 vector, α = (α1, . . . ,αp) and β =
(β1, . . . ,βp) be p × p matrices, ŵ = (ŵ1, . . . ŵp)

T be a known weight vector. The tuning
parameter, ln, is selected by typical AIC and BIC as suggested by Zhu et al. (2010a). The
number of dimensions is equal to the number of nonzero values of λ̂.

3. Partial central subspace

When predictors consist of both continuous and categorical variables, but SDR focuses on
the continuous predictors, it then leads to partial SDR (Chiaromonte et al. 2002). In this
section, we extend FT to partial SDR. Without loss of generality, let W be the categorical
variable with K levels. Chiaromonte et al. (2002) defined the partial CS to be the intersec-
tion of all subspaces spanned by η ∈ R

p×d such that Y ⊥⊥ X | (ηTX,W), if the intersection
itself also satisfies such a condition. LetSW

Y |X be the partial CS, thenSW
Y |X = ⊕K

k=1 SYk |Xk ,
where SYk |Xk is the CS conditioning on level k.

Suppose that for each group, the mean and covariance matrix of Xk are μk and �k.
To facilitate the discussion, we further assume that the covariance structures are the
same across each level, that is,�k = �pool, k = 1, . . . ,K. Let Zk = �

−1/2
pool (Xk − μk), then

SW
Y |X = �

−1/2
pool

⊕K
k=1 SYk |Zk . For each level, we construct the kernel matrix Vk and com-

bine them into an overall kernel matrix: the partial kernel matrix VW = ∑K
k=1 P(W =

k)Vk. Suppose that the linearity and coverage conditions for each level hold:
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• Linearity: E(Zk | PSYk |ZkZk) = PSYk |ZkZk, for k = 1, . . . ,K.
• Coverage: Span(VW) = ⊕K

k=1 Span(Vk) = ⊕K
k=1 SYk |Zk .

Assume that the dimension of SW
Y |X, d, is known, we have the following algorithm for

estimatingSW
Y |X. The algorithm is similar to Chiaromonte et al. (2002) except applying our

new partial kernel matrix. The estimate from the following steps is referred as the partial
Fourier transform (PFT).

(1) For each level k, x̄k and �̂k are the sample mean and covariance matrix of Xk, the
common covariance matrix is �̂pool = ∑K

k=1(nk/n)�̂k and ẑik = �̂
−1/2
pool (xik − x̄k),

i = 1, . . . , nk and k = 1, . . . ,K.
(2) Apply the algorithm in Section 2.3 to obtain the sample kernel matrix for each level k:

V̂k, and then V̂W = ∑K
k=1(nk/n)V̂k.

(3) The first d eigenvectors (η̂i, i = 1, . . . , d) of V̂W corresponding to the first d largest
eigenvalues λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂d are the estimates. Transform back to theX scale, β̂i =
�̂

−1/2
pool η̂i, i = 1, . . . , d.

To estimate d of PFT, we construct a test statistic

	̂W
m = n

p∑
j=m+1

λ̂j.

Proposition 3.1: Under the linearity and coverage conditions for partial SDR, let d =
dim[SW

Y |X] and assume that 2
∑

tk > Kd + 1 and p>d. Then the asymptotic distribution
of 	̂W

d is the same as the distribution of

C =
(p−d)(2

∑
tk−Kd)∑

i=1
λiCi

where the Cis are independent chi-square random variables each with one degree of freedom
and λ1 ≥ λ2 ≥ · · · ≥ λ(p−d)(2

∑
tk−Kd) are eigenvalues of the covariance matrix
W , where


W is defined in the appendix.

4. Sufficient variable selection

Inmany cases, only a few predictors contribute for themodel, which leads to sparse model.
SDR with penalisation is helpful to choose such variables. In this section, we extend FT for
sufficient variable selection via the penalised approach. We consider two different cases:
the traditional large n, small p data, and the modern large p, small n data.

Large n, Small p: We adopt a general sparse SDR via penalty approach developed
by Li (2007): Ṽη̃i = ρi�η̃i, for i = 1, . . . , p, where Ṽ = �1/2V�1/2 is a symmetric ker-
nel SDR matrix; � is the covariance matrix; vector η̃1, . . . , η̃p are eigenvectors satisfying
η̃Ti �η̃j = 1 if i= j, and 0 if i 	= j; and ρ1 ≥ · · · ≥ ρp ≥ 0 are corresponding eigenvalues.
Then the eigenvalue-decomposition approach via penalty term becomes an optimisation
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problem for sparse SDR as follows:

min
α,β

⎛
⎝ p∑

i=1
‖�−1vi − αβTvi‖2� + λ2trace(βT�β)+

d∑
j=1

λ1j|βj|1
⎞
⎠ ,

subject to αT�α = Id, where λ1j ≥ 0,j = 1, . . . , d are the tuning parameters, and vi, i =
1, . . . , p are the columns of Ṽ1/2.

The algorithm of Li (2007) can be summarised as below:

(1) Initialize α and β using the sample kernel matrix in Section 2.3.
(2) Given α, update β as below:

β̂αj = argmin
βj
(‖y∗ − x∗βj‖2 + λ1j|βj|1),

where x∗ =
[

Ṽ1/2√
λ2�

1/2

]
2p×p

, y∗ =
[
Ṽ1/2αj

0

]
2p×1

.

(3) Given β , let Uα , Dα , and Vα denote the matrices from the singular value decomposi-
tion of the matrix�−1/2Ṽβ , then α̂ = �−1/2UαVT

α .
(4) Continue steps 2 and 3 until β converges.

Typically, we need to fix λ1j and λ2 in the above algorithm. The final selection of tuning
parameters of λ1j and λ2 can be determined by AIC and BIC (Li 2007). For our purpose,
we simply use FT kernel matrix to replace Ṽ , and denote such a procedure as S-FT.

Large p, Small n: Yin and Hilafu (2015) proposed a sequential SDR (SSDR) for such a
problem.We extend FT in their algorithm.Note that the algorithmofYin andHilafu (2015)
is based on the following result.

Proposition 4.1 (Yin and Hilafu 2015): IfX1 andX2 are random vectors, BTX1 is a linear
combination of X1, where B is a matrix, then either (a) or (b) implies (c) below:

(a) X1 ⊥⊥ (X2,Y) |BTX1;
(b) X1 ⊥⊥ X2 | {BTX1,Y} and X1 ⊥⊥ Y |BTX1;
(c) X1 ⊥⊥ Y | {BTX1,X2}.

Statement (c) is very important, if it is true, then p(Y |X1,X2) = p(Y |X1,X2,BTX1) =
p(Y |X2,BTX1). Thus, if the dimension of BTX1 is less than X1, we achieved dimension
reductionwithout loss of any information. To force statement (c), wemay use statement (a)
or statement (b). WriteX = (X1,X2), and chooseX1 with dimension p1 < n. Then reduce
X1 to BTX1, and replace X with (BTX1,X2) as new X. Keep doing this until there is no
more reduction. To find BTX1, Path I procedure (Yin and Hilafu 2015) uses statement (a)
when the response variable is continuous. This procedure needs to construct BTX1 using
regression (X2,Y) on X1. On the other hand, when dealing with the categorical response,
statement (b) is the choice which is called Path II procedure by Yin andHilafu (2015). Path
II conducts the partial SDR for regressionX2 onX1 givenY, and the usual SDR ofY onX1.
Because of the categorical response, FT is equivalent to SIR, we only use Path I to construct
an estimate. For clarity, we illustrate the algorithm of Path I of Yin and Hilafu for FT below.
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(1) Order the predictors using the distance correlation in Li et al. (2012).
(2) DecomposeX ∈ R

p intoXT = (XT
1 ,X

T
2 ), whereX1 is a p1 × 1 vector such thatn > p1,

and consider the problem of X1 ⊥ (X2,Y) |βT1 X1.
(3) For SDR step, apply the method in Section 2.3 to new response YT

new = (XT
2 ,Y) given

X1, and find the reduced variable βT1 X1; For SVS step, apply multivariate regression
with penalisation to the problem of YT

new |X1, and find the reduced variable βT1 X1.
(4) Replace predictors X by (βT1 X1,X2) and go back to step 1, until there is no further

reduction.

We will compare the original SSDR using SIR (SSDR-SIR) and SSDR using FT (SSDR-
FT) in the simulation for Path I.

5. Numerical study

Suppose that B̂ = (β̂1, . . . , β̂d) is the estimate of a p × d matrix B, and both B̂ and B are
orthogonal matrices. We use following criteria to measure the accuracy of the estimates.

(1) Let ρ2i ’s be the eigenvalues of matrix B̂TBBTB̂ for i = 1, . . . , d: the vector correla-

tion coefficient is r1 =
√

|B̂TBBTB̂| = |∏d
i=1 ρi| and the trace correlation is r2 =√∑d

i=1 ρ
2
i /d (Ye and Weiss 2003). The bigger the r1 or r2, the better the estimate.

(2) Define �(B, B̂) = ‖B̂B̂T − BBT‖ (Li et al. 2005). We use two ways to calculate ‖.‖:
(a) �m(A) = ‖A‖ is the maximum singular value of A, and (b) �f (A) = ‖A‖ is the
Frobenius norm as �f (A) =

√
trace(AAT). The smaller the �m(A) or �f (A), the

better the estimate.

For SVS, we use true positive rate (TPR) and false positive rate (FPR): TPR is the number
of correctly identified active predictors to the number of truly active predictors, and FPR is
the number of falsely identified active predictors to the total number of inactive predictors
to compare different methods. Better estimates have bigger TPRs and smaller FPRs.

5.1. Simulations

In this section, we illustrate the advantages of FT with six models. Each model has a dif-
ferent purpose. We use Model 5.1 to assess if the number of ω’s in FT could affect estimate
accuracy and Model 5.2 to compare FT with SIR, IRE (Cook and Ni 2005), FIRE and
DIRE and, further to compare S-FT with S-SIR. We use Model 5.3 to estimate the dimen-
sion using the Weighted Chi-square, Scaled, Adjusted Statistic and SED and Model 5.4
for multivariate regression. We use Model 5.5 to compare partial SDR using SIR (PSIR)
(Chiaromonte et al. 2002) and PFT. Finally, Model 5.6 is used for a large p, small n
problem.

Model 5.1: Y = X1 + 0.5X2
2, with p = 5, n=800 and d=2. Predictors X1,X3,X5

iid∼
N(0, 1), and X2 = X1 + Z where Z ∼ N(0, 1) and X4 = (1 + X2)Z. Let {ei} be p × 1 vectors
whose ith entry is 1 and other entries are 0. Then B = (e1, e2).
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Figure 1. Mean values of respective r1, r2,�m and�f over 100 simulated data vs sizes ofω: {5, . . . , 100}
in Model 1.

Figure 1 plots mean values of respective r1, r2,�m and �f over 100 simulated data vs
sizes of ω: {5, 10, 15, . . . , 100}. It shows that FT has high accuracy, and its estimates keep
the same magnitude for the different number of ω’s. This seems consistent with the result
of Proposition 2.1. Hence, as long as the size of ω is large enough, estimates of the CS are
accurate and stable.

Model 5.2: This is the first example of Cook and Zhang (2014). Y = | sinX1| + 0.2ε, with
d=1 and B = e1. Predictors Xi ∼ 1

4Np(μ1,�1)+ 1
2Np(μ2,�2)+ 1

4Np(μ3,�3), where
μ1 = μ3 = (1, 0, . . . , 0)T, μ2 = (2, 0, . . . , 0)T, �1 = �2 = √

0.1Ip and �3 = √
10Ip. Let

p = 15, n = 400, and ε is a uniform (0,1).

We compare SIR, IRE, FIRE, DIRE, and FT for this model. The number of slices for
SIR and IRE are {3, 4, . . . , 15}. For FIRE and DIRE, we fuse H = {3, 4, . . . , 15}, while for
FT, the size of ω is 50. Figure 2 plots mean values of respective r1, r2,�m and�f over 100
simulated data vs the number of slices from 3 to 15. We see that the results of SIR and IRE
change with different slices, indicating that the choice of number of slices is important.
FIRE and DIRE combine different slices together, thus they are constant lines. Regardless,
FT has the largest values of r1 and r2, and the smallest�m and�f compared with the other
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Figure 2. Mean values of respective r1, r2,�m and�f over 100 simulated data vs the number of slices,
3 · · · 15, in Model 2.

Table 1. Means and Standard Deviations of TPR
and FPR, respectively, over 100 simulated data in
Model 2.

S-FT S-SIR

TPR 0.8700(0.3380) 0.6300(0.4852)
FPR 0.0650(0.2418) 0.1207(0.3240)

four methods, indicating that FT is the best method for this model. We also conduct SVS
for S-FT and S-SIR and report the respective TPR and FPR over 100 simulated data. The
number of slices for S-SIR is 5 and the number of ω for S-FT is 50. Table 1 shows that S-FT
has larger TPR and smaller FPR compared to these of S-SIR, thus better results for S-FT
than those of S-SIR.

Model 5.3: This model is similar to Example 4.1 of Bentler and Xie (2000). Y = X1 + 0.5ε,
with p = 4, d=1 and B = e1. Predictor vector Xi follows multivariate normal distribution
with the mean (1, 2, 3, 4) and equi-correlation matrix with a variance of 1 and a correlation
of 0.5, and ε ∼ N(0, 1).
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Table 2. Percentages of correctly detected dimensions in Model 3.

Sample Size Weighted χ2 Scale Stat. Adj Stat. SED

400 0.0000 1.0000 0.0000 0.9500
600 0.1800 1.0000 0.1700 1.0000
800 1.0000 1.0000 1.0000 1.0000

Table 3. TPR and FPR over 100 simulated data in Model 3.

n= 400 n= 600 n= 800

S-FT S-SIR S-FT S-SIR S-FT S-SIR

TPR 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
FPR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

We check the three asymptotic dimension tests: the Weighted Chi-square Statistic,
Scaled Statistic, and Adjusted Statistic, as well as the SEDmethod (Zhu et al. 2010a) for this
model. The size of ω is 50, and we use three sample sizes of n=400,600,800. The percent-
ages of correctly detected dimensions among 100 simulated data are reported in Table 2,
which shows that the Scaled Statistic performs better than Weighted Chi-square Statistic
and Adjusted Statistic. This is consistent with Example 4.1 of Bentler and Xie (2000). The
proportions of the correctly identified dimensions for the three asymptotic tests are 100%
when the sample size is 800, resulting in more accurate estimates for larger sample sizes.
Nevertheless, the Scaled test statistic is the best among all four tests. Moreover, we report
TPR and FPR for S-FT and S-SIR, respectively, over 100 simulated data in Table 3, and the
results are optimal.

Model 5.4: This is Example 3 of Zhu et al. (2010c). Y1 = 1 + βT1 X + sin(βT2 X)+ ε1, Y2 =
βT2 X/(0.5 + (βT1 X + 1)2)+ ε2, Y3 = |βT1 X|ε3, Y4 = ε4, Y5 = ε5, with p = 20, d = 2, and
β1 = e1 and β2 = e2 + e3. Predictor Xi ∼ N(0, I), n=2000 and εi = (ε1, ε2, . . . , ε5)T ∼
N5(0,�), where � = ( A 0

0 D
)
, A =

(
1 −1/2

−1/2 1/2

)
and D =diag(1/2, 1/3, 1/4).

This is a multivariate model. Figure 3 plots mean values of respective r1, r2,�m and
�f over 100 simulated data vs sizes of ω: {10, 20, . . . , 100}. All four criteria show that FT
estimates tend to improve as the size of ω increases and then become stable. On the other
hand, Zhu et al. (2010c) has demonstrated the advantage of FT for multivariate regres-
sion over other methods: the projective resampling method (Li et al. 2008), the K-means
inverse regression (Setodji and Cook 2004), alternative SIR (Li et al. 2005), nearest neigh-
bour inverse regression (Hsing 1999) andmoment approach (Yin and Bura 2006).We omit
the related comparisons here.

The left panel of Figure 4 shows the Weighted Chi-square Statistic, Scaled Statistic,
Adjusted Statistic and SED test. Compared with the Weighted Chi-square Statistic and
Adjusted Statistic, the Scaled Statistic is better. (Actually, we also use sample sizes n=1000,
but not reported here. The Scaled Statistic still performs well, which indicates the Scaled
Statistic converges more quickly.) If the size of ω is large enough, the performance of the
Scaled Statistic becomes stable, and the proportion of correct decisions gets closer to 1,
which agrees with the estimation accuracy. The Scaled Statistic is better than SED when
the size ofω is large enough. However, SED is not stable.When the size ofω is large enough
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Figure 3. Mean values of respective r1, r2,�m and �f over 100 simulated data vs sizes of ω:
{10, 20, . . . , 100} in Model 4.

(over 60 as in Figure 4), its result is worse, contradicting the accuracy of the estimate. The
middle and right panels of Figure 4 show TPR and FPR, respectively, for S-FT and S-SIR.
TPR values are similar for the twomethods with smaller FPR for S-FT when the size ofω is
between 20 to 80 compared to S-SIR. Regardless, FPRs are all relatively small using either
S-SIR or S-FT.

Additionally, we change the number of predictors to be p = {10, 20} and use sample
sizes n = {1000, 2000}, with the number of response variables to be q = {5, 10, 15} (not
reported here). The number of predictors and sample size affect the asymptotic results in
testing the dimension. As sample size increases, the performance of the Weighted Chi-
square Statistic, Scaled Statistic, and Adjusted Statistic improve, especially for the Scaled
Statistic. If the number of predictors increases, a larger sample size is needed for asymptotic
results to converge.While adding some noise response variables and changing the number
of response variables does not significantly affect the results.

Model 5.5: ForW = 0, let Y = X1 + 0.1ε,with B1 = e1. PredictorsXi1 ∼ 1
4Np(μ1,�1)+

1
2Np(μ2,�2)+ 1

4Np(μ3,�3), where μ1 = μ3 = (1, 0, . . . , 0)T, μ2 = (2, 0, . . . , 0)T, �1 =
�2 = √

0.1Ip and�3 = √
10Ip. Let p = 10, and ε is a uniform (0,1),with 1000 observations.

For W = 1, let Y be the Y2 in the model 4 with B2 = e2 + e3 and 1000 observations.
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Figure 4. Left panel: percentages of correctly detected dimension over 100 simulated data vs sizes of
ω: {10, 20, . . . , 100} in Model 4; Middle and Right panel: TPR and FPR over 100 simulated data vs sizes of
ω.

Table 4. Mean values of respective r1, r2,�m and �f over 100 simulated data for PSIR and PFT and
proportion of correctly detected dimension in Model 5.

r1 r2 �m �f Proportionc

PSIR 0.9889 0.9944 0.1249 0.2081 0.9700
PFT 0.9930 0.9965 0.1066 0.1640 1.0000

This example compares PSIR and PFT. The number of slices for PSIR is 10, and the size
of ω for PFT is 50. We replicate 100 times for the model and then calculate the averages
of respective r1, r2,�m and�f and the proportion of correctly detected dimensions using
the Scaled Statistics, say, Proportionc. Table 4 shows that PFT performs consistently better
than PSIR does in every criterion.

Model 5.6: This is Model 4, except: β1 = e1 + e2 + e3 + e4, β2 = e5 + e6 + · · · + e12, p =
1000, and n=400. This is a large p, small n problem.

We use path I algorithm in Section 4. We use 10 slices for SIR, 50 sizes of ω for FT
and p1 = 15 as the number of predictors in each step for both SIR and FT. The asymptotic
Scaled Statistic test is used in each step for estimating the dimensionality. Table 5 reports the
average values for each criterion over 100 simulated data. SSDR-FT performs consistently
better than that of SSDR-SIR, except that both TPR and FPR are the same for the two
methods.
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Table 5. Accuracy for large p, small n data in Model 6.

Corr1 Corr2 �f �m TPR FPR

SSDR-SIR 0.8764 0.8024 0.7264 0.4567 0.9783 0.0134
(0.2034) (0.1852) (0.1058) (0.0788) (0.1062) (0.0646)

SSDR-FT 0.9565 0.9106 0.6335 0.3912 0.9783 0.0134
(0.0218) (0.0350) (0.1018) (0.0705) (0.1062) (0.0646)

5.2. Data analysis

The data set is the ‘2015 Planning Database’ (PDB) with 2010 Census and 2009–2013
American Community Survey data, which is publicly available (http://goo.gl/LlcwY7).
PDB assembles information from housing, demographic, socioeconomic, and Census
operational data, and accumulates at the block-group level. A census block is the smallest
geographic unit used by the Census Bureau, and a block-group comprises multiple blocks,
usually containing between 600 and 3,000 people. The PDB comprises approximately
220,000 block groups.

The response variable is the number of people with one type of health insurance cover-
age (Y). A total of 15 variables are identified as relevant candidate predictor variables. See
Table 6. Because most of the variables are count numbers with a large range of values, we
treat all of them as continuous variables.

Table 6. The first two columns are the variable numbers and definitions as given in the 2015 Planning
Database documentation. The last column is the variable notation used in our manuscript.

No. Definitions Notation (Box-Cox)

73 Number of people ages 25 years and over at the time of interview X1((X1 + 0.5)0.33)
with a college degree or higher in the ACS population
Number of people classified as below the poverty level

77 given their total family income within the last year, X2((X2 + 0.5)0.33)
family size, and family composition in the ACS population
Number of ACS households in which the householder

103 and his or her spouse are listed as members of the same household; X3((X3 + 0.5)0.57)
does not include same-sex married couples
Number of ACS households where a householder lives alone

112 or with nonrelatives only; includes same-sex couples X4((X4 + 0.5)0.33)
where no relatives of the householder are present

115 Number of ACS households where a householder lives alone X5((X5 + 0.5)0.4)
124 Number of ACS families with related children under 6 years old X6((X6 + 0.5)0.5)
130 Median ACS household income for the block group X7((X7 + 0.5)0.33)
132 Median ACS household income for the tract X8((X8 + 0.5)0.16)
145 Number of 2010 Census occupied housing units that are not owner X9((X9 + 0.5)0.27)

occupied, whether they are rented or occupied without payment of rent
149 Number of ACS housing units where owner or co-owner lives in it X10((X10 + 0.5)0.5)
151 Number of ACS housing units in which the structure X11((X11 + 0.5)0.5)

contains only that single unit
153 Number of ACS housing units in which the structure X12((X12 + 0.5)0.33)

contains 2 or more housing units
155 Number of ACS housing units in which the structure X13((X13 + 0.5)−0.06)

contains 10 or more housing units
167 Median of ACS respondents’ house value estimates for the block group X14((X14 + 0.5)0.15)
169 Median of ACS respondents’ house value estimates for the tract X15((X15 + 0.5)0.1)
3 Name of State or statistically equivalent territory; island territories are W

excluded from this analysis; these values are converted to a categorical
variable based on 9 Census-designated geographical regions;
only used for partial SIR analysis

79 Number of people with one type of health insurance coverage in the ACS Y



1064 J. WENG AND X. YIN

We focus on the block groups in Rhode Island, which have 4270 blocks. We first
excluded any observations where the variables hadmissing values. There were 4098 blocks
left for Rhode Island. We then used Box-Cox transformation for the predictors to ensure
that the linearity condition was approximately satisfied. Transformation for each variable
is in last column of Table 6 (inside the parenthesis).

Using the Scaled Statistic for all the blocks in Rhode Island, the estimated dimension
(using 50 as the size ofω) is one. In addition, if we plot the scatter plot (Figure 5) of response
variable versus the first reduced variable, we can see the strong association. The second
reduced variable does not contribute much. Hence, one dimension is sufficient to capture
the CS. Thus, we used one dimension for the following analysis.

To illustrate the advantages of FT, we used five datasets: the first 100 blocks, the first
200 blocks, the first 400 blocks, the first 800 blocks, and all blocks of Rhode Island.
For each data, we estimated the vector β̂ (of the CS). We then bootstrapped 100 sam-
ples from that data and obtained the bootstrap estimate β̂b for each bootstrap sample.
Then we compare means of r2 between the bootstrap estimate β̂b and β̂ using the fol-
lowing methods: FT, SIR, SAVE, PHD, FIRE, and DIRE. For SIR and SAVE, we fix the
number of slices to be 5, which is typically what researchers suggested. For FIRE and
DIRE, the sequence of slices is {3, 4, 5, . . . , 15}, which is what Cook and Zhang (2014)
suggested. Table 7 shows the results. It indicates that when sample size increases, every
method performs better, which is expected. However, none of them is comparable
with FT, until sample size reaches to 4098. On the other hand, FT approach provides
the most accurate and stable estimates among all these methods and across all sam-
ple sizes. Even in the small sample size of 100, FT still provides an accurate estimate
with r2 = 0.9840. It indicates that its estimates converge much faster than all other
methods.

Figure 5. Scatter Plots: response variable versus the first and the second reduced variable.
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Table 7. Means and standard deviations of r2 for each method: FT, SIR, SAVE, PHD, FIRE and DIRE over
sample sizes: {100, 200, 400, 800, 4098}.

Rhode Rhode Rhode Rhode Rhode

r2 (n= 100) (n= 200) (n= 400) (n= 800) (n= 4098)

FT 0.9840 0.9879 0.9926 0.9956 0.9991
(0.0079) (0.0058) (0.0034) (0.002) (4e-04)

SIR 0.5543 0.7072 0.8591 0.892 0.9754
(0.2334) (0.2209) (0.1233) (0.059) (0.0147)

SAVE 0.4136 0.6017 0.7417 0.7319 0.9629
(0.2676) (0.2834) (0.2612) (0.2984) (0.0281)

PHD 0.7665 0.6128 0.7787 0.7944 0.8597
(0.2437) (0.3054) (0.1926) (0.2355) (0.1156)

FIRE 0.4857 0.5056 0.8296 0.9133 0.9869
(0.2424) (0.2954) (0.1392) (0.0500) (0.0082)

DIRE 0.3816 0.3669 0.6911 0.9002 0.9882
(0.2096) (0.2157) (0.1600) (0.0561) (0.0066)

6. Discussion

Using FT, we develop a complete package for estimating CS. We provide its estimator,
algorithm and asymptotic properties. It is important to note that FT approach avoids the
trouble of selecting the number of slices in inverse regression and provides a natural solu-
tion for multivariate response.We further extended this approach to partial SDR, SVS, and
large p, small n data. Given the current FT approach, a general discussion about inverse
regression family may be developed. Such an investigation is our on-going project.
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Appendix

Proof of Equivalent of FT and SIR when response variable is categorical: Assume Y is univariate,
and Y has K levels {0, 1, . . . ,K − 1} with probability Py = P(Y = y) > 0, y ∈ {0, 1, . . . ,K − 1}. Let
Sft = Span{ψ(ω),ω ∈ R} and Ssir = Span{E(Z |Y = y), y ∈ {0, 1, . . . ,K − 1}}.

ψ(ω) = E[E(eiωyZ |Y = y)]

= E(Z |Y = 0)P(Y = 0)+ E(eiωZ |Y = 1)P(Y = 1)+ · · ·
+ E(eiω(K−1)Z |Y = K − 1)P(Y = K − 1)

= P0E(Z |Y = 0)+ P1 eiωE(Z |Y = 1)+ · · · + PK−1 eiω(K−1)E(Z |Y = K − 1).

Because E(Z |Y) ∈ Ssir , then Sft ⊆ Ssir .
Now, choose ω1, . . . ,ωK−1 such that they are all different numbers.

ψ(0) = P0E(Z |Y = 0)+ P1E(Z |Y = 1)+ · · · + PK−1E(Z |Y = K − 1),

ψ(ω1) = P0E(Z |Y = 0)+ P1 eiω1E(Z |Y = 1)+ · · · + PK−1 eiω1(K−1)E(Z |Y = K − 1),

...

ψ(ωK−1) = P0E(Z |Y = 0)+ P1 eiωK−1E(Z |Y = 1)+ · · · + PK−1 eiωK−1(K−1)E(Z |Y = K − 1).

And the following matrix is nonsingular:

A =

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1
1 eiω1 ei2ω1 · · · ei(K−1)ω1

1 eiω2 ei2ω2 · · · ei(K−1)ω2

...
...

. . .
...

...
1 eiωK−1 ei2ωK−1 · · · ei(K−1)ωK−1

⎞
⎟⎟⎟⎟⎟⎠ diag(Py).

Because |A| = ∏K−1
y=1 Py

∏K−1
y=2 (e

iωy − eiω1)
∏K−1

y=3 (e
iωy − eiω2) · · · (eiωK−1 − eiωK−2) 	= 0, then we

have (E(Z |Y = 0), . . . , E(Z |Y = K − 1))T = A−1(ψ(0),ψ(ω1), . . . ψ(ωK−1))
T. Because ψ(0),

ψ(ω1), . . . ,ψ(ωK−1) ∈ Sft , then E(Z |Y = y) ∈ Sft for y ∈ {0, 1, . . . ,K − 1}. That is, Ssir ⊆ Sft .
Hence, Sft = Ssir . �

Proof of Proposition 2.2: To obtain the asymptotic distribution of 	̂d, fix t and choose {ωj}tj=1. For
j = 1, . . . , t, define:

ψ̂ j1 = 1
n

n∑
k=1

ẑk cos (ωT
j yk), ψ j1 = E[Z cos (ωT

j Y)],

ψ̂ j2 = 1
n

n∑
k=1

ẑk sin (ωT
j yk), ψ j2 = E[Z sin (ωT

j Y)].

Let �̂ = (ψ̂11, ψ̂12, . . . , ψ̂ t1, ψ̂ t2) and � = (ψ11,ψ12, . . . ,ψ t1,ψ t2). Following Cook (1998,
p. 207), by Singular-ValueDecomposition,� = �T [ D 0

0 0
]
�, where� and� are respective p × p and

2t × 2t orthogonal matrices, and D is a d × d diagonal matrix of positive values. Let �T = (�1,�0)
and �T = (�1,�0), where �0 is p × (p − d) and �0 is 2t × (2t − d). In X-scale and j = 1, . . . , t,
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define:

θ̂ j1 = 1
n

n∑
k=1

xk cos (ωT
j yk), θ j1 = E[X cos (ωT

j Y)],

θ̂ j2 = 1
n

n∑
k=1

xk sin (ωT
j yk), θ j2 = E[X sin (ωT

j Y)].

�̂ = (θ̂11, θ̂12, . . . , θ̂ t1, θ̂ t2), � = (θ11, θ12, . . . , θ t1, θ t2).

V = ��T, V̂ = �̂�̂T.

Set Q̂ = ((1/n)
∑

cos (ωT
1 yk), (1/n)

∑
sin (ωT

1 yk), . . . , (1/n)
∑

cos (ωT
t yk), (1/n)

∑
sin (ωT

t yk))T,
and Q = (E(cosωT

1Y), E(sinω
T
1Y), . . . , E(cosω

T
t Y), E(sinωT

t Y))T.
Look at the one column of� as an example, say, E[Z cos (ωTY)]. Then

E[Z cos (ωTY)] = E[�−1/2(X − μ) cos (ωTY)]

= �−1/2E[(X − μ) cos (ωTY)]

= �−1/2{E[X cos (ωTY)] − μE[cos (ωTY)]}.
So� = �−1/2�−�−1/2μQT. And�T

0��0 = 0, that is,�T
0�

−1/2(�− μQT)�0 = 0. Define Â =
�̂−1/2�1/2, then

√
n�T

0 �̂�0 = √
n�T

0 �̂
−1/2(�̂− x̄Q̂T)�0 = √

n�T
0 Â�

−1/2(�̂− x̄Q̂T)�0

= √
n�T

0 (Â − I + I)�−1/2[�̂−�+�− μQT + μ(QT − Q̂T)+ (μ− x̄)Q̂T]�0.

Here (Â − I)�−1/2(�̂−�) = Op(1/n), (Â − I)�−1/2μ(QT − Q̂T) = Op(1/n), (Â − I)�−1/2

(μ− x̄)Q̂T = Op(1/n) and �T
0 (Â − I)�−1/2(�− μQT)�0 = 0. Hence,

√
n�T

0 �̂�0 = √
n�T

0�
−1/2[�̂−�+ μ(QT − Q̂T)+ (μ− x̄)QT]�0 + Op

(
1
n

)

= √
n�T

0�
−1/2[�̂−�+ μ(Q − Q̂)T + (μ− x̄)QT]�0 + Op

(
1
n

)
.

By central limit theorem, we have

√
n((vec(�̂−�))T, (Q̂ − Q)T, (x̄ − μ)T)T → N2pt+2t+p

⎛
⎝0, τ =

⎛
⎝ �xy �xy,y �xy,x
�T

xy,y �y �y,x
�T

xy,x �T
y,x �

⎞
⎠
⎞
⎠ ,

where the τ will be defined as follows: Cov(X cos (ωT
j Y),X cos (ωT

kY)) = �
j1,k1
xy ,

Cov(X cos (ωT
j Y),X sin (ωT

kY)) = �
j1,k2
xy , Cov(X sin (ωT

j Y),X sin (ωT
kY)) = �

j2,k2
xy ,

Cov(X cos (ωT
j Y), cos (ω

T
kY)) = �

j1,k1
xy,y , Cov(X cos (ωT

j Y), sin (ω
T
kY)) = �

j1,k2
xy,y ,

Cov(X sin (ωT
j Y), sin (ω

T
kY)) = �

j2,k2
xy,y , Cov(X cos (ωT

j Y),X) = �
j1
xy,x,

Cov(X sin (ωT
j Y),X) = �

j2
xy,x, Cov(cos (ωT

j Y), cos (ω
T
kY)) = �

j1,k1
y ,

Cov(cos (ωT
j Y), sin (ω

T
kY)) = �

j1,k2
y , Cov(sin (ωT

j Y), sin (ω
T
kY)) = �

j2,k2
y ,

Cov(cos (ωT
j Y),X) = �

j1
y,x, Cov(sin (ωT

j Y),X) = �k2
y,x,
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�xy =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p p . . . p p

p �11,11
xy �11,12

xy . . . �11,t1
xy �11,t2

xy

p �12,11
xy �12,12

xy . . . �12,t1
xy �12,t2

xy

...
...

...
. . .

...
...

p �t1,11
xy �t1,12

xy . . . �t1,t1
xy �t1,t2

xy

p �t2,11
xy �t2,12

xy . . . �t2,t1
xy �t2,t2

xy

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

�xy,y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 . . . 1 1

p �11,11
xy,y �11,12

xy,y . . . �11,t1
xy,y �11,t2

xy,y

p �12,11
xy,y �12,12

xy,y . . . �12,t1
xy,y �12,t2

xy,y

...
...

...
. . .

...
...

p �t1,11
xy,y �t1,12

xy,y . . . �t1,t1
xy,y �t1,t2

xy,y

p �t2,11
xy,y �t2,12

xy,y . . . �t2,t1
xy,y �t2,t2

xy,y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

�y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 . . . 1 1

1 �11,11
y �11,12

y . . . �11,t1
y �11,t2

y

1 �12,11
y �12,12

y . . . �12,t1
y �12,t2

y

...
...

...
. . .

...
...

1 �t1,11
y �t1,12

y . . . �t1,t1
y �t1,t2

y

1 �t2,11
y �t2,12

y . . . �t2,t1
y �t2,t2

y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

�xy,x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p

p �11
xy,x

p �12
xy,x

...
...

p �t1
xy,x

p �t2
xy,x

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, �y,x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p

1 �11
y,x

1 �12
y,x

...
...

1 �t1
y,x

1 �t2
y,x

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Let A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p p . . . p p 1 1 . . . 1 1 p

p Ip 0 . . . 0 0 μ 0 . . . 0 0 E cos (ωT
1Y)Ip

p 0 Ip . . . 0 0 0 μ . . . 0 0 E sin (ωT
1Y)Ip

...
...

...
. . .

...
...

...
...

. . .
...

...
...

p 0 0 . . . Ip 0 0 0 . . . μ 0 E cos (ωT
t Y)Ip

p 0 0 . . . 0 Ip 0 0 . . . 0 μ E sin (ωT
t Y)Ip

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Then,
√
nvec[�̂−�+ μ(Q − Q̂)T + (μ− x̄)QT] ∼ N2pt(0,AτAT).
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Hence,
√
nvec{�T

0�
−1/2[�̂−�+ μ(Q − Q̂)T + (μ− x̄)QT]�0} = (�T

0 ⊗ �T
0�

−1/2)
√
nvec

[�̂−�+ μ(Q − Q̂)T + (μ− x̄)QT], which has normal distribution N(2t−d)×(p−d)(0,
 = (�T
0 ⊗

�T
0�

−1/2)AτAT(�0 ⊗�−1/2�0)). Let �0 = �T
0 �̂�0, then 	̂d = ntrace(�0�

T
0 ) = nvec(�0)

T

vec(�0). Because 
 is a positive definite matrix, there exists an orthogonal matrix P and diagonal
matrix D such that 
 = PTDP. Because

√
nvec(�0) ∼ N(0,
), then

√
nPvec(�0) ∼ N(0,D). So

nvec(�0)
Tvec(�0) ∼ ∑(p−d)(2t−d)

k=1 λkCk, where the Cks are independent chi-square random vari-
ables with one degree of freedomandλ1 ≥ λ2 ≥ · · · ≥ λ(p−d)(2t−d) are eigenvalues of the covariance
matrix
.

Remark:WhenX followsmultivariate normal distribution, Proposition 2.2will not result in a chi-
square distribution. In fact, ψ̂ j1 = 1

n
∑n

k=1 Zk cos (ωT
j yk) is not a linear transformation of normal

distribution. Hence, it is not a normal distribution. However, because the sample mean in different
slices (Li 1991) is independent normal under assumption, we expect that the test statistic follows
chi-square distribution. �

Proof of Proposition 3.1: The proof is similar to the proof of Proportion 4.2 of Chiaromonte
et al. (2002). First, fix the number of transformations {tk}Kk=1 and choose {ω(k)j }tkj=1 for each level.
For each level k, j = 1, . . . , tk, define:

ψ̂
(k)
j1 = 1

nk

nk∑
l=1

ẑ(k)l cos (ω(k)Tj y(k)l ), ψ
(k)
j1 = E[Z cos (ω(k)Tj Y)],

ψ̂
(k)
j2 = 1

nk

nk∑
l=1

ẑ(k)l sin (ω(k)Tj y(k)l ), ψ
(k)
j2 = E[Z sin (ω(k)Tj Y)].

Let �̂k = (ψ̂
(k)
11 , ψ̂

(k)
12 , . . . , ψ̂

(k)
t1 , ψ̂

(k)
t2 ) and �k = (ψ

(k)
11 ,ψ

(k)
12 , . . . ,ψ

(k)
t1 ,ψ

(k)
t2 ). Let f̂k =

√
nk
n , �

W =
(f1�1, . . . , fK�K) and �̂W = (f̂1�̂1, . . . , f̂K�̂K). For each level k, j = 1, . . . , tk, define:

θ̂
(k)
j1 = 1

nk

nk∑
l=1

x(k)l cos (ω(k)Tj y(k)l ), θ
(k)
j1 = E[X cos (ω(k)Tj Y)],

θ̂
(k)
j2 = 1

nk

nk∑
l=1

x(k)l sin (ω(k)Tj y(k)l ), θ
(k)
j2 = E[X sin (ω(k)Tj Y)].

Let �̂k = (θ̂
(k)
11 , θ̂

(k)
12 , . . . , θ̂

(k)
t1 , θ̂

(k)
t2 ) and �k = (θ

(k)
11 , θ

(k)
12 , . . . , θ

(k)
t1 , θ

(k)
t2 ). Set Q̂k = ((1/nk)

∑nk
l=1 cos

(ω
(k)T
1 y(k)l ), (1/nk)

∑nk
l=1 sin (ω

(k)T
1 y(k)l ), . . . , (1/nk)

∑nk
l=1 cos (ω

(k)T
t y(k)l ), (1/nk)

∑nk
l=1 sin(ω

(k)T
t

y(k)l ))T, and Qk = (E(cosω(k)T1 Y), E(sinω(k)T1 Y), . . . , E(cosω(k)Tt Y), E(sinω(k)Tt Y))T. Then by
SVD, �W = �T [D 0

0 0
]
�, where � and � are respective p × p and 2

∑
tk × 2

∑
tk orthog-

onal matrices and D is a d × d diagonal matrix of positive values. Let �T = (�1,�0) and
�T = (�1,�0), where �0 is p × (p − d) and �0 is 2

∑
tk × (2

∑
tk − d). Thus 	̂W

d = n ×
trace[(�T

0 �̂
W�0)(�

T
0 �̂

W�0)
T] = n vec(�T

0 �̂
W�0)

T vec(�T
0 �̂

W�0). Partition �0 = (�T
01, . . . ,

�T
0K)

T,where�0k has dimension 2tk × (2
∑

tk − d). Then
√
n�T

0 �̂
W�0 = √

n�T
0 (
∑K

k=1 f̂k�̂k�0k)

= ∑K
k=1

√
nk�T

0 �̂k�0k. As �T
0�

W�0 = 0, that is �T
0�

W�0 = �T
0
∑K

k=1 fk�k�0k = �T
0
∑K

k=1 fk
�−1/2(�k − μQk)�0k = 0.

Define Â = �̂−1/2�1/2, then

√
n�T

0 �̂
W�0 = √

n�T
0 �̂

−1/2
K∑

k=1

f̂k(�̂k − x̄(k)Q̂T
k )�0k
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= √
n�T

0 Â�
−1/2

K∑
k=1

f̂k(�̂k − x̄(k)Q̂T
k )�0k

= √
n�T

0 Â�
−1/2

K∑
k=1

f̂k
fk
fk(�̂k − x̄(k)Q̂T

k )�0k

= √
n�T

0 (Â − I + I)�−1/2
K∑

k=1

(
f̂k
fk

− 1 + 1

)
fk(�̂k − x̄(k)Q̂T

k )�0k

= √
n�T

0 (Â − I)�−1/2
K∑

k=1

fk(�̂k − x̄(k)Q̂T
k )�0k

+ √
n�T

0�
−1/2

K∑
k=1

f̂k(�̂k − x̄(k)Q̂T
k )�0k + Op

(
1
n

)
.

So �̂k − x̄(k)Q̂T
k = �̂k −�k +�k − μQT

k + μ(QT
k − Q̂T

k )+ (μ− x̄(k))Q̂T
k . Then we use (Â −

I)�−1/2(�̂k −�k) = Op(1/nk), (Â − I)�−1/2μ(QT
k − Q̂T

k ) = Op(1/nk), (Â − I)�−1/2(μ− x̄(k))
Q̂T
k = Op(1/n) and

∑K
k=1 fk�

−1/2(�k − μQk)�0k = 0.

√
n�T

0 �̂
W�0 = √

n�T
0�

−1/2
K∑

k=1

f̂k(�̂k −�k + μ(QT
k − Q̂T

k )+ (μ− x̄(k))Q̂T
k )�0k + Op

(
1
n

)
.

= �T
0�

−1/2
K∑

k=1

√
nk(�̂k −�k + μ(QT

k − Q̂T
k )+ (μ− x̄(k))Q̂T

k )�0k + Op

(
1
n

)
.

Let 
k = (�T
0k ⊗ �T

0�
−1/2)AkτkAT

k (�0k ⊗�−1/2�0) and τk are defined in Proposition 2.2. Then√
n�T

0 �̂
W�0 ∼ N(0,

∑

k). Furthermore, the rank for

∑

k is (p − d)(2

∑
tk − Kd). So 	̂W

d ∼∑(p−d)(2
∑

tk−Kd)
i=1 λiCi, where the Cis are independent chi-square random variables, each with one

degree of freedom, and λ1 ≥ λ2 ≥ · · · ≥ λ(p−d)(2
∑

tk−Kd) are eigenvalues of the covariance matrix

W = ∑


k. �
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