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ABSTRACT
In this article, we propose a new method for sufficient dimension
reduction when both response and predictor are vectors. The new
method, usingdistance covariance, keeps themodel-free advantage,
and can fully recover the central subspace even when many predic-
tors are discrete. We then extend this method to the dual central
subspace, including a special case of canonical correlation analy-
sis. We illustrated estimators through extensive simulations and real
datasets, and compared to some existingmethods, showing that our
estimators are competitive and robust.
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1. Introduction

Suppose Y is a response (scalar or vector) and X is a p × 1 predictor vector. Sufficient
dimension reduction (SDR; Li 1991; Cook 1994, 1996) is a methodology for reducing
the dimension of predictors without loss of regression information. The ultimate goal of
sufficient dimension reduction is to search βββTX, where βββ is a p × d matrix, d<p, such
that Y depends on X only through βββTX. That is: Y X |βββTX, where means indepen-
dence. The column space of βββ , denoted by S(βββ), forms a dimension reduction subspace
(Li 1991; Cook 1996). The intersection of all such subspaces, if itself is a dimension reduc-
tion subspace, is called the central subspace (CS; Cook 1996), and is denoted by SY |X.
The dimension of SY |X, denoted by dim(SY |X) = d, is called the structural dimension.
Under mild conditions (Cook 1996; Yin, Li, and Cook 2008), the CS exists and is unique.
We assume CS exists throughout this article.

Many methods have been proposed in this area. These include the inverse approaches:
SIR (Li 1991), SAVE (Cook andWeisberg 1991), IR (Cook and Ni 2005), DR (Li andWang
2007); forward approaches: Hristache, Juditsky, Polzehl, and Spokoiny (2001),MAVE (Xia,
Tong, Li, and Zhu 2002) and SR (Wang and Xia 2008); correlation approaches: CANCOR
(Fung, He, Liu, and Shi 2002), Kullback–Leibler (KL)-distance (Yin and Cook 2005) and
Fourier transform (Zhu and Zeng 2006; Zeng and Zhu 2010). However, these methods
require either the linearity condition or constant covariance condition, or the predictors
to be multivariate normal, continuous and the link function to be smooth. Recently, Sheng
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andYin (2013, 2016) developed a novelmethod using distance covariance (DCOV; Székely,
Rizzo, and Bakirov 2007; Székely and Rizzo 2009) for SDR. The method does not require
linearity condition or constant covariance condition, or any particular distribution on X,
X |Y or Y |X. These advantages enable the method to work effectively under a variety of
X: X could be normal, non-normal, continuous, or discrete.

Various dimension reduction concepts can be extended to a multivariate response by
replacing random scalar Y with random vector Y. Generally, there are three approaches
to extend dimension reduction objects. The first approach is to slice the multidimensional
Y into hypercubes. However, this method faces ‘curse of dimensionality’ since the num-
ber of observations within each hypercube decreases sharply as when the dimension of
response increases. The second approach is to target the central mean subspace (Cook and
Setodji 2003) or the central moment subspace (Yin and Bura 2006). The third approach
is to estimate the marginal dimension reduction spaces, and then pool these estimates to
recover the central subspace (Saracco 2005). However, the latter twomethods are not guar-
anteed to fully recover the dimension reduction space. The projective resampling method
(Li, Wen, and Zhu 2008) solves these problems by projecting the multivariate response
alongm randomly sampled directions, wherem is a pre-selected integer, to obtainm scalar-
valued responses, then use any dimension reduction method for a univariate response to
get a subspace. Averaging these m subspaces, we can estimate the CS. It is shown that this
method can fully recover the CS.

Canonical correlation analysis (CCA) extracts a pairwise linear relationship between
two random vectors. Kettenring (1971) extended CCA to multiple sets, by maximising a
generalised measure of correlation between the random vectors. Burg and Leeuw (1983)
first proposed amethod termed nonlinear canonical correlation analysis using an alternat-
ing least squares algorithm. Yin (2004) used KL information to find linear and nonlinear
relationships between two sets of random vectors. Yin and Sriram (2008), Iaci, Yin, Sriram,
andKlingenberg (2008) and Iaci, Sriram, and Yin (2010) extended this idea to independent
groups and multiple sets of random vectors. However, all of these CCA methods require
that the number of coefficient vectors from both sets that provide the dimension reduction
be equal. Iaci, Yin, and Zhu (2015) introduced the dual central subspaces (DCS), which is
to provide a dimension reduction of both vectors without requiring the dimensions of the
reduction to be equal, with the idea that the true associations between the random vectors
may not be equal.

In this article, based on the advantages of DCOV, we develop several methods (combin-
ing projective resampling and sequential search) to implement dimension reduction for a
multivariate response. Among them, one approach is to average them subspaces to get the
CS. The other is to sum m distance covariance functions and then obtain the CS. We also
introduce a novel idea of k nearest neighbours kNN procedure to estimate the dimension
of the CS. We extend the two DCOVmethods to canonical analysis as canonical distance
covariance analysis (CDCA) and to estimate DCS, and use the bootstrap method to esti-
mate the dimension of DCS. Through a number of simulation studies, we demonstrate the
better performance of the proposed methods.

The rest of the article is organised as follows: in Section 2, we describe our method in
details, including DCOV, projective resampling approach, DCS, methods to estimate the
dimensions of CS andDCS. In Section 3, we conduct simulation comparisons between our
estimators and others in a variety of models; and in Section 4, we summarise our work.
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2. Methodology

2.1. Distance covariance (DCOV) for sufficient dimension reduction

DCOV is introduced by Székely et al. (2007) as a new measurement of multivariate
dependence. Let ZZZ1 ∈ Rp and ZZZ2 ∈ Rq be random variables, where p and q are positive
integers. LetV(ZZZ1,ZZZ2) be the distance covariance betweenZZZ1 andZZZ2. The squared distance
covariance can be defined as the weighted L2 norm of the distance between the joint char-
acteristic function of the random variables and the product of their marginal characteristic
functions:

V2(ZZZ1,ZZZ2) =
∫

Rp+q
|fZZZ1,ZZZ2(t, s) − fZZZ1(t)fZZZ2(s)|2w(t, s) dt ds

where fZZZ1 , fZZZ2 , and fZZZ1,ZZZ2 are the characteristic functions ofZZZ1,ZZZ2, and (ZZZ1,ZZZ2), respectively.
The weight function w(t, s) = (cpcq|s|1+p

p |t|1+q
q )−1, where cq and cq are positive constants,

and |s|1+p
p is the 1+p power of the Euclidean norm of s in Rp. Székely and Rizzo (2009)

developed an equivalent form of DCOV:

V2(ZZZ1,ZZZ2) = E|ZZZ1 − ZZZ′
1| |ZZZ2 − ZZZ′

2| + E|ZZZ1 − ZZZ′
1|E|ZZZ2 − ZZZ′

2|
− E|ZZZ1 − ZZZ′

1‖ZZZ2 − ZZZ′′
2 | − E|ZZZ1 − ZZZ′′

1 |E|ZZZ2 − ZZZ′
2|,

where (ZZZ1,ZZZ2), (ZZZ′
1,ZZZ

′
2), (ZZZ

′′
1 ,ZZZ

′′
2) are i.i.d. copies. In this form, DCOV requires E|ZZZ1| < ∞

and E|ZZZ2| < ∞ so that DCOV is finite (Székely et al. 2007).
DCOV equals to 0 if and only if two random vectors are independent (Székely

et al. 2007). Based on this property, Sheng and Yin (2013, 2016) proposed DCOV as an
SDR tool. Supposeβββ is a p × dmatrix, where 1 ≤ d ≤ q. Under E|X| < ∞ and E|Y| < ∞
(Székely et al. 2007), the solution to the following optimisation problem will yield a basis
of the CS:

max
βββT���Xβββ=Id

V2(βββTX,Y). (1)

Throughout the article we assume E|X| < ∞ and E|Y| < ∞. The constraint βββT���Xβββ =
Id in the optimisation problem guarantees the solution of βββ in the same scale and the
optimisation solver does not diverge.

2.2. DCOV formultivariate response

The method developed by Sheng and Yin (2013, 2016) is for a scalar response. We now
extend their approach and results to amultivariate response, say,YYY , a q × 1 random vector.
To facilitate our discussion, let BBB be a p × d matrix and let S(BBB) be the subspace of Rp

spanned by the columns of BBB. Let ���X be the covariance matrix of X, which is assumed
to be nonsingular. Let PBBB(���X) denote the orthogonal projection onto S(BBB) with respect
to the inner product 〈aaa,bbb〉 = aaaT���bbb. That is, PBBB(���X) = BBB(BBBT���XBBB)−1BBBT���X . Let QBBB(���X) =
I − PBBB(���X), where I is the identity matrix. Following the previous section, then a basis of
the CS can be obtained by solving (1) with Y replaced byYYY , and obtain the following.

Proposition 2.1: Let ηηη be a basis of the CS with dimension d, βββ be a p × d0 matrix,
d0 ≤ d, dim(S(βββ)) = d0, ηηη	���Xηηη = IIId, and βββ	���Xβββ = IIId0 . Assume S(βββ) ⊆ S(ηηη), then
V2(βββ	XXX,YYY) ≤ V2(ηηη	XXX,YYY). The equality holds if and only if S(βββ) = S(ηηη).
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Proposition 2.2: Let ηηη be a basis of the CS with dimension d, βββ be a p × d0 matrix,
ηηη	���Xηηη = IIId, and βββ	���Xβββ = IIId0 . Here d0 could be bigger, less than or equal to d. Suppose
PBBB(���X)XXX QBBB(���X)XXX, and S(βββ) � S(ηηη), then V2(βββ	XXX,YYY) < V2(ηηη	XXX,YYY).

Proposition 2.1 suggests that if S(βββ) is a subspace of S(ηηη), then the squared distance
covariance between βββ	XXX and YYY is always less than or equal to that between ηηη	XXX and YYY .
The equation holds if and only if S(βββ) = S(ηηη). Proposition 2.2 suggests that if S(βββ) is
not a subspace of S(ηηη), then under a mild condition, the DCOV between βββ	XXX and YYY is
always less than the DCOV between ηηη	XXX andYYY . These two propositions together indicate
that by maximising V2(βββ	XXX,YYY) with a constraint ofβββ can always identify the CS. Follow-
ing Székely et al. (2007), a sample version for a multivariate response can be defined as
V2(βββ	XXX,YYY) = (1/n2)

∑n
k,l=1 Akl(βββ)Bkl, where, for k, l = 1, . . . , n,

Akl(βββ) = akl(βββ) − āk.(βββ) − ā.l(βββ) + ā..(βββ)

akl(βββ) = |βββTXk − βββTXl|, āk.(βββ) = 1
n

n∑
l=1

akl(βββ),

ā.l(βββ) = 1
n

n∑
k=1

akl(βββ), ā..(βββ) = 1
n2

n∑
k,l=1

akl(βββ).

Similarly, define bkl = |YYYk −YYYl| and Bkl = bkl − b̄k. − b̄.l + b̄.., where | · | is the Euclidean
norm in the respective dimension. Replacing���X with its sample version �̂��X , the estimated
basis matrix of the CS is

ηηηn = arg max
βββT�̂��Xβββ=Id

V2
n(βββ

	XXX,YYY). (2)

Using a Sequential Quadratic Programming (SQP) method, we can solve the nonlinear
optimisation problem in Equation (2).

2.3. DCOVwith projective resampling

Projective resampling (Li et al. 2008) is an SDR method for multivariate responses. Let
ttt be a generic vector in Rq. It is established on the statement: Y X |βββTX if and only if
tttTY X |βββTX for all t ∈ Rq. That is

SY|X = Span{StttTY |X, ttt ∈ Rq}.
In this way, the multivariate response problem is reduced to the many univariate response
problem. Thus, all SDR methods developed for the univariate response can be employed
to the multivariate response by estimating StttTY |,pmbX for all ttt ∈ Rq. However, it is impos-
sible to conduct dimension reduction for all ttt ∈ Rq. Hilafu and Yin (2013) discuss the size
of t as:

(i) if the structural dimension is d, there exist d ttti’s such that SY |X = Span{StTY |X};
(ii) if the size of ttt is large enough, the subspace will be recovered through those univariate

CSs.
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Li et al. (2008) proposed projective resampling SIR, SAVE, and DR. In addition to the
multivariate DCOV (denote it as DCOV0) that is described in Section 2.2, we apply pro-
jective resampling to univariate DCOV. Suppose the sample size of random direction ttt is
m. With different approaches to combine all generated univariate tttTY, we develop DCOV1
and DCOV2 methods:

DCOV 1: For each of them combinations ofY, tttiTY, i = 1, . . . ,m, solve the optimisation
problem to get

β̂ββ i = arg max
βββT���Xβββ=Id

V2(βββTX, tttiTY).

Then an estimated basis of CS can be the first d eigenvectors of

1
m

m∑
i=1

β̂ββ iβ̂ββ
T
i .

DCOV 2: Sum the squared distance covariance for each tttiTY as the new objective
function, and then solve the optimisation problem

β̂ββ = arg max
βββT���Xβββ=Id

m∑
i=1

V2(βββTX, tttiTY).

DCOV1 is similar to the outer product gradient (OPG) type. We get a basis for each
univariate tttiTY, β̂ββ i, for i = 1, . . . ,m, and then apply singular value decomposition (SVD)
to (1/m)

∑m
i=1 β̂ββ iβ̂ββ

T
i to obtain the estimated β̂ββ . While DCOV2 is similar to a MAVE type,

we sum V2(βββTX, tttTY) first and get the estimated β̂ββ . In the simulation section, results of
both methods are given for comparison.

Note that ttti, i = 1, . . . ,m, is a random direction that the multivariate response is pro-
jected onto, and m is the total number of random directions. Typically, they can be
generated by using multivariate normal with unit length (Li et al. 2008). For DCOV1, m
estimates of B̂BBi are obtained for each random direction ttti, i = 1, . . . ,m. The estimate B̂BB is
calculated by singular value decomposition of the sum of B̂BBi

	
B̂BBi. Note that by invariance

law, we can equivalently work on a standardised predictor ZZZ-scale. As such, we first stan-
dardise XXX- to ZZZ-scale. After obtaining the estimate under the ZZZ-scale, we transform the
estimate back to theXXX-scale, β̂ββ = �̂��

−1/2
X β̂ββZ . This scheme seems to work well in our simu-

lations and real data studies. An alternative procedure is to use a successive one-at-a-time
search similar to that of Yin et al. (2008).

Sheng and Yin (2016) showed in their paper that the estimator of univariate DCOV,
ηηηn = argmax

βββ	�̂��Xβββ=III V2
n(βββ

	XXX,Y), is consistent and asymptotically normal. Here for
DCOV1, by the consistency proposition for the univariate response in the work of Sheng
and Yin (2016), we have ηηηin

p→ ηηηQQQ, where QQQ is a rotation matrix, for each ttt	i YYY , with
i = 1, . . .m. We combine all these ηηηin and use SVD to obtain the estimator in DCOV1,
thus it also has the consistency property, that is, ηηηn

p→ ηηηQQQ. The asymptotically normal
property can be shown in the same way. For each univariate response ttt	i YYY , i = 1, . . .m, by

the normality property,
√
n[vec(ηηηin) − vec(ηηηQQQ)] D→ N(0,V(ηηηQ)), then when adding these
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estimators, the final estimator by DCOV1 has asymptotic normality as that in Sheng and
Yin (2016). Considerm=1 in DCOV2, the estimator has

√
n-consistency and asymptotic

normality, when increasing m, that is, adding squared distance covariance, the estimator
also has

√
n-consistency and asymptotic normality, but with tedious calculations based on

Sheng and Yin (2016).

2.4. Estimating the DCS via distance covariance

Consider two sets of random vectors,X is p × 1 and Y is q × 1, exchange the role ofX and
Y, if ααα is a q × smatrix, s<q, X depends on Y only through ααα	Y. That is,

Y X |αααTY.

The column space of ααα is called S(ααα), and the intersection of such subspaces is defined as
the central subspace of X given Y, denoted by SX |Y. The reduction subspaceβββ ,ααα is called
DCS by Iaci et al. (2015) as the combination of SY |X and SX |Y.

The proposition below suggests ways to recover the DCS.

Proposition 2.3 (Iaci et al. 2015): Let BBB andAAA be the base for SY |X and SX |Y, respectively.
The following conditions are equivalent:

(i) Y X |BBB	X and Y X |AAA	Y,

(ii) Y X |BBB	X and Y BBB	X |AAA	Y,

(iii) BBB	Y X |BBB	X and Y X |AAA	Y.

Proposition 2.3 suggests that we can first reduce the dimension of X by treating Y as
response and then reduce the dimension of Y by treating X or BBB	X as response.

Assume the dimensions dx and dy are known. Let (xxxi,yyyi), i = 1, . . . , n be the random
sample from (XXX,YYY). The estimates of the matrices that form the bases of the DCS, ÂAA and
B̂BB can be obtained by finding the maximum of squared distance covariance:

(ÂAA, B̂BB) = arg max
AAA	�̂��XAAA=Idx
BBB	�̂��YBBB=Idy

V2(BBB	xxx,AAA	yyy)

The two constraintsAAA	�̂��XAAA = Idx , andBBB
	�̂��YBBB = Idy guarantee the estimated directions

has unit length and is orthogonal to each other. Here, �̂��X and �̂��Y are the sample covariance
matrixes forXXX andYYY , respectively.

Since there are too many parameters when we estimate ÂAA and B̂BB simultaneously, we
propose two approaches to estimate ÂAA and B̂BB, separately, with a difference of the esti-
mation of AAA depends on B̂BB or not. The procedure of these two approaches are described
as Approach 1 and Approach 2, with the multivariate response in the squared distance
covariance (DCOV0) as the objective function in the optimisation problem.

Approach 1: Estimate BBB considering YYY as a response, and estimate AAA considering XXX
as a response. This means, we can calculate B̂̂B̂B = argmaxBBB	�̂��XBBB=Idx

V2
n(BBB	x,yyy) and Â̂ÂA =
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Table 1. Methods for DCS.

Method Estimate BBB EstimateAAA

Approach1 DCOV0 max
BBB	�̂��XBBB=IIIdx

V2
n (BBB

	X,YYY) max
AAA	�̂��YAAA=IIIdy

V2
n (X,AAA

	YYY)

Approach2 DCOV0 max
BBB	�̂��XBBB=IIIdx

V2
n (BBB

	X,YYY) max
AAA	�̂��YAAA=IIIdy

V2
n (B̂̂B̂B

	X,AAA	YYY)

Approach1 DCOV1a max
BBB	�̂��XBBB=IIIdx

V2(BBB	X, ttti	Y) max
AAA	�̂��YAAA=IIIdy

V2(ttt	i X,AAA
	Y)

Approach2 DCOV1a max
BBB	�̂��XBBB=IIIdx

V2(BBB	X, ttti	Y) max
AAA	�̂��YAAA=IIIdy

V2(ttt	i B̂̂B̂B
	X,AAA	Y)

Approach1 DCOV2 max
BBB	�̂��XBBB=IIIdx

m∑
i=1

V2(BBB	X, ttti	Y) max
AAA	�̂��YAAA=IIIdy

m∑
i=1

V2(ttt	i X,AAA
	Y)

Approach2 DCOV2 max
BBB	�̂��XBBB=IIIdx

m∑
i=1

V2(BBB	X, ttti	Y) max
AAA	�̂��YAAA=IIIdy

m∑
i=1

V2(ttt	i B̂̂B̂B
	X,AAA	Y)

a Refer to the introduction above in this section for detailed calculation.

argmaxAAA	�̂��YAAA=Idy
V2
n(x,AAA	yyy) at the same time, since the two steps do not depend on each

other.

Approach 2: Estimate BBB considering YYY as a response, and then estimate AAA considering
BBB	XXX as a response. That is, after calculating

B̂̂B̂B = arg max
BBB	�̂��XBBB=Idx

V2
n(BBB

	x,yyy),

obtainAAA with the projection B̂̂B̂B	xxx,
Â̂ÂA = arg max

AAA	�̂��YAAA=Idy
V2
n(B̂̂B̂B

	x,AAA	yyy);

We call the above two approaches ‘Approach1 DCOV0’ and ‘Approach2 DCOV0’,
respectively, since DCOV0 is used in the procedure. When using DCOV derivatives with
projective resampling on the multivariate response, we can develop methods ‘Approach 1
DCOV1’, ‘Approach 2 DCOV1’, ‘Approach 1 DCOV2’ and ‘Approach 2 DCOV2’, whose
optimisation problems are summarised in Table 1. Based on Sheng and Yin (2016), it can
be easily shown that the estimator in Table 1 are consistent and asymptotically normal.
Canonical analysis, as a special case of DCS, is termed as CDCA for this setting, where it
requires dx = dy, and the calculation is through pairwise, notmatrix optimisation. That is,
like in CCA, we search one pair of vectors, and after this, we search another pair of vectors
in the respective orthogonal spaces.

2.5. Estimating dimension

2.5.1. Estimating d formultivariate response
In practice, d, the dimension of CS is unknown and must be inferred from data. A few
methods have been proposed in the literature, for example, a sequential test based on a
chi-squared statistic proposed by Li (1991, 1992), a permutation based test by Cook and
Yin (2001), and a bootstrap procedure initialled by Ye and Weiss (2003), followed by Zhu
and Zeng (2006), and Sheng and Yin (2016). In this article, we introduce a kNN procedure
for the purpose of choosing d, following the idea of the kNN method (Wang, Yin, and
Critchley 2015).
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Given {(Xi,Yi)}, 1 ≤ i ≤ n, d can be evaluated by the following kNN procedure:

(1) for each point in {(Xi,Yi), 1 ≤ i ≤ n}, obtain the k nearest neighbours of sample point
i using Euclidean distance |Xi − Xj|, where 1 ≤ j ≤ n. The k nearest neighbours of
sample point i is denoted as {(X(i)

j ,Y(i)
j ), 1 ≤ j ≤ k};

(2) for each sample point i, apply any dimension reduction method to its k nearest neigh-
bours {(X(i)

j ,Y(i)
j ), 1 ≤ j ≤ k}, and estimate β̂ββ i. Setting the dimension of β̂ββ i as 1 or 2

is usually good enough;
(3) after all β̂ββ i, 1 ≤ i ≤ n are obtained, get the eigenvalues of

∑n
i=1 β̂ββ iβ̂ββ

T
i , denote as

λ1, λ2, . . . , λp;
(4) calculate the ratio ri = λi/λi+1, 1 ≤ i ≤ p − 1. Choose d as where the largest ri

happens in the sequence.

In the last step, this maximal eigenvalue ratio criterion was suggested by Luo,Wang, and
Tsai (2009) and was also used by Li and Yin (2009).

2.5.2. Estimating dimension of DCS
In practice, the dimension of the DCS (dx, dy), is unknown and needs to be estimated. We
adopt the idea of Iaci et al. (2015) to estimate the dimensions of the DCS. SupposeBBBdx and
AAAdy are the true bases for SY |X and SX |Y, respectively. Let SBBBk and SAAAl be subspace for
a fixed pair of dimensions k and l. Calculate the estimated dual subspace on the original
data, denoted by SB̂BBk and SÂAAl

. Then calculate the bootstrap estimated dual subspaces S
B̂BB
b
k

and S
ÂAA
b
l
. If k = dx, and l = dy, the variabilities of SB̂BBbk and SÂAAb

l
, respectively, from SB̂BBk and

SÂAAl
are expected to be small, i.e. S

B̂BB
b
k
and SBBBk estimate the central subspace SY |X, and SÂAAb

l

andSAAAl estimate central subspace ofSX |Y.�m(Ŝ1,S2), defined in the next section, is used
to measure the distance between the S

B̂BB
b
k
and SBBBk , and SÂAAb

l
and SAAAl . Given {(Xi,Yi)}, 1 ≤

i ≤ n, the following procedure can be used to estimate the dimensions of the DCS:

(1) fix (k, l), calculate the SB̂BBk and SÂAAl
based on the original data;

(2) from {(Xi,Yi)}, 1 ≤ i ≤ n, generate N bootstrap samples each with size n, denote by
{(X(j)

i ,Y(j)
i )} for 1 ≤ j ≤ N;

(3) for each bootstrap sample {(X(j)
i ,Y(j)

i )} for 1 ≤ j ≤ N, calculate the bootstrap subspace
S
B̂BB
b(j)
k

and S
ÂAA
b(j)
l
, for 1 ≤ j ≤ N;

(4) calculate the distance �m(SB̂BBk ,SB̂BBb(j)k
), and �m(SÂAAl

,S
ÂAA
b(j)
l

), for 1 ≤ j ≤ N
(5) calculate the average �m,k,l = [�m(SB̂BBk ,SB̂BBb(j)k

) + �m(SÂAAl
,S

ÂAA
b(j)
l

)]/2 for the estima-
tion of the variability of the dual subspace. Find a pair of (k, l) that the smallest value
of average �̄m,k,l with smallest standard deviation occurs.

3. Numerical studies

In this section, we assess the proposed methods through simulation and real data study.
In the simulations, we compare the performance of our methods DCOV0, DCOV1 and
DCOV2 with some well-established SDR methods: PRSIR (Li et al. 2008), PRSAVE (Li
et al. 2008), and RMAVE-FC (Yin and Li 2011). We choose these three methods because



276 X. CHEN ET AL.

SIR and SAVE are the most well-known methods in SDR, and RMAVE-FC is the most
efficient method for multivariate SDR. We include the results in a sequential way (Yin
et al. 2008) of DCOV1 and DCOV2, and denote them as DCOV1-seq and DCOV2-
seq, which is to calculate the first single direction, and calculate the second direction in
the orthogonal subspace of the first direction and so on. In the simulations for DCS, we
compare the performance of six methods for CDCA and DCS.

Two measures of accuracies are used in the simulation study.

(1) Distance between two projection matrices: �m(S1,S2) = ‖PS1 − PS2‖ (Li, Zha, and
Chiaromonte 2005), where ‖ · ‖ is the maximum singular value of a matrix, S1, S2
are two subspaces with the same dimensions, and PS1 and PS2 are the orthogonal
projections onto the subspaceS1 andS2, respectively. The smaller the�m is, the closer
the two subspaces.

(2) The squared vector correlation coefficient: ρ2(D̂̂D̂D) = |DDD	D̂̂D̂DD̂̂D̂D	DDD| = ∏p
i λi

(Hotelling 1936), whereDDD and D̂̂D̂D are the true and estimated bases, and λi are the eigen-
values ofDDD	D̂̂D̂DD̂̂D̂D	DDD, and 0 ≤ ρ(D̂̂D̂D) ≤ 1. The statistic ρ(D̂̂D̂D) is a measure of correlation
between two subspaces. The larger the ρ(D̂̂D̂D) is, the better the estimate is.

Distance between two projection matrices is evaluated for all models, and the squared
vector correlation coefficient is used for CDCA (Model 4) and DCS (Model 5).

The R package Nlcoptim (Chen and Yin 2018) is used to solve the above nonlinear
optimisation problem. This package implements an SQP method to solve nonlinear opti-
misation problems with nonlinear objective and nonlinear constraint function. The initial
value for the optimisation problem can be generated randomly, but it is not efficient when
the dimension of XXX is large, since we need variation on each parameter. Thus, we suggest
to use the SIR and SAVE estimates and choose the one which gives the larger squared
distance covariance as the initial values. Codes are available upon request to the first
author.

3.1. Simulations

Here we simulate five models. The first three models are for the multivariate response,
with the relationships of YYY and XXX linear (Model 1), quadratic (Model 2), and other non-
linear (Model 3). We use these models to demonstrate that our methods perform well for
linear and nonlinear relationships between two random vectors. The forth model is for
CDCA, where dx = dy = 1 and the relationship between this pair of vectors is quadratic.
This model is used to confirm that CDCA outperforms CCA at nonlinear setting. And the
last model is for DCS, where dx 
= dy, and we use it to demonstrate that our methods work
well in finding dual central subspace.

For the first three models, 100 replicates of the data are generated. The comparison is
made for three sample size n=100, 200 and 400. For PRSIR and PRSAVE, we usem=200
random directions; for RMAVE-FC, we takem=100 random directions; and for DCOV1
and DCOV2, we usem=50 after plotting the number of random directions and accuracy
via the first threemodels in this section under design part (1): standardmultivariate normal
distribution (not reported here). We consider four different designs on predictors for each
model to examine if the model assumption can go beyond normal distribution. The four
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designs are: part (1), standard multivariate normal predictors,XXX ∼ N(000, III); part (2), non-
normal but continuous predictors; part (3), discrete predictors, and part (4), multivariate
normal predictors with covariance,XXX ∼ N(000,���ρ). The following three models come from
Li et al. (2008)[Respective their examples of 4.1, 4.5, and 4.4].

Model 1: Let p=6,q=4,XXX ∼ N(0, I6). GenerateYYY as

Y1 = βββT
1XXX + ε1,

Y2 = βββT
2XXX + ε2,

Y3 = ε3,

Y4 = ε4.

where βββ1 = (1, 0, 0, 0, 0, 0)T, βββ2 = (0, 2, 1, 0, 0, 0)T, and εεε ∼ N4(0,���) with

��� =
⎡
⎣ 1 −.5 0

−.5 1 0
0 0 I2

⎤
⎦

In this model, d=2. In part (1),XXX follows the standard normal distribution; in part (2),
Xi ∼ Unif (−√

3,
√
3), for i = 1, . . . , 6; in part (3), Xi ∼ Poisson(1), for i = 1, . . . , 3, and

Xi ∼ N(0, 1), for i = 4, . . . , 6, and in part (4),XXX ∼ N(000,���ρ), where���ρ = (σij = (ρ|i−j|))
and ρ = 0.5. For this model, Table 2 gives the mean and standard deviation of the esti-
mation accuracy (�m) based on N=100 simulated samples for each combination of eight
methods and three sample sizes.

PRSIR performs relatively well, because the response is a linear function of the predic-
tors. DCOV0 performs the best for the standard normal design and second best for the
other three designs (very close to the top one: DCOV2-seq). RMAVE-FC performs rela-
tively well. DCOV1 andDCOV2 are not better thanDCOV0 in all cases; thismay be due to
the fact that the objective functions in DCOV1 and DCOV2 in the optimisation problem
aremuchmore complicated thanDCOV0. As the sample size increases, the error decreases
substantially for all methods but DCOV1-seq, reflecting the fact that they are consistent,
while DCOV1-seq may not be stable.

Model 2: Let p=6,q=4,XXX ∼ N(0, I6). GenerateYYY as

Y1 = 1 + (βββT
1XXX)2 + ε1,

Y2 = βββT
2XXX + ε2,

Y3 = ε3,

Y4 = ε4,

where βββ1 = (1, 0, 0, 0, 0, 0)T, βββ2 = (0, 2, 1, 0, 0, 0)T, and εεε ∼ N4(0,���) with

��� =
⎡
⎣ 1 −.5 0

−.5 1 0
0 0 I2

⎤
⎦ .
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Table 2. Comparison based on Model 1.

Part (1) Part (2) Part (3) Part (4)

n Method �̄m SE�m �̄m SE�m �̄m SE�m �̄m SE�m

100 PRSIR 0.4001 0.1773 0.5552 0.1458 0.3918 0.1889 0.4746 0.1929
PRSAVE 0.9097 0.0977 0.9398 0.0950 0.9273 0.1125 0.9057 0.1245

RMAVE-FC 0.4144 0.1283 0.4387 0.1492 0.5454 0.2420 0.6214 0.2703
DCOV0 0.2730 0.0923 0.2609 0.0940 0.2373 0.1051 0.4044 0.1410
DCOV1 0.5831 0.2267 0.7695 0.1743 0.4993 0.2611 0.7137 0.2036
DCOV2 0.4083 0.2136 0.4696 0.2448 0.3729 0.2372 0.5342 0.2312

DCOV1-seq 0.4956 0.2088 0.4709 0.2131 0.5840 0.2802 0.6624 0.2079
DCOV2-seq 0.3536 0.1934 0.2287 0.0855 0.2040 0.1737 0.4454 0.1750

200 PRSIR 0.3372 0.1520 0.4938 0.1540 0.3313 0.1767 0.4149 0.2007
PRSAVE 0.7482 0.2174 0.8891 0.1587 0.8237 0.1985 0.8564 0.1476

RMAVE-FC 0.2595 0.0817 0.3378 0.1441 0.3263 0.0828 0.4138 0.2136
DCOV0 0.1943 0.0624 0.1825 0.0583 0.1453 0.0545 0.3196 0.0798
DCOV1 0.4802 0.2437 0.4232 0.2395 0.5873 0.2922 0.6587 0.2304
DCOV2 0.2745 0.2102 0.3816 0.2349 0.3129 0.2373 0.3435 0.2031

DCOV1-seq 0.5028 0.2294 0.4312 0.2248 0.6700 0.2893 0.6264 0.2320
DCOV2-seq 0.3699 0.1669 0.1621 0.0972 0.1190 0.1272 0.2803 0.1004

400 PRSIR 0.2985 0.1603 0.4314 0.1136 0.3025 0.1572 0.4190 0.2131
PRSAVE 0.6288 0.2392 0.8773 0.1594 0.8047 0.2153 0.7562 0.2003

RMAVE-FC 0.1963 0.0602 0.1797 0.0771 0.2507 0.0918 0.2764 0.1826
DCOV0 0.1412 0.0417 0.1308 0.0399 0.0945 0.0366 0.2615 0.0580
DCOV1 0.4470 0.2576 0.5143 0.2588 0.6652 0.3203 0.5840 0.2283
DCOV2 0.2114 0.1860 0.3167 0.2165 0.2806 0.2151 0.3682 0.2221

DCOV1-seq 0.5251 0.2163 0.5220 0.2777 0.7447 0.2814 0.5501 0.2475
DCOV2-seq 0.3449 0.1886 0.1298 0.0437 0.0766 0.1033 0.2312 0.1370

This model is the same as Model 1 except that Y1 is a quadratic form of βββT
1XXX. Again,

d=2. Table 3 reports the results for Model 2. We can see that except the discrete design,
PRSAVE performs better than PRSIR, because Y1 has a quadratic function of βββT

1XXX. How-
ever, they are not stable across the designs, neither do DCOV1 and DCOV2. DCOV1-seq
and DCOV2-seq perform well except for the non-normal design. For large samples,
DCOV0 performs the best on the discrete design and second best on the standard normal
and non-normal designs, and RMAVE-FC performs the best on the non-normal design
and the second best on the correlated normal design.

Model 3: Let p=6, q=5,XXX ∼ N(0, I6). GenerateYYY as

Y1 = X2 + 3x2
.5 + (X1 + 1.5)2

+ ε1,

Y2 = X1 + e.5X2 + ε2,

Y3 = X1 + X2 + ε3,

Y4 = ε4,

Y5 = ε5.

where εεε ∼ N5(0,���) with��� = diag(���1,���2)

���1 =
[

1 −.5
−.5 0.5

]
and ���2 =

⎡
⎣1/2 0 0

0 1/3 0
0 0 1/4

⎤
⎦ .
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Table 3. Comparison based on Model 2.

Part (1) Part (2) Part (3) Part (4)

n Method �̄m SE�m �̄m SE�m �̄m SE�m �̄m SE�m

100 PRSIR 0.8851 0.1563 0.8503 0.1597 0.2685 0.0815 0.8067 0.2014
PRSAVE 0.8235 0.1902 0.6010 0.2377 0.8765 0.1632 0.8227 0.1627

RMAVE-FC 0.4486 0.2715 0.6451 0.5345 0.3092 0.0720 0.9359 0.3878
DCOV0 0.5547 0.2951 0.7795 0.2317 0.1819 0.0609 0.6292 0.246
DCOV1 0.5316 0.2543 0.8683 0.1528 0.2665 0.0809 0.5339 0.2428
DCOV2 0.5200 0.2926 0.8695 0.1508 0.2931 0.1511 0.7509 0.2529

DCOV1-seq 0.3328 0.1425 0.6704 0.2221 0.2491 0.1105 0.4249 0.1336
DCOV2-seq 0.4946 0.2937 0.6486 0.3352 0.1640 0.0759 0.5531 0.2599

200 PRSIR 0.8750 0.1484 0.8087 0.1835 0.2024 0.0648 0.7280 0.2283
PRSAVE 0.3405 0.1450 0.5542 0.1826 0.5266 0.2175 0.5030 0.2049

RMAVE-FC 0.1963 0.0644 0.2928 0.2912 0.2409 0.0862 0.5149 0.3685
DCOV0 0.3527 0.2700 0.5980 0.3017 0.1155 0.0378 0.3800 0.1496
DCOV1 0.3612 0.2015 0.7736 0.2233 0.1964 0.0727 0.3866 0.2039
DCOV2 0.4011 0.3173 0.8793 0.1641 0.2765 0.1857 0.6440 0.2814

DCOV1-seq 0.2090 0.0697 0.4272 0.2010 0.1952 0.0904 0.3249 0.0716
DCOV2-seq 0.2381 0.2025 0.4869 0.3907 0.1199 0.0651 0.3984 0.2731

400 PRSIR 0.6731 0.2335 0.7350 0.2212 0.1750 0.0579 0.3497 0.1672
PRSAVE 0.2262 0.0763 0.5288 0.1589 0.4727 0.2266 0.2869 0.1148

RMAVE-FC 0.2042 0.1482 0.1303 0.0353 0.1845 0.0577 0.2187 0.1515
DCOV0 0.1443 0.0466 0.3870 0.3038 0.0733 0.0250 0.2998 0.0718
DCOV1 0.2059 0.1547 0.6723 0.2815 0.1514 0.0464 0.3168 0.1170
DCOV2 0.2983 0.3333 0.8060 0.2490 0.2489 0.1803 0.4693 0.2773

DCOV1-seq 0.1398 0.0460 0.6594 0.2375 0.1623 0.0712 0.2855 0.0616
DCOV2-seq 0.1712 0.1800 0.5090 0.4282 0.1014 0.0759 0.2132 0.1082

Again, d=2. Table 4 reports the results for Model 3. The four designs are same as
in Models 1 and 2. All methods perform well with high accuracies. The majority of the
performances for DCOV0 stays on top one or two for all four designs and three sample
sizes. RMAVE-FC performs well for the normal design, but not as good as other DCOV0
methods on the non-normal design and discrete design. The errors decrease rapidly when
sample size increases for all methods, which means that all estimates are consistent.

To summarise our simulation studies, we conclude that DCOV0 provides the most sta-
ble estimator across models with different designs, standard normal, non-normal, discrete
and correlated normal predictors, especially when sample size is large.

To illustrate the kNN method for estimating d, we use the three models under design
part (1), set (n, p) = (400, 6), and k=20. The ratios of λ for Models 1, 2, and 3 are sum-
marised in Table 5. It indicates that maximum ratios happen at the dimension of the CS,
d=2, as we expected.

Now we simulate examples to conduct CDCA. For each model setting, 100 replicates of
the data are generated. The comparison is made for three sample size n = 100, 200, and
300.

Model 4: Let p=6,q=4,XXX ∼ N(0, I6). The four-dimensional response random vectorYYY
is generated as

Y1 = 1 + (βββTXXX)2 + ε1,

Y2 = ε2,

Y3 = ε3,

Y4 = ε4.
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Table 4. Comparison based on Model 3.

Part (1) Part (2) Part (3) Part (4)

n Method �̄m SE�m �̄m SE�m �̄m SE�m �̄m SE�m

100 PRSIR 0.2716 0.1048 0.7269 0.1860 0.3071 0.1393 0.3407 0.1271
PRSAVE 0.8732 0.1547 0.5679 0.2320 0.8142 0.1995 0.8667 0.15555

RMAVE-FC 0.2386 0.0827 0.3131 0.1367 0.4173 0.1538 0.5722 0.3146
DCOV0 0.2477 0.0877 0.2002 0.0791 0.1556 0.0902 0.4107 0.1287
DCOV1 0.2809 0.1155 0.2012 0.0603 0.2436 0.1124 0.5135 0.2008
DCOV2 0.2718 0.2008 0.4010 0.2062 0.2633 0.1983 0.5666 0.2664

DCOV1-seq 0.3032 0.0877 0.2341 0.0758 0.2715 0.0995 0.4711 0.1947
DCOV2-seq 0.2503 0.1242 0.1876 0.0921 0.1049 0.0866 0.4173 0.2092

200 PRSIR 0.2250 0.0743 0.6074 0.1818 0.2618 0.0903 0.2539 0.1064
PRSAVE 0.5462 0.2452 0.2944 0.1279 0.3823 0.2069 0.7569 0.2010

RMAVE-FC 0.1700 0.0610 0.2179 0.0885 0.2595 0.0612 0.3373 0.1772
DCOV0 0.1569 0.0519 0.1283 0.0414 0.0987 0.0677 0.3369 0.0861
DCOV1 0.2170 0.1252 0.1493 0.0440 0.1579 0.0498 0.3643 0.1096
DCOV2 0.1573 0.1021 0.3787 0.2134 0.2377 0.1789 0.4399 0.2823

DCOV1-seq 0.2338 0.0800 0.1597 0.0499 0.1986 0.0730 0.4344 0.1635
DCOV2-seq 0.1430 0.0488 0.1331 0.0640 0.0698 0.0686 0.2160 0.0538

400 PRSIR 0.1660 0.0592 0.2826 0.1235 0.2229 0.0905 0.1981 0.0736
PRSAVE 0.2855 0.1578 0.2405 0.0876 0.1991 0.0719 0.5068 0.2457

RMAVE-FC 0.1071 0.0367 0.1302 0.0424 0.2069 0.0702 0.1866 0.0845
DCOV0 0.1071 0.0319 0.0870 0.0231 0.0633 0.0175 0.2849 0.0715
DCOV1 0.1597 0.1061 0.1273 0.1560 0.1189 0.0357 0.3321 0.1178
DCOV2 0.1223 0.1579 0.3539 0.2556 0.2235 0.1786 0.4472 0.2823

DCOV1-seq 0.1650 0.0623 0.1182 0.0305 0.1260 0.0414 0.3246 0.0677
DCOV2-seq 0.1114 0.0467 0.1147 0.0822 0.0542 0.0556 0.1461 0.0538

Table 5. Ratio of eigenvalues for Models 1, 2, and 3.

Model r1 = λ1/λ2 r2 = λ2/λ3 r3 = λ3/λ4 r4 = λ4/λ5 r5 = λ5/λ6

1 1.0356 1.4020a 1.0317 1.0651 1.0593
2 1.1668 1.3368a 1.0551 1.0254 1.0053
3 1.8969 2.1869a 1.0869 1.0123 1.0381
a Where the largest ratio occurs.

where βββ = (0, 2, 1, 0, 0, 0)T, and εεε ∼ N4(0,���) with

��� =
⎡
⎣ 1 −.5 0

−.5 1 0
0 0 I2

⎤
⎦ .

For this model, dx = dy = 1. Therefore, we use aaa and bbb to denote A and B, and use âaa
and b̂bb to denote Â and B̂. The results for Model 4 is shown in Table 6. All DCOVmethods
perform better than traditional CCA with lower �̄m(b̂bb) and �̄m(âaa), and higher ρ̄(b̂bb) and
ρ̄(âaa), this is because the relationship in this model is quadratic, and CCA cannot capture
this nonlinear pattern. The performance of recovering the directions gets better when the
sample size increases, indicating consistency. Overall, Approach 2 outperforms Approach
1, which suggests that recovering aaa based on the distance covariance of bbb	XXX is better than
based on that ofXXX. When the relationship betweenXXX andYYY is linear, CCA performs as well
as the DCOV methods under both estimation approaches (not reported here).

We then investigate the performance of our methods for DCS using an example that
is similar to the examples provided by Wang et al. (2015). The relationships between two
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Table 6. Comparison based on Model 4.

n Order DCOV �̄m(âaa) SE�m (âaa) ρ̄(âaa) SEρ(âaa) �̄m(b̂bb) SE�m (b̂bb) ρ̄(b̂bb) SEρ(b̂bb)

100 Approach1 DCOV0 0.4209 0.2876 0.7409 0.3041 0.4663 0.2214 0.7339 0.2374
DCOV1 0.2337 0.0976 0.9359 0.0579 0.3055 0.1470 0.8852 0.1146
DCOV2 0.1413 0.1067 0.9687 0.0964 0.6944 0.2120 0.4732 0.2736

Approach2 DCOV0 0.4209 0.2876 0.7409 0.3041 0.4757 0.2461 0.7136 0.2628
DCOV1 0.2337 0.0976 0.9359 0.0579 0.1689 0.0726 0.9662 0.0272
DCOV2 0.1413 0.1067 0.9687 0.0964 0.3087 0.1013 0.8944 0.0731
CCA 0.8160 0.1927 0.2974 0.2778 0.9738 0.0675 0.0472 0.1077

200 Approach1 DCOV0 0.1818 0.0919 0.9585 0.0435 0.2929 0.1494 0.8920 0.1117
DCOV1 0.1645 0.0575 0.9696 0.0200 0.2568 0.1316 0.9169 0.0929
DCOV2 0.1066 0.1175 0.9749 0.1056 0.5374 0.2199 0.6632 0.2508

Approach2 DCOV0 0.1818 0.0919 0.9585 0.0435 0.3261 0.1756 0.8630 0.1532
DCOV1 0.1645 0.0575 0.9696 0.0200 0.1366 0.0528 0.9785 0.0168
DCOV2 0.1066 0.1175 0.9749 0.1056 0.2727 0.0966 0.9163 0.0961
CCA 0.7878 0.1962 0.3413 0.2845 0.9773 0.0337 0.0437 0.0637

300 Approach1 DCOV0 0.1393 0.0506 0.9780 0.0159 0.2529 0.1107 0.9238 0.0652
DCOV1 0.1382 0.0548 0.9779 0.0188 0.1945 0.0841 0.9551 0.0400
DCOV2 0.0882 0.0871 0.9846 0.0509 0.4032 0.1831 0.8041 0.1847

Approach2 DCOV0 0.1393 0.0506 0.9780 0.0159 0.2543 0.1139 0.9224 0.0686
DCOV1 0.1382 0.0548 0.9779 0.0188 0.1144 0.0406 0.9852 0.0099
DCOV2 0.0882 0.0871 0.9846 0.0509 0.2558 0.0569 0.9313 0.0291
CCA 0.7521 0.2184 0.3872 0.3066 0.9726 0.0608 0.0503 0.0956

random vectorsXXX andYYY are linear as well as nonlinear. For each example setting, 100 repli-
cates of the data are generated. The comparison ismade for three sample sizes n=100, 200,
300. For the two projective resampling-based methods DCOV1 and DCOV2, we choose
the number of random directions m = 50, and transfer the multivariate response to 50
univariate responses. For DCOV0, we treat the response as it is – multivariate form. The
following models are considered:

Model 5: Let p=5, q=4,XXX ∼ N(0, I5). The four-dimensional response random vectorYYY
is generated as

Y1 = 4 cos(βββTXXX) + 0.3ε1,

Y2 = βββTXXX + 0.5ε2,

Y3 = ε3,

Y4 = ε4.

where βββ = (1, 1, 0, 0, 0)T and εεε ∼ N4(0, I4). In this model, AAA1 = (1, 0, 0, 0)T, AAA2 =
(0, 1, 0, 0)T,AAA = (AAA1,AAA2), and BBB = βββ .

Table 7 shows the results of six methods to recover DCS for Model 1. All the six meth-
ods perform well. For each method, �̄m decreases and ρ̄ increases with the sample size
increase, indicating consistency. Overall, Approach 2 outperforms Approach 1, suggesting
that recoveringAAA based on the distance covariance of BBB	XXX is better then based on that of
XXX. A dataset of size n=300 is selected to illustrate the bootstrap method, with 100 boot-
strap iterations. Table 8 shows the results for different (k, l). We are looking for the smallest
mean and least variability. We can see that (k, l) = (1, 1) produces the smallest mean but
(k, l) = (1, 2) has a very close mean! In such a case, the variability plays an important role:
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Table 7. Comparison based on Model 5.

n Order DCOV �̄m(ÂAA) SE�m (ÂAA) ρ̄(ÂAA) SEρ(ÂAA) �̄m(B̂BB) SE�m (B̂BB) ρ̄(B̂BB) SEρ(B̂BB)

100 Approach1 DCOV0 0.1166 0.0410 0.9847 0.0107 0.2962 0.1943 0.8714 0.1833
DCOV1 0.1154 0.0443 0.9847 0.0115 0.2880 0.1786 0.8799 0.1656
DCOV2 0.1262 0.1130 0.9714 0.0635 0.4409 0.2238 0.7521 0.2317

Approach2 DCOV0 0.1166 0.0410 0.9847 0.0107 0.3106 0.1778 0.8687 0.1578
DCOV1 0.1154 0.0443 0.9847 0.0115 0.0938 0.0410 0.9881 0.0099
DCOV2 0.1262 0.1130 0.9714 0.0635 0.5510 0.2429 0.6181 0.2833

200 Approach1 DCOV0 0.0790 0.0299 0.9928 0.0052 0.2069 0.1248 0.9394 0.0824
DCOV1 0.0817 0.0286 0.9925 0.0049 0.2161 0.1252 0.9353 0.0806
DCOV2 0.0696 0.0863 0.9877 0.0714 0.4069 0.2284 0.7800 0.2422

Approach2 DCOV0 0.0790 0.0299 0.9928 0.0052 0.2009 0.1117 0.9448 0.0617
DCOV1 0.0817 0.0286 0.9925 0.0049 0.0651 0.0225 0.9947 0.0035
DCOV2 0.0696 0.0863 0.9877 0.0714 0.2946 0.2366 0.8466 0.2112

300 Approach1 DCOV0 0.0657 0.0271 0.9949 0.0037 0.1443 0.0784 0.9716 0.0370
DCOV1 0.0684 0.0234 0.9947 0.0036 0.1605 0.0919 0.9633 0.0431
DCOV2 0.0621 0.0615 0.9923 0.0339 0.3702 0.2236 0.8122 0.2109

Approach2 DCOV0 0.0657 0.0271 0.9949 0.0037 0.1451 0.0767 0.9716 0.0364
DCOV1 0.0684 0.0234 0.9947 0.0036 0.0540 0.0208 0.9963 0.0027
DCOV2 0.0621 0.0615 0.9923 0.0339 0.2018 0.1846 0.9189 0.1363

Table 8. Bootstrap distance measure for
Models 5.

k l �̄m,k,l SE�m,k,l

1 1 0.1489 0.1409
1 2 0.1604 0.0175
1 3 0.4215 0.1260
2 1 0.4402 0.1037
2 2 0.4745 0.1170
2 3 0.7224 0.1985
3 1 0.4240 0.0942
3 2 0.4970 0.1214
3 3 0.7746 0.1828

our ad hoc experience suggests that one should choose the dimension with the least vari-
ability! Note that (k, l) = (1, 2) has the least variability (0.0175 vs. 0.1409 of (k, l) = (1, 1)).
So we will choose (k, l) = (1, 2), which agrees with the true dimension of DCS.

3.2. Application

In this section, we analyse theMinneapolis elementary schools data set (Cook 1998, p. 216)
and the LA pollution data set (Shumway, Azari, and Pawitan 1988), to illustrate the DCOV
methods and DCS approaches, respectively.

3.2.1. Minneapolis elementary schools data
These data were used to explore the relationship between students’ performance and char-
acteristics of school. It has 63 observations (schools) and 13 variables. The response is a
four-dimensional multivariate response, which is described as

• 4BELOW: percentage of 4th graders scoring BELOW average on a standard 4th grade
vocabulary test in 1972.
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Table 9. Ratio of eigenvalues r for Minneapolis elementary schools data.

r1 r2 r3 r4 r5 r6 r7

Ratio-original 1.812453 1.323173 1.384807 1.508781 1.525245 1.202717 1.074232
Ratio-sqrt transformation 5.917090 1.149957 1.117052 1.308639 1.153622 1.229887 1.236647

• 4ABOVE: percentage of 4th graders scoring ABOVE average on a standard 4th grade
vocabulary test in 1972.

• 6BELOW: percentage of 6th graders scoring BELOW average on a standard 6th grade
comprehension test in 1972.

• 6ABOVE: percentage of 6th graders scoring ABOVE average on a standard 6th grade
comprehension test in 1972.

And the explanatory variables are

• BP: percentage of children in the school living with Both Parents
• AFDC: percentage of children receiving Aid to Families with Dependent Children
• Poverty: percentage of persons in the school area who are above the federal poverty

levels
• HSchl: percentage of adults in the school area who have completed high school
• Attend: average percentage of children in attendance during the year
• Mobility: percentage of children who started in a school, but did not finish there
• PT-ratio: pupil–teacher ratio
• Minority: percentage minority children in the area.

These data were analysed by Yin and Bura (2006) to demonstrate their moment-based
SDRmethod for the multivariate response. In order to satisfy the two assumptions of their
method, they used square-root transform on the response as well as the explanatory vari-
ables of percentages. The DCOVmethod does not require the assumption of distribution,
so we can perform the dimension reduction on the original data. But in order to com-
pare our result to the work of Yin and Bura (2006), we use the transformed data, where
all the response variable and percentages are square-root transformed. The kNN method
described in Section 2.5 results in Table 9. The maximum ratios for both cases happen at
one. Thus we conclude d=1, which also agrees with the analysis of Yin and Bura (2006).
Table 10 shows the estimated directions at the original scale and the transformed scale.
AFDC and HSchl contribute most to the estimated direction for the original scale, and√
AFDC and

√
HSchl contribute most to the estimated direction for the transformed scale.

3.2.2. LA pollution data
These data are obtained from Shumway et al. (1988) and were used to explore the effects
of temperature and pollution on daily mortality in Los Angeles (LA). The data set has
508 observations and 11 variables (daily records from 1970 to 1979). These 11 variables
include 3 mortality measures (total mortality, respiratory mortality and cardiovascular
mortality) which counted all deaths of LA area, 2 weather measures (temperature and
relative humidity), and 6 pollution measures include carbon monoxide, sulfur dioxide,
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Table 10. Estimated direction by DCOV1 on original
data and transformed data.

Variables β̂1 (original) β̂1 (transformed)

BP −0.1444 −0.0631
AFDC 0.6569 −0.7443
Poverty −0.0820 0.0741
HSchl −0.6608 0.5218
Attend −0.0385 0.0376
Mobility 0.2546 −0.1502
PT-ratio −0.0535 0.1948
Minority 0.1873 −0.3198

Table 11. Bootstrap distance measure for
LA pollution data.

k l �̄m,k,l SE�m,k,l

1 1 0.1381 0.0257
1 2 0.5430 0.1073
2 1 0.3398 0.1224
2 2 0.4486 0.1342
3 1 0.4954 0.0883
3 2 0.7428 0.2067

Table 12. Estimated direction of the multivariate response
and predictors by Approch2 DCOV0 for LA pollution data.

Variables ÂAA Variables B̂BB

Total mortality 0.5875 Temperature 0.6585
Respiratory mortality 0.0075 Relative humidity 0.2534
Cardiovascular mortality 0.8095 Carbon monoxide −0.4162

Hydrocarbons −0.3917
Ozone 0.1255

Particulates −0.3998

nitrogen dioxide, hydrocarbons, ozone, and particulates. The data are also discussed by
Iaci et al. (2010, 2015).

We apply our method to the data to identify the DCS with the mortality variables as the
multivariate response, and two weather measures and four pollution measures as predic-
tors. Note that sulfur dioxide, nitrogen dioxide are excluded since they are highly correlated
with other predictors. Thus the multivariate response vector is YYY = (Y1,Y2,Y3)

	, where
Y1 = total mortality, Y2 = respiratory mortality and Y3 = cardiovascular mortality; the
predictor vectorXXX = (X1, . . . ,X6)

	, whereX1 = temperature,X2 = relative humidity,X3
= carbon monoxide, X4 = hydrocarbons, X5 = ozone, X6 = particulates.

Table 11 shows results from the bootstrap method of Section 2.5 which estimates the
dimension of the DCS to be (k, l) = (1, 1). Table 12 shows the estimated directions of the
multivariate response and predictors. The loadings for the multivariate response indicate
that Y1 and Y3 contribute themost to the estimated direction, whileY2 does not contribute
to SY |X. For the estimated direction corresponding to the subspace SX |Y, X1 contribute
most positive to the estimated direction, X3, X4 and X6 contribute equally negative to the
estimated direction. The plot of the estimated directions of the multivariate response and
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Figure 1. Relationship of direction of multivariate response and direction of predictors.

the predictors is in Figure 1, indicating a linear relationship between these two estimated
directions, which agrees with Iaci et al. (2015).

4. Discussion

In this article, we develop DCOV0 for SDR with a multivariate response. We present
DCOV1 andDCOV2by using projective resampling idea.DCOV0performswell on differ-
ent models by stably achieving highest accuracy. DCOV1 and DCOV2 perform relatively
well, better than projection resampling with SIR and SAVE. In addition, we introduced a
kNN method for estimating d, showing that this approach is quite useful in estimating the
dimension under differentmodels.We extend theDCOVmethod toCDCA.Comparing to
the traditional CCA, our methods can capture nonlinear relationship. We recovered DCS
using DCOV. The results show that all DCOVmethods estimate the central dual subspaces
with high accuracy by our simulation.
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Appendix

Lemma A.1: Suppose ηηη is a basis of the CS. Let (ηηη1,ηηη2) be any partition of ηηη, where ηηη	���Xηηη = IIId.
We have V2(ηηη	

i XXX,YYY) < V2(ηηη	XXX,YYY), i = 1, 2.

Proof: Let X̃XX1 = ηηη	
1 XXX, X̃XX2 = ηηη	

2 XXX, F(a, b) = V2
((

aX̃XX1
bX̃XX2

)
,YYY

)
, a ∈ R, and b ∈ R,and G1(a, b) =

∂F(a, b)/∂a, G2(a, b) = ∂F(a, b)/∂b. A simple calculation shows that aG1(a, b) + bG2(a, b) =
F(a, b).

If (ηηη1,ηηη2) ∈ S(ηηη), then F(0, 1), F(1, 0) > 0.
Claim, if 0 ≤ λ < 1, then F(1, λ) < F(1, 1), and F(λ, 1) < F(1, 1).
If not, then there exist a 0 ≤ λ0 < 1 such that F(1, λ0) ≥ F(1, 1) or F(λ0, 1) ≥ F(1, 1).
Without loss of generality, we assume there exist a 0 ≤ λ0 < 1 such that F(1, λ0) ≥ F(1, 1).
However, F(1, λ) = λF( 1

λ
, 1), and as λ → ∞, F(1/λ, 1) → F(0, 1) > 0. Thus F(1, λ) → ∞, as

λ → ∞. That means, there exists a λ1 ∈ (λ0,∞) such that F(1, λ1) achieves a minimum in (λ0,∞).
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Hence, G2(1, λ1) = 0. Note that function F(a, b) is a ‘ray’ function, i.e. F(ca, cb) = cF(a, b). Thus
using the fact that F(1, λ) = λF(1/λ, 1), we can have G1(1/λ, 1) = 0. And it is easy to calculate that
G1(1, λ1) = G1(1/λ, 1) = 0.

However, 0 = 1G1(1, λ1) + λ1G2(1, λ1) = F(1, λ1). F(1, λ1) = 0 means that
(
aX̃XX1
bX̃XX2

)
YYY , which

conflicts with the assumption. �

Proof of Proposition 2.1.: Since S(βββ) ⊆ S(ηηη) = SYYY |XXX , d1 ≤ d, there exists a matrix AAA, which
satisfies βββ = ηηηAAA. Thus, V2(βββ	XXX,YYY) = V2(AAA	ηηη	XXX,YYY).

Suppose the single value decomposition of AAA is UUUDDDVVV	, where UUU is a d × d orthogonal matrix,
VVV is a d1 × d1 orthogonal matrix, andDDD is a d × d1 diagonal matrix with non-negative numbers on
the diagonal. It is easy to prove that all non-negative values on the diagonal ofDDD are 1. According to
Székely and Rizzo (2009), Theorem 3, (ii),

V2(βββ	XXX,YYY) = V2(VVVDDDUUU	ηηη	XXX,YYY) = V2(DDDUUU	ηηη	XXX,YYY).

Let UUU	ηηη	XXX = (X̃XX1, . . . , X̃XXd)
	. Since all non-negative values on the diagonal of DDD are 1, and

DDD	UUU	ηηη	XXX = (X̃XX1, . . . , X̃XXd1)
	, by Lemma .1, we get

V2(DDDUUU	ηηη	XXX,YYY) ≤ V2(UUU	ηηη	XXX,YYY).

The equality holds if and only if d = d1. According to Székely and Rizzo (2009), Theorem 3, (ii)

V2(UUU	ηηη	XXX,YYY) = V2(ηηη	XXX,YYY).

Thus
V2(βββ	XXX,YYY) ≤ V2(ηηη	XXX,YYY),

and equality holds if and only if S(βββ) = S(ηηη). �

Proof of Proposition 2.2.: For the βββ and ηηη in Proposition 2.2, there exists a rotation matrixQQQ such
that βββQQQ = (ηηηa,ηηηb), and S(ηηηa) ⊆ S(ηηη), and S(ηηηb) ⊆ S(ηηη)⊥, where S(ηηη)⊥ is the orthogonal space
of S(ηηη).

Since YYY ηηη	
b XXX |ηηη	XXX and P	

BBB(���X)XXX Q	
BBB(���X)XXX, therefore(
YYY

ηηη	XXX

)
ηηη	
b XXX.

According to Proposition 4.3 (Cook 1998),(
YYY

ηηη	
a XXX

)
ηηη	
b XXX.

LetWWW1 =
(

ηηη	
a XXX
0

)
, VVV1 = YYY ,WWW2 =

(
0

ηηη	
a XXX

)
, and VVV2 = 0, then (WWW1,VVV1) (WWW2,VVV2). According to

Székely and Rizzo (2009), Theorem 3, (iii),

V2(WWW1 +WWW2,VVV1 +VVV2) < V2(WWW1,VVV1) + V2(WWW2,VVV2),

that is
V2(QQQ	βββ	XXX,YYY) = V2(βββ	XXX,YYY) < V2(ηηη	

a XXX,YYY) ≤ V2(ηηη	XXX,YYY).
�
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