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In this article, we propose a new method for sufficient dimension Received 23 June 2018
reduction when both response and predictor are vectors. The new Accepted 18 December 2018

method, using distance covariance, keeps the model-free advantage, KEYWORDS

and can fully recover the central subspace even when many predic- Central subspace; distance
tors are discrete. We then extend this method to the dual central covariance; dual central
subspace, including a special case of canonical correlation analy- subspace; projective

sis. We illustrated estimators through extensive simulations and real resampling; sufficient

datasets, and compared to some existing methods, showing that our dimension reduction
estimators are competitive and robust.

1. Introduction

Suppose Y is a response (scalar or vector) and X is a p x 1 predictor vector. Sufficient
dimension reduction (SDR; Li 1991; Cook 1994, 1996) is a methodology for reducing
the dimension of predictors without loss of regression information. The ultimate goal of
sufficient dimension reduction is to search ,BTX, where B is a p x d matrix, d < p, such
that Y depends on X only through BTX. That is: Y 1L X | 8TX, where 1. means indepen-
dence. The column space of B, denoted by S(B), forms a dimension reduction subspace
(Li 1991; Cook 1996). The intersection of all such subspaces, if itself is a dimension reduc-
tion subspace, is called the central subspace (CS; Cook 1996), and is denoted by Sy |x.
The dimension of Sy |x, denoted by dim(Sy|x) = d, is called the structural dimension.
Under mild conditions (Cook 1996; Yin, Li, and Cook 2008), the CS exists and is unique.
We assume CS exists throughout this article.

Many methods have been proposed in this area. These include the inverse approaches:
SIR (Li 1991), SAVE (Cook and Weisberg 1991), IR (Cook and Ni 2005), DR (Li and Wang
2007); forward approaches: Hristache, Juditsky, Polzehl, and Spokoiny (2001), MAVE (Xia,
Tong, Li, and Zhu 2002) and SR (Wang and Xia 2008); correlation approaches: CANCOR
(Fung, He, Liu, and Shi 2002), Kullback-Leibler (KL)-distance (Yin and Cook 2005) and
Fourier transform (Zhu and Zeng 2006; Zeng and Zhu 2010). However, these methods
require either the linearity condition or constant covariance condition, or the predictors
to be multivariate normal, continuous and the link function to be smooth. Recently, Sheng
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and Yin (2013, 2016) developed a novel method using distance covariance (DCOV; Székely,
Rizzo, and Bakirov 2007; Székely and Rizzo 2009) for SDR. The method does not require
linearity condition or constant covariance condition, or any particular distribution on X,
X |Y or Y| X. These advantages enable the method to work effectively under a variety of
X: X could be normal, non-normal, continuous, or discrete.

Various dimension reduction concepts can be extended to a multivariate response by
replacing random scalar Y with random vector Y. Generally, there are three approaches
to extend dimension reduction objects. The first approach is to slice the multidimensional
Y into hypercubes. However, this method faces ‘curse of dimensionality’ since the num-
ber of observations within each hypercube decreases sharply as when the dimension of
response increases. The second approach is to target the central mean subspace (Cook and
Setodji 2003) or the central moment subspace (Yin and Bura 2006). The third approach
is to estimate the marginal dimension reduction spaces, and then pool these estimates to
recover the central subspace (Saracco 2005). However, the latter two methods are not guar-
anteed to fully recover the dimension reduction space. The projective resampling method
(Li, Wen, and Zhu 2008) solves these problems by projecting the multivariate response
along m randomly sampled directions, where m is a pre-selected integer, to obtain m scalar-
valued responses, then use any dimension reduction method for a univariate response to
get a subspace. Averaging these m subspaces, we can estimate the CS. It is shown that this
method can fully recover the CS.

Canonical correlation analysis (CCA) extracts a pairwise linear relationship between
two random vectors. Kettenring (1971) extended CCA to multiple sets, by maximising a
generalised measure of correlation between the random vectors. Burg and Leeuw (1983)
first proposed a method termed nonlinear canonical correlation analysis using an alternat-
ing least squares algorithm. Yin (2004) used KL information to find linear and nonlinear
relationships between two sets of random vectors. Yin and Sriram (2008), Iaci, Yin, Sriram,
and Klingenberg (2008) and Iaci, Sriram, and Yin (2010) extended this idea to independent
groups and multiple sets of random vectors. However, all of these CCA methods require
that the number of coefficient vectors from both sets that provide the dimension reduction
be equal. Iaci, Yin, and Zhu (2015) introduced the dual central subspaces (DCS), which is
to provide a dimension reduction of both vectors without requiring the dimensions of the
reduction to be equal, with the idea that the true associations between the random vectors
may not be equal.

In this article, based on the advantages of DCOV, we develop several methods (combin-
ing projective resampling and sequential search) to implement dimension reduction for a
multivariate response. Among them, one approach is to average the m subspaces to get the
CS. The other is to sum m distance covariance functions and then obtain the CS. We also
introduce a novel idea of k nearest neighbours kNN procedure to estimate the dimension
of the CS. We extend the two DCOV methods to canonical analysis as canonical distance
covariance analysis (CDCA) and to estimate DCS, and use the bootstrap method to esti-
mate the dimension of DCS. Through a number of simulation studies, we demonstrate the
better performance of the proposed methods.

The rest of the article is organised as follows: in Section 2, we describe our method in
details, including DCOV, projective resampling approach, DCS, methods to estimate the
dimensions of CS and DCS. In Section 3, we conduct simulation comparisons between our
estimators and others in a variety of models; and in Section 4, we summarise our work.
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2. Methodology
2.1. Distance covariance (DCOV) for sufficient dimension reduction

DCOV is introduced by Székely et al. (2007) as a new measurement of multivariate
dependence. Let Z; € R? and Z, € R7 be random variables, where p and g are positive
integers. Let V(Z1, Z;) be the distance covariance between Z; and Z,. The squared distance
covariance can be defined as the weighted L, norm of the distance between the joint char-
acteristic function of the random variables and the product of their marginal characteristic
functions:

V2(Z1,2,) = /R 29— fr Ofz, w5 drds

where fz,,fz,,and fz, z, are the characteristic functions of Z;, Z5, and (Z1, Z,), respectively.

. . 1 144, _ ..
The weight function w(t, s) = (cpcqls| p+p |t|q+q) 1 where cq and ¢ are positive constants,

and [s] ;,JFP is the 1+p power of the Euclidean norm of s in R?. Székely and Rizzo (2009)
developed an equivalent form of DCOV:

V3(Z1,Z,) = E|Zy — Z}||Z, — Z,| + E|Zy — Z}|E|Z, — Z)|
— E|Zy — Z}11Z, — Z}| — E|Zy — Z{|E|1Z, — Z}),

where (Z1,2,), (Z},Z)), (Z{,Z) are i.i.d. copies. In this form, DCOV requires E|Z;| < 0o
and E|Z;| < oo so that DCOV is finite (Székely et al. 2007).

DCOV equals to 0 if and only if two random vectors are independent (Székely
et al. 2007). Based on this property, Sheng and Yin (2013, 2016) proposed DCOV as an
SDR tool. Suppose B isa p x d matrix, where 1 < d < q. Under E|X| < coand E|Y| < oo
(Székely et al. 2007), the solution to the following optimisation problem will yield a basis
of the CS:

max V*(B'X,Y). (1)
BTExB=14
Throughout the article we assume E|X| < oo and E|Y| < co. The constraint BB =
I; in the optimisation problem guarantees the solution of B in the same scale and the
optimisation solver does not diverge.

2.2. DCOV for multivariate response

The method developed by Sheng and Yin (2013, 2016) is for a scalar response. We now
extend their approach and results to a multivariate response, say, Y, a g x 1 random vector.
To facilitate our discussion, let B be a p x d matrix and let S(B) be the subspace of R?
spanned by the columns of B. Let £ x be the covariance matrix of X, which is assumed
to be nonsingular. Let Pp(x,) denote the orthogonal projection onto S(B) with respect
to the inner product (a,b) = a” £b. That is, Ppzy) = B(BTZxB) 'BTEy. Let Qezy) =
I — Pg(zy), where I is the identity matrix. Following the previous section, then a basis of
the CS can be obtained by solving (1) with Y replaced by Y, and obtain the following.

Proposition 2.1: Let n be a basis of the CS with dimension d, B be a p x dy matrix,
do < d, diim(S(B)) = do, ' Exn = I4, and BT TxB = I4,. Assume S(B) < S(n), then
V2BTX,Y) < V*(n'X,Y). The equality holds if and only if S(B) = S().
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Proposition 2.2: Let 1 be a basis of the CS with dimension d, B be a p x dy matrix,
n'Exn =14 and BT ExB = I4,. Here dy could be bigger, less than or equal to d. Suppose
Pz X L Qe X, and S(B) € S(), then V2(B'X,Y) < V2 (n'X,Y).

Proposition 2.1 suggests that if S(B) is a subspace of S(n), then the squared distance
covariance between 87X and Y is always less than or equal to that between ' X and Y.
The equation holds if and only if S(8) = S(n). Proposition 2.2 suggests that if S(B) is
not a subspace of S(1), then under a mild condition, the DCOV between B X and Y is
always less than the DCOV between n " X and Y. These two propositions together indicate
that by maximising V2(B " X, Y) with a constraint of 8 can always identify the CS. Follow-
ing Székely et al. (2007), a sample version for a multivariate response can be defined as
V2BTX,Y) = (1/n?) ZZ,I:l Aw(B)By, where, fork, [ = 1,...,n,

AuB) = an(B) — ar.(B) —ai(B) +a.(B)

1 n
au(B) = 18" X — B'Xil, @ (B) = — > au(B),

I=1

1 — 1 —
a1B) =~ au).a.B)=— ) auB).

k=1 k=1

Similarly, define by = |Yy — Y;| and By = byy — b — b+ b_, where| -|is the Euclidean
norm in the respective dimension. Replacing X x with its sample version X x, the estimated
basis matrix of the CS is

N, =arg max Vﬁ(ﬁTX,Y). (2)
BTExp=1,

Using a Sequential Quadratic Programming (SQP) method, we can solve the nonlinear
optimisation problem in Equation (2).

2.3. DCOV with projective resampling

Projective resampling (Li et al. 2008) is an SDR method for multivariate responses. Let
t be a generic vector in RY. It is established on the statement: Y Il X | 87X if and only if
tTY 1 X | BTX for all t € RY. That is

SY|X = Span{StTle,t S Rq}

In this way, the multivariate response problem is reduced to the many univariate response
problem. Thus, all SDR methods developed for the univariate response can be employed
to the multivariate response by estimating Syry | ,,x for all# € R9. However, it is impos-
sible to conduct dimension reduction for all ¢ € IR4. Hilafu and Yin (2013) discuss the size
of tas:

(i) if the structural dimension is d, there exist d t;’s such that Sy |x = Span{Sgry | x}s
(ii) if the size of t is large enough, the subspace will be recovered through those univariate
CSs.
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Li et al. (2008) proposed projective resampling SIR, SAVE, and DR. In addition to the
multivariate DCOV (denote it as DCOVO0) that is described in Section 2.2, we apply pro-
jective resampling to univariate DCOV. Suppose the sample size of random direction ¢ is
m. With different approaches to combine all generated univariate 'Y, we develop DCOV1
and DCOV2 methods:

DCOV 1: For each of the m combinations of Y, t,-TY, i=1,...,m,solve the optimisation
problem to get
ﬁi =arg max Vz(ﬂTX, t,-TY).
BTExB=14
Then an estimated basis of CS can be the first d eigenvectors of

1 & s AT
;Zﬂiﬂi'

i=1

DCOV 2: Sum the squared distance covariance for each t;'Y as the new objective
function, and then solve the optimisation problem

A

m
B =arg max V2(BTX, t;TY).
BTExB=1, 1221 l

DCOV1 is similar to the outer product gradient (OPG) type. We get a basis for each
univariate t;7Y, B ;»fori=1,...,m, and then apply singular value decomposition (SVD)
to (1/m) Y ", ﬁfl,T to obtain the estimated ﬁ . While DCOV?2 is similar to a MAVE type,
we sum V?(BTX,t1Y) first and get the estimated ﬁ . In the simulation section, results of
both methods are given for comparison.

Note that t;, i = 1,...,m, is a random direction that the multivariate response is pro-
jected onto, and m is the total number of random directions. Typically, they can be
generated by using multivariate normal with unit length (Li et al. 2008). For DCOV1, m
estimates of lii are obtained for each random direction t;, i = 1,. .., m. The estimate Bis

AT A
calculated by singular value decomposition of the sum of B; B;. Note that by invariance
law, we can equivalently work on a standardised predictor Z-scale. As such, we first stan-
dardise X- to Z-scale. After obtaining the estimate under the Z-scale, we transform the

estimate back to the X-scale, B = fi;/zf} . This scheme seems to work well in our simu-
lations and real data studies. An alternative procedure is to use a successive one-at-a-time
search similar to that of Yin et al. (2008).

Sheng and Yin (2016) showed in their paper that the estimator of univariate DCOV,
fp = AgMaXgrs gy Vﬁ (B'X,Y), is consistent and asymptotically normal. Here for
DCOV1, by the consistency proposition for the univariate response in the work of Sheng

and Yin (2016), we have n; ﬁ) nQ, where Q is a rotation matrix, for each tiTY, with
i=1,...m. We combine all these 1}, and use SVD to obtain the estimator in DCOV1,

thus it also has the consistency property, that is, n, £ nQ. The asymptotically normal
property can be shown in the same way. For each univariate response tiT Y,i=1,...m,by

the normality property, /n [vec(n;) —vec(nQ)] 3 N(0, V(nq)), then when adding these
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estimators, the final estimator by DCOV1 has asymptotic normality as that in Sheng and
Yin (2016). Consider m =1 in DCOV?2, the estimator has 1/n-consistency and asymptotic
normality, when increasing m, that is, adding squared distance covariance, the estimator
also has 4/n-consistency and asymptotic normality, but with tedious calculations based on
Sheng and Yin (2016).

2.4. Estimating the DCS via distance covariance

Consider two sets of random vectors, X is p x 1 and Y is g x 1, exchange the role of X and
Y, ifa isa g x s matrix, s < g, X depends on Y only through @ Y. That is,

YIX|e'Y.

The column space of & is called S (@), and the intersection of such subspaces is defined as
the central subspace of X given Y, denoted by Sx|y. The reduction subspace B, e is called
DCS by Iaci et al. (2015) as the combination of Sy |x and Sx |y.

The proposition below suggests ways to recover the DCS.

Proposition 2.3 (Iaci et al. 2015): Let B and A be the base for Sy | x and Sx |y, respectively.
The following conditions are equivalent:

(i) YLX|B'X and YLX|ATY,
(i) YLX|B'X and YLB'X|ATY,
(i) B'YLX|B'X and YLX|ATY.

Proposition 2.3 suggests that we can first reduce the dimension of X by treating Y as
response and then reduce the dimension of Y by treating X or B' X as response.

Assume the dimensions dy and dj, are known. Let (x;,y;), i = 1,...,n be the random
sample from (X, Y). The estimates of the matrices that form the bases of the DCS, A and
B can be obtained by finding the maximum of squared distance covariance:

(A,ﬁ) =arg max VZ(BTx,ATy)
ATSxA=1,,
BTﬁ:yBZIdy

The two constraints AT % xA =1, ,and B'EY yB = I, guarantee the estimated directions
has unit length and is orthogonal to each other. Here, Yy and $y are the sample covariance
matrixes for X and Y, respectively.

Since there are too many parameters when we estimate A and B simultaneously, we
propose two approaches to estimate A and B, separately, with a difference of the esti-
mation of A depends on B or not. The procedure of these two approaches are described
as Approach 1 and Approach 2, with the multivariate response in the squared distance
covariance (DCOVO0) as the objective function in the optimisation problem.

Approach 1: Estimate B considering Y as a response, and estimate A considering X
as a response. This means, we can calculate B = arg maxXpre pop V2B x,y) and A =
T ax
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Table 1. Methods for DCS.

Method Estimate B Estimate A
Approach1 DCOVO max  V2(BTX,Y) max  VZ(X,ATY)
BT EyxB=l4, ATSyA=ly,
Approach2 DCOVO max  V2(BTX,Y) max  V2BTX,ATY)
BT EyB=ly, AT SyA=ly,
Approach1 DCOV12 max  V2BTXt;TY) max V([ X,ATY)
BT SyB=ly, ATSyA=ly,
Approach2 DCOV1? max V2BTXtTY) max  V2(tTBTX,ATY)
BT SxB=ly, AT Sy A=y,
m m
Approach1 DCOV2 max Y V2BTXtTY) max Y VIt'XATY)
BT EyB=lg, i=1 AT A=y, i=1
m m “
Approach2 DCOV2 max Y VZBTXtY) max Y V(tBTX,ATY)
BT £xB=ly, i=1 AT A=, i=1

a Refer to the introduction above in this section for detailed calculation.

argmax,rg A=l Vﬁ (x, AT},) at the same time, since the two steps do not depend on each

other.

Approach 2: Estimate B considering Y as a response, and then estimate A considering
B'Xasa response. That is, after calculating

B=arg max V2BTxy),
BTXxB=I,,

obtain A with the projection 1§Tx,
A= arg max Vﬁ(ﬁTx,ATy);
ATSyA =ly,

We call the above two approaches ‘Approachl DCOVO0’ and ‘Approach2 DCOV(’,
respectively, since DCOVO is used in the procedure. When using DCOV derivatives with
projective resampling on the multivariate response, we can develop methods ‘Approach 1
DCOVY’, ‘Approach 2 DCOVYT’, ‘Approach 1 DCOV?2’ and ‘Approach 2 DCOV?2’, whose
optimisation problems are summarised in Table 1. Based on Sheng and Yin (2016), it can
be easily shown that the estimator in Table 1 are consistent and asymptotically normal.
Canonical analysis, as a special case of DCS, is termed as CDCA for this setting, where it
requires d, = dy, and the calculation is through pairwise, not matrix optimisation. That is,
like in CCA, we search one pair of vectors, and after this, we search another pair of vectors
in the respective orthogonal spaces.

2.5. Estimating dimension

2.5.1. Estimating d for multivariate response

In practice, d, the dimension of CS is unknown and must be inferred from data. A few
methods have been proposed in the literature, for example, a sequential test based on a
chi-squared statistic proposed by Li (1991, 1992), a permutation based test by Cook and
Yin (2001), and a bootstrap procedure initialled by Ye and Weiss (2003), followed by Zhu
and Zeng (2006), and Sheng and Yin (2016). In this article, we introduce a kNN procedure
for the purpose of choosing d, following the idea of the kNN method (Wang, Yin, and
Critchley 2015).
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Given {(X;, Y}, 1 <i < n, d can be evaluated by the following KNN procedure:

(1) foreachpointin {(X;, Y;), 1 < i < n}, obtain the k nearest neighbours of sample point
i using Euclidean distance |X; — Xj|, where 1 < j < n. The k nearest neighbours of
sample point i is denoted as {(X]@,Y}')), 1 <j<k}

(2) for each sample point i, apply any dimension reduction method to its k nearest neigh-
bours {(X@, Y]@), 1 <j <k}, and estimate ,31-. Setting the dimension of ,31- as1lor2
is usually good enough;

(3) after all Bi, 1 <i < n are obtained, get the eigenvalues of ) 1, ﬁiﬁiT, denote as
)\.1, )\.2, PR ,)\.P;

(4) calculate the ratio r; = X;/Aix1, 1 <i <p — 1. Choose d as where the largest r;
happens in the sequence.

In the last step, this maximal eigenvalue ratio criterion was suggested by Luo, Wang, and
Tsai (2009) and was also used by Li and Yin (2009).

2.5.2. Estimating dimension of DCS

In practice, the dimension of the DCS (dy, dy), is unknown and needs to be estimated. We
adopt the idea of Iaci et al. (2015) to estimate the dimensions of the DCS. Suppose B;, and
Ay , are the true bases for Sy|x and Sx |y, respectively. Let Sp, and Sy, be subspace for
a fixed pair of dimensions k and /. Calculate the estimated dual subspace on the original
data, denoted by S and S . Then calculate the bootstrap estimated dual subspaces S b

and S b If k = dy, and I= dy, the variabilities of S pand S, A respectively, from S and
A
S 4, are expected to be small, i.e. S » and Sp, estlmate the central subspace Sy | x, and SAb
By 1
and Sy, estimate central subspace of Sx | y. A, (S1, S2), defined in the next section, is used
to measure the distance between the S and Sp;, and SAb and Sy,. Given {(X;, Y)}, 1 <
p 1

i < n, the following procedure can be used to estimate the dimensions of the DCS:

(1) fix (k,]), calculate the S and Si based on the original data;
(2) from{(X;,Y)}, 1 <i< n, generate N bootstrap samples each with size n, denote by

(X2, Y} for1 <j < N;

(3) foreach bootstrap sample {(Xl@, Ylg))} for1 < j < N, calculate the bootstrap subspace
SBZ@ and Sﬁfy(j), for 1 <j=<N;

(4) calculate the distance Am(SBk, SB:U))’ and A, (S A SAZb(j)), forl <j<N

(5) calculate the average A, x; = [Am(Sék,SBZg)) + Ap(S AI,SAf(j))]/ 2 for the estima-

tion of the variability of the dual subspace. Find a pair of (k, ]) that the smallest value
of average A, 1. with smallest standard deviation occurs.

3. Numerical studies

In this section, we assess the proposed methods through simulation and real data study.
In the simulations, we compare the performance of our methods DCOV0, DCOV1 and
DCOV?2 with some well-established SDR methods: PRSIR (Li et al. 2008), PRSAVE (Li
et al. 2008), and RMAVE-§¢ (Yin and Li 2011). We choose these three methods because
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SIR and SAVE are the most well-known methods in SDR, and RMAVE-F¢ is the most
efficient method for multivariate SDR. We include the results in a sequential way (Yin
et al. 2008) of DCOV1 and DCOV2, and denote them as DCOV1-seq and DCOV2-
seq, which is to calculate the first single direction, and calculate the second direction in
the orthogonal subspace of the first direction and so on. In the simulations for DCS, we
compare the performance of six methods for CDCA and DCS.

Two measures of accuracies are used in the simulation study.

(1) Distance between two projection matrices: A,,(S1,S2) = ||Ps, — Ps, || (Li, Zha, and
Chiaromonte 2005), where || - || is the maximum singular value of a matrix, S, S»
are two subspaces with the same dimensions, and Ps, and Pgs, are the orthogonal
projections onto the subspace S and S5, respectively. The smaller the A, is, the closer
the two subspaces.

(2) The squared vector correlation coefficient: p? (f)) = IDTﬁf)TDl = ]_[f) Ai
(Hotelling 1936), where D and D are the true and estimated bases, and 1; are the eigen-
values of DTDDTD, and 0 < 0 (f)) < 1. The statistic p (D) is a measure of correlation
between two subspaces. The larger the p (f)) is, the better the estimate is.

Distance between two projection matrices is evaluated for all models, and the squared
vector correlation coeflicient is used for CDCA (Model 4) and DCS (Model 5).

The R package Nlcoptim (Chen and Yin 2018) is used to solve the above nonlinear
optimisation problem. This package implements an SQP method to solve nonlinear opti-
misation problems with nonlinear objective and nonlinear constraint function. The initial
value for the optimisation problem can be generated randomly, but it is not efficient when
the dimension of X is large, since we need variation on each parameter. Thus, we suggest
to use the SIR and SAVE estimates and choose the one which gives the larger squared
distance covariance as the initial values. Codes are available upon request to the first
author.

3.1. Simulations

Here we simulate five models. The first three models are for the multivariate response,
with the relationships of Y and X linear (Model 1), quadratic (Model 2), and other non-
linear (Model 3). We use these models to demonstrate that our methods perform well for
linear and nonlinear relationships between two random vectors. The forth model is for
CDCA, where d; = d,, = 1 and the relationship between this pair of vectors is quadratic.
This model is used to confirm that CDCA outperforms CCA at nonlinear setting. And the
last model is for DCS, where d,, # dy, and we use it to demonstrate that our methods work
well in finding dual central subspace.

For the first three models, 100 replicates of the data are generated. The comparison is
made for three sample size n =100, 200 and 400. For PRSIR and PRSAVE, we use m = 200
random directions; for RMAVE-§ ¢, we take m = 100 random directions; and for DCOV1
and DCOV2, we use m = 50 after plotting the number of random directions and accuracy
via the first three models in this section under design part (1): standard multivariate normal
distribution (not reported here). We consider four different designs on predictors for each
model to examine if the model assumption can go beyond normal distribution. The four
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designs are: part (1), standard multivariate normal predictors, X ~ N(0,I); part (2), non-
normal but continuous predictors; part (3), discrete predictors, and part (4), multivariate
normal predictors with covariance, X ~ N(0, ¥ ). The following three models come from
Li et al. (2008)[Respective their examples of 4.1, 4.5, and 4.4].

Model 1: Let p=6,g=4,X ~ N(0,I¢). Generate Y as

Yi=B{X+e,
Y, =B X + e,
Y; = e,
Y4 = €4.

where 81 = (1,0,0,0,0,0)T, B, = (0,2,1,0,0,0)T, and € ~ N4(0, ) with

1 -5 0
YX=|-5 1 0
0 0 I

In this model, d =2. In part (1), X follows the standard normal distribution; in part (2),
X; ~ Unif(—«/g, V3),fori=1,...,6;in part (3), X; ~ Poisson(1), fori=1,...,3, and
Xi; ~ N(0,1), fori =4,...,6,and in part (4),X ~ N(0,X,), where ¥, = (0j; = (')
and p = 0.5. For this model, Table 2 gives the mean and standard deviation of the esti-
mation accuracy (A,,) based on N =100 simulated samples for each combination of eight
methods and three sample sizes.

PRSIR performs relatively well, because the response is a linear function of the predic-
tors. DCOVO performs the best for the standard normal design and second best for the
other three designs (very close to the top one: DCOV2-seq). RMAVE-F ¢ performs rela-
tively well. DCOV1 and DCOV?2 are not better than DCOVO0 in all cases; this may be due to
the fact that the objective functions in DCOV1 and DCOV?2 in the optimisation problem
are much more complicated than DCOVO0. As the sample size increases, the error decreases
substantially for all methods but DCOV1-seq, reflecting the fact that they are consistent,
while DCOV1-seq may not be stable.

Model 2: Let p=6,9=4,X ~ N(0,I¢). Generate Y as

Yy =1+ BIX)? +6,

YZ = ﬂ;rX + €,
Y3 = €3,
Y4 = €4,

where 81 = (1,0,0,0,0,0)T, 8, = (0,2,1,0,0,0)T, and € ~ N4(0, X) with
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Table 2. Comparison based on Model 1.

Part (1) Part (2) Part (3) Part (4)

n Method Am SEa,, Am SEap, Am SEa, Am SEa,
100 PRSIR 0.4001 0.1773 0.5552 0.1458 03918 0.1889 0.4746 0.1929
PRSAVE 0.9097 0.0977 0.9398 0.0950 0.9273 0.1125 0.9057 0.1245
RMAVE-F¢ 04144 0.1283 0.4387 0.1492 0.5454 0.2420 0.6214 0.2703
DCOVO 0.2730 0.0923 0.2609 0.0940 0.2373 0.1051 0.4044 0.1410
DCOV1 0.5831 0.2267 0.7695 0.1743 0.4993 0.2611 0.7137 0.2036
DCOV2 0.4083 0.2136 0.4696 0.2448 03729 0.2372 0.5342 0.2312
DCOV1-seq 0.4956 0.2088 0.4709 0.2131 0.5840 0.2802 0.6624 0.2079
DCOV2-seq 0.3536 0.1934 0.2287 0.0855 0.2040 0.1737 0.4454 0.1750
200 PRSIR 03372 0.1520 0.4938 0.1540 03313 0.1767 0.4149 0.2007
PRSAVE 0.7482 0.2174 0.8891 0.1587 0.8237 0.1985 0.8564 0.1476
RMAVE-F¢ 0.2595 0.0817 0.3378 0.1441 0.3263 0.0828 0.4138 0.2136
DCOVO 0.1943 0.0624 0.1825 0.0583 0.1453 0.0545 0.3196 0.0798
DCOV1 0.4802 0.2437 04232 0.2395 0.5873 0.2922 0.6587 0.2304

DCOV2 0.2745 0.2102 0.3816 0.2349 03129 0.2373 0.3435 0.2031
DCOV1-seq 0.5028 0.2294 04312 0.2248 0.6700 0.2893 0.6264 0.2320
DCOV2-seq 0.3699 0.1669 0.1621 0.0972 0.1190 0.1272 0.2803 0.1004

400 PRSIR 0.2985 0.1603 04314 0.1136 03025 0.1572 0.4190 0.2131
PRSAVE 0.6288 0.2392 0.8773 0.1594 0.8047 0.2153 0.7562 0.2003
RMAVE-F¢ 0.1963 0.0602 0.1797 0.0771 0.2507 0.0918 0.2764 0.1826
DCOVO 0.1412 0.0417 0.1308 0.0399 0.0945 0.0366 0.2615 0.0580
DCOV1 0.4470 0.2576 0.5143 0.2588 0.6652 0.3203 0.5840 0.2283

DCOV2 02114 0.1860 03167 0.2165 0.2806 0.2151 0.3682 0.2221
DCOV1-seq 0.5251 0.2163 0.5220 0.2777 0.7447 0.2814 0.5501 0.2475
DCOV2-seq 0.3449 0.1886 0.1298 0.0437 0.0766 0.1033 0.2312 0.1370

This model is the same as Model 1 except that Y; is a quadratic form of B{X. Again,
d=2. Table 3 reports the results for Model 2. We can see that except the discrete design,
PRSAVE performs better than PRSIR, because Y; has a quadratic function of BT X. How-
ever, they are not stable across the designs, neither do DCOV1 and DCOV2. DCOV1-seq
and DCOV2-seq perform well except for the non-normal design. For large samples,
DCOVO performs the best on the discrete design and second best on the standard normal
and non-normal designs, and RMAVE-§¢ performs the best on the non-normal design

and the second best on the correlated normal design.

Model 3: Letp=6,9=5,X ~ N(0,Is). Generate Y as

3x2 n
—_—— €1,
5+ (X +152 !

Yy =X + e 4

Yi=X3+

Y3 =X+ X5 +e3,
Yy = ey,
Y5 = es.
where € ~ N5(0, X) with ¥ = diag(X;, X,)
12 0

21:[_15 855] and T,=| 0 1/3
co 0 0
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Table 3. Comparison based on Model 2.

Part (1) Part (2) Part (3) Part (4)

n Method Am SE,, Am SEa,, Am SE,, Am SEa,,
100 PRSIR 0.8851 0.1563 0.8503 0.1597 0.2685 0.0815 0.8067 0.2014
PRSAVE 0.8235 0.1902 0.6010 0.2377 0.8765 0.1632 0.8227 0.1627
RMAVE-F¢ 0.4486 0.2715 0.6451 0.5345 0.3092 0.0720 0.9359 0.3878

DCOVO 0.5547 0.2951 0.7795 0.2317 0.1819 0.0609 0.6292 0.246
DCOV1 0.5316 0.2543 0.8683 0.1528 0.2665 0.0809 0.5339 0.2428
DCOV2 0.5200 0.2926 0.8695 0.1508 0.2931 0.1511 0.7509 0.2529

DCOV1-seq 0.3328 0.1425 0.6704 0.2221 0.2491 0.1105 0.4249 0.1336
DCOV2-seq 0.4946 0.2937 0.6486 0.3352 0.1640 0.0759 0.5531 0.2599

200 PRSIR 0.8750 0.1484 0.8087 0.1835 0.2024 0.0648 0.7280 0.2283
PRSAVE 0.3405 0.1450 0.5542 0.1826 0.5266 0.2175 0.5030 0.2049
RMAVE-Z¢ 0.1963 0.0644 0.2928 0.2912 0.2409 0.0862 0.5149 0.3685

DCOVO 0.3527 0.2700 0.5980 0.3017 0.1155 0.0378 0.3800 0.1496

DCOV1 0.3612 0.2015 0.7736 0.2233 0.1964 0.0727 0.3866 0.2039

DCOV2 0.4011 0.3173 0.8793 0.1641 0.2765 0.1857 0.6440 0.2814

DCOV1-seq 0.2090 0.0697 0.4272 0.2010 0.1952 0.0904 0.3249 0.0716
DCOV2-seq 0.2381 0.2025 0.4869 0.3907 0.1199 0.0651 0.3984 0.2731

400 PRSIR 0.6731 0.2335 0.7350 0.2212 0.1750 0.0579 0.3497 0.1672
PRSAVE 0.2262 0.0763 0.5288 0.1589 0.4727 0.2266 0.2869 0.1148

RMAVE-S¢ 0.2042 0.1482 0.1303 0.0353 0.1845 0.0577 0.2187 0.1515

DCOVO 0.1443 0.0466 0.3870 0.3038 0.0733 0.0250 0.2998 0.0718

DCOV1 0.2059 0.1547 0.6723 0.2815 0.1514 0.0464 0.3168 0.1170

DCOV2 0.2983 0.3333 0.8060 0.2490 0.2489 0.1803 0.4693 0.2773

DCOV1-seq 0.1398 0.0460 0.6594 0.2375 0.1623 0.0712 0.2855 0.0616
DCOV2-seq 0.1712 0.1800 0.5090 0.4282 0.1014 0.0759 0.2132 0.1082

Again, d=2. Table 4 reports the results for Model 3. The four designs are same as
in Models 1 and 2. All methods perform well with high accuracies. The majority of the
performances for DCOVO stays on top one or two for all four designs and three sample
sizes. RMAVE-§ ¢ performs well for the normal design, but not as good as other DCOV0
methods on the non-normal design and discrete design. The errors decrease rapidly when
sample size increases for all methods, which means that all estimates are consistent.

To summarise our simulation studies, we conclude that DCOV0 provides the most sta-
ble estimator across models with different designs, standard normal, non-normal, discrete
and correlated normal predictors, especially when sample size is large.

To illustrate the kNN method for estimating d, we use the three models under design
part (1), set (n, p) = (400, 6), and k =20. The ratios of A for Models 1, 2, and 3 are sum-
marised in Table 5. It indicates that maximum ratios happen at the dimension of the CS,
d=2, as we expected.

Now we simulate examples to conduct CDCA. For each model setting, 100 replicates of
the data are generated. The comparison is made for three sample size n = 100, 200, and
300.

Model 4: Let p=6,g=4,X ~ N(0,I¢). The four-dimensional response random vector Y
is generated as

Yi=1+@B"X)+e,
Y, = e,
Y3 = €3,

Y4 = €4.
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Table 4. Comparison based on Model 3.

Part (1) Part (2) Part (3) Part (4)
n Method Am SE,, Am SEa,, Am SEa,, Am SEa,,
100 PRSIR 0.2716 0.1048 0.7269 0.1860 0.3071 0.1393 0.3407 0.1271
PRSAVE 0.8732 0.1547 0.5679 0.2320 0.8142 0.1995 0.8667 0.15555
RMAVE-F¢ 0.2386 0.0827 0.3131 0.1367 04173 0.1538 0.5722 0.3146
DCOVO 0.2477 0.0877 0.2002 0.0791 0.1556 0.0902 0.4107 0.1287
DCOV1 0.2809 0.1155 0.2012 0.0603 0.2436 0.1124 0.5135 0.2008
DCOV2 0.2718 0.2008 0.4010 0.2062 0.2633 0.1983 0.5666 0.2664

DCOV1-seq 0.3032 0.0877 0.2341 0.0758 0.2715 0.0995 0.4711 0.1947
DCOV2-seq 0.2503 0.1242 0.1876 0.0921 0.1049 0.0866 04173 0.2092

200 PRSIR 0.2250 0.0743 0.6074 0.1818 0.2618 0.0903 0.2539 0.1064
PRSAVE 0.5462 0.2452 0.2944 0.1279 0.3823 0.2069 0.7569 0.2010
RMAVE-3¢ 0.1700 0.0610 0.2179 0.0885 0.2595 0.0612 0.3373 0.1772

DcCovo 0.1569 0.0519 0.1283 0.0414 0.0987 0.0677 0.3369 0.0861

DCov1 0.2170 0.1252 0.1493 0.0440 0.1579 0.0498 0.3643 0.1096

DCOv2 0.1573 0.1021 0.3787 0.2134 0.2377 0.1789 0.4399 0.2823

DCOV1-seq 0.2338 0.0800 0.1597 0.0499 0.1986 0.0730 0.4344 0.1635
DCOV2-seq 0.1430 0.0488 0.1331 0.0640 0.0698 0.0686 0.2160 0.0538

400 PRSIR 0.1660 0.0592 0.2826 0.1235 0.2229 0.0905 0.1981 0.0736
PRSAVE 0.2855 0.1578 0.2405 0.0876 0.1991 0.0719 0.5068 0.2457
RMAVE-S¢ 0.1071 0.0367 0.1302 0.0424 0.2069 0.0702 0.1866 0.0845

DcCovo 0.1071 0.0319 0.0870 0.0231 0.0633 0.0175 0.2849 0.0715

DCoV1 0.1597 0.1061 0.1273 0.1560 0.1189 0.0357 0.3321 0.1178

DCOv2 0.1223 0.1579 0.3539 0.2556 0.2235 0.1786 0.4472 0.2823

DCOV1-seq 0.1650 0.0623 0.1182 0.0305 0.1260 0.0414 0.3246 0.0677
DCOV2-seq 0.1114 0.0467 0.1147 0.0822 0.0542 0.0556 0.1461 0.0538

Table 5. Ratio of eigenvalues for Models 1, 2, and 3.

Model rn ==/ r=MXi/A3 r3 = A3/A4 r4 = Aa/As rs = As/Ag
1 1.0356 1.4020° 1.0317 1.0651 1.0593

2 1.1668 1.3368° 1.0551 1.0254 1.0053

3 1.8969 2.1869° 1.0869 1.0123 1.0381

a

Where the largest ratio occurs.

where 8 = (0,2,1,0,0, O)T, and € ~ N4(0, X) with

1 -5 0
T=|-5 1 0
0 0 L

For this model, dy = d, = 1. Therefore, we use @ and b to denote A and B, and use a

and b to denote A and B. The results for Model 4 is shown in Table 6. All DCOV methods
perform better than traditional CCA with lower A (b) and A,,(a), and higher p(b) and
p(a), this is because the relationship in this model is quadratic, and CCA cannot capture
this nonlinear pattern. The performance of recovering the directions gets better when the
sample size increases, indicating consistency. Overall, Approach 2 outperforms Approach
1, which suggests that recovering a based on the distance covariance of b ' X is better than
based on that of X. When the relationship between X and Y is linear, CCA performs as well
as the DCOV methods under both estimation approaches (not reported here).

We then investigate the performance of our methods for DCS using an example that
is similar to the examples provided by Wang et al. (2015). The relationships between two



JOURNAL OF NONPARAMETRIC STATISTICS 281

Table 6. Comparison based on Model 4.

n Order DCOV  An(@  SEa,@ 5@  SE,@ Amb) SEn, ()  pb)  SE,(b)

100  Approach1 DCOVO  0.4209 0.2876 0.7409  0.3041 0.4663 0.2214 0.7339  0.2374
DCOV1 0.2337 0.0976 0.9359  0.0579  0.3055 0.1470 0.8852  0.1146

DCOV2  0.1413 0.1067 0.9687  0.0964  0.6944 0.2120 04732 0.2736

Approach2 ~ DCOVO  0.4209 0.2876 0.7409  0.3041 0.4757 0.2461 07136 0.2628

DCOV1 0.2337 0.0976 0.9359  0.0579  0.1689 0.0726 0.9662  0.0272

DCOV2  0.1413 0.1067 0.9687  0.0964  0.3087 0.1013 0.8944  0.0731

CCA 0.8160 0.1927 0.2974 02778  0.9738 0.0675 0.0472  0.1077

200  Approachl DCOVO  0.1818 0.0919 0.9585  0.0435  0.2929 0.1494 0.8920  0.1117
DCOV1 0.1645 0.0575 0.9696  0.0200  0.2568 0.1316 0.9169  0.0929

DCOV2  0.1066 0.1175 0.9749  0.1056  0.5374 0.2199 0.6632  0.2508

Approach2 ~ DCOVO  0.1818 0.0919 0.9585  0.0435  0.3261 0.1756 0.8630  0.1532

DCov1 0.1645 0.0575 0.9696  0.0200  0.1366 0.0528 09785  0.0168

DCOV2  0.1066 0.1175 0.9749  0.1056  0.2727 0.0966 0.9163  0.0961

CCA 0.7878 0.1962 03413  0.2845 09773 0.0337 0.0437  0.0637

300  Approachl DCOVO  0.1393 0.0506 0.9780  0.0159  0.2529 0.1107 0.9238  0.0652
DCov1 0.1382 0.0548 0.9779  0.0188  0.1945 0.0841 0.9551 0.0400

DCOV2  0.0882 0.0871 0.9846  0.0509  0.4032 0.1831 0.8041 0.1847

Approach2  DCOVO  0.1393 0.0506 0.9780  0.0159  0.2543 0.1139 0.9224  0.0686

DCOV1 0.1382 0.0548 0.9779  0.0188  0.1144 0.0406 0.9852  0.0099

DCOV2  0.0882 0.0871 0.9846  0.0509  0.2558 0.0569 09313  0.0291

CCA 0.7521 0.2184 03872 03066  0.9726 0.0608 0.0503  0.0956

random vectors X and Y are linear as well as nonlinear. For each example setting, 100 repli-
cates of the data are generated. The comparison is made for three sample sizes n =100, 200,
300. For the two projective resampling-based methods DCOV1 and DCOV2, we choose
the number of random directions m = 50, and transfer the multivariate response to 50
univariate responses. For DCOVO0, we treat the response as it is — multivariate form. The
following models are considered:

Model 5: Letp=5,q=4,X ~ N(0,I5). The four-dimensional response random vector Y
is generated as

Y, = 4cos(ﬂTX) + 0.3¢y,
Y2 = ﬂTX + 0.562,
Y3 = €3,

Yy = €4.

where B = (1,1,0,0,0)T and € ~ N4(0,I;). In this model, A; = (1,0,0,0)T, A, =
(0,1,0,0)T,A = (A1,A,),and B = B.

Table 7 shows the results of six methods to recover DCS for Model 1. All the six meth-
ods perform well. For each method, A,, decreases and p increases with the sample size
increase, indicating consistency. Overall, Approach 2 outperforms Approach 1, suggesting
that recovering A based on the distance covariance of B' X is better then based on that of
X. A dataset of size n =300 is selected to illustrate the bootstrap method, with 100 boot-
strap iterations. Table 8 shows the results for different (k, ). We are looking for the smallest
mean and least variability. We can see that (k,]) = (1, 1) produces the smallest mean but
(k,1) = (1,2) has a very close mean! In such a case, the variability plays an important role:
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Table 7. Comparison based on Model 5.

n Order DCOV  An@A)  SEa,A)  pA)  SE,A)  AnB  SEA,B) 5B  SE,B

100  Approach1 DCOVO  0.1166 0.0410 0.9847  0.0107  0.2962 0.1943 0.8714  0.1833
DCOV1 0.1154 0.0443 0.9847  0.0115  0.2880 0.1786 0.8799  0.1656

DCOV2  0.1262 0.1130 09714  0.0635  0.4409 0.2238 0.7521  0.2317

Approach2  DCOVO  0.1166 0.0410 0.9847  0.0107 03106 0.1778 0.8687  0.1578

DCOV1 0.1154 0.0443 0.9847  0.0115  0.0938 0.0410 0.9881  0.0099

DCOV2  0.1262 0.1130 0.9714  0.0635  0.5510 0.2429 06181  0.2833

200  Approach1 DCOVO  0.0790 0.0299 0.9928  0.0052  0.2069 0.1248 0.9394  0.0824
DCov1 0.0817 0.0286 09925  0.0049  0.2161 0.1252 0.9353  0.0806

DCOV2  0.0696 0.0863 0.9877  0.0714  0.4069 0.2284 0.7800  0.2422

Approach2  DCOVO  0.0790 0.0299 0.9928  0.0052  0.2009 0.1117 0.9448  0.0617

DCoV1 0.0817 0.0286 09925  0.0049  0.0651 0.0225 0.9947  0.0035

DCOV2  0.0696 0.0863 09877  0.0714  0.2946 0.2366 0.8466  0.2112

300  Approach1 DCOVO  0.0657 0.0271 0.9949  0.0037  0.1443 0.0784 0.9716  0.0370
DCOV1 0.0684 0.0234 0.9947  0.0036  0.1605 0.0919 0.9633  0.0431

DCOV2  0.0621 0.0615 09923  0.0339 03702 0.2236 0.8122  0.2109

Approach2  DCOVO  0.0657 0.0271 0.9949  0.0037  0.1451 0.0767 0.9716  0.0364

DCOV1 0.0684 0.0234 0.9947  0.0036  0.0540 0.0208 0.9963  0.0027

DCOV2  0.0621 0.0615 0.9923  0.0339  0.2018 0.1846 0.9189  0.1363

Table 8. Bootstrap distance measure for

Models 5.

k i Amkl SEAm,k,I
1 1 0.1489 0.1409
1 2 0.1604 0.0175
1 3 0.4215 0.1260
2 1 0.4402 0.1037
2 2 0.4745 0.1170
2 3 0.7224 0.1985
3 1 0.4240 0.0942
3 2 0.4970 0.1214
3 3 0.7746 0.1828

our ad hoc experience suggests that one should choose the dimension with the least vari-
ability! Note that (k,]) = (1, 2) has the least variability (0.0175 vs. 0.1409 of (k,[) = (1, 1)).
So we will choose (k,I) = (1, 2), which agrees with the true dimension of DCS.

3.2. Application

In this section, we analyse the Minneapolis elementary schools data set (Cook 1998, p. 216)
and the LA pollution data set (Shumway, Azari, and Pawitan 1988), to illustrate the DCOV
methods and DCS approaches, respectively.

3.2.1. Minneapolis elementary schools data

These data were used to explore the relationship between students’ performance and char-
acteristics of school. It has 63 observations (schools) and 13 variables. The response is a
four-dimensional multivariate response, which is described as

e 4BELOW: percentage of 4th graders scoring BELOW average on a standard 4th grade
vocabulary test in 1972.
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Table 9. Ratio of eigenvalues r for Minneapolis elementary schools data.

n r r3 ry Is r'e ry

Ratio-original 1.812453 1323173 1.384807 1.508781 1.525245 1.202717 1.074232
Ratio-sqrt transformation 5.917090 1.149957 1.117052 1.308639 1.153622 1.229887 1.236647

e 4ABOVE: percentage of 4th graders scoring ABOVE average on a standard 4th grade
vocabulary test in 1972.

e 6BELOW: percentage of 6th graders scoring BELOW average on a standard 6th grade
comprehension test in 1972.

e 6ABOVE: percentage of 6th graders scoring ABOVE average on a standard 6th grade
comprehension test in 1972.

And the explanatory variables are

e BP: percentage of children in the school living with Both Parents

e AFDC: percentage of children receiving Aid to Families with Dependent Children
Poverty: percentage of persons in the school area who are above the federal poverty
levels

HSchl: percentage of adults in the school area who have completed high school
Attend: average percentage of children in attendance during the year

Mobility: percentage of children who started in a school, but did not finish there
PT-ratio: pupil-teacher ratio

Minority: percentage minority children in the area.

These data were analysed by Yin and Bura (2006) to demonstrate their moment-based
SDR method for the multivariate response. In order to satisfy the two assumptions of their
method, they used square-root transform on the response as well as the explanatory vari-
ables of percentages. The DCOV method does not require the assumption of distribution,
so we can perform the dimension reduction on the original data. But in order to com-
pare our result to the work of Yin and Bura (2006), we use the transformed data, where
all the response variable and percentages are square-root transformed. The kNN method
described in Section 2.5 results in Table 9. The maximum ratios for both cases happen at
one. Thus we conclude d =1, which also agrees with the analysis of Yin and Bura (2006).
Table 10 shows the estimated directions at the original scale and the transformed scale.
AFDC and HSchl contribute most to the estimated direction for the original scale, and
~/AFDC and v HSchl contribute most to the estimated direction for the transformed scale.

3.2.2. LA pollution data

These data are obtained from Shumway et al. (1988) and were used to explore the effects
of temperature and pollution on daily mortality in Los Angeles (LA). The data set has
508 observations and 11 variables (daily records from 1970 to 1979). These 11 variables
include 3 mortality measures (total mortality, respiratory mortality and cardiovascular
mortality) which counted all deaths of LA area, 2 weather measures (temperature and
relative humidity), and 6 pollution measures include carbon monoxide, sulfur dioxide,
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Table 10. Estimated direction by DCOV1 on original
data and transformed data.

Variables B1 (original) B1 (transformed)
BP —0.1444 —0.0631
AFDC 0.6569 —0.7443
Poverty —0.0820 0.0741
HSchl —0.6608 0.5218
Attend —0.0385 0.0376
Mobility 0.2546 —0.1502
PT-ratio —0.0535 0.1948
Minority 0.1873 —0.3198

Table 11. Bootstrap distance measure for

LA pollution data.

k i Amkl SEAm,k,I
1 1 0.1381 0.0257
1 2 0.5430 0.1073
2 1 0.3398 0.1224
2 2 0.4486 0.1342
3 1 0.4954 0.0883
3 2 0.7428 0.2067

Table 12. Estimated direction of the multivariate response
and predictors by Approch2 DCOVO for LA pollution data.

Variables A Variables B
Total mortality 0.5875 Temperature 0.6585
Respiratory mortality 0.0075 Relative humidity 0.2534
Cardiovascular mortality 0.8095 Carbon monoxide ~ —0.4162
Hydrocarbons —0.3917
Ozone 0.1255
Particulates —0.3998

nitrogen dioxide, hydrocarbons, ozone, and particulates. The data are also discussed by
Taci et al. (2010, 2015).

We apply our method to the data to identify the DCS with the mortality variables as the
multivariate response, and two weather measures and four pollution measures as predic-
tors. Note that sulfur dioxide, nitrogen dioxide are excluded since they are highly correlated
with other predictors. Thus the multivariate response vector is Y = (Y, Y, Y3) ", where
Y, = total mortality, Y, = respiratory mortality and Y3 = cardiovascular mortality; the
predictor vector X = (X3, ... ,Xe) |, where X; = temperature, X, = relative humidity, X3
= carbon monoxide, X4 = hydrocarbons, X5 = ozone, Xg = particulates.

Table 11 shows results from the bootstrap method of Section 2.5 which estimates the
dimension of the DCS to be (k, ) = (1, 1). Table 12 shows the estimated directions of the
multivariate response and predictors. The loadings for the multivariate response indicate
that Y7 and Y3 contribute the most to the estimated direction, while Y, does not contribute
to Sy |x. For the estimated direction corresponding to the subspace Sx |y, X; contribute
most positive to the estimated direction, X3, X4 and X¢ contribute equally negative to the
estimated direction. The plot of the estimated directions of the multivariate response and
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Figure 1. Relationship of direction of multivariate response and direction of predictors.

the predictors is in Figure 1, indicating a linear relationship between these two estimated
directions, which agrees with Iaci et al. (2015).

4. Discussion

In this article, we develop DCOVO0 for SDR with a multivariate response. We present
DCOV1and DCOV2 by using projective resampling idea. DCOVO0 performs well on differ-
ent models by stably achieving highest accuracy. DCOV1 and DCOV?2 perform relatively
well, better than projection resampling with SIR and SAVE. In addition, we introduced a
kNN method for estimating d, showing that this approach is quite useful in estimating the
dimension under different models. We extend the DCOV method to CDCA. Comparing to
the traditional CCA, our methods can capture nonlinear relationship. We recovered DCS
using DCOV. The results show that all DCOV methods estimate the central dual subspaces
with high accuracy by our simulation.
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Appendix

Lemma A.1: Suppose 1 is a basis of the CS. Let (n1,12) be any partition of n, where n'Zxn =1,
We have V2(n] X,Y) < V2(n'X,Y), i = 1,2.

Proof: Let X, = anX, X, = nzTX, F(a,b) = V? ((Z;;) ,Y), a €R, and b € Rand Gi(a,b) =
dF(a,b)/da, Gy(a,b) = dF(a,b)/db. A simple calculation shows that aGj(a,b) + bGy(a,b) =
F(a,b).

If (n1,n2) € S(n), then F(0,1), F(1,0) > 0.

Claim, if 0 < A < 1, then F(1,1) < F(1,1),and F(A, 1) < F(1,1).

If not, then there exista 0 < A9 < 1 such that F(1,19) > F(1,1) or F(,g,1) > F(1,1).

Without loss of generality, we assume there exista 0 < X9 < 1 such that F(1,9) > F(1,1).

However, F(1,A) = AF(%, 1), and as . — oo, F(1/A,1) — F(0,1) > 0. Thus F(1,A) — o0, as
A — 00. That means, there existsa A; € (1g, 00) such that F(1, A1) achieves a minimum in (X, 00).
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Hence, G2(1,11) = 0. Note that function F(a, b) is a ‘ray’ function, i.e. F(ca, cb) = cF(a, b). Thus
using the fact that F(1,1) = AF(1/A, 1), we can have G;(1/X, 1) = 0. And it is easy to calculate that
G1(L,A) = G (1/A,1) = 0. i
However, 0 = 1Gy (1, A1) + A1Ga(1, A1) = F(1, A1). F(1, A1) = 0 means that (‘;}{? ) 1LY, which
2
conflicts with the assumption. |

Proof of Proposition 2.1.: Since S(B) € S(n) = Sy |x, di < d, there exists a matrix A, which
satisfies B = nA. Thus, V2 (BTX,Y) = V?(AT 5 X, Y).

Suppose the single value decomposition of A is UDV T, where U is a d x d orthogonal matrix,
Visad; x d; orthogonal matrix, and D is a d x d; diagonal matrix with non-negative numbers on
the diagonal. It is easy to prove that all non-negative values on the diagonal of D are 1. According to
Székely and Rizzo (2009), Theorem 3, (ii),

V2BTX,Y) =VX(VDU 5 X, Y) =V*(DU "X, Y).

Let UT'n"X = (X1,...,X)". Since all non-negative values on the diagonal of D are 1, and
D'U™p"X = (Xy,...,X4)", by Lemma .1, we get

V2(DU 'p'X,Y) < VXU "X, Y).
The equality holds if and only if d = d;. According to Székely and Rizzo (2009), Theorem 3, (ii)
VAU ™n'X,Y) = V(' X, Y).
Thus

VIB'XY) < V(' X.Y),
and equality holds if and only if S(B) = S(n). [ |

Proof of Proposition 2.2.: For the B and 1 in Proposition 2.2, there exists a rotation matrix Q such
that BQ = (94, 1p), and S(n,) S S(n), and S(np) < S(n)*, where S(n)~ is the orthogonal space
of S(n).

Since Y IL n;X InTX and PE(}:X)X 1L QII(}:X)X’ therefore

Y T

According to Proposition 4.3 (Cook 1998),

Y T
Ly X.
(nIX> T

Let W, = ('IZ{)X ) Vi=Y, W, = (nfx), and V, = 0, then (W1, V1) L (W5, V). According to
Székely and Rizzo (2009), Theorem 3, (iii),
VEW, + W2,V + V2) < VAW, V) + V2H(W2,V2),
that is
VIQ'B'XY) =V(BXY) < V@, X,Y) <V (X Y).
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