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1. Introduction

Variable selection has become increasingly important in various research fields, as data are being collected at a
relatively low cost due to modern technology. Many methods have been proposed over the last two decades, such as
the least absolute shrinkage and selection operator (Lasso) [37], the smoothly clipped absolute deviation (SCAD) [10], and
the Dantzig selector [2]. These methods have shown promise in dealing with high-dimensional data.

For ultrahigh-dimensional data, however, Fan and Lv [11] pointed out that the aforementioned methods have
limitations due to the challenges of computational cost, statistical accuracy, and algorithmic stability. These concerns led
to the sure independent screening (SIS) method in [11] for ultrahigh-dimensional data. The SIS method is based on the
marginal Pearson correlation learning and is designed for linear regressions with Gaussian predictors and responses. SIS
not only can speed up variable selection drastically but can also improve the estimation accuracy when dimensionality is
ultrahigh. Many other methods have been developed in recent years, following SIS with specified models, both parametric
and semi-parametric; see, e.g., [3,4,9,12,13,24,33]. However, specifying a correct model for ultrahigh-dimensional data
may be challenging.

As the aforementioned model-specific screening procedures may not be robust to model mis-specification, model-free
sure screening procedures have been developed; see, e.g., [1,8,19-21,23,25,26,32,41]. Fan and Lv [11] pointed out that the
marginal screening procedure may miss some active predictors that are marginally independent of the response, and they
proposed iterative sure independence screening (ISIS) to overcome the problem. Although this idea has been empirically
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demonstrated in [9,13,23,41], its theoretical justification still remains unclear. Mai and Zou [25,26] discussed the subtle
difference between variable selection and variable screening: the former uses fine methods to exactly select the active
set of predictors, while the latter uses rough but fast methods to select a set containing the active set of predictors. The
existing variable screening methods may not always select such a set, though they often work in practice. This motivates us
to explore new procedures to overcome the drawback of existing screening approaches, and to seek theoretical guarantees
that they select a set containing all active predictors.

In this paper, focusing on continuous response, we propose two new sufficient variable selection approaches based on
theoretical results from the sufficient dimension reduction literature. These two new approaches translate conditional
independence in sufficient variable selection to alternative measures of independence. The independence statistic is
illustrated by distance correlation [35,36] and Hilbert-Schmidt Independence Criterion correlation [15]. Although fine
statistical tests could be developed for these procedures, we only use the screening approach for the purpose of sufficient
variable selection as it is fast and cost-efficient, even though the selected set may be larger than the set of active predictors.
Our approach is model-free. Thus, it is robust against model mis-specification, which is an attractive property in practice.
Also, our methods allow for arbitrary regression relationships, which makes them more effective than the model-specific
marginal approaches. More importantly, our proposed procedures are advantageous when some active predictors are
marginally independent of the response.

The rest of this paper is organized as follows. Section 2 describes both distance correlation and Hilbert-Schmidt
Independence Criterion correlation for sufficient variable screening. Section 3 reports some of their theoretical properties,
while Section 4 contains simulation studies and a real data application. A short discussion follows in Section 5. Related
proofs of theorems and additional simulations can be found in the Online Supplement.

Throughout this paper, we assume that Y is a univariate or multivariate response variable, and X = (X1, ..., X,)" is a
p x 1 vector. The notation U Il V|W means that U and V are independent given W.

2. Methodology
2.1. Sufficient variable selection
We adopt the following definition of sufficient variable selection from Yin and Hilafu [38].

Definition 1. If there is a p x g matrix A with g < p, where the columns of A consist of unit vectors, e,s, whose «th
element is 1, such that Y 1 X|ATX, then the column space of A is called a variable selection space. The intersection of
all such spaces, if it satisfies the conditional independence condition above, is called the central variable selection space,
denoted by Sy x.

Let Xp be the set of X, which are involved in 33‘(/|x and Xp be its complement, where D and D are the respective index
sets. In this paper, we assume the existence of S}‘fx. Then Definition 1 is equivalent to Y 1L X;|Xp, where Xp is the set
of active variables, which is smallest and unique. Yin and Hilafu [38] concluded that the existence of a central subspace
implies the existence of S}‘f‘x. Conditions for the existence of the central subspace were obtained by Cook [5] and Yin
et al. [39]. In fact, the existence of the central subspace implies that the set of variables involved in that subspace is Xp.
Therefore, the goal is to find Xp. Directly using the conditional independence, Y 1l X5|Xp, seems infeasible, because it is
hard to decide which and how many variables should be included in the set Xp.

Note that the popular SIS in [11] and its family consider the independence, Y 1 X,, then rank all X,s in decreasing
order based on the strength of the measure, and choose the first d (threshold value) predictors as an estimator containing
Xp. However, there are fundamental differences between this approach and Y 1 X5|Xp. The former is looking at the
marginal relation, while the latter is focused on a conditional relation. Fan and Lv [11] and Zhu et al. [41] pointed out that
the marginal feature screening procedure may miss those predictors which are marginally unrelated but jointly related
to the response. To partly eliminate this, they proposed an iterative procedure that computes the correlation between
the response and the residual of the remaining Xs. The iterative procedure performs well empirically, but its theoretical
justification remains unclear. We propose two novel sufficient variable selection procedures to achieve the conditional
independence, based on a simplified version of Proposition 1 in [38] as below.

Proposition 1. Let X, X; and X; be random vectors, and X" = (X]T, XZT), then statement (i) or statement (ii) implies statement
(iii):
(i) (Y, Xo) 1L Xy;
(ll) X; L XY and Y 1L Xy;
(iii) Y 1 Xq|Xs.

Note that statement (iii) implies that Pr(Y|Xy, X;) = Pr(Y|X;). Therefore, if statement (iii) holds, then we can eliminate
X; without losing any regression information. After eliminating X;, we treat X, as a new X, split it, and then do
a further test until nothing can be eliminated. Hence, in the end, the set contains Xp. Thus, statement (iii) is very
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important. However, statement (iii) is just the goal of the sufficient variable selection, i.e., the conditional independence
test Y Il X5|Xp. Hence, it is difficult to test statement (iii) directly because we do not know X, in advance.

Note that statement (iii) can be forced to hold if either of statement (i) or statement (ii) holds. Therefore, developing
methods for testing statements (i) and (ii) is useful. To do so, we propose two sufficient variable selection approaches
based on statements (i) and (ii), which we call one-stage sufficient variable selection and two-stage sufficient variable
selection, respectively. It appears that statement (i) is naturally useful for a continuous response as the combination of Y
and Xs makes sense, while statement (ii) is naturally useful for a categorical response as the first part of statement (ii)
is a conditional test. Note that SIS [11] and its family only use the second part of statement (ii) for scalar X;, which is
not sufficient to imply (iii). While statement (i) or statement (ii) implies statement (iii), the converse is not true. Hence,
situations where (iii) holds while either (i) or (ii) fails are excluded.

In this paper, we use distance correlation (DC) [36] and Hilbert-Schmidt Independence Criterion (HSIC) correlation [15]
to illustrate the two sufficient procedures for continuous response. Let (U, V) € ¢/ x V, and U and V be random vectors
with dimensions d, and d,, respectively. Suppose that (U, V') is an iid copy of (U, V). Suppose that (U, Vy), ..., (U, V,;)
is a random sample of (U, V). Next we review DC and HSIC correlation.

2.2. Distance correlation

Suppose that ¥y and Yy are the respective characteristic functions of U, V, and ¥y y is their joint characteristic function.
Following [36], the distance covariance between U and V is the nonnegative number dcov(U, V) given by

deov(U, V) = / (e, s) — YolEpn(s)I2ult, s)dtds,
Uxy

where ||y ||> = ¥ for a complex-valued function ¥ with ¢ being the conjugate of , and

-1
1+d 1+d
w(t,s) = (ca,ca, Il @ slgT™)

with ¢ = 792/ {(1 4 d)/2}, where |la||4 stands for the Euclidean norm of a € R¢.
The DC between U and V is defined as

dcov(U, V)
dcorr(U, V) = .
J/dcov(U, U)dcov(V, V')
An important property is that dcorr(U,V) = 0 if and only if U and V are independent. Székely et al. [36] expressed
dcov?(U, V) as dcov*(U,V) = S; + S, — 253, where S; = E|U — U'||, IV — V'|lq,, S = E|U — U'[|4,E[[V — V'|4,, and
S3 = E{E(||U — U'||4, |U)E(|IV — V'||g, |V)}. The respective sample versions of Sy, S, and S5 are

1 . / / & 1 & / 1 . ’
Si=— 21 10 = Ujlla, Vi = Vi, 82 = — 21 10 = Ulla, Zl IV; = Villq, .
ij= ij= ij=

S3

1 n
= 2 MU= Uyl IV; = Vi la,-
ij,l=1

A 2 N N N
Thus, an estimator of dcov?(U, V) is dcov (U, V) = S; + S, — 2S5. Putting this into the formula of dcorr(U, V), we obtain
an estimator of DC.

2.3. HSIC correlation

Following Gretton et al. [15], let F and G be the respective universal Reproducing Kernel Hilbert space (RKHS) on
U and V. For each point U € U, there corresponds an element ¢(U) € F satisfying K(U,U’) = (¢(U), ¢p(U’))x, where
K : U xU — R is a positive definite kernel with inner-product (-, -)k. Similarly, for each point V € V, there corresponds an
element (V) € G satisfying L(V, V') = (¢(V), (V'))., where L : VXV — R is a positive definite kernel with inner-product
(-, -)1. The cross covariance operator Cyy : F — G is defined for all f € 7 and g € G via the bilinear form

(&, Cuvf)g = cov{f(U), g(V)} = Eyv{f(U)g(V)} — Eu{f(U)}Ev{g(V)}.
The HSIC covariance between random vectors U and V can be formulated (See [15,16]) as
H(U, V) = ||Cyvllus = E{K(U, U)L(V, V')} + E{K(U, U")}E{L(V, V')} — 2E[E{K(U, U")[U}E{L(V, V')|V}].

That is, the HSIC covariance is defined as the Hilbert-Schmidt norm of the cross-covariance operator Cy y. The Hilbert-
Schmidt norm of Cyy exists when the various expectations over the kernels are bounded, which is true as long as the
kernels K and L are bounded [15]. It can be shown that H(U, V) = 0 if and only if U and V are statistically independent,
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as long as the associated RKHSs F and G are universal [15], i.e., they are dense in the space of continuous functions with
respect to the infinity norm [17].

Examples of kernels generating universal RKHS are, e.g., the Gaussian and the Laplace kernels [34]. In our algorithm
we choose Gaussian kernel, which belongs to the class of translation-invariant kernels, i.e., the kernel functions with the
property K(U,U’) = K(U — U'). Let H(U) = H(U, U). The HSIC correlation (HR) [40] between U and V is the nonnegative
number HR(U, V) defined by

H(U,V) .
—————— if H{U)H(V) > 0,
HR(U, V) = H(U)H(V)
0 if HU)H(V) = 0.
The function HR generalizes the idea of Pearson correlation in the sense that HR(U,V) = 0 corresponds to the

independence of U and V. One empirical HSIC [15] is

1 2 1
Ha(U.V) = -5 iZjKijLij -z Uszszik +a ijz” KijLie,

where
Kij = exp 5 (Ui—Uj) Xy (Ui—Uj)p and Ly =exp 5 (Vi = V) 2y (Ve = Vo)t , (1

and £y and Sy are the respective sample covariance matrices. Let H,(U) = H,(U, U), the corresponding sample HR, HR;,
is then
Hy(U, V) .
—————— if Hy(U)H,(V) > 0,
HR,(U, V) = { /H,(U)H,(V) (U)HA(V)
0 if Hy(U)Hn(V) = 0.

Note that in practice, the sample covariance matrices in the kernel of (1) are singular for ultrahigh-dimensional data. In
this case, there are two ways to solve this problem. One way is to normalize each component of U to have unit variance,
and rewrite the kernel as

1
Ky = exp [—2 > (Ui — uja)z} :
a=1

which is equivalently to use product kernel [28,31]. Another way is to follow the method of Schafer and Strimmer [27] to
shrink the inverse of the covariance matrix. This method is included in the R package Corpcor. Our simulations indicate
that these two methods yield similar results. Thus we only report the latter one in the paper.

It is interesting to note that distance covariance and HSIC covariance are equivalent in that they are different kernel
choices under the RKHS [30].

2.4. Algorithms

We describe algorithms using an independence index Z(U, V) for HR and DC, where U and V are two generic random
vectors. Let X, be the oth predictor in X and Y be the response variable. Suppose

Xy = (X15 cee :Xa—lvxowr], s aXp)-
The three algorithms based on Proposition 1 are as follows.

(i) The marginal feature selection (FSy, i.e., SIS procedure) calculates the marginal relation in the second part of statement
(ii), i.e., the measure is u, = Z(Y, X,).
(ii) The one-stage sufficient variable selection procedure (SVS;) uses statement (i), i.e., the measure is u, = Z{(Y, X_¢), Xo}.
(iii) The two-stage sufficient variable selection procedure (SVS;) uses statement (ii), i.e., the two measures are u}* =
T{( Xy, X_¢)|Y} and u,.

Calculating u,, and u}, is straightforward, however, u}* involves a conditional form. To overcome this conditional form,
we use a slicing approach. If Y is a continuous, let

J = {[zs—ls Zs) . Z5—1 < z57s € {1’ .. ~1s}s Uizl[zs—l; Es)\ZO = R; EO = —0Q, ZS = OO},

where ¢; is the s/Sth sample quantile of Y. Note that the interval (ly, [;) is open, but we abuse the notation a little by
writing the intervals [I;_1, Is) for all s. Each [I;_1, L) is called a slice. Define Z € {1, ..., S} such that Z = s if and only if
Y € [€s_1, &) If Y is discrete, i.e., Y € {1,...,S}, let Z =Y. Denote “&7.5 = T{(Xy, X_y)|Z = s} fors € {1, ..., S}. We have
Ut = ZS ud

o s=1"a,s*
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Given a random sample (X1, Y1), ..., (Xs, Ya), we then construct their respective estimators as fl, = Z{Y, X5}, i =
Z{(Y, X_a), Xy}, and 0% = Z{(X,, X_4)|Y}. The detailed algorithms are as follows.

Marginal feature selection (FS),)

1. Calculate i, = Z{Y, X,} for o € {1, ..., p}. The estimate Xp, is the set of X, s with the largest d values of i, where
d is the preselected value.
2. The estimate X is the same as X .

One-stage sufficient variable selection (SVS;)

1. Calculate i, for @ € {1, ..., p}. The estimate Xp, is the set of X, s with the largest d; values of .

2. Calculate iIf = Z{(Y, X_q), Xy} for & € {1, ..., p}. The estimate Xp+ is the set of X,s with the largest d, values of
Uy but not in X5 of Step 1.
3. The final estimate X, is the union of these two sets, i.e., X5, UXp«.

Two-stage sufficient variable selection (SVS,)

1. Calculate ii, for o € {1, ..., p}. The estimate X5, is the set of X, s with the largest d; values of .
2. Obtain the conditional set:

(a) Slice Y into S non-overlapping slices.
(b) Calculate &i¥* = Y5 47, with &7, = Z{(X,, X_0)IZ = s).

s=1"a,s

(c) The estimate Xp.. is the set of X,s with the largest d, values of &** but not in Xﬁl of Step 1.
3. The final estimate Xy, is the union of these two sets, i.e, X5 U Xpu.

Note that in SVS;, we add the marginal screening procedure (which is implied by statement (i)). This is because in
practice the marginal relation typically does play an important role. Note as well that in SVS,, the number of slices S can
be subjective. For computational ease, we choose S = 2 in the simulation study, which seems to work well. Li et al. [23]
stressed that the choice of threshold value d is very important, and they suggested a user-specified model size d. Based on
their suggestion, we use d = |p/In(p)] when n > p, and d = |n/In(n)| or n — 1 when n < p. Avoiding the ad hoc choice
of d, Kong et al. [21] developed a sequential method for variable screening. Alternatively, one can estimate d through an
independent test, such as a permutation or a bootstrap test.

Our simulations below indicate that the power of DC/HR (our extra step in SVS; and SVS,) for picking up active
variables that are marginally related to the response is small. However, they are powerful in picking up active variables
that are marginally independent of the response but are conditionally dependent of the response. In contrast, the marginal
screening method is not powerful in selecting the active variables that are marginally independent of the response but
conditionally dependent of the response. Thus, the two procedures complement each other and the combination of the
two, in fact, significantly improves the result of the overall percentage of correctly selecting active variables. We propose
to use d; = 0.95d and d, = 0.05d, which works well in our simulations. Certainly, if the number of conditional important
predictors increases, then we should increase d;.

3. Theoretical properties

We now study theoretical properties of the screening procedures of il,, i and @**. To study i, we only focus on
HR, as Li et al. [23] had the result for DC. Note the fact that u, = Z(Y, X,) = 0 if and only if Y and X, are independent
with @ € {1, ..., p}. This fact guarantees that HR ranks the marginal active predictors above the marginal inactive ones,
Le, MaXyep, Uy < MiNgep, Uy, Where Dy is the marginal active set, and separates the marginal active ones from the
marginal inactive ones. Hence, the quantity u, can be used for marginal feature screening. We assume the following two
conditions.

(C1): The universal kernels K and L are bounded and non-negative.
(C2): mingep, Uy > 2cn™" for some v € [0, 1/2) and ¢ > 0.

Condition (C1) makes sure that the HSIC norm is finite, because various expectations, (i.e., Ex x {K(X,X')} and
Ey vy {L(Y,Y')}) over bounded kernels K and L are also bounded [15]. Without loss of generality, we assume that K and L
are bounded by 1, i.e,, |[K|| < 1 and |/L|| < 1. Condition (C2) means that the marginal HR of active predictors cannot be
too small. This assumption is equivalent to the condition (3) in [11] and condition (C2) in [23]. Condition (C2) reflects the
signal strength of individual active predictor, which in turn controls the rate of probability error in selecting the active
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predictors [41]. Define the selected set as
Dy ={a:{ly > cn"}.

Let ¢y and ¢, be positive generic constants. We have the following result.

Theorem 1. Under condition (C1), let v € (0, 1/2), there exists a positive constant c¢; > 0 such that

Pr(max lily — U] > cn™ ) < O[pfexp(—c;n'2")}]

1<a<

Furthermore, under condition (C2), denote § = Minyep, Uy — MaXyep, Ua, i€, 8 > 2cn™" > 0. Then we have
Pr(max i, < min uo,> > 1— O[p{exp(—cin'~2")}] (2)
a€Dq ae
Under conditions (C1) and (C2), we have that
Pr(D1 € D1) = 1 — Olsafexp(—cin' ")}, (3)
where s, is the cardinality of Dy.

The proof of Theorem 1 is in the Online Supplement. The sure screening property holds for HR FSy procedure. It also
indicates that we can handle the non-polynomial (NP) dimensionality of order Inp = o(n 1‘2“) with v € (0, 1/2) meaning
that, if Inp = o(n'~2") with v € (0, 1/2), then (2) indicates that the probability of MaXyep, ll, < Mingep, il approaches
1 as n — oo. That is, i, always ranks the active predictors above the inactive ones in probablllty, and furthermore, in
such a case, (3) indicates that the size of true active predictors can change with p, as it is no larger than p.

To study i, we focus on HR only, leaving related conditions and results for DC in the Online Supplement. Note that
uf = Z{(Y, X_¢), Xo} = 0 if and only if (Y, X_,) 1L X,, which guarantees Y 1 X,|X_, based on Proposition 1. This fact
makes sure that the quantity u} can attain our ultimate goal Y 1 Xp«|Xp+, where Xp+ is the set of predictors whose

u’ > 0. Condition (C1) is still needed to ensure the existence of the related (HSIC) norm. Condition (C2) is replaced by
the following condition.

(C2*): mingep= u), > 2cn™" for some v € [0, 1/2) and ¢ > 0.
Condition (C2*) reflects that the resulting HR for active variables cannot be too small. Define the selected set
D ={a: 1" >cn").

We have the following result.

Theorem 2. Under condition (C1) with v € (0, 1/2), there exists a positive constant ¢; > 0 such that
Pr( max |, —u;| = en”") < Olplexp(~cin' )}
Furthermore, under condition (C2*), denote § = mMinyep+ U, — MaX,p+ Uy, 1.6, § > 2cn™" > 0. Then we have
Pr(maxu < mm il ) > 1 — O[p{exp(—cin'~2")}]. (4)
aeD* eD*

Under conditions (C1) and (C2*), we have that
Pr(D* € D*) > 1 — Ofsa{exp(—cin' "> )}], (5)
where s, is the cardinality of D*.

The proof of Theorem 2 is in the Online Supplement. Combining this result with Theorem 1, we find that the screening
property holds for the HR SVS; procedure. Again, we can handle the non-polynomial (NP) dimensionality of order
Inp = o(n'~2") with v € (0, 1/2). That is, if Inp = o(n'~2") with v € (0, 1/2), then (4) indicates that the probability
of max,cp+ Il < mingep+ U approaches 1 as n — oo, separating the active predictors from the inactive predictors. And
(5), in such a case, indicates that the size of true active predictors can change with p, as it is no larger than p.

To study @**, we focus on HR only, leaving the related conditions and results for DC in the Online Supplement. Note
that u* = Z{(Xy, X_¢)|Y} for @ € {1, ..., p}. Let

S
= I{(Xa. X-0)IY} = Zu =Y H{(Xer Xo)IZ = 5).

s=1

Let D** be the set of predlctors whose u* > 0. We need replace condition (C2) by the following condition.

(C2**): mingep# uy* > 2cn™ for some v € [0, 1/2) and ¢ > 0.
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Condition (C2**) reflects that the resulting HR for active variables cannot be too small. Additionally, we need the
following conditions.

(C3**): Observations within each slice are iid.
(C4**): For any interval [bq, by), we have

inf  Z{(Xe, X_o)IY =y} < T{(Xe, X 0)IY € [b1, b2)} < sup Z{(Xa, X-0)IY =y}
yelby,bp) yelby,by)

Furthermore, for any € > 0, if
1/S — e < Pr{Y € [by, by)} < 1/S + €,
then for any yq, y, € [b1, by),
IZ{(Xa, X-a)IY = y1} — Z{(Xa, X-a)IY = Y2} < €/2.

Note that although assumption (C3**) appears strong, it is in fact quite common in different areas, e.g., in sufficient
dimension reduction [6,7,14,22] and in screening methods [26]. This condition ensures the rank consistency of u~7 in each
slice, which also simplifies the proof. Condition (C4**) is equivalent to the condition (C2) in [26], which will be used to
provide us the exponential inequality. Condition (C4**) is to make sure that Z{(X_, X, )|Y € [by, b2)} approximates the
goal Z{(X_4, X;)|Y = y} accurately. Define the select set

D = o : U > en").

We have the following result.

Theorem 3. Under conditions (C1), (C3**), and (C4**) with v € (0, 1/2), there exist positive constants cy, c; > 0 such that

Pr(}l’fi‘p [ — ut*| > cn’“) < O[Sp{exp(—cin'2"/52) + exp(—c,n' 2" /S?)}]. (6)
Furthermore, under condition (C2**), denote § = mingep= WS — MaX,cp5« W, Then we have

Pr( max i < ar;%r}* i ) > 1 — O[Sp{exp(—c1n'72"/S?) + exp(—con'=2"/S?)}]. (7)
Under conditions (C1), (C2**), (C3**), and (C4**), we have that

Pr(D™ € D™) = 1 O[saS{exp(—cin'~>"/S?) + exp(—con'~?'/S?)}1, ®)

where s, is the cardinality of D**, and S is the slice number of Y.

Note first that we can simplify (6)-(8) by getting rid of the larger of c; and ¢, in the right-hand side of (6)-(8). The
proof of Theorem 3 is in the Online Supplement. Combining this result with the result of Theorem 1, we conclude that the
screening property holds for SVS,. In fact, S does not have to be fixed. For instance, if S < Inn [26], if Inp = o(n'~2"/S?)
with v € (0, 1/2), then (7) indicates that the probability of max,cp+ X < minyep U5* approaches 1 as n — oo,
separating the active predictors from the inactive predictors. And (8), in such a case, indicates that the size of true active
predictors can change with p, as it is no larger than p.

4. Numerical studies

In this section, we assess the performance of our proposed approaches through simulation studies. We repeat each
experiment 200 times, and report the results based on the following criteria.

(i) S: the minimum size to include all active predictors. We report the 5%, 25%, 50%, 75%, 95% quantiles S of out of 200
replications.
(ii) Ps: the proportion that an individual active predictor is selected out of 200 replicates.
(iii) P,: the proportion that all active predictors are selected out of 200 replicates.

Note that results are better if P, and P; are closer to 1. We use DC, DC;, DC; to represent DC based on marginal
procedure, one stage procedure and two stage procedure, respectively, while HR, HR; and HR; are correspondingly based
on HR.

Example 1. The models come from Fan and Lv [11] and Li et al. [23]:

(1 a) Y = clﬂle + C2,32X2 + C3ﬂ31(xlz < O) + C4ﬂ4X22 + €;
(1b) Y = C1ﬁ1X1X2 + C3,321(X12 < 0) + C4ﬂ3X22 + €;

(1.0) Y = c181X1Xa + c361(X12 < 0)Xp2 + €

(1.d) Y = c181X1 + 282X + ¢3831(X12 < 0) + exp(cq|Xaz|)e,
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Table 1
Example 1: P and Pg.
Model r=0.5 r=0.38
Py Pa Py Pa
X1 X2 X12 X2 All X1 Xz X12 X2 All

n=100,p = 30,d = |p/In(p)]

DC 1.000 0960 0890 0990 0.840 1.000 0.975 0360 0975 0.325
(l.a) DC; 1000 0955 0910 0990 0.855 0.995 0.970 0.395 0960 0.345
DC, 1.000 0945 0875 0990 0810 0995 0965 0415 0.940 0.350
HR 0995 0935 0.885 0985 0.810 0995 0975 0465 0945 0.405
HR; 0995 0895 0850 0980 0730 0995 0955 0400 0915 0.310
HR, 0995 0900 0850 0980 0735 0990 0955 0420 0915 0.320

DC 0640 0625 0975 1.000 0465 0.605 0625 0670 0985 0310
(1.b) DC; 0605 0610 0970 1.000 0420 0.530 0.575 0710 0985 0.270
DC, 0570 0550 0960 1.000 0360 0515 0535 0.630 0.985 0.205
HR 0760 0700 0.955 1.000 0.550 0.775 0.790 0.730 0970 0475
HR; 0700 0645 0945 1000 0465 0735 0745 0665 0965 0.400
HR, 0705 0645 0950 1000 0475 0725 0745 0.675 0.965 0.405

DC 0910 0835 0.805 1.000 0.,595 0.840 0850 0255 1000 0.155
(l.c) DC; 0880 0830 0745 1.000 0.515 0.800 0.795 0.230 1.000 0.120
DC, 0875 0800 0755 1.000 0500 0795 0780 0310 1.000 0.190
HR 0950 0910 0.865 1.000 0.740 0.935 0930 0475 1000 0.390
HR; 0925 0900 0.845 1000 0685 0910 0910 0420 1000 0.335
HR, 0925 0900 0840 1000 0680 0910 0910 0430 1.000 0.345

DC 1.000 0895 0835 0995 0745 0960 0910 0.530 0.880 0.390
(1.d) DC; 0995 0880 0830 098 0705 0.955 0.905 0.545 0.855 0.385
DC, 0995 0870 0830 0970 0685 0950 0.895 0535 0.840 0.365
HR 0980 0880 0.820 1.000 0.730 0.940 0.885 0540 0945 0.445
HR; 0975 0855 0810 0995 0680 0950 0.875 0510 0.920 0.390
HR, 0975 0860 0815 0995 0685 0950 0.875 0530 0.920 0.405

n = 100, p = 300,d = [n/In(n)]

DC 1.000 0980 0915 0995 0890 1.000 1.000 0.585 1.000 0.585
(l.a) DC; 1000 0975 0925 0995 0.895 1.000 1.000 0.570 1.000 0.570
DC; 1000 0975 0910 0995 0880 1.000 1.000 0.550 1.000 0.550
HR 0995 0930 0.875 0990 0.810 0.995 0.995 0.600 0985 0585
HR; 0995 0920 0865 0990 0790 0995 0990 0.585 0.975 0.555
HR, 0995 0920 0865 0990 0790 0995 0.990 0.575 0.975 0.545

DC 0590 0585 0985 0.995 0445 0905 0885 0875 0995 0735
(1.b) DC; 0570 0590 0985 0995 0435 0.875 0.870 0.860 0.990 0.690
DC; 0570 0560 0985 0995 0420 0875 0.865 0.855 0.990 0.685
HR 0655 0.680 0985 0.995 0.505 0.930 0910 0.880 0985 0.760
HR; 0620 0655 0980 0995 0475 0930 0.890 0.875 0.980 0.725
HR, 0620 0655 0980 0995 0475 0930 0.890 0.880 0.980 0.735

DC 0820 0.840 0.655 0.995 0420 0965 0960 0595 0995 0545
(l.c) DC; 0810 0820 0635 0995 0395 0.955 0.955 0.530 0.995 0.480
DC, 0810 0815 0635 0995 0390 0955 0955 0535 0995 0485
HR 0910 0890 0.745 1.000 0.600 0.985 0.990 0.670 0985 0.635
HR; 0895 0890 0740 1000 0580 0985 0985 0.635 0.985 0.595
HR, 0895 0890 0740 1000 0580 0985 0985 0.630 0.985 0.590

DC 0970 0840 0720 0.960 0.610 0.985 0955 0570 0945 0510
(1.d) DC; 0965 0835 0695 0955 0580 0.980 0.940 0.550 0935 0.470
DC; 0965 0835 0710 0955 0590 0980 0940 0560 0.935 0.480
HR 0935 0805 0740 0965 0.585 0955 0910 0575 0955 0.505
HR; 0930 0775 0725 0960 0550 0950 0.905 0555 0.955 0.480
HR, 0930 0775 0740 0960 0560 0950 0.905 0.560 0.955 0.485

where 1 is an indicator function. Models (1.b) and (1.c) contain an interaction term X;X5, and model (1.d) is heteroscedas-
tic. Following [11,23], we choose 8; = (—1)*(4Inn//n+|n|) forj € {1, 2, 3, 4}, where & ~ Bernoulli(0.4) and n ~ A(0, 1).
We set (cy, €2, €3, ¢4) = (2, 0.5, 3, 2). The predictor vector is X ~ N(0, X), where X = (0)pxp With o = r™J! in two
cases: (a) r = 0.5, (b) r = 0.8. The error term is € ~ A0, 1).

We set n = 100, p = 30, d = |p/In(p)] and n = 100, p = 300, d = [n/In(n)], respectively. Tables 1 and 2 report
the results. Table 1 indicates that the HR approach has better performance than DC does in almost all cases when n > p.
For n < p, the DC approach seems to have comparable/slightly better performance than HR does, but the DC approach is
computationally more efficient than HR. Thus we recommend to use HR when n > p, and to use DC when n < p.
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:I-;I;rl;p?e 1: The quantiles of the minimum model size S out of 200 replications.
r=05 r=0.8
S 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%
n=100,p =30

DC 4.000 4.000 5000 7.000 13.000 5.000 8.000 11.000 17.000 25.050
(1.a) HR 4.000 4.000 5000 8000 16.050 5.000 7.000 10.000 17.000 26.000
DC 5.000 6.000 9.000 13.000 22.100 5.000 8.000 10.000 14.000 19.000
(1.b) HR 4.000 5.000 8000 11.000 21.100 4.000 6.000 9.000 12.000 20.050
DC 4.000 6.000 8000 10.000 19.000 7.000 10.000 12.000 15.250 23.000
(1.c) HR 4.000 4.000 6.000 9.000 18.000 5.000 7.000 10.000 14.000 23.050
DC 4.000 4.000 6.000 9.000 20.000 4.950 6.000 10.000 15.000 25.000
(1.d) HR 4.000 4.000 5000 10.000 21.050 4.000 7.000 9.000 17.000 25.000

n = 100, p = 300

DC 4.000 4.000 5000 10.000 53.000 5.000 9.000 16.000 43.000 147.050
(1.a) HR 4.000 4.000 6.000 14000 94.100 4.000 8.000 18.000 52.000 169.550
DC 5.000 11.000 30.000 63.000 165.300 5.000 8.000 12.000 22.000 82.000
(1.b) HR 4.000 8.000 20500 55250 173.050 4.000 7.000 11.000 21.000 70.200
DC 6.000 13.000 25.000 55500 156.200 7.000 13.000 20.000 38.250 89.450
(1.c) HR 4.000 7.000 15.000 44.250 137.450 5.000 7.000 15.000 36.000 112.100
DC 4.000 7.000 13.500 45250 146300 5.000 9.750 21.000 69.750 156.050
(1.d) HR 4.000 6.000 15.000 55500 192.400 4.950 7.000 21.000 66.250 194.000

Table 2 reports model sizes for Example 1. The fact that HR is better than DC for n > p is mainly due to the way the
distance is computed: DC only calculates the Euclidean distance, while HR uses the kernel (smoothing) to calculate the
distance. When n > p, a kernel method is usually finer than the Euclidean distance. When n < p, a kernel method may
not be good enough for smoothing as the sample size is not large enough.

We compare our methods with the following approaches from the literature: (i) the Lasso [37], whose size is deter-
mined by 10-fold cross-validation; (ii) ISIS [11]; (iii) QaSIS [19], the quantile adaptive model-free variable screening, which
is proposed to estimate marginal quantile regression (denoted by Q) nonparametrically using a B-spline approximation,
considering that Y and X; are independent if and only if Qq(Y|X;)—Qq(Y) = 0; (iv) NIS [9], the nonparametric independence
screening in sparse ultrahigh-dimensional additive models using a B-spline basis; (v) SIRS; (vi) ISIRS [41]; and (vii)“DC-
seq" [21], a sequential method based on DC without specifying the model size d. Results corresponding to these existing
methods are displayed in Table 3; their performances are not as stable as DC and HR.

We also consider the case of n = 200, p = 2000, d = [n/In(n)]. The simulation results are in Table 4. Additional
simulation results for Example 1 are in the Online Supplement. Example 1 indicates that FSy;, SVS;, and SVS, have similar
performance. However, the next example shows the advantages of SVSy, and SVS,.

Example 2. (2.a) This is Example 4 in [41]: Y = 87X +¢€. Set € ~ A(0, 1) and X ~ A(0, ), where ¥ = (03j), oy satisfies
oi = 1fori e {1,...,p}, 04 = 04 = p'/? fori # 4,and o = p fori # j,i # 4,j # 4. In the model, all predictors
except for X4 are equally correlated with coefficient p, while X4 has correlation p!/? with all other p — 1 predictors. Let
B =(5,5,5,—15p'2,0, ..., 0). Although X, is marginal independent of Y, it is an active predictor when p # 0.

(2.b) A nonlinear model Y = 81X; + B2Xo + B3X3 + ,84X43 + €. Set e ~ N(0, 1) and X ~ N(0, X), where X = (oy),
and oy satisfies o = 1fori € {1,...,p}, 04 = o4 = p"/fori # 4, and o = p fori # j,i # 4,j # 4. Let
B =(5,5,5 -3p"1°0,...,0).

(2.c) A nonlinear model Y = B1X; 4+ B,X, 4 B3X3 + Baexp X4 + €. Set € ~ N(0, 1) and X ~ N(0, X), where X = (oy),
and oy satisfies o = 1fori € {1,...,p}, 0u = o4 = p”/1®fori # 4,and o = p fori # j,i # 4,j # 4. Let
B =(5,5,5 —15p"/1%exp(—1/2),0,...,0).

In Example 2, X4 is marginally independent of Y; however, it is an active predictor when p # 0. In particular,
the relationship between the active predictor X4 and Y is linear in Example (2.a). The relationship in Example (2.b)
and (2.c) is nonlinear. We consider the cases of n = 100, p = 300, d = |[n/In(n)] and n = 200, p = 2000,
d = |n/In(n)]. Tables 5 and 6 clearly indicate that the results of SVS;, SVS, based on DC significantly improve
the marginal solution. QaSIS and NIS have poor performance, although ISIS and ISIRS have better performance, in
general are still not comparable with DC; and DC,. In the Online Supplement, we provide further simulation results for
Example 2.

The difference between our two examples is that in Example 1, all the active predictors are marginally dependent of
Y, while in Example 2 the active predictor X4 is marginally independent of Y. Therefore, marginal screening methods fail,
but our new approaches will detect X,.
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Table 3
Example 1: P and P, for some existing methods.
Model r=05 r=038
Ps Pa Ps Pa
X] Xz X]z Xzz All X] Xz X]z Xzz All
n=100,p = 30,d = |p/In(p)]
Lasso 1.000 1.000 1.000 1.000 1.000 1.000 0.980 1.000 1.000 0.980
(1.a) ISIS 1.000 1.000 1.000 1.000 1.000 1.000 0.880 0.995 1.000 0.875
QasIS 1.000 0.895 0.840 0980 0720 0.990 0.945 0425 0925 0.350
NIS 1.000 0.975 0.885 0995 0855 0.995 0.995 0435 0985 0.425
SIRS 1.000 0.965 0.875 1000 0840 1.000 0.985 0230 0975 0.205
ISIRS 1.000 0855 1.000 1.000 0855 0995 0.850 0910 0970 0.725
DC-seq 0960 0.135 0.365 0.800 0.075 0.885 0.295 0.065 0.500 0.005
Lasso 0235 0.230 0985 0995 0.075 0300 0210 0900 0.980 0.085
(1.b) ISIS 0780 0.830 0.995 1000 0.625 0.805 0.765 0960 0.980 0.570
QasIS 0.820 0.785 0910 0985 0590 0.960 0945 0645 0925 0.500
NIS 0905 0.855 0.940 1000 0740 0.990 0975 0595 0930 0.515
SIRS 0.085 0.070 0.975 1000 0.010 0.005 0.005 0710 0.995 0.000
ISIRS 0315 0270 0.990 1000 0.115 0.115 0.105 0990 0.995 0.050
DC-seq 0.085 0.075 0.600 0960 0.030 0.145 0.155 0325 0.905 0.030
Lasso 0.160 0.155 0.090 0965 0.010 0.190 0.125 0.080 0.940 0.020
(1.c) ISIS 0.850 0.775 0.790 0990 0530 0.820 0.835 0780 0.980 0.525
QasIS 0965 0.965 0.295 0985 0255 0.995 0.990 0.080 0.960 0.075
NIS 0980 0945 0.095 0990 0.085 0.995 0.980 0.030 0.965 0.025
SIRS 0.140 0.115 0.740 0995 0.015 0.035 0.010 0265 1.000 0.000
ISIRS 0.265 0.295 0.800 0990 0.055 0.190 0.165 0675 0.995 0.050
DC-seq 0395 0395 0.200 0.975 0.055 0430 0410 0.010 0915 0.005
Lasso 0490 0.215 0.290 0350 0.075 0.555 0.255 0255 0350 0.070
(1.d) ISIS 0990 0925 0955 0970 0.845 0.985 0940 0980 0970 0.875
QasIS 1.000 0875 0.845 0.755 0535 0980 0.965 0.655 0665 0.405
NIS 0.680 0.440 0485 0850 0.125 0.560 0465 0320 0.800 0.055
SIRS 1.000 0.985 0.895 0.195 0.175 0.995 0.995 0.705 0.105 0.050
ISIRS 1.000 0.895 0.955 0335 0.280 0995 0975 0.855 0.200 0.145
DC-seq 0975 0315 0485 0645 0.190 0.885 0410 0.170 0450 0.070
n = 100, p = 300,d = [n/In(n)]
Lasso 1.000 1.000 1.000 1.000 1.000 1.000 0.960 1.000 1.000 0.960
(1.a) ISIS 1.000 0975 1.000 1000 0975 1.000 0.870 1.000 1.000 0.870
QasIS 0995 0.895 0.785 0980 0.690 0.990 0985 0510 0.950 0.450
NIS 1.000 0975 0.880 0.995 0850 1.000 1.000 0.630 0995 0.625
SIRS 1.000 0.990 0.860 1.000 0850 1.000 1.000 0.455 1.000 0.455
ISIRS 1.000 0.950 1.000 1.000 0950 1.000 0.990 0.995 1.000 0.985
DC-seq 0965 0.160 0310 0.820 0.080 0920 0.310 0.040 0515 0.015
Lasso 0.145 0.140 0.945 0990 0.020 0.130 0.130 0855 0.970 0.030
(1.b) 1ISIS 0.145 0.145 0955 0995 0.045 0.110 0.125 0840 0975 0.035
QasIS 0725 0700 0.940 0990 0515 0.980 0975 0745 0955 0.655
NIS 0.860 0.860 0.940 0990 0.705 1.000 1.000 0770 0.965 0.740
SIRS 0.040 0.025 0.980 1.000 0.000 0.035 0.020 0865 1.000 0.010
ISIRS 0.125 0.150 0.990 1.000 0.045 0.120 0.080 0950 0.995 0.045
DC-seq 0.070 0.065 0.645 0965 0.015 0.205 0.180 0365 0.905 0.020
Lasso 0.090 0.070 0.015 0925 0.000 0.075 0.100 0.025 0.855 0.000
(1.c) ISIS 0.165 0.125 0.040 0965 0.005 0.120 0.150 0.070 0915 0.010
QasIS 0920 0.945 0.160 0955 0.130 1.000 1.000 0.065 0.960 0.065
NIS 0910 0.930 0.040 0980 0.040 0.995 1.000 0.035 0945 0.035
SIRS 0.060 0.030 0415 1000 0.000 0.035 0.025 0335 1.000 0.010
ISIRS 0.100 0.060 0.525 0995 0.015 0.095 0.100 0415 0.980 0.030
DC-seq 0280 0.295 0.120 0985 0.040 0.510 0445 0010 0.870 0.005
Lasso 0305 0.085 0.105 0215 0.000 0.360 0.170 0.115 0.305 0.015
(1.d) ISIS 0470 0.245 0200 0535 0.020 0.520 0425 0210 0515 0.025
QasIS 0990 0.795 0.755 0.680 0390 0.980 0965 0535 0.625 0.330
NIS 0365 0.195 0.220 0.760 0.030 0435 0.375 0200 0.750 0.065
SIRS 1.000 0.960 0.820 0.115 0.075 1.000 1.000 0.625 0.120 0.075
ISIRS 0995 0915 0.835 0.165 0.130 1.000 0990 0825 0.135 0.105
DC-seq 0945 0365 0460 0.630 0.135 0.885 0410 0.180 0.405 0.030

489
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Table 4
Example 1: Ps and P, for DC's and some existing methods.
Model r=05 r=038
Ps Pa Ps Pa
X, X, X12 X22 All X X2 X12 X22 All
n = 200, p = 2000, d = [n/In(n)]
DC 1.000 1.000 0.965 1.000 0965 1.000 1.000 0.740 1.000 0.740
(1.a) DGy 1.000 1000 0.965 1.000 0965 1.000 1.000 0.730 1.000 0.730
DG, 1.000 1.000 0.965 1.000 0.965 1.000 1.000 0.730 1.000 0.730
DC 0.750 0.715 0990 1.000 0.605 0.990 0985 0925 1.000 0.905
(1.b) DG4 0.755 0.710 0.990 1.000 0.610 0990 0985 0920 1.000 0.900
DG, 0.750 0.710 0990 1.000 0.605 0.990 0.985 0920 1.000 0.900
DC 0.880 0.920 0.780 1.000 0.615 1.000 1.000 0.765 1.000 0.765
(1.c) DG 0875 0.920 0.775 1000 0.605 1.000 1.000 0.765 1.000 0.765
DG, 0.875 0.920 0.775 1.000 0.605 1.000 1.000 0.765 1.000 0.765
DC 1.000 0945 0.845 1000 0805 0.995 0.975 0660 0995 0.640
(1.d) DC; 1.000 0.945 0.845 0995 0.800 0.995 0975 0655 0995 0.635
DG, 1.000 0945 0.845 0.995 0800 0995 0975 0.655 0995 0.635

n = 200, p = 2000, d = [n/In(n)]
Lasso 1.000 1.000 1.000 1.000 1.000 1.000 0.98 1.000 1.000 0.980

(1.a) ISIS 1.000 1.000 1.000 1.000 1.000 1000 0905 1.000 1.000 0.905
QasIs 1.000 0925 0.890 0.995 0820 1.000 0.995 0640 0985 0.625
NIS 1.000 0995 0.955 1.000 0950 1.000 1.000 0.805 1.000 0.805

SIRS 1.000 1000 0.940 1.000 0940 1.000 1.000 0575 1000 0.575
ISIRS 1.000 0990 1.000 1.000 0990 1.000 1.000 1.000 1.000 1.000
DC-seq 0940 0.070 0.360 0.800 0.040 0.870 0.185 0.050 0.520 0.000

Lasso 0.045 0.030 0975 1000 0.005 0.090 0075 0.890 0.985 0.020

(1.b) ISIS 0.060 0.035 0975 1000 0.000 0.085 0.070 0.860 0.985 0.015
QasIS 0875 0.890 0.980 1000 0.775 1.000 1000 0.860 0.995 0.855
NIS 0965 0.980 0.955 1000 0.905 1.000 1000 0.850 0.995 0.850

SIRS 0.015 0.030 0.990 1000 0.005 0.010 0.015 0.880 1.000 0.000
ISIRS 0.045 0.050 0.990 1.000 0.000 0.060 0.060 0.965 1.000 0.020
DC-seq 0.035 0.030 0.655 0980 0.010 0.125 0.145 0305 0.930 0.020

Lasso 0.035 0.030 0.025 0975 0.000 0.065 0.045 0.015 0.955 0.000

(1.c) ISIS 0.070 0.030 0.035 0990 0.000 0.065 0.060 0.045 0.970 0.005
QasIS 0995 0.99 0.140 1000 0.140 1.000 1000 0.110 1.000 0.110
NIS 0985 0.995 0.025 0980 0.025 1.000 1000 0.035 0.985 0.035

SIRS 0.010 0.010 0575 1.000 0.000 0.005 0.000 0.555 1.000 0.000
ISIRS 0.035 0.055 0.685 1000 0.005 0.050 0.050 0.520 1.000 0.000
DC-seq 0.245 0225 0.100 0.980 0.010 0390 0370 0.000 0.955 0.000

Lasso 0.205 0.055 0.060 0.170 0.000 0.245 0.100 0.045 0.185 0.000

(1.d) ISIS 0375 0.190 0.120 0405 0.005 0430 0290 0.135 0475 0.040
QasIs 1.000 0925 0.855 0.630 0485 0995 0985 0710 0560 0.415
NIS 0230 0.095 0.110 0675 0.000 0.295 0.195 0.080 0.695 0.010

SIRS 1.000 0985 0.900 0.030 0030 1000 1.000 0745 0.065 0.060
ISIRS 1.000 0975 0.885 0.095 0090 1.000 1.000 0865 0.095 0.095
DC-seq 0980 0.290 0.500 0.725 0.160 0.920 0.325 0.190 0.440 0.035

4.1. Cardiomyopathy data

We analyze the cardiomyopathy microarray data which was considered in [18,23,29]. In the analysis of these data,
the aim is to identify the most influential genes for over-expression of a G protein-coupled receptor, designated Ro1, in
mice. The response Y is the Ro1 expression level, and the predictors X, are other genetic expression levels. Our goal is
to identify the most influential genes for Ro1 with sample size n = 30, p = 6319. Because n < p, we choose the DC
approach. We use the threshold value d = |n/In(n)] = 8.

The DC and DC; procedures select the same eight genes: Msa.2134.0, Msa.2877.0, Msa.26025.0, Msa.5583.0, Msa.1590.0,
Msa.1166.0, Msa.2400.0, Msa.15442.0. In contrast, the DC, procedure selects slightly different genes: Msa.2134.0,
Msa.2877.0, Msa.26025.0, Msa.5583.0, Msa.1590.0, Msa.1166.0, Msa.2400.0, Msa.5618.0.

Note that the top two genes, viz. Msa.2134.0 and Msa.2877.0, were also selected by Li et al. [23], and two genes, viz.
Msa.2877.0 and Msa.1166.0, were selected by Hall and Miller [18]. Both sets are in our final results. However, compared
with DC (DCy), the DC, procedure selects a different gene, viz. Msa.5618.0. To identify whether the gene Msa.5618.0 is
important, following Li et al. [23] we consider an additive model which always includes the top two genes Msa.2134.0,
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Table 5
Example 2: P and P, for DC's and some existing methods.
Model r=05 r=038
Ps Pa Ps Pa
X X2 X3 X4 All X X2 X3 X4 All
n =100, p = 300, d = [n/In(n)]
DC 0945 0.960 0.960 0.005 0.005 0.830 0.815 0815 0.000 0.000
(2.a) DG 0.940 0960 0960 1.000 0.905 0.820 0.815 0810 1.000 0.750
DG, 0940 0.960 0.960 1.000 0905 0.825 0.825 0810 1.000 0.750
DC 0995 0.995 1.000 0235 0230 0.980 0995 0995 0355 0.340
(2.b) DCy 0995 0995 1.000 0.930 0920 0975 0990 0995 0975 0.935
DG, 0995 0.995 1.000 0990 0980 0.975 0990 0995 0.980 0.940
DC 1.000 0995 0995 0.175 0.175 0970 0960 0.940 0.275 0.195
(2.c) DG 0995 0995 0.995 0970 0955 0.970 0960 0935 0.985 0.850
DG, 0995 0.995 0995 1.000 0985 0.970 0960 0935 1.000 0.865

n = 100, p = 300, d = |n/In(n)]
Lasso 1.000 1.000 1.000 0.005 0.005 1.000 1.000 1.000 0.000 0.000

(2.a) ISIS 1.000 1000 1.000 0.995 0995 1000 1.000 1.000 0995 0.995
QasIs 0870 0.895 0.905 0.045 0.035 0,510 0555 0470 0.020 0.000
NIS 0975 0975 0.980 0.030 0.030 0.800 0.780 0805 0.015 0.000

SIRS 0990 0975 1.000 0.000 0.000 0.930 0895 0915 0.000 0.000
ISIRS 1.000 1.000 1000 0920 0.920 1.000 1000 1.000 0.930 0.930
DC-seq 0.835 0765 0.760 0.000 0.000 0510 0485 0490 0.000 0.000

Lasso 1.000 1000 1.000 0.945 0945 0860 0.845 0875 0365 0.330

(2.b) ISIS 1.000 1.000 1.000 1000 1.000 0.875 0.845 0840 0.935 0.660
QasIS 0945 0945 0970 0080 0.060 0.815 0815 0810 0.120 0.070
NIS 0995 0995 0995 0.195 0.195 0.955 0925 0890 0.545 0425
SIRS 1.000 1.000 0990 0.005 0.005 0.920 0920 0905 0.020 0.020

ISIRS 0980 0975 0985 1000 0945 0.850 0.835 0830 0.930 0.560
DC-seq 0975 0965 0.955 0.000 0000 0930 0.910 0.890 0.000 0.000

Lasso 0960 0945 0955 0970 0915 0495 0525 0475 0430 0.235

(2.c) ISIS 0970 0930 0975 1000 0.895 0.610 0560 0540 0915 0.230
QasIS 0940 0925 0.920 0600 0470 0.245 0295 0255 0.765 0.020
NIS 0.830 0815 0.810 0.885 0595 0215 0.260 0.220 0985 0.060

SIRS 0995 0985 0.995 0.000 0.000 0.940 0.905 0920 0.000 0.000
ISIRS 0985 0970 0975 1000 0930 0.855 0830 0815 1.000 0.570
DC-seq 0960 0930 0.940 0.035 0030 0825 0.740 0.760 0.065 0.005

Msa.2877.0 and an additional gene, viz.
Y = fi(X1) + (X2) + f3(Xe) + €,

where X; = Msa.2134.0 and X, = Msa.2877.0, and X}, is another gene which is selected by DC (DC;) and DC,. The p-values
of X; and X, are much smaller than the 5% significance level; thus these two variables are significant. Table 7 reports the
related p-values for other variables, which indicates that gene Msa.5618.0 is significant, and is worth further consideration,
while all other genes are not significant.

5. Discussion

In this paper, we proposed two sufficient variable selection procedures, illustrated using DC and HR. The generality of
these procedures is that any marginal screening approach may be adapted into the two sufficient procedures as to improve
the marginal screening approach. Our new procedures SVS; and SVS, provide sufficient variable selection for the response
that can provide additional information from predictors which may be missed by just using marginal screening methods,
as demonstrated in Example 2. In the presence of multiple utilities, different strategies may be used to combine them.
The idea of Balasubramanian et al. [1], which is based on the sup-HSIC method and takes the supremum of HSIC over a
family of kernels via marginal screening, can certainly be incorporated into our sufficient variable selection procedures.
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Table 6
Example 2: P and P, for DC's and some existing methods.
Model r=05 r=038
Ps Pa Ps Pa
X1 X2 X3 X4 All X X2 X3 X4 All

n =200, p = 2000, d = [n/In(n)]|
DC 0.995 1.000 1.000 0.000 0.000 0.935 0965 0960 0.000 0.000

(2.a) DG 0.995 1.000 1000 1.000 0.995 0935 0965 0955 1.000 0.915
DG, 0.995 1.000 1000 1.000 0.995 0935 0965 0955 1.000 0.915
DC 1.000 1.000 1.000 0.110 0.110 1.000 1.000 1.000 0.345 0.345

(2.b) DG 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
DG, 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
DC 1.000 1.000 1.000 0.080 0.080 0.995 0.985 1.000 0.180 0.170

(2.c) DG 1.000 1.000 1.000 1.000 1.000 0.995 0.985 1.000 1.000 0.980
DG, 1.000 1.000 1.000 1.000 1.000 0.995 0.985 1.000 1.000 0.980

n = 200, p = 2000, d = [n/In(n)]
Lasso 1.000 1.000 1.000 0.000 0.000 1.000 1.000 1.000 0.000 0.000

(2.a) ISIS 1.000 1.000 1.000 1.000 1000 1.000 1.000 1.000 0.525 0.525
QasIS 0.980 0.990 0.990 0.005 0.005 0735 0740 0.690 0.000 0.000
NIS 1.000 1.000 1.000 0.005 0.005 0.950 0.940 0.955 0.000 0.000
SIRS 1.000 1.000 1.000 0.000 0.000 0.985 0.990 0.985 0.000 0.000
ISIRS 1.000 1.000 1.000 0.990 0990 1.000 1.000 1.000 0940 0.940
DC-seq 0945 0910 0915 0.000 0.000 0615 0.625 0.655 0.000 0.000
Lasso 1.000 1.000 1.000 1.000 1000 0965 0.935 0935 0475 0475

(2.b) 1ISIS 1.000 1.000 1.000 1.000 1.000 0.955 0.935 0935 0950 0.825
QasIS 1.000 1.000 1.000 0.055 0.055 0915 0915 0925 0.030 0.020
NIS 0.995 0.995 1000 0275 0.275 0960 0920 0960 0.805 0.705
SIRS 1.000 1.000 1.000 0.005 0.005 0.995 0.980 0.960 0.005 0.000
ISIRS 1.000 1.000 1.000 1.000 1.000 0.975 0.940 0940 0.995 0.855
DC-seq 1.000 0.995 0.990 0.015 0.015 0.995 0.990 0.985 0.005 0.005
Lasso 0975 0980 0985 0980 0965 0555 0525 0525 0540 0.335

(2.c) ISIS 0.975 0985 0990 0995 0.965 0.625 0600 0630 0.945 0.300
QasIS 1.000 1.000 0.985 0.785 0.775 0250 0.225 0.285 0.935 0.035
NIS 0.835 0.825 0810 0985 0.740 0.140 0.110 0.100 0.995 0.015
SIRS 1.000 1.000 1.000 0.000 0.000 0.990 0.980 0.970 0.000 0.000
ISIRS 1.000 0995 1.000 1.000 0995 0965 0.955 0.945 1.000 0.865
DC-seq 1.000 1.000 1.000 0.000 0.000 0.930 0.960 0915 0.025 0.010

Table 7

The selected genes in Cardiomyopathy data with d = [n/In(n)| = 8.

By both DC(DC;) and DG, X,

p-values 0.093

Msa.26025.0 Msa.5583.0 Msa.1590.0

0.071

0.121

Msa.1166.0 Msa.2400.0

0.591

0.121

By DC(DC;) only

Xa

Msa.15442.0
p-values 0.395

By DC, only

Xo(

p-values 0.046

Msa.5618.0
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