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a b s t r a c t

We propose two sufficient variable selection procedures, i.e., one- and two-stage ap-
proaches using independence measures for continuous response, illustrated by distance
correlation and the Hilbert–Schmidt Independence Criterion correlation. We show the
advantages of the proposed procedures over some existing marginal screening methods
through simulations and a real data analysis. Our procedures are model-free and thus
robust against model mis-specification. They are particularly useful when some active
predictors are marginally independent of the response.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Variable selection has become increasingly important in various research fields, as data are being collected at a
relatively low cost due to modern technology. Many methods have been proposed over the last two decades, such as
the least absolute shrinkage and selection operator (Lasso) [37], the smoothly clipped absolute deviation (SCAD) [10], and
the Dantzig selector [2]. These methods have shown promise in dealing with high-dimensional data.

For ultrahigh-dimensional data, however, Fan and Lv [11] pointed out that the aforementioned methods have
limitations due to the challenges of computational cost, statistical accuracy, and algorithmic stability. These concerns led
to the sure independent screening (SIS) method in [11] for ultrahigh-dimensional data. The SIS method is based on the
marginal Pearson correlation learning and is designed for linear regressions with Gaussian predictors and responses. SIS
not only can speed up variable selection drastically but can also improve the estimation accuracy when dimensionality is
ultrahigh. Many other methods have been developed in recent years, following SIS with specified models, both parametric
and semi-parametric; see, e.g., [3,4,9,12,13,24,33]. However, specifying a correct model for ultrahigh-dimensional data
may be challenging.

As the aforementioned model-specific screening procedures may not be robust to model mis-specification, model-free
sure screening procedures have been developed; see, e.g., [1,8,19–21,23,25,26,32,41]. Fan and Lv [11] pointed out that the
marginal screening procedure may miss some active predictors that are marginally independent of the response, and they
proposed iterative sure independence screening (ISIS) to overcome the problem. Although this idea has been empirically
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demonstrated in [9,13,23,41], its theoretical justification still remains unclear. Mai and Zou [25,26] discussed the subtle
difference between variable selection and variable screening: the former uses fine methods to exactly select the active
set of predictors, while the latter uses rough but fast methods to select a set containing the active set of predictors. The
existing variable screening methods may not always select such a set, though they often work in practice. This motivates us
to explore new procedures to overcome the drawback of existing screening approaches, and to seek theoretical guarantees
that they select a set containing all active predictors.

In this paper, focusing on continuous response, we propose two new sufficient variable selection approaches based on
theoretical results from the sufficient dimension reduction literature. These two new approaches translate conditional
independence in sufficient variable selection to alternative measures of independence. The independence statistic is
illustrated by distance correlation [35,36] and Hilbert–Schmidt Independence Criterion correlation [15]. Although fine
statistical tests could be developed for these procedures, we only use the screening approach for the purpose of sufficient
variable selection as it is fast and cost-efficient, even though the selected set may be larger than the set of active predictors.
Our approach is model-free. Thus, it is robust against model mis-specification, which is an attractive property in practice.
Also, our methods allow for arbitrary regression relationships, which makes them more effective than the model-specific
marginal approaches. More importantly, our proposed procedures are advantageous when some active predictors are
marginally independent of the response.

The rest of this paper is organized as follows. Section 2 describes both distance correlation and Hilbert–Schmidt
Independence Criterion correlation for sufficient variable screening. Section 3 reports some of their theoretical properties,
while Section 4 contains simulation studies and a real data application. A short discussion follows in Section 5. Related
proofs of theorems and additional simulations can be found in the Online Supplement.

Throughout this paper, we assume that Y is a univariate or multivariate response variable, and X = (X1, . . . , Xp)⊤ is a
p × 1 vector. The notation U V|W means that U and V are independent given W.

2. Methodology

2.1. Sufficient variable selection

We adopt the following definition of sufficient variable selection from Yin and Hilafu [38].

Definition 1. If there is a p × q matrix A with q ≤ p, where the columns of A consist of unit vectors, eαs, whose αth
element is 1, such that Y X|A⊤X, then the column space of A is called a variable selection space. The intersection of
all such spaces, if it satisfies the conditional independence condition above, is called the central variable selection space,
denoted by SV

Y |X.

Let XD be the set of Xk which are involved in SV
Y |X and XD̄ be its complement, where D and D̄ are the respective index

sets. In this paper, we assume the existence of SV
Y |X. Then Definition 1 is equivalent to Y XD̄|XD , where XD is the set

of active variables, which is smallest and unique. Yin and Hilafu [38] concluded that the existence of a central subspace
implies the existence of SV

Y |X. Conditions for the existence of the central subspace were obtained by Cook [5] and Yin
et al. [39]. In fact, the existence of the central subspace implies that the set of variables involved in that subspace is XD .
Therefore, the goal is to find XD . Directly using the conditional independence, Y XD̄|XD , seems infeasible, because it is
hard to decide which and how many variables should be included in the set XD .

Note that the popular SIS in [11] and its family consider the independence, Y Xα , then rank all Xαs in decreasing
order based on the strength of the measure, and choose the first d (threshold value) predictors as an estimator containing
XD . However, there are fundamental differences between this approach and Y XD̄|XD . The former is looking at the
marginal relation, while the latter is focused on a conditional relation. Fan and Lv [11] and Zhu et al. [41] pointed out that
the marginal feature screening procedure may miss those predictors which are marginally unrelated but jointly related
to the response. To partly eliminate this, they proposed an iterative procedure that computes the correlation between
the response and the residual of the remaining Xs. The iterative procedure performs well empirically, but its theoretical
justification remains unclear. We propose two novel sufficient variable selection procedures to achieve the conditional
independence, based on a simplified version of Proposition 1 in [38] as below.

Proposition 1. Let X, X1 and X2 be random vectors, and X⊤
= (X⊤

1 ,X
⊤

2 ), then statement (i) or statement (ii) implies statement
(iii):

(i) (Y ,X2) X1;

(ii) X1 X2|Y and Y X1;
(iii) Y X1|X2.

Note that statement (iii) implies that Pr(Y |X1,X2) = Pr(Y |X2). Therefore, if statement (iii) holds, then we can eliminate
X1 without losing any regression information. After eliminating X1, we treat X2 as a new X, split it, and then do
a further test until nothing can be eliminated. Hence, in the end, the set contains XD . Thus, statement (iii) is very



482 B. Yang, X. Yin and N. Zhang / Journal of Multivariate Analysis 173 (2019) 480–493

important. However, statement (iii) is just the goal of the sufficient variable selection, i.e., the conditional independence
test Y XD̄|XD . Hence, it is difficult to test statement (iii) directly because we do not know X2 in advance.

Note that statement (iii) can be forced to hold if either of statement (i) or statement (ii) holds. Therefore, developing
methods for testing statements (i) and (ii) is useful. To do so, we propose two sufficient variable selection approaches
based on statements (i) and (ii), which we call one-stage sufficient variable selection and two-stage sufficient variable
selection, respectively. It appears that statement (i) is naturally useful for a continuous response as the combination of Y
and Xs makes sense, while statement (ii) is naturally useful for a categorical response as the first part of statement (ii)
is a conditional test. Note that SIS [11] and its family only use the second part of statement (ii) for scalar X1, which is
not sufficient to imply (iii). While statement (i) or statement (ii) implies statement (iii), the converse is not true. Hence,
situations where (iii) holds while either (i) or (ii) fails are excluded.

In this paper, we use distance correlation (DC) [36] and Hilbert–Schmidt Independence Criterion (HSIC) correlation [15]
to illustrate the two sufficient procedures for continuous response. Let (U,V) ∈ U × V , and U and V be random vectors
with dimensions du and dv , respectively. Suppose that (U′,V′) is an iid copy of (U,V). Suppose that (U1,V1), . . . , (Un,Vn)
is a random sample of (U,V). Next we review DC and HSIC correlation.

2.2. Distance correlation

Suppose thatψU andψV are the respective characteristic functions of U,V, andψU,V is their joint characteristic function.
Following [36], the distance covariance between U and V is the nonnegative number dcov(U,V) given by

dcov2(U,V) =

∫
U×V

∥ψU,V(t, s) − ψU(t)ψV(s)∥2w(t, s)dtds,

where ∥ψ∥
2

= ψψ̄ for a complex-valued function ψ with ψ̄ being the conjugate of ψ , and

w(t, s) =

(
cducdv∥t∥

1+du
du ∥s∥1+dv

dv

)−1
,

with cd = π (1+d)/2/Γ {(1 + d)/2}, where ∥a∥d stands for the Euclidean norm of a ∈ Rd.
The DC between U and V is defined as

dcorr(U,V) =
dcov(U,V)

√
dcov(U,U′)dcov(V,V′)

.

An important property is that dcorr(U,V) = 0 if and only if U and V are independent. Székely et al. [36] expressed
dcov2(U,V) as dcov2(U,V) = S1 + S2 − 2S3, where S1 = E∥U − U′

∥du∥V − V′
∥dv , S2 = E∥U − U′

∥duE∥V − V′
∥dv , and

S3 = E{E(∥U − U′
∥du |U)E(∥V − V′

∥dv |V)}. The respective sample versions of S1, S2 and S3 are

Ŝ1 =
1
n2

n∑
i,j=1

∥Ui − U′

j∥du∥Vi − V′

j∥dv , Ŝ2 =
1
n2

n∑
i,j=1

∥Ui − U′

j∥du
1
n2

n∑
i,j=1

∥Vi − V′

j∥dv ,

Ŝ3 =
1
n3

n∑
i,j,ℓ=1

∥Ui − U′

ℓ∥du∥Vj − V′

ℓ∥dv .

Thus, an estimator of dcov2(U,V) is ˆdcov
2
(U,V) = Ŝ1 + Ŝ2 − 2Ŝ3. Putting this into the formula of dcorr(U,V), we obtain

an estimator of DC.

2.3. HSIC correlation

Following Gretton et al. [15], let F and G be the respective universal Reproducing Kernel Hilbert space (RKHS) on
U and V . For each point U ∈ U , there corresponds an element φ(U) ∈ F satisfying K (U,U′) = ⟨φ(U), φ(U′)⟩K , where
K : U×U → R is a positive definite kernel with inner-product ⟨·, ·⟩K . Similarly, for each point V ∈ V , there corresponds an
element ϕ(V) ∈ G satisfying L(V,V′) = ⟨ϕ(V), ϕ(V′)⟩L, where L : V×V → R is a positive definite kernel with inner-product
⟨·, ·⟩L. The cross covariance operator CU,V : F → G is defined for all f ∈ F and g ∈ G via the bilinear form

⟨g, CU,Vf ⟩G = cov{f (U), g(V)} = EU,V{f (U)g(V)} − EU{f (U)}EV{g(V)}.

The HSIC covariance between random vectors U and V can be formulated (See [15,16]) as

H(U,V) = ∥CU,V∥HS = E{K (U,U′)L(V,V′)} + E{K (U,U′)}E{L(V,V′)} − 2E[E{K (U,U′)|U}E{L(V,V′)|V}].

That is, the HSIC covariance is defined as the Hilbert–Schmidt norm of the cross-covariance operator CU,V. The Hilbert–
Schmidt norm of CU,V exists when the various expectations over the kernels are bounded, which is true as long as the
kernels K and L are bounded [15]. It can be shown that H(U,V) = 0 if and only if U and V are statistically independent,
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as long as the associated RKHSs F and G are universal [15], i.e., they are dense in the space of continuous functions with
respect to the infinity norm [17].

Examples of kernels generating universal RKHS are, e.g., the Gaussian and the Laplace kernels [34]. In our algorithm
we choose Gaussian kernel, which belongs to the class of translation-invariant kernels, i.e., the kernel functions with the
property K (U,U′) = K (U − U′). Let H(U) = H(U,U). The HSIC correlation (HR) [40] between U and V is the nonnegative
number HR(U,V) defined by

HR(U,V) =

⎧⎨⎩
H(U,V)

√
H(U)H(V)

if H(U)H(V) > 0,

0 if H(U)H(V) = 0.

The function HR generalizes the idea of Pearson correlation in the sense that HR(U,V) = 0 corresponds to the
independence of U and V. One empirical HSIC [15] is

Hn(U,V) =
1
n2

∑
i,j

KijLij −
2
n3

∑
i,j,k

KijLik +
1
n4

∑
i,j,k,ℓ

KijLkℓ,

where

Kij = exp
{
−

1
2
(Ui − Uj)⊤Σ̂−1

U (Ui − Uj)
}

and Lkℓ = exp
{
−

1
2
(Vk − Vℓ)⊤Σ̂−1

V (Vk − Vℓ)
}
, (1)

and Σ̂U and Σ̂V are the respective sample covariance matrices. Let Hn(U) = Hn(U,U), the corresponding sample HR, HRn,
is then

HRn(U,V) =

⎧⎨⎩
Hn(U,V)

√
Hn(U)Hn(V)

if Hn(U)Hn(V) > 0,

0 if Hn(U)Hn(V) = 0.

Note that in practice, the sample covariance matrices in the kernel of (1) are singular for ultrahigh-dimensional data. In
this case, there are two ways to solve this problem. One way is to normalize each component of U to have unit variance,
and rewrite the kernel as

Kij = exp

{
−

1
2

p∑
α=1

(Uiα − Ujα)2
}
,

which is equivalently to use product kernel [28,31]. Another way is to follow the method of Schafer and Strimmer [27] to
shrink the inverse of the covariance matrix. This method is included in the R package Corpcor. Our simulations indicate
that these two methods yield similar results. Thus we only report the latter one in the paper.

It is interesting to note that distance covariance and HSIC covariance are equivalent in that they are different kernel
choices under the RKHS [30].

2.4. Algorithms

We describe algorithms using an independence index I(U,V) for HR and DC, where U and V are two generic random
vectors. Let Xα be the αth predictor in X and Y be the response variable. Suppose

X−α = (X1, . . . , Xα−1, Xα+1, . . . , Xp).

The three algorithms based on Proposition 1 are as follows.

(i) Themarginal feature selection (FSM , i.e., SIS procedure) calculates the marginal relation in the second part of statement
(ii), i.e., the measure is uα = I(Y , Xα).

(ii) The one-stage sufficient variable selection procedure (SVS1) uses statement (i), i.e., the measure is u∗
α = I{(Y ,X−α), Xα}.

(iii) The two-stage sufficient variable selection procedure (SVS2) uses statement (ii), i.e., the two measures are u∗∗
α =

I{(Xα,X−α)|Y } and uα .

Calculating uα and u∗
α is straightforward, however, u∗∗

α involves a conditional form. To overcome this conditional form,
we use a slicing approach. If Y is a continuous, let

J = {[ℓs−1, ℓs) : ℓs−1 < ℓs, s ∈ {1, . . . , S},∪S
ℓ=1[ℓs−1, ℓs) \ ℓ0 = R, ℓ0 = −∞, ℓS = ∞},

where ℓs is the s/Sth sample quantile of Y . Note that the interval (l0, l1) is open, but we abuse the notation a little by
writing the intervals [ls−1, ls) for all s. Each [ls−1, ls) is called a slice. Define Z ∈ {1, . . . , S} such that Z = s if and only if
Y ∈ [ℓs−1, ℓs). If Y is discrete, i.e., Y ∈ {1, . . . , S}, let Z = Y . Denote uJ

α,s = I{(Xα,X−α)|Z = s} for s ∈ {1, . . . , S}. We have
u∗∗
α =

∑S
s=1 u

J
α,s.
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Given a random sample (X1, Y1), . . . , (Xn, Yn), we then construct their respective estimators as ûα = Î{Y , Xα}, û∗
α =

Î{(Y ,X−α), Xα}, and û∗∗
α = Î{(Xα,X−α)|Y }. The detailed algorithms are as follows.

Marginal feature selection (FSM )

1. Calculate ûα = Î{Y , Xα} for α ∈ {1, . . . , p}. The estimate XD̂1
is the set of Xαs with the largest d values of ûα , where

d is the preselected value.
2. The estimate XD̂ is the same as XD̂1

.

One-stage sufficient variable selection (SVS1)

1. Calculate ûα for α ∈ {1, . . . , p}. The estimate XD̂1
is the set of Xαs with the largest d1 values of ûα .

2. Calculate û∗
α = Î{(Y ,X−α), Xα} for α ∈ {1, . . . , p}. The estimate XD̂∗ is the set of Xαs with the largest d2 values of

û∗
α but not in XD̂1

of Step 1.
3. The final estimate XD̂ is the union of these two sets, i.e., XD̂1

∪ XD̂∗ .

Two-stage sufficient variable selection (SVS2)

1. Calculate ûα for α ∈ {1, . . . , p}. The estimate XD̂1
is the set of Xαs with the largest d1 values of ûα .

2. Obtain the conditional set:

(a) Slice Y into S non-overlapping slices.
(b) Calculate û∗∗

α =
∑S

s=1 û
J
α,s with ûJ

α,s = Î{(Xα,X−α)|Z = s}.
(c) The estimate XD̂∗∗ is the set of Xαs with the largest d2 values of û∗∗

α but not in XD̂1
of Step 1.

3. The final estimate XD̂ is the union of these two sets, i.e., XD̂1
∪ XD̂∗∗ .

Note that in SVS1, we add the marginal screening procedure (which is implied by statement (i)). This is because in
practice the marginal relation typically does play an important role. Note as well that in SVS2, the number of slices S can
be subjective. For computational ease, we choose S = 2 in the simulation study, which seems to work well. Li et al. [23]
stressed that the choice of threshold value d is very important, and they suggested a user-specified model size d. Based on
their suggestion, we use d = ⌊p/ln(p)⌋ when n > p, and d = ⌊n/ln(n)⌋ or n − 1 when n < p. Avoiding the ad hoc choice
of d, Kong et al. [21] developed a sequential method for variable screening. Alternatively, one can estimate d through an
independent test, such as a permutation or a bootstrap test.

Our simulations below indicate that the power of DC/HR (our extra step in SVS1 and SVS2) for picking up active
variables that are marginally related to the response is small. However, they are powerful in picking up active variables
that are marginally independent of the response but are conditionally dependent of the response. In contrast, the marginal
screening method is not powerful in selecting the active variables that are marginally independent of the response but
conditionally dependent of the response. Thus, the two procedures complement each other and the combination of the
two, in fact, significantly improves the result of the overall percentage of correctly selecting active variables. We propose
to use d1 = 0.95d and d2 = 0.05d, which works well in our simulations. Certainly, if the number of conditional important
predictors increases, then we should increase d2.

3. Theoretical properties

We now study theoretical properties of the screening procedures of ûα , û∗
α and û∗∗

α . To study ûα , we only focus on
HR, as Li et al. [23] had the result for DC. Note the fact that uα = I(Y , Xα) = 0 if and only if Y and Xα are independent
with α ∈ {1, . . . , p}. This fact guarantees that HR ranks the marginal active predictors above the marginal inactive ones,
i.e., maxα∈D̄1 uα < minα∈D1 uα , where D1 is the marginal active set, and separates the marginal active ones from the
marginal inactive ones. Hence, the quantity uα can be used for marginal feature screening. We assume the following two
conditions.

(C1): The universal kernels K and L are bounded and non-negative.
(C2): minα∈D1 uα ≥ 2cn−ν for some ν ∈ [0, 1/2) and c > 0.

Condition (C1) makes sure that the HSIC norm is finite, because various expectations, (i.e., EX,X′{K (X,X′)} and
EY,Y′{L(Y,Y′)}) over bounded kernels K and L are also bounded [15]. Without loss of generality, we assume that K and L
are bounded by 1, i.e., ∥K∥ ≤ 1 and ∥L∥ ≤ 1. Condition (C2) means that the marginal HR of active predictors cannot be
too small. This assumption is equivalent to the condition (3) in [11] and condition (C2) in [23]. Condition (C2) reflects the
signal strength of individual active predictor, which in turn controls the rate of probability error in selecting the active
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predictors [41]. Define the selected set as

D̂1 = {α : ûα ≥ cn−ν
}.

Let c1 and c2 be positive generic constants. We have the following result.

Theorem 1. Under condition (C1), let ν ∈ (0, 1/2), there exists a positive constant c1 > 0 such that

Pr
(
max
1≤α≤p

|ûα − uα| ≥ cn−ν
)

≤ O[p{exp(−c1n1−2ν)}]

Furthermore, under condition (C2), denote δ = minα∈D1 uα − maxα∈D̄1 uα , i.e., δ ≥ 2cn−ν > 0. Then we have

Pr
(
max
α∈D̄1

ûα < min
α∈D1

ûα
)

≥ 1 − O[p{exp(−c1n1−2ν)}] (2)

Under conditions (C1) and (C2), we have that

Pr(D1 ⊆ D̂1) ≥ 1 − O[sn{exp(−c1n1−2ν)}], (3)

where sn is the cardinality of D1.

The proof of Theorem 1 is in the Online Supplement. The sure screening property holds for HR FSM procedure. It also
indicates that we can handle the non-polynomial (NP) dimensionality of order ln p = o(n1−2ν) with ν ∈ (0, 1/2), meaning
that, if ln p = o(n1−2ν) with ν ∈ (0, 1/2), then (2) indicates that the probability of maxα∈D̄1 ûα < minα∈D1 ûα approaches
1 as n → ∞. That is, ûα always ranks the active predictors above the inactive ones in probability; and furthermore, in
such a case, (3) indicates that the size of true active predictors can change with p, as it is no larger than p.

To study û∗
α , we focus on HR only, leaving related conditions and results for DC in the Online Supplement. Note that

u∗
α = I{(Y ,X−α), Xα} = 0 if and only if (Y ,X−α) Xα , which guarantees Y Xα|X−α based on Proposition 1. This fact

makes sure that the quantity u∗
α can attain our ultimate goal Y XD̄∗ |XD∗ , where XD∗ is the set of predictors whose

u∗
α > 0. Condition (C1) is still needed to ensure the existence of the related (HSIC) norm. Condition (C2) is replaced by

the following condition.

(C2∗): minα∈D∗ u∗
α ≥ 2cn−ν for some ν ∈ [0, 1/2) and c > 0.

Condition (C2∗) reflects that the resulting HR for active variables cannot be too small. Define the selected set

D̂∗
= {α : û∗

α ≥ cn−ν
}.

We have the following result.

Theorem 2. Under condition (C1) with ν ∈ (0, 1/2), there exists a positive constant c1 > 0 such that

Pr
(
max
1≤α≤p

|û∗

α − u∗

α| ≥ cn−ν
)

≤ O[p{exp(−c1n1−2ν)}].

Furthermore, under condition (C2∗), denote δ = minα∈D∗ u∗
α − maxα∈D̄∗ u∗

α , i.e., δ ≥ 2cn−ν > 0. Then we have

Pr
(
max
α∈D̄∗

û∗

α < min
α∈D∗

û∗

α

)
≥ 1 − O[p{exp(−c1n1−2ν)}]. (4)

Under conditions (C1) and (C2∗), we have that

Pr(D∗
⊆ D̂∗) ≥ 1 − O[sn{exp(−c1n1−2ν)}], (5)

where sn is the cardinality of D∗.

The proof of Theorem 2 is in the Online Supplement. Combining this result with Theorem 1, we find that the screening
property holds for the HR SVS1 procedure. Again, we can handle the non-polynomial (NP) dimensionality of order
ln p = o(n1−2ν) with ν ∈ (0, 1/2). That is, if ln p = o(n1−2ν) with ν ∈ (0, 1/2), then (4) indicates that the probability
of maxα∈D̄∗ û∗

α < minα∈D∗ û∗
α approaches 1 as n → ∞, separating the active predictors from the inactive predictors. And

(5), in such a case, indicates that the size of true active predictors can change with p, as it is no larger than p.
To study û∗∗

α , we focus on HR only, leaving the related conditions and results for DC in the Online Supplement. Note
that u∗∗

α = I{(Xα,X−α)|Y } for α ∈ {1, . . . , p}. Let

û∗∗

α = Î{(Xα,X−α)|Y } =

S∑
s=1

ûJ
α,s =

S∑
s=1

Î{(Xα,X−α)|Z = s}.

Let D∗∗ be the set of predictors whose u∗∗
α > 0. We need replace condition (C2) by the following condition.

(C2∗∗): minα∈D∗∗ u∗∗
α ≥ 2cn−ν for some ν ∈ [0, 1/2) and c > 0.
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Condition (C2∗∗) reflects that the resulting HR for active variables cannot be too small. Additionally, we need the
following conditions.

(C3∗∗): Observations within each slice are iid.
(C4∗∗): For any interval [b1, b2), we have

inf
y∈[b1,b2)

I{(Xα,X−α)|Y = y} ≤ I{(Xα,X−α)|Y ∈ [b1, b2)} ≤ sup
y∈[b1,b2)

I{(Xα,X−α)|Y = y}.

Furthermore, for any ϵ > 0, if

1/S − ϵ ≤ Pr{Y ∈ [b1, b2)} ≤ 1/S + ϵ,

then for any y1, y2 ∈ [b1, b2),

|I{(Xα,X−α)|Y = y1} − I{(Xα,X−α)|Y = y2}| ≤ ϵ/2.

Note that although assumption (C3∗∗) appears strong, it is in fact quite common in different areas, e.g., in sufficient
dimension reduction [6,7,14,22] and in screening methods [26]. This condition ensures the rank consistency of ûJ

α,s in each
slice, which also simplifies the proof. Condition (C4∗∗) is equivalent to the condition (C2) in [26], which will be used to
provide us the exponential inequality. Condition (C4∗∗) is to make sure that I{(X−α, Xα)|Y ∈ [b1, b2)} approximates the
goal I{(X−α, Xα)|Y = y} accurately. Define the select set

D̂∗∗
= {α : û∗∗

α ≥ cn−ν
}.

We have the following result.

Theorem 3. Under conditions (C1), (C3∗∗), and (C4∗∗) with ν ∈ (0, 1/2), there exist positive constants c1, c2 > 0 such that

Pr
(
max
1≤α≤p

|û∗∗

α − u∗∗

α | ≥ cn−ν
)

≤ O[Sp{exp(−c1n1−2ν/S2) + exp(−c2n1−2ν/S2)}]. (6)

Furthermore, under condition (C2∗∗), denote δ = minα∈D∗∗ u∗∗
α − maxα∈D̄∗∗ u∗∗

α . Then we have

Pr
(
max
α∈D̄∗∗

û∗∗

α < min
α∈D∗∗

û∗∗

α

)
≥ 1 − O[Sp{exp(−c1n1−2ν/S2) + exp(−c2n1−2ν/S2)}]. (7)

Under conditions (C1), (C2∗∗), (C3∗∗), and (C4∗∗), we have that

Pr(D∗∗
⊆ D̂∗∗) ≥ 1 − O[snS{exp(−c1n1−2ν/S2) + exp(−c2n1−2ν/S2)}], (8)

where sn is the cardinality of D∗∗, and S is the slice number of Y .

Note first that we can simplify (6)–(8) by getting rid of the larger of c1 and c2 in the right-hand side of (6)–(8). The
proof of Theorem 3 is in the Online Supplement. Combining this result with the result of Theorem 1, we conclude that the
screening property holds for SVS2. In fact, S does not have to be fixed. For instance, if S ≤ ln n [26], if ln p = o(n1−2ν/S2)
with ν ∈ (0, 1/2), then (7) indicates that the probability of maxα∈D̄∗∗ û∗∗

α < minα∈D∗∗ û∗∗
α approaches 1 as n → ∞,

separating the active predictors from the inactive predictors. And (8), in such a case, indicates that the size of true active
predictors can change with p, as it is no larger than p.

4. Numerical studies

In this section, we assess the performance of our proposed approaches through simulation studies. We repeat each
experiment 200 times, and report the results based on the following criteria.

(i) S: the minimum size to include all active predictors. We report the 5%, 25%, 50%, 75%, 95% quantiles S of out of 200
replications.

(ii) Ps: the proportion that an individual active predictor is selected out of 200 replicates.
(iii) Pa: the proportion that all active predictors are selected out of 200 replicates.

Note that results are better if Pa and Ps are closer to 1. We use DC, DC1, DC2 to represent DC based on marginal
procedure, one stage procedure and two stage procedure, respectively, while HR, HR1 and HR2 are correspondingly based
on HR.

Example 1. The models come from Fan and Lv [11] and Li et al. [23]:

(1.a) Y = c1β1X1 + c2β2X2 + c3β31(X12 < 0) + c4β4X22 + ϵ;
(1.b) Y = c1β1X1X2 + c3β21(X12 < 0) + c4β3X22 + ϵ;
(1.c) Y = c1β1X1X2 + c3β21(X12 < 0)X22 + ϵ;
(1.d) Y = c1β1X1 + c2β2X2 + c3β31(X12 < 0) + exp(c4|X22|)ϵ,
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Table 1
Example 1: Ps and Pa .
Model r = 0.5 r = 0.8

Ps Pa Ps Pa

X1 X2 X12 X22 All X1 X2 X12 X22 All

n = 100, p = 30, d = ⌊p/ln(p)⌋

(1.a)
DC 1.000 0.960 0.890 0.990 0.840 1.000 0.975 0.360 0.975 0.325
DC1 1.000 0.955 0.910 0.990 0.855 0.995 0.970 0.395 0.960 0.345
DC2 1.000 0.945 0.875 0.990 0.810 0.995 0.965 0.415 0.940 0.350
HR 0.995 0.935 0.885 0.985 0.810 0.995 0.975 0.465 0.945 0.405
HR1 0.995 0.895 0.850 0.980 0.730 0.995 0.955 0.400 0.915 0.310
HR2 0.995 0.900 0.850 0.980 0.735 0.990 0.955 0.420 0.915 0.320

(1.b)
DC 0.640 0.625 0.975 1.000 0.465 0.605 0.625 0.670 0.985 0.310
DC1 0.605 0.610 0.970 1.000 0.420 0.530 0.575 0.710 0.985 0.270
DC2 0.570 0.550 0.960 1.000 0.360 0.515 0.535 0.630 0.985 0.205
HR 0.760 0.700 0.955 1.000 0.550 0.775 0.790 0.730 0.970 0.475
HR1 0.700 0.645 0.945 1.000 0.465 0.735 0.745 0.665 0.965 0.400
HR2 0.705 0.645 0.950 1.000 0.475 0.725 0.745 0.675 0.965 0.405

(1.c)
DC 0.910 0.835 0.805 1.000 0.595 0.840 0.850 0.255 1.000 0.155
DC1 0.880 0.830 0.745 1.000 0.515 0.800 0.795 0.230 1.000 0.120
DC2 0.875 0.800 0.755 1.000 0.500 0.795 0.780 0.310 1.000 0.190
HR 0.950 0.910 0.865 1.000 0.740 0.935 0.930 0.475 1.000 0.390
HR1 0.925 0.900 0.845 1.000 0.685 0.910 0.910 0.420 1.000 0.335
HR2 0.925 0.900 0.840 1.000 0.680 0.910 0.910 0.430 1.000 0.345

(1.d)
DC 1.000 0.895 0.835 0.995 0.745 0.960 0.910 0.530 0.880 0.390
DC1 0.995 0.880 0.830 0.985 0.705 0.955 0.905 0.545 0.855 0.385
DC2 0.995 0.870 0.830 0.970 0.685 0.950 0.895 0.535 0.840 0.365
HR 0.980 0.880 0.820 1.000 0.730 0.940 0.885 0.540 0.945 0.445
HR1 0.975 0.855 0.810 0.995 0.680 0.950 0.875 0.510 0.920 0.390
HR2 0.975 0.860 0.815 0.995 0.685 0.950 0.875 0.530 0.920 0.405

n = 100, p = 300, d = ⌊n/ln(n)⌋

(1.a)
DC 1.000 0.980 0.915 0.995 0.890 1.000 1.000 0.585 1.000 0.585
DC1 1.000 0.975 0.925 0.995 0.895 1.000 1.000 0.570 1.000 0.570
DC2 1.000 0.975 0.910 0.995 0.880 1.000 1.000 0.550 1.000 0.550
HR 0.995 0.930 0.875 0.990 0.810 0.995 0.995 0.600 0.985 0.585
HR1 0.995 0.920 0.865 0.990 0.790 0.995 0.990 0.585 0.975 0.555
HR2 0.995 0.920 0.865 0.990 0.790 0.995 0.990 0.575 0.975 0.545

(1.b)
DC 0.590 0.585 0.985 0.995 0.445 0.905 0.885 0.875 0.995 0.735
DC1 0.570 0.590 0.985 0.995 0.435 0.875 0.870 0.860 0.990 0.690
DC2 0.570 0.560 0.985 0.995 0.420 0.875 0.865 0.855 0.990 0.685
HR 0.655 0.680 0.985 0.995 0.505 0.930 0.910 0.880 0.985 0.760
HR1 0.620 0.655 0.980 0.995 0.475 0.930 0.890 0.875 0.980 0.725
HR2 0.620 0.655 0.980 0.995 0.475 0.930 0.890 0.880 0.980 0.735

(1.c)
DC 0.820 0.840 0.655 0.995 0.420 0.965 0.960 0.595 0.995 0.545
DC1 0.810 0.820 0.635 0.995 0.395 0.955 0.955 0.530 0.995 0.480
DC2 0.810 0.815 0.635 0.995 0.390 0.955 0.955 0.535 0.995 0.485
HR 0.910 0.890 0.745 1.000 0.600 0.985 0.990 0.670 0.985 0.635
HR1 0.895 0.890 0.740 1.000 0.580 0.985 0.985 0.635 0.985 0.595
HR2 0.895 0.890 0.740 1.000 0.580 0.985 0.985 0.630 0.985 0.590

(1.d)
DC 0.970 0.840 0.720 0.960 0.610 0.985 0.955 0.570 0.945 0.510
DC1 0.965 0.835 0.695 0.955 0.580 0.980 0.940 0.550 0.935 0.470
DC2 0.965 0.835 0.710 0.955 0.590 0.980 0.940 0.560 0.935 0.480
HR 0.935 0.805 0.740 0.965 0.585 0.955 0.910 0.575 0.955 0.505
HR1 0.930 0.775 0.725 0.960 0.550 0.950 0.905 0.555 0.955 0.480
HR2 0.930 0.775 0.740 0.960 0.560 0.950 0.905 0.560 0.955 0.485

where 1 is an indicator function. Models (1.b) and (1.c) contain an interaction term X1X2, and model (1.d) is heteroscedas-
tic. Following [11,23], we choose βj = (−1)ξ (4 ln n/

√
n+|η|) for j ∈ {1, 2, 3, 4}, where ξ ∼ Bernoulli(0.4) and η ∼ N (0, 1).

We set (c1, c2, c3, c4) = (2, 0.5, 3, 2). The predictor vector is X ∼ N (0,Σ), where Σ = (σij)p×p with σij = r |i−j| in two
cases: (a) r = 0.5, (b) r = 0.8. The error term is ϵ ∼ N (0, 1).

We set n = 100, p = 30, d = ⌊p/ln(p)⌋ and n = 100, p = 300, d = ⌊n/ln(n)⌋, respectively. Tables 1 and 2 report
the results. Table 1 indicates that the HR approach has better performance than DC does in almost all cases when n > p.
For n < p, the DC approach seems to have comparable/slightly better performance than HR does, but the DC approach is
computationally more efficient than HR. Thus we recommend to use HR when n > p, and to use DC when n < p.



488 B. Yang, X. Yin and N. Zhang / Journal of Multivariate Analysis 173 (2019) 480–493

Table 2
Example 1: The quantiles of the minimum model size S out of 200 replications.

r = 0.5 r = 0.8

S 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

n = 100, p = 30

DC 4.000 4.000 5.000 7.000 13.000 5.000 8.000 11.000 17.000 25.050
(1.a) HR 4.000 4.000 5.000 8.000 16.050 5.000 7.000 10.000 17.000 26.000

DC 5.000 6.000 9.000 13.000 22.100 5.000 8.000 10.000 14.000 19.000
(1.b) HR 4.000 5.000 8.000 11.000 21.100 4.000 6.000 9.000 12.000 20.050

DC 4.000 6.000 8.000 10.000 19.000 7.000 10.000 12.000 15.250 23.000
(1.c) HR 4.000 4.000 6.000 9.000 18.000 5.000 7.000 10.000 14.000 23.050

DC 4.000 4.000 6.000 9.000 20.000 4.950 6.000 10.000 15.000 25.000
(1.d) HR 4.000 4.000 5.000 10.000 21.050 4.000 7.000 9.000 17.000 25.000

n = 100, p = 300

DC 4.000 4.000 5.000 10.000 53.000 5.000 9.000 16.000 43.000 147.050
(1.a) HR 4.000 4.000 6.000 14.000 94.100 4.000 8.000 18.000 52.000 169.550

DC 5.000 11.000 30.000 63.000 165.300 5.000 8.000 12.000 22.000 82.000
(1.b) HR 4.000 8.000 20.500 55.250 173.050 4.000 7.000 11.000 21.000 70.200

DC 6.000 13.000 25.000 55.500 156.200 7.000 13.000 20.000 38.250 89.450
(1.c) HR 4.000 7.000 15.000 44.250 137.450 5.000 7.000 15.000 36.000 112.100

DC 4.000 7.000 13.500 45.250 146.300 5.000 9.750 21.000 69.750 156.050
(1.d) HR 4.000 6.000 15.000 55.500 192.400 4.950 7.000 21.000 66.250 194.000

Table 2 reports model sizes for Example 1. The fact that HR is better than DC for n > p is mainly due to the way the
distance is computed: DC only calculates the Euclidean distance, while HR uses the kernel (smoothing) to calculate the
distance. When n > p, a kernel method is usually finer than the Euclidean distance. When n < p, a kernel method may
not be good enough for smoothing as the sample size is not large enough.

We compare our methods with the following approaches from the literature: (i) the Lasso [37], whose size is deter-
mined by 10-fold cross-validation; (ii) ISIS [11]; (iii) QaSIS [19], the quantile adaptive model-free variable screening, which
is proposed to estimate marginal quantile regression (denoted by Q ) nonparametrically using a B-spline approximation,
considering that Y and Xj are independent if and only if Qa(Y |Xj)−Qa(Y ) = 0; (iv) NIS [9], the nonparametric independence
screening in sparse ultrahigh-dimensional additive models using a B-spline basis; (v) SIRS; (vi) ISIRS [41]; and (vii)‘‘DC-
seq" [21], a sequential method based on DC without specifying the model size d. Results corresponding to these existing
methods are displayed in Table 3; their performances are not as stable as DC and HR.

We also consider the case of n = 200, p = 2000, d = ⌊n/ln(n)⌋. The simulation results are in Table 4. Additional
simulation results for Example 1 are in the Online Supplement. Example 1 indicates that FSM , SVS1, and SVS2 have similar
performance. However, the next example shows the advantages of SVS1, and SVS2.

Example 2. (2.a) This is Example 4 in [41]: Y = β⊤X+ ϵ. Set ϵ ∼ N (0, 1) and X ∼ N (0,Σ), where Σ = (σij), σij satisfies
σii = 1 for i ∈ {1, . . . , p}, σi4 = σ4j = ρ1/2 for i ̸= 4, and σij = ρ for i ̸= j, i ̸= 4, j ̸= 4. In the model, all predictors
except for X4 are equally correlated with coefficient ρ, while X4 has correlation ρ1/2 with all other p − 1 predictors. Let
β = (5, 5, 5,−15ρ1/2, 0, . . . , 0). Although X4 is marginal independent of Y , it is an active predictor when ρ ̸= 0.

(2.b) A nonlinear model Y = β1X1 + β2X2 + β3X3 + β4X3
4 + ϵ. Set ϵ ∼ N (0, 1) and X ∼ N (0,Σ), where Σ = (σij),

and σij satisfies σii = 1 for i ∈ {1, . . . , p}, σi4 = σ4j = ρ7/10 for i ̸= 4, and σij = ρ for i ̸= j, i ̸= 4, j ̸= 4. Let
β = (5, 5, 5,−3ρ7/10, 0, . . . , 0).

(2.c) A nonlinear model Y = β1X1 + β2X2 + β3X3 + β4 exp X4 + ϵ. Set ϵ ∼ N (0, 1) and X ∼ N (0,Σ), where Σ = (σij),
and σij satisfies σii = 1 for i ∈ {1, . . . , p}, σi4 = σ4j = ρ7/10 for i ̸= 4, and σij = ρ for i ̸= j, i ̸= 4, j ̸= 4. Let
β = (5, 5, 5,−15ρ7/10 exp (−1/2), 0, . . . , 0).

In Example 2, X4 is marginally independent of Y ; however, it is an active predictor when ρ ̸= 0. In particular,
the relationship between the active predictor X4 and Y is linear in Example (2.a). The relationship in Example (2.b)
and (2.c) is nonlinear. We consider the cases of n = 100, p = 300, d = ⌊n/ln(n)⌋ and n = 200, p = 2000,
d = ⌊n/ln(n)⌋. Tables 5 and 6 clearly indicate that the results of SVS1, SVS2 based on DC significantly improve
the marginal solution. QaSIS and NIS have poor performance, although ISIS and ISIRS have better performance, in
general are still not comparable with DC1 and DC2. In the Online Supplement, we provide further simulation results for
Example 2.

The difference between our two examples is that in Example 1, all the active predictors are marginally dependent of
Y , while in Example 2 the active predictor X4 is marginally independent of Y . Therefore, marginal screening methods fail,
but our new approaches will detect X4.



B. Yang, X. Yin and N. Zhang / Journal of Multivariate Analysis 173 (2019) 480–493 489

Table 3
Example 1: Ps and Pa for some existing methods.
Model r = 0.5 r = 0.8

Ps Pa Ps Pa

X1 X2 X12 X22 All X1 X2 X12 X22 All

n = 100, p = 30, d = ⌊p/ln(p)⌋

(1.a)
Lasso 1.000 1.000 1.000 1.000 1.000 1.000 0.980 1.000 1.000 0.980
ISIS 1.000 1.000 1.000 1.000 1.000 1.000 0.880 0.995 1.000 0.875
QaSIS 1.000 0.895 0.840 0.980 0.720 0.990 0.945 0.425 0.925 0.350
NIS 1.000 0.975 0.885 0.995 0.855 0.995 0.995 0.435 0.985 0.425
SIRS 1.000 0.965 0.875 1.000 0.840 1.000 0.985 0.230 0.975 0.205
ISIRS 1.000 0.855 1.000 1.000 0.855 0.995 0.850 0.910 0.970 0.725
DC-seq 0.960 0.135 0.365 0.800 0.075 0.885 0.295 0.065 0.500 0.005

(1.b)
Lasso 0.235 0.230 0.985 0.995 0.075 0.300 0.210 0.900 0.980 0.085
ISIS 0.780 0.830 0.995 1.000 0.625 0.805 0.765 0.960 0.980 0.570
QaSIS 0.820 0.785 0.910 0.985 0.590 0.960 0.945 0.645 0.925 0.500
NIS 0.905 0.855 0.940 1.000 0.740 0.990 0.975 0.595 0.930 0.515
SIRS 0.085 0.070 0.975 1.000 0.010 0.005 0.005 0.710 0.995 0.000
ISIRS 0.315 0.270 0.990 1.000 0.115 0.115 0.105 0.990 0.995 0.050
DC-seq 0.085 0.075 0.600 0.960 0.030 0.145 0.155 0.325 0.905 0.030

(1.c)
Lasso 0.160 0.155 0.090 0.965 0.010 0.190 0.125 0.080 0.940 0.020
ISIS 0.850 0.775 0.790 0.990 0.530 0.820 0.835 0.780 0.980 0.525
QaSIS 0.965 0.965 0.295 0.985 0.255 0.995 0.990 0.080 0.960 0.075
NIS 0.980 0.945 0.095 0.990 0.085 0.995 0.980 0.030 0.965 0.025
SIRS 0.140 0.115 0.740 0.995 0.015 0.035 0.010 0.265 1.000 0.000
ISIRS 0.265 0.295 0.800 0.990 0.055 0.190 0.165 0.675 0.995 0.050
DC-seq 0.395 0.395 0.200 0.975 0.055 0.430 0.410 0.010 0.915 0.005

(1.d)
Lasso 0.490 0.215 0.290 0.350 0.075 0.555 0.255 0.255 0.350 0.070
ISIS 0.990 0.925 0.955 0.970 0.845 0.985 0.940 0.980 0.970 0.875
QaSIS 1.000 0.875 0.845 0.755 0.535 0.980 0.965 0.655 0.665 0.405
NIS 0.680 0.440 0.485 0.850 0.125 0.560 0.465 0.320 0.800 0.055
SIRS 1.000 0.985 0.895 0.195 0.175 0.995 0.995 0.705 0.105 0.050
ISIRS 1.000 0.895 0.955 0.335 0.280 0.995 0.975 0.855 0.200 0.145
DC-seq 0.975 0.315 0.485 0.645 0.190 0.885 0.410 0.170 0.450 0.070

n = 100, p = 300, d = ⌊n/ln(n)⌋

(1.a)
Lasso 1.000 1.000 1.000 1.000 1.000 1.000 0.960 1.000 1.000 0.960
ISIS 1.000 0.975 1.000 1.000 0.975 1.000 0.870 1.000 1.000 0.870
QaSIS 0.995 0.895 0.785 0.980 0.690 0.990 0.985 0.510 0.950 0.450
NIS 1.000 0.975 0.880 0.995 0.850 1.000 1.000 0.630 0.995 0.625
SIRS 1.000 0.990 0.860 1.000 0.850 1.000 1.000 0.455 1.000 0.455
ISIRS 1.000 0.950 1.000 1.000 0.950 1.000 0.990 0.995 1.000 0.985
DC-seq 0.965 0.160 0.310 0.820 0.080 0.920 0.310 0.040 0.515 0.015

(1.b)
Lasso 0.145 0.140 0.945 0.990 0.020 0.130 0.130 0.855 0.970 0.030
ISIS 0.145 0.145 0.955 0.995 0.045 0.110 0.125 0.840 0.975 0.035
QaSIS 0.725 0.700 0.940 0.990 0.515 0.980 0.975 0.745 0.955 0.655
NIS 0.860 0.860 0.940 0.990 0.705 1.000 1.000 0.770 0.965 0.740
SIRS 0.040 0.025 0.980 1.000 0.000 0.035 0.020 0.865 1.000 0.010
ISIRS 0.125 0.150 0.990 1.000 0.045 0.120 0.080 0.950 0.995 0.045
DC-seq 0.070 0.065 0.645 0.965 0.015 0.205 0.180 0.365 0.905 0.020

(1.c)
Lasso 0.090 0.070 0.015 0.925 0.000 0.075 0.100 0.025 0.855 0.000
ISIS 0.165 0.125 0.040 0.965 0.005 0.120 0.150 0.070 0.915 0.010
QaSIS 0.920 0.945 0.160 0.955 0.130 1.000 1.000 0.065 0.960 0.065
NIS 0.910 0.930 0.040 0.980 0.040 0.995 1.000 0.035 0.945 0.035
SIRS 0.060 0.030 0.415 1.000 0.000 0.035 0.025 0.335 1.000 0.010
ISIRS 0.100 0.060 0.525 0.995 0.015 0.095 0.100 0.415 0.980 0.030
DC-seq 0.280 0.295 0.120 0.985 0.040 0.510 0.445 0.010 0.870 0.005

(1.d)
Lasso 0.305 0.085 0.105 0.215 0.000 0.360 0.170 0.115 0.305 0.015
ISIS 0.470 0.245 0.200 0.535 0.020 0.520 0.425 0.210 0.515 0.025
QaSIS 0.990 0.795 0.755 0.680 0.390 0.980 0.965 0.535 0.625 0.330
NIS 0.365 0.195 0.220 0.760 0.030 0.435 0.375 0.200 0.750 0.065
SIRS 1.000 0.960 0.820 0.115 0.075 1.000 1.000 0.625 0.120 0.075
ISIRS 0.995 0.915 0.835 0.165 0.130 1.000 0.990 0.825 0.135 0.105
DC-seq 0.945 0.365 0.460 0.630 0.135 0.885 0.410 0.180 0.405 0.030
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Table 4
Example 1: Ps and Pa for DC’s and some existing methods.
Model r = 0.5 r = 0.8

Ps Pa Ps Pa

X1 X2 X12 X22 All X1 X2 X12 X22 All

n = 200, p = 2000, d = ⌊n/ln(n)⌋

(1.a)
DC 1.000 1.000 0.965 1.000 0.965 1.000 1.000 0.740 1.000 0.740
DC1 1.000 1.000 0.965 1.000 0.965 1.000 1.000 0.730 1.000 0.730
DC2 1.000 1.000 0.965 1.000 0.965 1.000 1.000 0.730 1.000 0.730

(1.b)
DC 0.750 0.715 0.990 1.000 0.605 0.990 0.985 0.925 1.000 0.905
DC1 0.755 0.710 0.990 1.000 0.610 0.990 0.985 0.920 1.000 0.900
DC2 0.750 0.710 0.990 1.000 0.605 0.990 0.985 0.920 1.000 0.900

(1.c)
DC 0.880 0.920 0.780 1.000 0.615 1.000 1.000 0.765 1.000 0.765
DC1 0.875 0.920 0.775 1.000 0.605 1.000 1.000 0.765 1.000 0.765
DC2 0.875 0.920 0.775 1.000 0.605 1.000 1.000 0.765 1.000 0.765

(1.d)
DC 1.000 0.945 0.845 1.000 0.805 0.995 0.975 0.660 0.995 0.640
DC1 1.000 0.945 0.845 0.995 0.800 0.995 0.975 0.655 0.995 0.635
DC2 1.000 0.945 0.845 0.995 0.800 0.995 0.975 0.655 0.995 0.635

n = 200, p = 2000, d = ⌊n/ln(n)⌋

(1.a)
Lasso 1.000 1.000 1.000 1.000 1.000 1.000 0.98 1.000 1.000 0.980
ISIS 1.000 1.000 1.000 1.000 1.000 1.000 0.905 1.000 1.000 0.905
QaSIS 1.000 0.925 0.890 0.995 0.820 1.000 0.995 0.640 0.985 0.625
NIS 1.000 0.995 0.955 1.000 0.950 1.000 1.000 0.805 1.000 0.805
SIRS 1.000 1.000 0.940 1.000 0.940 1.000 1.000 0.575 1.000 0.575
ISIRS 1.000 0.990 1.000 1.000 0.990 1.000 1.000 1.000 1.000 1.000
DC-seq 0.940 0.070 0.360 0.800 0.040 0.870 0.185 0.050 0.520 0.000

(1.b)
Lasso 0.045 0.030 0.975 1.000 0.005 0.090 0.075 0.890 0.985 0.020
ISIS 0.060 0.035 0.975 1.000 0.000 0.085 0.070 0.860 0.985 0.015
QaSIS 0.875 0.890 0.980 1.000 0.775 1.000 1.000 0.860 0.995 0.855
NIS 0.965 0.980 0.955 1.000 0.905 1.000 1.000 0.850 0.995 0.850
SIRS 0.015 0.030 0.990 1.000 0.005 0.010 0.015 0.880 1.000 0.000
ISIRS 0.045 0.050 0.990 1.000 0.000 0.060 0.060 0.965 1.000 0.020
DC-seq 0.035 0.030 0.655 0.980 0.010 0.125 0.145 0.305 0.930 0.020

(1.c)
Lasso 0.035 0.030 0.025 0.975 0.000 0.065 0.045 0.015 0.955 0.000
ISIS 0.070 0.030 0.035 0.990 0.000 0.065 0.060 0.045 0.970 0.005
QaSIS 0.995 0.990 0.140 1.000 0.140 1.000 1.000 0.110 1.000 0.110
NIS 0.985 0.995 0.025 0.980 0.025 1.000 1.000 0.035 0.985 0.035
SIRS 0.010 0.010 0.575 1.000 0.000 0.005 0.000 0.555 1.000 0.000
ISIRS 0.035 0.055 0.685 1.000 0.005 0.050 0.050 0.520 1.000 0.000
DC-seq 0.245 0.225 0.100 0.980 0.010 0.390 0.370 0.000 0.955 0.000

(1.d)
Lasso 0.205 0.055 0.060 0.170 0.000 0.245 0.100 0.045 0.185 0.000
ISIS 0.375 0.190 0.120 0.405 0.005 0.430 0.290 0.135 0.475 0.040
QaSIS 1.000 0.925 0.855 0.630 0.485 0.995 0.985 0.710 0.560 0.415
NIS 0.230 0.095 0.110 0.675 0.000 0.295 0.195 0.080 0.695 0.010
SIRS 1.000 0.985 0.900 0.030 0.030 1.000 1.000 0.745 0.065 0.060
ISIRS 1.000 0.975 0.885 0.095 0.090 1.000 1.000 0.865 0.095 0.095
DC-seq 0.980 0.290 0.500 0.725 0.160 0.920 0.325 0.190 0.440 0.035

4.1. Cardiomyopathy data

We analyze the cardiomyopathy microarray data which was considered in [18,23,29]. In the analysis of these data,
the aim is to identify the most influential genes for over-expression of a G protein-coupled receptor, designated Ro1, in
mice. The response Y is the Ro1 expression level, and the predictors Xα are other genetic expression levels. Our goal is
to identify the most influential genes for Ro1 with sample size n = 30, p = 6319. Because n ≪ p, we choose the DC
approach. We use the threshold value d = ⌊n/ln(n)⌋ = 8.

The DC and DC1 procedures select the same eight genes: Msa.2134.0, Msa.2877.0, Msa.26025.0, Msa.5583.0, Msa.1590.0,
Msa.1166.0, Msa.2400.0, Msa.15442.0. In contrast, the DC2 procedure selects slightly different genes: Msa.2134.0,
Msa.2877.0, Msa.26025.0, Msa.5583.0, Msa.1590.0, Msa.1166.0, Msa.2400.0, Msa.5618.0.

Note that the top two genes, viz. Msa.2134.0 and Msa.2877.0, were also selected by Li et al. [23], and two genes, viz.
Msa.2877.0 and Msa.1166.0, were selected by Hall and Miller [18]. Both sets are in our final results. However, compared
with DC (DC1), the DC2 procedure selects a different gene, viz. Msa.5618.0. To identify whether the gene Msa.5618.0 is
important, following Li et al. [23] we consider an additive model which always includes the top two genes Msa.2134.0,
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Table 5
Example 2: Ps and Pa for DC’s and some existing methods.
Model r = 0.5 r = 0.8

Ps Pa Ps Pa

X1 X2 X3 X4 All X1 X2 X3 X4 All

n = 100, p = 300, d = ⌊n/ln(n)⌋

(2.a)
DC 0.945 0.960 0.960 0.005 0.005 0.830 0.815 0.815 0.000 0.000
DC1 0.940 0.960 0.960 1.000 0.905 0.820 0.815 0.810 1.000 0.750
DC2 0.940 0.960 0.960 1.000 0.905 0.825 0.825 0.810 1.000 0.750

(2.b)
DC 0.995 0.995 1.000 0.235 0.230 0.980 0.995 0.995 0.355 0.340
DC1 0.995 0.995 1.000 0.930 0.920 0.975 0.990 0.995 0.975 0.935
DC2 0.995 0.995 1.000 0.990 0.980 0.975 0.990 0.995 0.980 0.940

(2.c)
DC 1.000 0.995 0.995 0.175 0.175 0.970 0.960 0.940 0.275 0.195
DC1 0.995 0.995 0.995 0.970 0.955 0.970 0.960 0.935 0.985 0.850
DC2 0.995 0.995 0.995 1.000 0.985 0.970 0.960 0.935 1.000 0.865

n = 100, p = 300, d = ⌊n/ln(n)⌋

(2.a)
Lasso 1.000 1.000 1.000 0.005 0.005 1.000 1.000 1.000 0.000 0.000
ISIS 1.000 1.000 1.000 0.995 0.995 1.000 1.000 1.000 0.995 0.995
QaSIS 0.870 0.895 0.905 0.045 0.035 0.510 0.555 0.470 0.020 0.000
NIS 0.975 0.975 0.980 0.030 0.030 0.800 0.780 0.805 0.015 0.000
SIRS 0.990 0.975 1.000 0.000 0.000 0.930 0.895 0.915 0.000 0.000
ISIRS 1.000 1.000 1.000 0.920 0.920 1.000 1.000 1.000 0.930 0.930
DC-seq 0.835 0.765 0.760 0.000 0.000 0.510 0.485 0.490 0.000 0.000

(2.b)
Lasso 1.000 1.000 1.000 0.945 0.945 0.860 0.845 0.875 0.365 0.330
ISIS 1.000 1.000 1.000 1.000 1.000 0.875 0.845 0.840 0.935 0.660
QaSIS 0.945 0.945 0.970 0.080 0.060 0.815 0.815 0.810 0.120 0.070
NIS 0.995 0.995 0.995 0.195 0.195 0.955 0.925 0.890 0.545 0.425
SIRS 1.000 1.000 0.990 0.005 0.005 0.920 0.920 0.905 0.020 0.020
ISIRS 0.980 0.975 0.985 1.000 0.945 0.850 0.835 0.830 0.930 0.560
DC-seq 0.975 0.965 0.955 0.000 0.000 0.930 0.910 0.890 0.000 0.000

(2.c)
Lasso 0.960 0.945 0.955 0.970 0.915 0.495 0.525 0.475 0.430 0.235
ISIS 0.970 0.930 0.975 1.000 0.895 0.610 0.560 0.540 0.915 0.230
QaSIS 0.940 0.925 0.920 0.600 0.470 0.245 0.295 0.255 0.765 0.020
NIS 0.830 0.815 0.810 0.885 0.595 0.215 0.260 0.220 0.985 0.060
SIRS 0.995 0.985 0.995 0.000 0.000 0.940 0.905 0.920 0.000 0.000
ISIRS 0.985 0.970 0.975 1.000 0.930 0.855 0.830 0.815 1.000 0.570
DC-seq 0.960 0.930 0.940 0.035 0.030 0.825 0.740 0.760 0.065 0.005

Msa.2877.0 and an additional gene, viz.

Y = f1(X1) + f2(X2) + f3(Xk) + ϵ,

where X1 = Msa.2134.0 and X2 = Msa.2877.0, and Xk is another gene which is selected by DC (DC1) and DC2. The p-values
of X1 and X2 are much smaller than the 5% significance level; thus these two variables are significant. Table 7 reports the
related p-values for other variables, which indicates that gene Msa.5618.0 is significant, and is worth further consideration,
while all other genes are not significant.

5. Discussion

In this paper, we proposed two sufficient variable selection procedures, illustrated using DC and HR. The generality of
these procedures is that any marginal screening approach may be adapted into the two sufficient procedures as to improve
the marginal screening approach. Our new procedures SVS1 and SVS2 provide sufficient variable selection for the response
that can provide additional information from predictors which may be missed by just using marginal screening methods,
as demonstrated in Example 2. In the presence of multiple utilities, different strategies may be used to combine them.
The idea of Balasubramanian et al. [1], which is based on the sup-HSIC method and takes the supremum of HSIC over a
family of kernels via marginal screening, can certainly be incorporated into our sufficient variable selection procedures.
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Table 6
Example 2: Ps and Pa for DC’s and some existing methods.
Model r = 0.5 r = 0.8

Ps Pa Ps Pa

X1 X2 X3 X4 All X1 X2 X3 X4 All

n = 200, p = 2000, d = ⌊n/ln(n)⌋

(2.a)
DC 0.995 1.000 1.000 0.000 0.000 0.935 0.965 0.960 0.000 0.000
DC1 0.995 1.000 1.000 1.000 0.995 0.935 0.965 0.955 1.000 0.915
DC2 0.995 1.000 1.000 1.000 0.995 0.935 0.965 0.955 1.000 0.915

(2.b)
DC 1.000 1.000 1.000 0.110 0.110 1.000 1.000 1.000 0.345 0.345
DC1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
DC2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(2.c)
DC 1.000 1.000 1.000 0.080 0.080 0.995 0.985 1.000 0.180 0.170
DC1 1.000 1.000 1.000 1.000 1.000 0.995 0.985 1.000 1.000 0.980
DC2 1.000 1.000 1.000 1.000 1.000 0.995 0.985 1.000 1.000 0.980

n = 200, p = 2000, d = ⌊n/ln(n)⌋

(2.a)
Lasso 1.000 1.000 1.000 0.000 0.000 1.000 1.000 1.000 0.000 0.000
ISIS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.525 0.525
QaSIS 0.980 0.990 0.990 0.005 0.005 0.735 0.740 0.690 0.000 0.000
NIS 1.000 1.000 1.000 0.005 0.005 0.950 0.940 0.955 0.000 0.000
SIRS 1.000 1.000 1.000 0.000 0.000 0.985 0.990 0.985 0.000 0.000
ISIRS 1.000 1.000 1.000 0.990 0.990 1.000 1.000 1.000 0.940 0.940
DC-seq 0.945 0.910 0.915 0.000 0.000 0.615 0.625 0.655 0.000 0.000

(2.b)
Lasso 1.000 1.000 1.000 1.000 1.000 0.965 0.935 0.935 0.475 0.475
ISIS 1.000 1.000 1.000 1.000 1.000 0.955 0.935 0.935 0.950 0.825
QaSIS 1.000 1.000 1.000 0.055 0.055 0.915 0.915 0.925 0.030 0.020
NIS 0.995 0.995 1.000 0.275 0.275 0.960 0.920 0.960 0.805 0.705
SIRS 1.000 1.000 1.000 0.005 0.005 0.995 0.980 0.960 0.005 0.000
ISIRS 1.000 1.000 1.000 1.000 1.000 0.975 0.940 0.940 0.995 0.855
DC-seq 1.000 0.995 0.990 0.015 0.015 0.995 0.990 0.985 0.005 0.005

(2.c)
Lasso 0.975 0.980 0.985 0.980 0.965 0.555 0.525 0.525 0.540 0.335
ISIS 0.975 0.985 0.990 0.995 0.965 0.625 0.600 0.630 0.945 0.300
QaSIS 1.000 1.000 0.985 0.785 0.775 0.250 0.225 0.285 0.935 0.035
NIS 0.835 0.825 0.810 0.985 0.740 0.140 0.110 0.100 0.995 0.015
SIRS 1.000 1.000 1.000 0.000 0.000 0.990 0.980 0.970 0.000 0.000
ISIRS 1.000 0.995 1.000 1.000 0.995 0.965 0.955 0.945 1.000 0.865
DC-seq 1.000 1.000 1.000 0.000 0.000 0.930 0.960 0.915 0.025 0.010

Table 7
The selected genes in Cardiomyopathy data with d = ⌊n/ln(n)⌋ = 8.
By both DC(DC1) and DC2 Xα Msa.26025.0 Msa.5583.0 Msa.1590.0 Msa.1166.0 Msa.2400.0

p-values 0.093 0.071 0.121 0.591 0.121

By DC(DC1) only Xα Msa.15442.0
p-values 0.395

By DC2 only Xα Msa.5618.0
p-values 0.046
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