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Abstract

Despite the promising theoretical outcomes of spatiotemporally modulated phononic crystals
and metamaterials in one-way isolation of elastic waves, limited success has been achieved
in obtaining a feasible magnet-free realization of the concept for real-world applications.
This work entails the design and operation of a vibration diode which exploits the inherent
geometric-dependence of stiffness in non-axisymmetric cross sections. The diode relies on a
phase shift between the geometric orientations of an array of resonators attached to a host
beam to prescribe a spatial modulation of the metamaterial stiffness, accompanied with a
uniform rotation induced via small motor action to effectively onset a spatiotemporal stiffness
profile. The proposed configuration capitalizes on the simple design and versatility of locally
resonant elastic metabeams (EMs) and can, therefore, be tailored to different application
requirements without interfering with the primary functions and structural requirements of
the main system. Both theoretical and numerical tools have been incorporated to prove the
effectiveness of the proposed system in one-way isolation of mechanical vibrations. Prelimi-
nary results pertaining to the experimental setup of the diode are also outlined. The study
aims to lay a forward path for micro/macro-scale implementation of linear vibration diodes.

1. Introduction

The mechanics of wave propagation in elastic solids have been thoroughly investigated
over the past few decades [1–4]. Motivated by their unique wave manipulation capabilities,
periodic structures exhibiting tunable band gaps, directional wave guidance, and negative ef-
fective densities have culminated in a spurt of research efforts [5–8]. Most recently, in pursuit
of new functionalities, novel configurations have been presented as pathways to break elastic
wave reciprocity and onset a diode-like behavior [9], as well as logical gates in the mechani-
cal domain [10]. Materials with properties that vary simultaneously in space and time have
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been the focus of a number of efforts to investigate wave amplification and non-reciprocity
in linear systems [11, 12]. In theory, a vibrating structure which comprises time-dependent
elastic components is no longer bound by the reciprocal constraints [13], and such problem
has been recently investigated in the context of one- [14] and two-dimensional [15] struc-
tures using the Plane Wave Expansion Method (PWEM). Additionally, non-reciprocal waves
have been recently reported in elastic metabeams (EMs) [16] and locally resonant systems
[17, 18]. Such EMs typically comprise a continuous beam attached to an array of mechanical
resonators, and a non-reciprocal behavior is onset following a temporal modulation of the
elastic properties of the host beam, the resonators, or both in a traveling-wave-like manner
[17]. Various ideas have been proposed to induce such modulations including the use of a
moving train of light beams on a photoelastic material [19], voltage-controlled piezoelectric
patches [20], as well as a traveling magnetic field imposed on a magnetoelastic material
[21]. While all are valiant efforts, the need for hard-wired setups and complex experimental
configurations pose legitimate concerns pertaining to practicality as well as ease of operation.

In this effort, we introduce a magnet-free design of a sub-wavelength mechanical diode
that incorporates space-time variation of resonator geometry. The proposed system relies
on breaking time-reversal symmetry by inducing an artificial traveling-wave-like variation of
the resonators’ stiffness to achieve the non-reciprocal behavior. Instead of relying on smart
and electromechanically coupled materials, we employ a design which utilizes synchronized
rotations of the resonator array to induce geometric stiffness modulations along the length of
the EM. In addition to the breakage of wave propagation symmetry, the proposed vibration
diode inherits the tunability of frequency band gaps in conventional EMs, which in turn
extends the non-reciprocal behavior to lower frequencies. The rest of this paper is arranged
in a way to provide insights on the operational principle of the diode, followed by a dynamic
analysis (both theoretical and numerical) to illustrate the breakage of reciprocal symmetry,
and finally a description of the proposed experimental testing which is currently underway.
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Figure 1 Schematic of an elastic metabeam (EM): (a) A host beam with a bending stiffness S̄ attached
to an array of resonators, each consisting of a spring k and a tip mass of m. (b) The space-time-periodic
variation of the stiffness analogous to a wave traveling with velocity vp in the opposite x-direction.
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2. Operational Principle

The first step in the vibrational diode design is the build-up and operation of a con-
ventional Elastic Metabeam (EM). Fig. 1a shows the configuration of an EM beam which
consists of a host structure (a homogeneous beam with bending stiffness S̄), which is at-
tached to a number of resonators with mass m and spring stiffness k, equally spaced at a
distance l. The band gap frequency range primarily depends on the resonator mass and
stiffness and can therefore appear at relatively low frequencies – potentially even on the
order of ten or one hundred hertz [22]. In conventional EMs, the emergent band gap will
remain indifferent to the propagation direction of the elastic waves due to the reciprocity
principle. Such reciprocity can be broken by incorporating a traveling-wave-like modulation
of the resonator stiffness to induce an artificial directional bias. Hereafter, we focus on the
objective of creating a k-profile which varies both spatially and temporally to follow a wave
traveling with velocity vp along the length of the beam, as shown in Fig. 1b. Consider an
apparatus where a series of resonators, each comprising a heavy tip mass and a lightweight
arm, are attached to both sides of a host beam as shown in Fig. 2. As a result, the resonator
stiffness k is equal to the arm’s lateral stiffness in the y-direction. For an isotropic prismatic
beam under the Euler-Bernoulli theory, the lateral stiffness of the arm is given by

k =
3EIx
l3a

(1)

where E, Ix, and la are the elastic modulus, area moment of inertia, and the length of
the arm, respectively. As can be inferred from Eq. (1), the stiffness constant of the arm
can be regulated by changing either its geometry (and thus Ix) or its material (and thus
E). Effective and instantaneous control of material properties requires active materials with
electromechanical coupling. Instead, controlling the geometry (with respect to the transverse
vibration direction) provides a viable and a cost-efficient way to achieve the required stiffness
modulations. The area moment of inertia for the arm cross section in the x-y plane is

Ix =

∫
A

y2 dA (2)

For a circular cross section, Ix remains unchanged with an arbitrary rotation about the
z-axis due to its axisymmetry. For an ellipse or a rectangle, however, this will no longer
be the case. Let x′ and y′ be the principal axes for the arm cross sectional area and θ be
the clockwise angular orientation of x with respect to x′. Following the coordinate rotation
principle, we get

Ix = Io + I1 cos(2θ) (3)

where Io =
Ix′+Iy′

2
and I1 =

Ix′−Iy′
2

. Eq. (3) implies that different orientations of the arm
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about the z-axis will result in different values of Iax if Ix′ 6= Iy′ . Furthermore, a rotation of
the arm about the z-axis will induce a harmonically changing Ix with a period of π.
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Figure 2 Proposed elastic metabeam setup with resonators extending from both sides of the host beam
for symmetry. Spring stiffness of the resonators emerge from lateral deflection of the resonator arms in the
y-direction, which in turn is a function of the area moment of inertia of the cross section.

To validate such variation of the resonator stiffness with rotations about z-axis, a set
of numerical simulations are carried out for an arm with various rectangular cross sections.
Fig. 3 shows the stiffness variation with respect to the rotation angle for the cross sectional
ratios of r = 0.25, 0.5, 0.9 and 1, with the cross section kept at 0.175 in2. The stiffness
variation vanishes at r = 1 as anticipated. In addition, for lower cross sectional ratios, the
modulation amplitude is greater, as suggested by Eq. (3). It is also worth noting that at
higher r, the variation does not follow a harmonic function, but rather exhibits wider valleys.
This effect can be attributed to the limitations of Euler-Bernoulli beam formulation.

Accordingly, three possible stiffness modulation scenarios can be devised. First, an
angular phase shift between the orientation of adjacent arms with rectangular cross sections
is prescribed. The spatial variation of the spring constants k along the beam’s length is
approximately given by

k(j) = ko + k1 cos(2φj) (4)

where j = 1, 2, ...J is the resonator index inside each super cell, ko and k1 are the average
and alternating parts of the spring constants, respectively, and φj = πj/J is the angular
orientation of the jth arm, with J being the total number of unit cells per super cell.
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Figure 3 Variation of resonator stiffness for a rectangular cross section with different aspect ratios r.

In the second scenario, we align all the rectangular arms and start rotating them with
a constant angular frequency ωe provided by a set of electric motors. As a result, θj = ωet
and consequently the resonators’ stiffness will be identical but temporally periodic, i.e.

k(t) = ko + k1 cos(2ωet) (5)

In the third and last scenario, we combine the two previous cases to achieve a simultaneous
spatial and temporal modulation of the resonators elastic properties. In other words, each
resonator arm is oriented with a phase shift with respect to the adjacent resonator in addition
to being continuously rotated with the prescribed angular frequency ωe, which yields

k(j)(t) = ko + k1 cos(2ωet+ 2φj) (6)

In this case an effective variation of resonators’ stiffness is induced that follows a traveling
wave function. As a result breakage of reciprocal symmetry can take place as will be detailed
in the next section.

3. Dynamic Analysis

3.1. Wave propagation and dispersion diagrams

In the long wavelength regime, a traveling-wave-like stiffness variation of resonators along
the EM beam, i.e. Eq. (6), can be replaced by a continuous function of space x and time t

k(x, t) = ko + k1 cos(ωpt+ κpx) (7)
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where, κp = 2π
Jl

is the spatial modulation frequency and ωp = 2ωe is the temporal pumping

frequency. Thus, the traveling velocity of the pumped stiffness is vp = −ωp

κp
, similar to a

wave traveling in the opposite direction of the x-axis (see Fig. 1). As such, displacement
of spatially discrete resonators u(j)(t) can also be replaced by a continuous function u(x, t).
Therefore, the lateral dynamics, w(x, t) of a locally resonant metabeam with a bending
stiffness S̄, and mass per unit length µ̄ is governed by the following motion equations:

S̄
∂4w

∂x4
+ µ̄

∂2w

∂t2
=

1

l
k(x, t)(u− w) (8a)

m
∂2u

∂t2
= k(x, t)(w − u) (8b)

To overcome the complexities associated with the time-varying nature of Eq. (8), for the
purposes of the dispersion analysis, we study elastic waves in the same metabeam while it is
simultaneously moving in the positive direction of the x-axis with a velocity of v = ωp

κp
. This

way, time-modulation of the properties will no longer be detectable to a stationary observers
[23]. As such, by adding the Coriolis and Centripetal terms arising from actual motion of
the beam, Eq. (8) becomes

S
∂4w

∂x4
+ µ

(
∂2w

∂t2
+ 2v

∂2w

∂t∂x
+ v2

∂2w

∂x2

)
= k(x)(u− w) (9a)

m

(
∂2u

∂t2
+ 2v

∂2u

∂t∂x
+ v2

∂2u

∂x2

)
= k(x)(w − u) (9b)

where S = S̄l and µ = µ̄l. Eq. (9) describes lateral deformations of a metabeam moving
in the x-direction while its resonators encounter a stiffness modulation traveling with the
same speed but in the opposite direction. As anticipated, the actual motion of the beam
nullifies the artificial traveling-wave of the resonator properties and the time-varying prob-
lem simplifies to time-invariant one with resonators’ stiffness only a function of space, i.e.
k(x) = ko + k1 cos(κpx). Subsequently, the Coriolis terms (2v ∂

2w
∂t∂x

and 2v ∂2u
∂t∂x

) now carry
the directional bias, instead. Let us now assume plane wave solutions for both w and u in
Eq. (9) with frequency ω and wavenumber κ. This results in

[κ4S + ko − µ(ω − κv)2]W − koU +
k1
2

(W+1 +W−1 − U+1 − U−1) = 0 (10a)

[ko −m(ω − κv)2]U − koW −
k1
2

(W+1 +W−1 − U+1 − U−1) = 0 (10b)

where U and W are the harmonic wave amplitudes while W±1 and U±1 are short hand
notations for W (κ± κp) and U(κ± κp), respectively. Using Eq. (10), it can be shown that
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the amplitude of waves traveling in the resonators are related to the amplitude of waves
traveling in the beam by

U =
κ4S − µ(ω − κv)2

m(ω − κv)2
W (11)

which, upon substitution in Eq. (10)a, results in

aW + b+1W+1 + b−1W−1 = 0 (12)

where

a(ω, κ) = κ4S − µ(ω − κv)2 + ko

(
1− κ4S − µ(ω − κv)2

m(ω − κv)2

)
(13a)

b(ω, κ) =
k1
2

(
1− κ4S − µ(ω − κv)2

m(ω − κv)2

)
(13b)

are explicit functions of ω and κ. The terms with W±1 carry the effects of the stiffness
modulation. Therefore, a zeroth order approximation of the dispersion behavior, obtained by
neglecting such terms as a(ω, κ) = 0, will not be affected by the modulation of resonators. On
the other hand, a first-order approximation requires using the recursive nature of Eq. (12).
As such, we can write

a+1W+1 + b+2W+2 + bW = 0 (14a)

a−1W−1 + bW + b−2W−2 = 0 (14b)

by up- and down-shifting the wavenumber by an amount κp. Neglecting terms with higher
than the first harmonic in Eq. (14) gives W+1 = −b

a+1
W and W−1 = −b

a−1
W which, after

substituting back in Eq. (12), leads to

a− b
(
b+1

a+1

+
b−1
a−1

)
= 0 (15)

As shown in the Eq. (15), incorporating amplitude of the waves with κ ± κp wavenumbers
results in corrections made to the zeroth order dispersion relation. Derivation of a higher-
order approximation is similarly straight forward. Refer to Appendix I for second-order
and third-order dispersion relations. The dispersion patterns of the zeroth, first, and third
order approximations for a moving metabeam with space-time periodic resonator stiffness
are compared in Figs. 4a through c. As apparent, higher order approximations exhibit extra
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dispersion bands and thus more accurate dynamics. It is, however, more customary to use
a first-order approximation due to the inconsequential contributions from higher harmonics.
The asymmetrical group velocities on both sides of the ω axis in Fig. 4a-c are reminiscent
of the drag effect observed in moving media [23]. In addition, as previously discussed, the
actual motion of the beam cancels out the non-reciprocity arisen from space-time periodic
stiffness variation. As such, band gaps are located at the same frequency ranges on both
sides of the ω axis.
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Figure 4 Dispersion diagrams for a non-reciprocal metabeam with 4 unit cells per super cell. Parameters
are: S = 30.2555 N.m3 , µ = 0.1143 kg, m = 0.17 kg, k0 = 1e6 N/m, k1 = 0.75k0, and v = 9.6317 m/s. (a),
(b) and (c) represent the zeroth, first and third order solutions of the dispersion relation for a moving EM,
respectively. (d), (e) and (f) represent the corresponding dispersion diagrams for a stationary EM.

Eventually, the last step towards obtaining the dispersion plots of a stationary space-time
periodic metabeam (the original problem) is to nullify the initially added moving velocity in
the energy-momentum space. This is achieved by incorporating a linear coordinate trans-
formation matrix given by

[
κ
ω

]
S

=

[
1 0
−v 1

] [
κ
ω

]
M

(16)

The subscripts S and M denote stationary and moving systems, respectively. The imple-
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mentation of such vertical shear transformation restores the dispersion plots of the space-
time-periodic EM as shown in Figs. 4d-f revealing the broken and asymmetric band gaps.

(a)

(b)

Figure 5 Transmissibility frequency response plots for an elastic metabeam (EM) with the orientation of
the resonator arms set to: (a) θ = 0o (highest stiffness) and (b) θ = 90o (lowest stiffness).

3.2. Finite Element Analysis

In order to obtain an estimate for the band gap frequency ranges of the proposed metama-
terial beam configuration, a set of finite element numerical studies are carried out. COMSOL
multi-physics is employed to solve a frequency response problem of a metabeam with twenty
resonators on each side. A harmonic force is imparted on one side of the metabeam and its
lateral vibration is measured on the other side. The main beam is assumed to be made of
ABS plastic with µ̄ = 2.849 kg/m and S̄ = 754.23 N.m2 for a relatively slow wave propaga-
tion speed. The resonator arms are considered to be made of aluminum and the tip masses
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made of steel. The arm’s cross sectional ratio is r = 0.448, its cross sectional area is 0.175
in2 and its length is 2 inches. The tip masses are sized to have a weight of 6 oz.

Figure 6 Experimental vibration diode apparatus.

Fig. 5a shows frequency response of the metabeam when its resonators are oriented at
θ = 0o, corresponding to the highest lateral stiffness of the arms. The band gap frequency
range appears to span a wide range of 240 to 395 Hz. On the other hand, for the lowest
stiffness (obtained after rotating resonators by 90o), Fig. 5b shows a completely different
band gap range spanning the frequency range 125 < ω < 200 Hz.

4. Experimental Setup

The experimental apparatus of the EM is shown in Fig. 6. The metabeam consists
of a base or host structure and external resonators. The resonators are fixed to stepper
motors that are embedded within the host beam itself. Fig. 6 shows a snapshot in time
where the resonators exhibit a spatial variation in stiffness. The resonator arms have a
width-to-length-to-height ratio of 1 : 2.23 : 7.14. The resonator arm closest to the cantilever
support has the least possible second moment of area of this configuration. The spatial
stiffness variation arises from a change in angle of the resonator arm with respect to the
vibration direction: each resonator arm is rotated by 45o with respect to the previous one,
and consequently every other resonator arm has either the maximum or minimum possible
stiffness. The impact of the change in stiffness of the resonator arms on the host structure
is maximized by incorporating a tip mass resonator onto each resonator arm. The arms are
machined from 6061 aluminum and the tip masses are low-carbon steel. Fig. 7a shows the
full-scale assembled experimental device and Fig. 7b shows an exploded view of one set of
tip masses, resonator arms, face plate, and motors. The face plate is used to secure the
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motors to the host structure. The motors can be controlled independently or synchronized
to achieve any type of spatiotemporal stiffness modulation.

Full-scale experimental setup

(a)

Resonators

Resonator
arm

(b)

Figure 7 Exploded view showing motors, face plate, resonator arms, and tip masses.

The central performance requirement of the proposed apparatus is that the change stiff-
ness of the resonator must have a significant impact on the host structure. Fig. 8a shows a
test fixture made to secure a NEMA 14 stepper motor to an electrodynamic shaker. Two
accelerometers were used to find the transfer function between the motion of the tip mass
and the motion of the shaker fixture. The test results are shown in Fig. 8b. A sine-sweep
of the shaker excitation frequency reveals the natural frequencies of the resonator arm and
motor system. We observe that for low frequencies, the high- and low-stiffness configura-
tions are almost indistinguishable. In the vicinity of 1 kHz, however, the frequency response
functions show peaks at different locations. This basic verification of the change in natural
frequency (and therefore stiffness) of the mass-beam-motor system confirms the potential
for harnessing this effect to realize a spatiotemporal stiffness modulation in a host structure.

(a)! (b)!

Figure 8 Experimental verification of in resonance frequency variation under rotation.
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5. Conclusions

This paper has presented the operational concept and early experimental build-up of
a vibrational diode based on a locally resonant elastic metabeam (EM). In its operation,
the non-reciprocal EM consists of a host beam attached to a set of configurable miniature
cantilever resonators. A prescribed phase shift between the geometric orientations of the
resonators within each unit cell results in a predictable spatial elastic profile. The resonators
are then rotated by a set of driven motors to introduce a concurrent uniform temporal vari-
ation across the entire device. The combined spatiotemporal modulation of the resonators
elastic properties breaks the dispersion symmetry and induces two distinct frequency band
gaps depending on the propagation direction. As a result, excitations falling within the
spectrum of each band gap onsets a diode-like unidirectional transmission of energy and,
consequently, a non-reciprocal behavior. The modeling of the proposed metabeam is out-
lined and is followed by a characterization of its performance including a dispersion and a
vibration transmissibility analysis. The design and assembly of the device are highlighted
and experimental testing of its performance is currently underway.
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Appendix I: Higher order dispersion relations of the Non-reciprocal metabeam
with contributions from second and third harmonics

By following a procedure similar to that of Eq. (12) to Eq. (15), the second-order dispersion
relation can be found as

a− b

(
b+1

a+1 − b+1
b+2

a+2

+
b−1

a−1 + b−1
b−2

a−2

)
= 0 (17)

and the third order dispersion relation as

a− b

 b+1

a+1 − b+1
b+2

a+2−b+2
b+3
a+3

+
b−1

a−1 − b−1 b−2

a−2−b−2
b−3
a−3

 = 0 (18)
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