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Abstract

Phase retrieval algorithms have become an impor-
tant component in many modern computational
imaging systems. For instance, in the context
of ptychography and speckle correlation imag-
ing, they enable imaging past the diffraction limit
and through scattering media, respectively. Un-
fortunately, traditional phase retrieval algorithms
struggle in the presence of noise. Progress has
been made recently on developing more robust
algorithms using signal priors, but at the expense
of limiting the range of supported measurement
models (e.g., to Gaussian or coded diffraction pat-
terns). In this work we leverage the regularization-
by-denoising framework and a convolutional neu-
ral network denoiser to create prDeep, a new
phase retrieval algorithm that is both robust and
broadly applicable. We test and validate prDeep
in simulation to demonstrate that it is robust to
noise and can handle a variety of system models.

1. Introduction

The PR problem manifests when one wants to recover the
input from only the amplitude, or intensity, of the output
of a linear system. Mathematically, PR refers to the prob-
lem of recovering a vectorized signal x € R™ or C” from
measurements ¥ of the form

y = |Az| + w, (D

where the measurement matrix A represents the forward
operator of the system and w represents noise.

PR shows up in many imaging applications including mi-
croscopy (Zheng & Yang, 2013), crystallography (Millane,
1990), astronomical imaging (Dainty & Fienup, 1987), and
inverse scattering (Katz et al., 2014; Metzler et al., 2017b),
to name just a few.
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PR algorithms were first developed in the early 1970s and
have been continuously studied by the optics community
since then (Gerchberg, 1972; Fienup, 1978; 1982; Griffin
& Lim, 1984; Pfeifer et al., 2006; Rodriguez et al., 2013).
More recently, PR has been taken up by the optimization
community. This has produced a number of algorithms
with theoretical, if not always practical, benefits (Candes
et al., 2013; 2015a; Goldstein & Studer, 2016; Bahmani
& Romberg, 2017). For a benchmark study of over a
dozen popular PR algorithms, see PhasePack (Chandra et al.,
2017).

Following the popularity of compressive sensing, numerous
algorithms were developed that use prior information, often-
times sparsity, to improve PR reconstructions and potentially
enable compressive PR (Moravec et al., 2007; Schniter &
Rangan, 2015). In general, these methods do not improve
reconstructions when the signal of interest is dense.

In the last few years, three methods, SPAR (Katkovnik &
Astola, 2012; Katkovnik, 2017), BM3D-prGAMP (Metzler
et al., 2016b), and Plug-and-Play ADMM (Venkatakrishnan
et al., 2013; Heide et al., 2016), have been developed to
solve the PR problem using natural-image priors, which
make their reconstructions more robust to noise. These
methods all apply a natural-image prior via the BM3D
image-denoising algorithm (Dabov et al., 2007).

Unfortunately, two of these three methods, SPAR and
BM3D-prGAMP, are restricted to i.i.d Gaussian or coded
diffraction measurements (Candes et al., 2015b), which pre-
vents their use in many practical applications. All three
methods are computationally demanding.

In this work, we make two technical contributions. First, we
show how the Regularization by Denoising (RED) (Romano
et al., 2017) framework can be adapted to solve the PR
problem. We call this adaption prRED. Because it sets up a
general optimization problem, rather than using a specific al-
gorithm, prRED is flexible and can handle a wide variety of
measurements including, critically, Fourier measurements.

Second, we show how prRED can utilize convolutional neu-
ral networks by incorporating the DnCNN neural network
(Zhang et al., 2017). We call this combination of RED and
DnCNN applied to PR prDeep.

prDeep offers excellent performance with reasonable run
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times. In Section 4, we apply prDeep to simulated data and
show that it compares favorably to existing algorithms with
respect to computation time and robustness to noise.

2. Related Work

Our work fits into the recent trend of using advanced signal
priors to solve inverse problems in imaging. While priors
like sparsity, smoothness, and structured sparsity have been
studied for some time, we focus here on plug-and-play priors
and deep-learning priors, which together represent the state-
of-the-art for a range of imaging recovery tasks.

2.1. Plug-and-Play Regularization for Linear Inverse
Problems

Image denoising is arguably the most fundamental prob-
lem in image processing and, as such, it has been studied
extensively. Today there exist hundreds of denoising al-
gorithms that model and exploit the complex structure of
natural images in order to remove additive noise.

Earlier this decade, researchers realized they could lever-
age these highly developed denoising algorithms to act as
regularizers in order to solve other linear inverse problems,
such as deblurring, superresolution, and compressed sens-
ing (Danielyan et al., 2010). This technique was eventually
coined plug-and-play regularization (Venkatakrishnan et al.,
2013), with the idea being that one could “plug in” a de-
noiser to impose a specific prior on the inverse problem. A
number of techniques have been developed that use this idea
to solve various linear inverse problems (Danielyan et al.,
2010; Venkatakrishnan et al., 2013; Heide et al., 2014; 2016;
Metzler et al., 2016a; Schniter et al., 2016; Romano et al.,
2017).

Most of these works implicitly assume that the denoiser is a
proximal mapping for some cost function R(x), i.e.,

1
D(z) = proxg(z) £ argn;in §||z — 2|3+ R(z), ()

where R(x) penalizes image hypotheses that are unnatural.
From the maximum a posteriori (MAP) Bayesian perspec-
tive, R(x) is the negative log-prior for the natural-image x,
and z is a Gaussian-noise corrupted measurement of x.

With this interpretation, a variety of algorithms, such as
(Plug-and-Play) ADMM (Venkatakrishnan et al., 2013;
Heide et al., 2014; 2016) or (Denoising-based) AMP (Met-
zler et al., 2016a; Schniter et al., 2016), can be used to
recover = from the linear measurements y by solving the
optimization problem

1
argmminiuy—AxH%—FR(m), (3)

where again R(x) is an implicit cost function associated
with the denoiser.

Because the priors associated with advanced denoisers like
BM3D accurately model the distribution of natural images,
these methods have offered state-of-the-art recovery accu-
racy in many of the tasks to which they have been applied.

2.2. Plug-and-Play Regularization for PR

Following their success on linear inverse problems, plug-
and-play priors were applied to the PR problem as well. We
are aware of three prior works that take this approach.

The first, SPAR (Katkovnik & Astola, 2012; Katkovnik,
2017), uses alternating minimization to compute the MAP
estimate of x by using BM3D and a Poisson noise model;
y? = Poisson(|z|?), with z £ Az. So far, the algorithm has
only been succesfully applied to coded-diffraction pattern
measurements.

The second, BM3D-prGAMP (Metzler et al., 2016b), uses
the generalized approximate message passing (AMP) frame-
work (Donoho et al., 2009; Rangan, 2011; Schniter & Ran-
gan, 2015; Metzler et al., 2016a) to compute the minimum
mean squared error (MMSE) estimate of = using BM3D and
a Rician channel model: y = |z +w| with w ~ CN(0,02).
It requires the elements of A to be nearly i.i.d. Gaussian,
which can be approximated using coded-diffraction-pattern
measurements.

Most recently, the authors of ProxImaLl(Heide et al., 2016)
used Plug-and-Play ADMM to estimate = by solving the
optimization problem

1
argmin 2 |y — | A3 + R() @)

where R(z) is the cost function implicitly minimized by
BM3D. Unlike the aforementioned methods, ADMM sup-
ports generic measurement matrices, including Fourier mea-
surements.

2.3. Neural Networks for Linear Inverse Problems

Deep learning has recently disrupted computational imaging.
Through the use of elaborate learned priors, deep learning
methods have competed with and sometimes surpassed the
performance of plug-and-play priors, while running signifi-
cantly faster (when implemented on a GPU). Two prominent
examples include SRCNN for superresolution (Dong et al.,
2014) and DnCNN for denoising, superresolution, and the
removal of JPEG artifacts (Zhang et al., 2017).

In addition, a few works have blended plug-and-play algo-
rithms with neural networks (Chang et al., 2017; Metzler
et al., 2017a; Diamond et al., 2017), often using algorithm
unfolding/unrolling (Gregor & LeCun, 2010). In doing so,
these works are able to incorporate powerful learned priors,
while still leveraging the flexibility and interpretability that
comes from using a well-defined algorithm (as opposed to a
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black-box neural net).

2.4. Neural Networks for PR

In the last few years, researchers have raced to apply deep
learning to solve the PR problem (Kappeler et al., 2017;
Boominathan et al., 2018; Rivenson et al., 2017). So far,
each of the proposed methods has been designed for spe-
cific PR application, either Ptychography (Kappeler et al.,
2017; Boominathan et al., 2018) or Holography (Rivenson
et al., 2017). The Ptychography neural networks learn to
combine a stack of low-resolution band-pass-filtered images
to form a high resolution image. The holographic neural
network learns how to remove the twin image component
(Goodman, 2005) from a hologram. Because each of these
networks learns an application-specific mapping, they do
not generalize to new PR problems.

Our work takes a different tack. Rather than setting up
a neural network to solve a specific PR problem, we use
a neural network as a regularizer within an optimization
framework. This technique makes our network applicable
to numerous PR problems.

3. PR via Regularization by Denoising

In this section we first show how the Regularization by
Denoising (RED) (Romano et al., 2017) framework can be
adapted to solve the PR problem. We call this adaptation
prRED. Later, we combine prRED with the state-of-the-
art DnCNN neural network (Zhang et al., 2017) to form
prDeep.

3.1.RED

RED is an algorithmic approach to solving imaging inverse
problems that was recently proposed by Romano, Elad, and
Milanfar. Like many of the plug-and-play techniques de-
scribed in Section 2.1, RED can incorporate an arbitrary
denoiser to regularize an arbitrary imaging inverse problem.
Howeyver, whereas the other methods use a denoiser to mini-
mize some implicit cost function, RED uses a denoiser to
setup and then minimize an explicit cost function.

In particular, the RED framework defines the regularizer as

R(z) = %QTT(QT — D(x)), 5)
where D(x) is an arbitrary denoiser. Note that this reg-
ularizer serves two roles. First, it penalizes the residual
difference between x and its denoised self; when z — D(z)
is large, R(z) will tend to be large. Second, it penalizes
correlations between = and the residual. This serves to
prevent D(x) from removing structure from z; if D(x) re-
moves structure from z, then this structure will show up
in the residual, which will be correlated with x. In effect,

the RED regularizer encourages the residual to look like
additive white Gaussian noise (Romano et al., 2017).

When D(x) satisfies homogeniety and passivity conditions
(see Section 3.1 of (Romano et al., 2017)) the proximal
mapping of the RED regularization (5) can be implemented
recursively as follows!

1 A
prox (%) = argmin in — 2|3+ §$T(JU — D(x))

where v = H%(Uj_l + AD(’Uj_l)) Vj > 0 and vy = z.
In practice, the iterations must be terminated after a finite
number j. However, experiments suggest that j = 1, which
corresponds to calling the denoiser only once per use of the

proximal mapping function, leads to good performance.

3.2. prRED

To apply RED to PR, we construct a cost function of the
form

f(x) + R(z), (6)

where R(z) is the RED regularization from (5) and f(z)
is a data-fidelity term that encourages Ax to match the
phaseless measurements y.

From a Bayesian perspective, the data-fidelity term f(x)
should be proportional to the negative log-likelihood func-
tion. For instance, if y?> = |Az|? + w with w ~
CN(0,021), then the negative log-likelihood function
would be —log p(y|z)  [ly? — |Ax|?|2.

The Bayesian perspective suggests that, when dealing with
Poisson noise, which is the focus in this paper, one should
use the Poisson log-likelihood function. Interestingly, we
experimented with the Poisson log-likelihood function as
derived in (Chen & Candes, 2015) and found that it per-
formed slightly worse than the amplitude loss function
f(x) = L|ly — |Az|||3. This surprising behavior was also

2
noted in (Yeh et al., 2015).

In any case, a variety of data-fidelity terms can be used
to solve the PR problem. We adopt the amplitude loss
|ly — |Az|||3, which leads us to the non-convex optimiza-
tion problem

1
argrrgnéﬂy— \Am|||§ +)\xT(x—D(x)). @)

Although various solvers could be used to attack (7), we use
the FASTA solver (Goldstein et al., 2014). FASTA imple-
ments the forward-backward splitting algorithm (a.k.a. the

! As these properties do not hold exactly in practice (Reehorst &
Schniter, 2018), (6) should be considered only an approximation.



prDeep: Robust Phase Retrieval with a Flexible Deep Network

<108

15

Cost

05" - - -
0 50 100 150 200

Iteration

Figure 1. The cost (7) over the number of FASTA iterations. The
cost decreases monotonically.
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Figure 2. Network architecture of the DnCNN denoiser. Note that
it takes advantage of residual learning.

proximal gradient method) and incorporates adaptive step
sizes for acceleration. FASTA is very simple to use; after
defining the loss function, one need only provide the solver
with a proximal mapping for the regularization term (6) and
a (sub)gradient for the data-fidelity term with respect to z
(for z £ Ax). For our adopted data-fidelity term, a useful
subgradient is

z 1

2=yo s €Oy Izl (8)

where o denotes the Hadamard (i.e., elementwise) product

and 0, f(z) denotes the subdifferential of f with respect to
z.

In practice, the FASTA solver converges quickly. As an
example, Figure 1 shows a typical cost (7) per iteration
trajectory for the FASTA solver. There it can be seen that
the cost drops monotonically and converges after about 200
iterations.

3.3. prDeep

The prRED framework can incorporate nearly any denoising
algorithm. We call the special case of prRED with the
DnCNN denoiser “prDeep”.

DnCNN (Zhang et al., 2017) is a state-of-the-art denoiser
for removing additive white Gaussian noise from natural
images. DnCNN consists of 16 to 20 convolutional layers

(we used 20) of size 3 x 3 x 64. Sandwiched between
these layers are ReLU (Krizhevsky et al., 2012) and batch-
normalization (Toffe & Szegedy, 2015) operations. DnCNN
is trained using residual learning (He et al., 2016).

In practice, DnCNN noticeably outperforms the popular
BM3D algorithm. Moreover, thanks to parallelization and
GPU computing, it runs hundreds of times faster than
BM3D.

We trained four DnCNN networks at different noise lev-
els. To train, we loosely followed the procedure outlined in
(Zhang et al., 2017). In particular, we trained with 300 000
overlapping patches drawn from 400 images in the Berkeley
Segmentation Dataset (Martin et al., 2001). For each image
patch, we added additive white Gaussian noise with a stan-
dard deviation of either 60, 40, 20, or 10. where our images
had a dynamic range of [0, 255]. We then setup DnCNN to
recover the noise-free image. We used the mean-squared
error between the noise-free ground truth image and our
denoised reconstructions as the cost function. We trained
the network with stochastic gradient descent and the ADAM
optimizer (Kingma & Ba, 2014) with a batch size of 256.
Our training rate was 0.001, which we dropped to 0.0001
and then 0.00001 when the validation error stopped improv-
ing. Training took just over 3 hours per noise level on an
Nvidia Pascal Titan X.

4. Experimental Results

In this section we compare prDeep to several other PR algo-
rithms on simulated data with varying amounts of Poisson
noise. We test the algorithms with both coded diffraction
pattern (CDP) and Fourier measurements. In both sets of
tests, we sample and reconstruct 6 “natural” and 6 “unnatu-
ral” (real and nonnegative) test images, which are presented
in Figures 3 and 4.

4.1. Experimental Setup

Competing Algorithms. We compare prDeep against Hy-
brid Input-Output (HIO) (Fienup, 1982), Oversampling
Smoothness (OSS) (Rodriguez et al., 2013), Wirtinger Flow
(WF) (Candes et al., 2015a), DOLPHIn (Tillmann et al.,
2016), SPAR (Katkovnik & Astola, 2012; Katkovnik, 2017),
and BM3D-prGAMP (Metzler et al., 2016b). We also com-
pare with Plug-and-Play ADMM (Venkatakrishnan et al.,
2013; Heide et al., 2016) using both the BM3D and DnCNN
denoisers. HIO and WF are baseline algorithms designed
for Fourier and CDP measurements, respectively. OSS is an
alternating projection algorithm designed for noisy Fourier
measurements. It imposes a smoothness constraint to re-
gions outside of the target’s support. DOLPHIn is an itera-
tive PR algorithm designed to reconstruct images from noisy
CDP measurements. It imposes a sparsity constraint with
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Figure 3. The six “natural” test images. They follow a distribution
very similar to the training data.

respect to a learned dictionary. SPAR, BM3D-prGAMP, and
Plug-and-Play ADMM were described in Section 2.2.

Implementation. All algorithms were tested using Mat-
lab 2017a on a desktop PC with an Intel 6§00K CPU and an
Nvidia Pascal Titan X GPU. Dolphin, SPAR, and BM3D-
prGAMP used their respective authors’ implementations.
We created our own version of Plug and Play ADMM based
off of code original developed in (Chan et al., 2017). We use
FASTA to solve the nonlinear least squares problem at each
iteration of the algorithm. prDeep and DnCNN-ADMM
used a MatConvNet (Vedaldi & Lenc, 2015) implementation
of DnCNN. A public implementations of prDeep is available
at https://github.com/ricedsp/prDeep.

Measurement and Noise Model. Model mismatch and
Poisson shot noise are the dominant sources of noise in
many PR applications (Yeh et al., 2015). In this paper, we
focus on shot noise, which we approximate as

y* = |2* + w with w ~ N (0, o*Diag(|z|?)),

where z = Ax with known A, and where Diag(|z|?) is a
diagonal matrix with diagonal elements |z|2.

Some algebra and the central limit theorem can be used
to show that y?/a? ~ Poisson((]z]/a)?). In effect, 32 is
a rescaled Poisson random variable. The term « controls
the variance of the random variable and thus the effective
signal-to-noise ratio in our problem.

Parameter Tuning. HIO was run for 1000 iterations. WF
was run for 2000 iterations. BM3D-prGAMP was run for
50 iterations. prDeep was run for 200 iterations four times;
once for each of the denoisers networks (trained at stan-

(f) Butterfly
Nebula

(e) Pillars of
Creation

(d) Tadpole
Galaxy

Figure 4. The six “unnatural” test images. They follow a distribu-
tion distinct from the training data. Images are from Wikipedia
and follow public domain licenses.

dard deviations 60, 40, 20, and 10). The result from re-
constructing with the first denoiser was used to warm-start
reconstructing with the second, the second warm-started the
third, etc. Plug and Play ADMM was similarly run for 50
iterations four times. ADMM converged faster than prDeep
and did not benefit from additional iterations.

SPAR reconstructed z using y?/a? rather than y, as its
loss function expects Poisson distributed random variables.
prDeep’s parameter A\, which determines the amount of
regularization, was set to o,, when dealing with Fourier
measurements and 0.10,, when dealing with CDP measure-
ments, where 52 denotes the sample variance of the noise.
The parameter in ADMM analogues to A was set to .27,
when dealing with Fourier measurements and 0.025,, when
dealing with CDP measurements. The algorithms otherwise
used their default parameters.

Initialization. With oversampled CDP measurements of
real-valued signals, none of the algorithms were particu-
larly sensitive to initialization; initializing with a vector of
ones worked sufficiently well. In contrast, with Fourier
measurements, the algorithms were very sensitive to initial-
ization. We experimented with various spectral initializers,
but found they were ineffective with (noisy and only 4 x
oversampled) Fourier measurements. Instead, we first ran
the HIO algorithm (for 50 iterations) 50 times, from random
initializations, to form 50 estimates of the signal: I, Zo,
... Tso. We then used the reconstruction Z; with the lowest
residual (]|y — |AZ;|||2) as an initialization for HIO. HIO
was then run for 1000 iterations, and the result was used to
initialize the other algorithms. This process was repeated
three times and the reconstruction with the smallest residual
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Table 1. PSNRs and run times (sec) of 128 x 128 reconstructions with four intensity-only CDP measurements and varying amounts of

Poisson noise.

a=9 a=27 a =281

PSNR PSNR Time PSNR PSNR Time PSNR PSNR Time

Natural Unnatural Natural Unnatural Natural Unnatural
HIO 36.1 36.0 4.2 26.1 26.0 5.9 14.8 16.9 5.9
WF 34.3 34.2 0.8 24.7 24.0 0.9 13.2 13.0 6.7
DOLPHIn 31.0 28.8 1.1 27.9 26.9 1.1 17.9 20.8 1.1
SPAR 344 36.0 157 29.4 31.1 157 24.5 264 157
BM3D-prGAMP 34.1 354 172 314 322 177 22.5 223 231
BM3D-ADMM 38.5 390 516 31.9 334 400 24.4 269 37.7
DnCNN-ADMM 39.9 40.6 17.1 32.6 334 9.8 21.6 22.7 7.9
prDeep 39.1 40.1 254 32.8 340 232 20.9 245 231

Table 2. PSNRs and run times (sec) of 128 x 128 reconstructions with 4 x over-sampled intensity-only Fourier measurements and varying

amounts of Poisson noise.

a=2 a=3 a=4
PSNR PSNR Time PSNR PSNR Time PSNR PSNR Time
Natural Unnatural Natural  Unnatural Natural  Unnatural
HIO 22.2 20.8  10.6 19.9 179 104 17.9 15.5 10.7
WF 15.2 18.8 6.7 15.1 18.5 6.6 15.2 18.5 6.7
OSS 18.6 23.8 183 18.4 23.1 18.6 18.6 227 18.1
SPAR 22.0 239  79.1 19.6 226 770 19.4 205  83.0
BM3D-prGAMP 24.5 26.0 843 23.2 244 828 21.0 227 844
BM3D-ADMM 27.5 28.3 1557 24.5 25.0 156.8 21.8 23.1 156.8
DnCNN-ADMM 29.3 313 650 26.0 258 624 22.0 234 640
prDeep 28.4 30.6  105.1 28.5 264 1050 264 25.1 107.1
was used as the final estimate. The reported computation cally, our measurement operator is as follows
times (for Fourier measurements) include the time required
to initialize the algorithms and run them three times. FD,
A=| D2, ©)
4.2. Simulated Coded Diffraction Measurements FD3
4

We first test the algorithms with CDP intensity-only mea-
surements. CDP is a measurement model proposed in (Can-
des et al., 2015b) that uses a spatial light modulator (SLM)
to spread a target’s frequency information and make it easier
to reconstruct. Under a CDP measurement model, the target
is illuminated by a coherent source and then has its phase
immediately modulated by a known random pattern using
an SLM. The complex field then undergoes far-field Fraun-
hofer diffraction, which can be modeled by a 2D Fourier
transform, before its intensity is recorded by a standard cam-
era. Multiple measurements, with different random SLM
patterns, are recorded. In this work, we model the capture
of four measurements using a phase-only SLM. Mathemati-

where F represents the 2D Fourier transform and D4, Do,
... are diagonal matrices with nonzero elements drawn uni-
formly from the unit circle in the complex plane.

In Table 1 we compare the performance of the various PR
algorithms. We do not include a comparison with OSS as it
is setup specifically for Fourier measurements. We report
recovery accuracy in terms of mean peak-signal-to-noise
ratio (PSNR) across two sets of test images. We report run
time in seconds.

Table 1 demonstrates that, when dealing with CDP measure-
ments at low SNRs (large «), all five plug-and-play methods
produce similar reconstructions.

'PSNR = 10log, (——235>

m) when the pixel range is 0
to 255.
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(a) HIO (21 sec) (b) WF (24 sec)

A

(e) BM3D-prGAMP (91 sec) (f) BM3D-ADMM (153 sec) (g) DnCNN-ADMM (25 sec)

(c) DOLPHIn (3 sec)

(d) SPAR (58 sec)

(h) prDeep (72 sec)

Figure 5. Reconstructions of 256 x 256 image from four noisy intensity-only CDP measurements (ov = 81) with several PR algorithms.

All five plug-and-play methods provide similar reconstructions.

In Figure 5, we visually compare the reconstructions of a
256 x 256 image using the algorithms under test. With CDP
measurements, all of the plug-and-play algorithms do a good
job reconstructing the signal from noisy measurements.

4.3. Simulated Fourier Measurements

Fourier measurements of real-valued signals are prevalent in
many real-world applications. Many PR applications exploit
the Fourier-transform property F(z x ) = |Fz|?, where x
denotes correlation. This implies that in applications where
one can measure or estimate the autocorrelation function of
an object one can also measure the modulus squared of its
Fourier transform. This allows PR algorithms to reconstruct
the object.

This relationship has been used in multiple contexts. In
astronomical imaging, this relationship has been used to im-
age through turbulent atmosphere (Dainty & Fienup, 1987).
In laser-illuminated imaging, this relationship has been used
to reconstruct diffuse objects without speckle noise (Fienup
& Idell, 1988). More recently, this relationship has been
used to image through random scattering media, such as bio-
logical tissue (Katz et al., 2014). In all of these applications,
one reconstructs the real-valued intensity distribution of the
object.

In these tests we oversampled the spectrum by 4 x. That is,
we first placed 128 x 128 images at the center of a 256 x 256

square and then took the 2D Fourier transform. We assumed
that the support, i.e., the location of the image within the
256 x 256 grid, was known a priori.

Table 2 compares the reconstruction accuracies and recov-
ery times of several PR algorithms.> We do not include
results for DOLPHIn, as it completely failed with Fourier
measurements. Note that, at a given noise level, the recon-
structions from Fourier measurements are far less accurate
than their CDP counterpart. Table 2 demonstrates that with
Fourier measurements and large amounts of noise prDeep
is superior to existing PR algorithms.

In Figure 6, we again visually compare the reconstructions
from the algorithms under test, this time with Fourier mea-
surements. In this regime prDeep produces fewer artifacts
than competing methods.

5. Conclusions and Future Work

In this paper, we have extended and applied the Regular-
ization by Denoising (RED) framework to the problem of
PR. Our new algorithm, prDeep, is exceptionally robust
to noise thanks to the use of the DnCNN image denoising
neural network. As we demonstrated in our experiments,
prDeep is also able to handle a wide range of measurement

2Qur results account for the translation and reflection ambigui-
ties associated with Fourier measurements
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(e) BM3D-prGAMP (306 sec) (f) BM3D-ADMM (576 sec) (g) DnCNN-ADMM
(426 sec)

(h) prDeep (345 sec)

Figure 6. Reconstructions of 256 x 256 image from noisy 4 x oversampled intensity-only Fourier measurements (o = 3) with several PR
algorithms. Plug and Play ADMM and prDeep provide the best reconstructions.

matrices, from intensity-only coded diffraction patterns to
Fourier measurements.

By integrating a neural network into a traditional optimiza-
tion algorithm, prDeep inherits the strengths of both opti-
mization and deep-learning. Like other optimization-based
algorithms, prDeep is flexible and can be applied to PR
problems with different measurement models, noise lev-
els, etc., without having to undergo costly retraining. Like
other deep-learning-based techniques, for any given prob-
lem prDeep can take advantage of powerful learned priors
and outperform traditional, hand-designed methods.

prDeep is not a purely academic PR algorithm; it can handle
Fourier measurements of real-valued signals, a measure-
ment model that plays a key role in many imaging appli-
cations. However, prDeep does have a major limitation; it
is presently restricted to amplitude-only targets. Extending
prDeep to handle complex-valued targets is a promising and
important direction for future research.
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