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ABSTRACT
Abstraction of Markov Decision Processes is a useful tool for solv-

ing complex problems, as it can ignore unimportant aspects of an

environment, simplifying the process of learning an optimal pol-

icy. In this paper, we propose a new algorithm for finding abstract

MDPs in environments with continuous state spaces. It is based on

MDP homomorphisms, a structure-preserving mapping between

MDPs. We demonstrate our algorithm’s ability to learn abstractions

from collected experience and show how to reuse the abstractions

to guide exploration in new tasks the agent encounters. Our novel

task transfer method outperforms baselines based on a deep Q-

network in the majority of our experiments. The source code is

at https://github.com/ondrejba/aamas_19.
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1 INTRODUCTION
The ability to create useful abstractions automatically is a critical

tool for an autonomous agent. Without this, the agent is condemned

to plan or learn policies at a relatively low level of abstraction, and

it becomes hard to solve complex tasks. What we would like is the

ability for the agent to learn new skills or abstractions over time

that gradually increase its ability to solve challenging tasks. This

paper explores this in the context of reinforcement learning.

There are two main approaches to abstraction in reinforcement

learning: temporal abstraction and state abstraction. In temporal

abstraction, the agent learns multi-step skills, i.e. policies for achiev-

ing subtasks. In state abstraction, the agent learns to group similar

states together for the purposes of decision making. For example,

for handwriting a note, it may be irrelevant whether the agent is
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Figure 1: Abstraction for the task of stacking two pucks on
top of one another. The diagram shows a minimal quotient
MDP (top) that is homomorphic to the underlyingMDP (bot-
tom). TheminimalMDP has three states, the last of them be-
ing the goal state, and four actions. Each action is annotated
with the state-action block that induced it. Two actions are
annotated with b1 because they both lead to the first state.

holding a pencil or a pen. In the context of the Markov Decision

Process (MDP), state abstraction can be understood using an ele-

gant approach known as the MDP homomorphism framework [13].

An MDP homomorphism is a mapping from the original MDP to

a more compact MDP that preserves the important transition and

reward structure of the original system. Given an MDP homomor-

phism to a compact MDP, one may solve the original problem by

solving the compact MDP and then projecting those solutions back

onto the original problem. Figure 1 illustrates this in the context of

a toy-domain puck stacking problem. The bottom left of Figure 1

shows two pucks on a 4× 4 grid. The agent must pick up one of the

pucks (bottom middle of Figure 1) and place it on top of the other

puck (bottom right of Figure 1). The key observation to make here

is that although there are many different two-puck configurations

(bottom right of Figure 1), they are all equivalent in the sense that

the next step is for the agent to pick up one of the pucks. In fact,

for puck stacking, the entire system can be summarized by the

three-state MDP shown at the top of Figure 1. This compact MDP

is clearly a useful abstraction for this problem.

Although MDP homomorphisms are a useful mechanism for ab-

straction, it is not yet clear how to learn the MDP homomorphism
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mapping from experience in a model-free scenario. This is particu-

larly true for a deep reinforcement learning context where the state

space is effectively continuous. The closest piece of related work is

probably that of [21] who study the MDP homomorphism learning

problem in a narrow context. This paper considers the problem of

learning general MDP homomorphisms from experience. We make

the following key contributions:

#1: We propose an algorithm for learning MDPs homomorphisms

from experience in both discrete and continuous state spaces (Sub-

section 4.2). The algorithm groups together state-action pairs with

similar behaviors, creating a partition of the state-action space.

The partition then induces an abstract MDP homomorphic to the

original MDP. We prove the correctness of our method in Section 5.

#2: Our abstraction algorithm requires a learning component. We

develop a classifier based on the Dilated Residual Network [22] that

enables our algorithm to handle medium-sized environments with

continuous state spaces. We include several augmentations, such as

oversampling the minority classes and thresholding the confidences

of the predictions (Subsection 4.3). We test our algorithm in two

environments: a set of continuous state space puck stacking tasks,

which leverage the convolutional network (Subsection 6.1), and a

discrete state space blocks world task (Subsection 6.2), which we

solve with a decision tree.

#3: We propose a transfer learning method for guiding exploration

in a new task with a previously learned abstract MDP (Subsection

4.4). Our method is based on the framework of options [18]: it can

augment any existing reinforcement learning agent with a new

set of temporally-extended actions. The method outperforms two

baselines based on a deep Q-network [9] in the majority of our

experiments.

2 BACKGROUND
2.1 Reinforcement Learning
An agent’s interaction with an environment can be modeled as a

MarkovDecision Process (MDP, [1]). AnMDP is a tuple ⟨S,A,Φ, P ,R⟩,
where S is the set of states, A is the set of actions, Φ ⊂ S×A is

the state-action space (the set of available actions for each state),

P(s,a, s ′) is the transition function and R(s,a) is the reward func-

tion.

We use the framework of options [18] to transfer knowledge

between similar tasks. An option ⟨I ,π , β⟩ is a temporally extended

action: it can be executed from the set of states I and selects primi-

tive actions with a policy π until it terminates. The probability of

terminating in each state is expressed by β : S → [0, 1] .

2.2 Abstraction with MDP homomorphisms
Abstraction in our paper aims to group similar state-action pairs

from the state-action space Φ. The grouping can be described as a

partitioning of Φ.

Definition 2.1. A partition of an MDP M = ⟨S,A,Φ, P ,R⟩ is a
partition of Φ. Given a partition B ofM , the block transition prob-
ability of M is the function T : Φ × B |S → [0, 1] defined by

T (s,a, [s ′]B |S ) =
∑
s ′′∈[s ′]B |S P(s,a, s

′′).

Definition 2.2. A partition B′ is a refinement of a partition B,
B′ ≪ B, if and only if each block of B′ is a subset of some block

of B.

The partition of Φ is projected on the state space S to obtain a

grouping of states.

Definition 2.3. Let B be a partition of Z ⊆ X ×Y , where X and Y
are arbitrary sets. For any x ∈ X , let B(x) denote the set of distinct
blocks of B containing pairs of which x is a component, that is,

B(x) = {[(w,y)]B | (w,y) ∈ Z ,w = x}. The projection of B onto X is

the partition B |X ofX such that for any x ,x ′ ∈ X , [x]B |X = [x
′]B |X

if and only if B(x) = B(x ′).

Next, we define two desirable properties of a partition over Φ.

Definition 2.4. A partition B of an MDP M = ⟨S,A,Φ, P ,R⟩ is
said to be reward respecting if (s1,a1) ≡B (s2,a2) implies R(s1,a1) =
R(s2,a2) for all (s1,a1), (s2,a2) ∈ Φ.

Definition 2.5. A partition B of an MDP M = ⟨S,A,Φ, P ,R⟩ has
the stochastic substitution property (SSP) if for all (s1,a1), (s2,a2) ∈
Φ, (s1,a1) ≡B (s2,a2) implies T (s1,a1, [s]B |S ) = T (s2,a2, [s]B |S ) for
all [s]B |S ∈ B |S .

Having a partition with these properties, we can construct the

quotient MDP (we also call it the abstract MDP).

Definition 2.6. Given a reward respecting SSP partition B of

an MDP M = ⟨S,A,Φ, P ,R⟩, the quotient MDP M/B is the MDP

⟨S ′,A′,Φ′, P ′,R′⟩, where S ′ = B |S ; A′ =
⋃

[s]B |S ∈S ′
A′
[s]B |S

where

A′
[s]B |S

= {a′
1
,a′

2
, ...,a′η(s)} for each [s]B |S ∈ S ′; P ′ is given

by P ′([s]f ,a
′
i , [s
′]f ) = Tb ([(s,ai )]B , [s

′]B |S ) and R′ is given by

R′([s]B |S ,a
′
i ) = R(s,ai ). η(s) is the number of distinct classes of B

that contain a state-action pair with s as the state component.

We want the quotient MDP to retain the structure of the origi-

nal MDP while abstracting away unnecessary information. MDP

homomorphism formalizes this intuition.

Definition 2.7. An MDP homomorphism fromM = ⟨S,A,Φ, P ,R⟩
toM ′ = ⟨S ′,A′,Φ′, P ′,R′⟩ is a tuple of surjections ⟨f , {дs : s ∈ S}⟩
with h(s,a) = (f (s),дs (a)), where f : S → S ′ and дs : A →
A′ such that R(s,a) = R′(f (s),дs (a)) and P(s,a, f −1(f (s ′))) =
P ′(f (s),дs (a), f (s

′)). We call M ′ a homomorphic image of M un-

der h.

The following theorem states that the quotient MDP defined

above retains the structure of the original MDP.

Theorem 2.8 ([13]). Let B be a reward respecting SSP partition of
MDPM = ⟨S,A,Φ, P ,R⟩. The quotient MDPM/B is a homomorphic
image ofM .

Computing the optimal state-action value function in the quo-

tient MDP usually requires fewer computations, but does it help

us act in the underlying MDP? The last theorem states that the

optimal state-action value function lifted from the minimized MDP

is still optimal in the original MDP:

Theorem 2.9 (Optimal value eqivalence, [13]). Let M ′ =
⟨S ′,A′,Φ′, P ′,R′⟩ be the homomorphic image of the MDP M =

⟨S,A,Φ, P ,R⟩ under the MDP homomorphism h(s,a) = (f (s),дs (a)).
For any (s,a) ∈ Φ, Q∗(s,a) = Q∗(f (s),дs (a)).
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Algorithm 1 Abstraction

1: procedure Abstraction
2: E ← collect initial experience with an arbitrary policy π
3: д← a classifier for state-action pairs

4: B ← OnlinePartitionIteration(E,д)
5: M ′ ← a quotient MDP constructed from B according to

Definition 2.6

6: end procedure

3 RELATEDWORK
Balaraman Ravindran proposed Markov Decision Process (MDP)

homomorphism together with a sketch of an algorithm for finding

homomorphisms (i.e. finding the minimal MDP homomorphic to

the underlying MDP) given the full specification of the MDP in his

Ph.D. thesis [13]. The first and only algorithm (to the best of our

knowledge) for finding homomorphisms from experience (online)

[21] operates over Controlled Markov Processes (CMP), an MDP

extended with an output function that provides more supervision

than the reward function alone. Homomorphisms over CMPs were

also used in [20] to find objects that react the same to a defined set

of actions.

An approximate MDP homomorphism [14] allows aggregating

state-action pairs with similar, but not the same dynamics. It is

essential when learning homomorphisms from experience in non-

deterministic environments because the estimated transition prob-

abilities for individual state-action pairs will rarely be the same,

which is required by the MDP homomorphism. Taylor et al. [19]

built upon this framework by introducing a similarity metric for

state-action pairs as well as an algorithm for finding approximate

homomorphisms.

Sorg et al. [16] developed amethod based on homomorphisms for

transferring a predefined optimal policy to a similar task. However,

their approach maps only states and not actions, requiring actions

to behave the same across all MDPs. Soni et al. and Rajendran et

al. [12, 15] also studied skill transfer in the framework of MDP

homomorphisms. Their works focus on the problem of transfer-

ring policies between discrete or factored MDPs with pre-defined

mappings, whereas our primary contribution is the abstraction of

MDPs with continuous state spaces.

4 METHODS
We solve the problem of abstracting an MDP with a discrete or con-

tinuous state-space and a discrete action space. The MDP can have

an arbitrary reward function, but we restrict the transition function

to be deterministic. This restriction simplifies our algorithm and

makes it more sample-efficient (because we do not have to estimate

the transition probabilities for each state-action pair).

This section starts with an overview of our abstraction process

(Subsection 1), followed by a description of our algorithm for find-

ing MDP homomorphisms (Subsection 4.2). We describe several

augmentations to the base algorithm that increase its robustness

in Subsection 4.3. Finally, Subsection 4.4 contains the description

of our transfer learning method that leverages the learned MDP

homomorphism to speed up the learning of new tasks.

Algorithm 2 Online Partition Iteration

Input: Experience E, classifier д.
Output: Reward respecting SSP partition B.

1: procedure OnlinePartitionIteration
2: B ← {E},B′ ← {}
3: B ← SplitRewards(B)
4: while B , B′ do
5: B′ ← B
6: д← TrainClassi f ier (B,д)
7: B |S ← Project(B,д)
8: for block c in B |S do
9: while B contains block b for which B ,

Split(b, c,B) do
10: B ← Split(b, c,B)
11: end while
12: end for
13: end while
14: end procedure

4.1 Abstraction
Algorithm 1 gives an overview of our abstraction process. Since

we find MDP homomorphisms from experience, we first need to

collect transitions that cover all regions of the state-action space.

For simple environments, a random exploration policy provides

such experience. But, a random walk is clearly not sufficient for

more realistic environments because it rarely reaches the goal of the

task. Therefore, we use the vanilla version of a deep Q-network [9]

to collect the initial experience in bigger environments.

Subsequently, we partition the state-action space of the original

MDP based on the collected experience with our Online Partition

Iteration algorithm (Algorithm 2). The algorithm is described in

detail in Subsection 4.2. The state-action partition B–the output
of Algorithm 2–induces a quotient, or abstract, MDP according to

Definition 2.6.

The quotient MDP enables both planning optimal actions for

the current task (Subsection 4.2) and learning new tasks faster

(Subsection 4.4).

4.2 Partitioning algorithm
Our online partitioning algorithm (Algorithm 2) is based on the

Partition Iteration algorithm from [5]. It was originally developed

for stochastic bisimulation based partitioning, and we adapted it

to MDP homomorphisms (following Ravindran’s sketch [13]). Al-

gorithm 4.2 starts with a reward respecting partition obtained by

separating transitions that receive distinct rewards (SplitRewards).
The reward respecting partition is subsequently refined with the

Split (Algorithm 4) operation until a stopping condition is met.

Split(b, c, B) splits a state-action block b from state-action partition

B with respect to a state block c obtained by projecting the partition
B onto the state space.

The projection of the state-action partition onto the state space

(Algorithm 3) is the most complex component of our method. We

train a classifier д, which can be an arbitrary model, to classify

state-action pairs into their corresponding state-action blocks. The

training set consists of all transitions the agent experienced, with
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each transition belonging to a particular state-action block. During

State Projection, д evaluates a state under a sampled set of actions,

predicting a state-action block for each action. For discrete action

spaces, the set should include all available actions. The set of pre-

dicted state-action blocks determines which state block the state

belongs to.

Figure 2 illustrates the projection process: a single state s is

evaluated under four actions: a1, a2, a3 and a4. The first three

actions are classified into the state-action block b1, whereas the last
action is assigned to block b3. Therefore, s belongs to the state block
identified by the set of the predicted state-action blocks {b1,b3}.

The output of Online Partition Iteration is a partition B of the

state-action space Φ. According to Definition 2.6, the partition in-

duces a quotient MDP. Since the quotient MDP is fully defined, we

can compute its optimal Q-values with a dynamic programming

method such as Value Iteration [17].

To be able to act according to the quotient MDP, we need to

connect it to the original MDP in which we select actions. Given a

current state s and a set of actions admissible in s ,As , we predict the
state-action block of each pair (s,ai ), ai ∈ As using the classifier

д. Note that Online Partition Iteration trains д in the process of

refining the partition. This process of predicting state-action block

corresponds to a single step of State Projection: we determine which

state block s belongs to. Since each state in the quotient MDP

corresponds to a single state block (by Definition 2.6), we can map

s to some state s ′ in the quotient MDP.

Given the current state s ′ in the quotient MDP, we select the

action with the highest Q-value and map it back to the underlying

MDP. An action in the quotient MDP can correspond to more than

one action in the underlying MDP. For instance, an action that

places a puck on the ground can be executed in many locations,

while still having the same Q-value in the context of puck stacking.

We break the ties between actions by sampling a single action in

proportion to the confidence predicted by д: д predict a state-action

block with some probability given a state-action pair.

a1

a2

a3

a4

b1

b2

b3

s

s

s

s

g(s,a1)

g(s,a2)

g(s,a3)

g(s,a4)

s

{b1, b3}

Figure 2: Projection (Algorithm 3) of a single state s. s is eval-
uated under actions a1, a2, a3 and a4. For each pair (s,ai ),
the classifier д predicts its state-action block bj . s belongs
to a state block identified by the set of state-action blocks
{b1,b3}.

Algorithm 3 State Projection

Input: State-action partition B, classifier д.
Output: State partition B |S .

1: procedure Project
2: B |S ← {}
3: for block b in B do
4: for transition t in b do
5: As ← SampleActions(t .next_state)
6: Bs ← {}
7: for action a in As do
8: p ← д.predict(t .next_state,a)
9: Bs ← Bs ∪ {p}
10: end for
11: Add t to B |S usinд Bs as the key
12: end for
13: end for
14: end procedure

4.3 Increasing robustness
Online Partition Iteration is sensitive to erroneous predictions by

the classifier д. Since the collected transitions tend to be highly

unbalanced and the mapping of state-action pairs into state-action

blocks can be hard to determine, we include several augmentations

that increase the robustness of our method. Some of them are

specific to a neural network classifier.

• class balancing: The sets of state-action pairs belonging to

different state-action blocks can be extremely unbalanced.

Namely, the number of transitions that are assigned a posi-

tive reward is usually low. We follow the best practices from

[2] and over-sample all minority classes so that the number

of samples for each class is equal to the size of the majority

class. We found decision trees do not require oversampling;

hence, we use this method only with a neural network.

• confidence calibration: The latest improvements to neural

networks, such as batch normalization [8] and skip connec-

tions [7] (both used by our neural network in Subsection 6.1),

can cause miscalibration of the output class probabilities [6].

We calibrate the temperate of the softmax function applied

to the output neurons using a multiclass version of Platt

scaling [11] derived in [6]. The method requires a held-out

validation set, which consists of 20% of all data in our case.

• state-action block size threshold and confidence thresh-
old: During State Projection, the classifier д sometimes

makes mistakes in classifying a state-action pair to a state-

action block. Hence, the State Projection algorithm can

assign a state to a wrong state block. This problems usu-

ally manifests itself with the algorithm "hallucinating"

state blocks that do not exist in reality (note that there

are 2
min { |B |, |A | } − 1 possible state blocks, given a state-

action partition B). To prevent the Split function from over-

segmenting the state-action partition due to these phantom

state blocks, we only split a state-action block if the new

blocks contain a number of samples higher than a threshold

Ta . Furthermore, we exclude all predictions with confidence
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Algorithm 4 Split

Input State-action block b, state block c , partition B.
Output State-action partition B′.

1: procedure Split
2: b1 ← {},b2 ← {}
3: for transition t in b do
4: if transition.next_state ∈ c then
5: b1 ← b1 ∪ {t}
6: else
7: b2 ← b2 ∪ {t}
8: end if
9: end for
10: B′ ← B
11: if |b1 | > 0 && |b2 | > 0 then
12: B′ ← (B′ \ {b}) ∪ {b1,b2}
13: end if
14: end procedure

lower than some thresholdTc . Confidence calibration makes

it easier to select the optimal value of Tc .

4.4 Transferring abstract MDPs
Solving a new task from scratch requires the agent to take a random

walk before it stumbles upon a reward. The abstract MDP learned

in the previous task can guide exploration by taking the agent into

a starting state close to the goal of the task. However, how do we

know which state block in the abstract MDP is a good start for

solving a new task?

If we do not have any prior information about the structure of

the next task, the agent needs to explore the starting states. To

formalize this, we create |B |S | options, each taking the agent to a

particular state in the quotient MDP from the first task. Each option

is a tuple ⟨I ,π , β⟩ with

• I being the set of all starting states of the MDP for the new

task,

• π uses the quotient MDP from the previous task to select

actions that lead to a particular state in the quotient MDP

(see Subsection 4.2 for more details) and

• β terminates the option when the target state is reached.

The agent learns theQ-values of the options with a Monte Carlo

update [17] with a fixed α (the learning rate)–the agent prefers

options that make it reach the goal the fastest upon being executed.

If the tasks are similar enough, the agent will find an option that

brings it closer to the goal of the next task. If not, the agent can

choose not to execute any option.

We use a deep Q-network to collect the initial experience in all

transfer learning experiments. While our algorithm suffers from

the same scalability issues as a deep Q-network when learning the

initial task, our transfer learning method makes the learning of new

tasks easier by guiding the agent’s exploration.

5 PROOF OF CORRECTNESS
This section contains the proof of the correctness of our algorithm.

We first prove two lemmas that support the main theorem. The

first lemma and corollary ensure that Algorithm 2 finds a reward

respecting SSP partition.

Lemma 5.1. Given a reward respecting partition B of an MDPM =
⟨S,A,Φ, P ,R⟩ and (s1,a1), (s2,a2) ∈ Φ such that T (s1,a1, [s ′]B |S ) ,
T (s2,a2, [s

′]B |S ) for some s ′ ∈ S , (s1,a1) and (s2,a2) are not in the
same block of any reward respecting SSP partition refining B.

Proof. Following the proof of Lemma 8.1 from [5]: proof by

contradiction.

Let B′ be a reward respecting SSP partition that is a re-

finement of B. Let s ′ ∈ S , (s1,a1), (s2,a2) ∈ b ∈ B such

that T (s1,a1, [s
′]B |S ) , T (s2,a2, [s

′]B |S ). Define B′ such that

(s1,a1), (s2,a2) are in the same block and [s ′]B |S =
⋃k
i=1[s

′
i ]B′ |S .

Because B′ is a reward respecting SSP partition, for each state

block [s ′′]B |S ∈ B′ |S , T (s1,a1, [s
′′]B |S ) = T (s2,a2, [s

′′]B |S ).

Then, T (s1,a1, [s
′]B |S ) =

∑
1≤i≤k T (s1,a1, [s

′
i ]B′ |S ) =∑

1≤i≤k T (s2,a2, [s
′
i ]B′ |S ) = T (s2,a2, [s

′]B |S ). This contradicts

T (s1,a1, [s
′]B |S ) , T (s2,a2, [s

′]B |S ).

□

Corollary 5.2. Let B be a reward respecting partition of an MDP
M = ⟨S,A,Φ, P ,R⟩, b a block in B and c a union of blocks from
B |S . Every reward respecting SSP partition over Φ that refines B is a
refinement of the partition Split(b, c,B).

Proof. Following the proof of Corollary 8.2 from [5].

Let c =
⋃n
i=1[si ]B |S , [si ]B |S ∈ B |S . Let B′ be a reward re-

specting SSP partition that refines B. Split(b, c,B) will only split

state-action pairs (s1,a1), (s2,a2) if T (s1,a1, c) , T (s2,a2, c). But
if T (s1,a1, c) , T (s2,a2, c), then there must be some k such that

T (s1,a1, ck ) , T (s2,a2, ck ) because for any (s,a) ∈ Φ, T (s,a, c) =∑
1≤m≤n T (s,a, cm ). Therefore, we can conclude by Lemma 5.1 that

[(s1,a1)]B′ , [(s2,a2)]B′ .
□

The versions of Partition Iteration from [5] and [13] partition

a fully-defined MDP. We designed our algorithm for the more re-

alistic case, where only a stream of experience is available. This

change makes the algorithm different only during State Projec-

tion (Algorithm 3). In the next lemma, we prove that the output

of State Projection converges to a state partition as the number of

experienced transitions goes to infinity.

Lemma 5.3. LetM = ⟨S,A,Φ, P ,R⟩ be an MDP with a finite A, a
finite or infinite S , a state-action space Φ that is a separable metric
space and a deterministic P defined such that each state-action pair is
visited with a probability greater than zero. Let SampleAction(s) =
As ,∀s ∈ S (Algorithm 3, line 5). Let t1, t2, ... be i.i.d. random vari-
ables that represent observed transitions, д a 1 nearest neighbor clas-
sifier that classifies state-action pairs into state-action blocks and
let (s,a)n the nearest neighbor to (s,a) from a set of n transitions
Xn = {t1, t2, ..., tn }. Let Bn be a state-action partition over Xn and
Sn =

⋃
t ∈Xn t .next_state . Let (Bn |Sn )

′ be a state partition obtained
by the State Projection algorithm with д taking neighbors from Xn .
(Bn |Sn )

′ → Bn |Sn as n →∞ with probability one.

Proof. Bn |Sn is obtained by projecting Bn onto Sn . In this pro-

cess, Sn is divided into blocks based on B(s) = {[(s ′,a)]Bn |(s
′,a) ∈

Φ, s = s ′}, the set of distinct blocks containing pairs of which s is a
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Task Options Baseline Baseline, share weights

2 puck stack to 3 puck stack 2558 ± 910 5335 ± 1540 10174 ± 5855

3 puck stack to 2 and 2 puck stack 2382 ± 432 - 3512 ± 518

2 puck stack to stairs from 3 pucks 2444 ± 487 4061 ± 1382 4958 ± 3514

3 puck stack to stairs from 3 pucks 1952 ± 606 4061 ± 1382 5303 ± 3609

2 puck stack to 3 puck component 2781 ± 605 3394 ± 999 6641 ± 5582

stairs from 3 pucks to 3 puck stack 3947 ± 873 5335 ± 1540 6563 ± 4299

stairs from 3 pucks to 2 and 2 puck stacks 5552 ± 3778 - 5008 ± 1998

stairs from 3 pucks to 3 puck component 3996 ± 2693 3394 ± 999 4856 ± 3600

3 puck component to 3 puck stack 3729 ± 742 5335 ± 1540 8540 ± 4908

3 puck component to stairs from 3 pucks 3310 ± 627 4061 ± 1382 2918 ± 328

Table 1: Transfer experiments in the pucks world domain. We measure the number of time steps before the agent reached
the goal in at least 80% of episodes over a window of 50 episodes and report the mean and standard deviation over 10 trials.
Unreported scores mean that the agent never reached this target. The column labeledOptions represents our transfer learning
method (Subsection 4.4), Baseline is deep Q-network described in Subsection 6.1 that does not retain any information from
the initial task and Baseline, share weights copies the trained weights of the network from initial task to the transfer task. The
bolded scores correspond to a statistically significant result for a Welch’s t-test with P < 0.1.

component, s ∈ Sn . Given SampleAction(s) = As ,∀s ∈ Sn , line 8 in
Algorithm 3 predicts a b ∈ B for each (s ′,a) ∈ Φ, such that s = s ′.
By the Convergence of the Nearest Neighbor Lemma [3], (s,a)n
converges to (s,a) with probability one. The rest of the Algorithm

3 exactly follows the projection procedure (Definition 3), therefore,

(Bn |Sn )
′ → Bn |Sn with probability one.

□

Finally, we prove the correctness of our algorithm given an infi-

nite stream of i.i.d. experience. While the i.i.d. assumption does not

usually hold in reinforcement learning (RL), the deep RL literature

often leverages the experience buffer [9] to ensure the training data

is diverse enough. Our algorithm also contains a large experience

buffer to collect the data needed to run Online Partition Iteration.

Theorem 5.4 (Correctness). LetM = ⟨S,A,Φ, P ,R⟩ be an MDP
with a finite A, a finite or infinite S , a state-action space Φ that is a
separable metric space and a deterministic P defined such that each
state-action pair is visited with a probability greater than zero. Let
SampleAction(s) = As ,∀s ∈ S (Algorithm 3, line 5). Let t1, t2, ...
be i.i.d. random variables that represent observed transitions, д a 1
nearest neighbor classifier that classifies state-action pairs into state-
action blocks. As the number of observed ti goes to infinity, Algorithm
2 computes a reward respecting SSP partition over the observed state-
action pairs with probability one.

Proof. Loosely following the proof of Theorem 8 from [5].

Let B be a partition over the observed state-action pairs, S the

set of observed states and (B|S)’ the result of StateProjection(B,g)

(Algorithm 3).

Algorithm 2 first splits the initial partition such that a block is

created for each set of transitions with a distinct reward (line 2).

Therefore, Algorithm 2 refines a reward respecting partition from

line 2 onward.

Algorithm 1 terminates with B when B = Split(b, [s](B |S )′ ,B)
for all b ∈ B, [s](B |S )′ ∈ (B |S)

′
. Split(b, [s](B |S )′ ,B) will split any

block b containing (s1,a1), (s2,a2) for which T (s1,a1, [s](B |S )′) ,
T (s2,a2, [s](B |S )′). According to Lemma 2, (B |S)′ → B |S as N →
∞ with probability one. Consequently, any partition returned by

Algorithm 2 must be a reward respecting SSP partition.

Since Algorithm 2 first creates a reward respecting partition, and

each step only refines the partition by applying Split , we can con-

clude by Corollary 1 that each partition encountered, including the

resulting partition, must contain a reward respecting SSP partition.

□

6 EXPERIMENTS
We investigate the following questions with our experiments:

(1) Can Online Partition Iteration find homomorphisms in envi-

ronmentswith continuous state spaces and high-dimensional

action spaces (characteristic for robotic manipulation tasks)?

(2) Do options induced by quotient MDPs speed-up the learning

of new tasks?

(3) How does Online Partition Iteration compare to the only

previous approach to finding homomorphisms[21]?

Section 6.1 describes our experiments and results concerning

question 1 and 2, and section 6.2 presents a comparison with the

prior work. We discuss the results in Subsection 6.3.

6.1 Continuous pucks world
We designed the pucks world domain (Figure 3) to approximate

real-world robotic manipulation tasks. The state is represented by

a 112x112 depth image and each pixel in the image is an admissible

action. Hence, 12544 actions can be executed in each state. Environ-

ments with such a high branching factor favor homomorphisms, as

they can automatically group actions into a handful of classes (e.g.
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(a) (b) (c) (d)

Figure 3: The goal states of the four types of tasks in our con-
tinuous pucks world domain. a) the task of stacking three
pucks on top of one another, b) making two stacks of two
pucks, c) arranging three pucks into a connected component,
d) building stairs from three pucks.

"pick puck" and "do nothing") for each state. If an action correspond-

ing to a pixel inside of a puck is selected, the puck is transported in

the agent’s hand. In the same way, the agent can stack pucks on

top of each other or place them on the ground. Corner cases such

as placing a puck outside of the environment or making a stack of

pucks that would collapse are not allowed. The agent gets a reward

of 0 for visiting each non-goal state and a reward of 10 for reach-

ing the goal states. The environment terminates when the goal is

reached or after 20 time steps. We implemented four distinct types

of tasks: stacking pucks in a single location, making two stacks of

pucks, arranging pucks into a connected component and building

stairs from pucks. The goal states of the tasks are depicted in Figure

3. We can instantiate each task type with a different number of

pucks, making the space of possible tasks and their combinations

even bigger.

To gather the initial experience for partitioning, we use a shallow

fully-convolutional version of the vanilla deep Q-network. Our

implementation is based on the OpenAI baselines [4] with the

standard techniques: separate target network with a weight update

every 100 time steps and a replay buffer that holds the last 10 000

transitions. The network consists of five convolutional layers with

the following settings (number of filters, filter sizes, strides): (32, 8,

4), (64, 8, 2), (64, 3, 1), (32, 1, 1), (2, 1, 1). The ReLU activation function

is applied to the output of each layer except for the last one. The

last layer predicts two maps of Q-values with the resolution 14x14

(for 112x112 inputs)–the two maps correspond to the two possible

hand states: "hand full" and "hand empty". The appropriate map is

selected based on the state of the hand, and bilinear upsampling is

applied to get a 112x112 map of Q-values, one for each action. We

trained the network with a Momentum optimizer with the learning

rate set to 0.0001 and momentum to 0.9, batch size was set to 32.

The agent interacted with the environment for 15000 episodes with

an ϵ-greedy exploration policy; ϵ was linearly annealed from 1.0 to

0.1 for 40000 time steps.

Online Partition Iteration requires a second neural network–the

classifier д. Our initial experiments showed that the predictions

of the architecture described above lack in resolution. Therefore,

we chose a deeper architecture: the DRN-C-26 version of Dilated

Residual Networks [22]. We observed that the depth of the network

is more important than the width (the number of filters in each

layer) for our classification task. Capping the number of filters at

32 (the original architecture goes up to 512 filters in the last layers)
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Figure 4: Grid searches over state-action block size thresh-
olds and prediction confidence thresholds (described in Sub-
section 4.3). The y-axis represents the average per-episode
reward (the maximum is 10) obtained by planning in the
quotientMDP induced by the resulting partition. Stack, com-
ponent and stairs represent the three puck world tasks
shown in Figure 3. We report the means and standard de-
viations over 20 runs with different random seeds.

produces results indistinguishable from the original network. DRN-

C-26 decreases the resolution of the feature maps in three places

using strided convolutions, we downsample only twice to keep the

resolution high. We train the network for 1500 steps during every

iteration of Online Partition Iteration. The learning rate for the

Momentum optimizer started at 0.1 and was divided by 10 at steps

500 and 1000, momentum was set to 0.9. The batch size was set to

64 and the weight decay to 0.0001.

Figure 4 reports the results of a grid search over state-action block

size thresholds and classification confidence thresholds described in

Subsection 4.3. Online Partition Iteration can create a near-optimal

partition for the three pucks stacking task. On the other hand, our

algorithm is less effective in the component arrangement and stairs

building tasks. These two tasks are more challenging in terms of

abstraction because the individual state-action blocks are not as

clearly distinguishable as in puck stacking.

Next, we investigate if the options induced by the found par-

titions transfer to new tasks (Table 1). For puck stacking, a deep

Q-network augmented with options from the previous tasks sig-

nificantly outperforms both of our baselines. "Baseline" is a vanilla

deep Q-network that does not retain any information from the ini-

tial task, whereas "Baseline, share weights" remembers the learned

weights from the first task. Options are superior to the weights

sharing baseline because they can take the agent to any desirable

state, not just the goal. For instance, the 2 and 2 puck stacking task

benefits from the option "make a stack of two pucks"; hence, options

enable faster learning than weight sharing. We would also like to

highlight one failure mode of the weight sharing baseline: the agent

can sometimes get stuck repeatedly reaching the goal of the initial

task without going any further. This behavior is exemplified in the

transfer experiment from 2 puck stacking to 3 puck stacking. Here,

the weight sharing agent continually places two pucks on top of

one another, then lifts the top puck and places it back, which leads

to slower learning than in the no-transfer baseline. Options do not

suffer from this problem.

As reported in Figure 4, the learned partitions for the stairs build-

ing and component arrangement tasks underperform compared to

puck stacking. Regardless, we observed a speed-up compared to the
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no-transfer baseline in all experiments except for the transfer from

stairs from 3 pucks to 3 puck component. Options also outperform

weight sharing in 3 out of 5 experiments with the non-optimal

partitions, albeit not significantly.

6.2 Discrete blocks world
Finally, we compare our partitioning algorithm to the decision tree

method from [21] in the blocks world environment. The environ-

ment consists of three blocks that can be placed in four positions.

The blocks can be stacked on top of one another, and the goal is to

place a particular block, called the focus block, in a goal position and

height. With four positions and three blocks, 12 tasks of increasing

difficulty can be generated. The agent is penalized with -1 reward

for each action that does not lead to the goal; reaching the goal

state results in 100 reward.

Although a neural network can learn to solve this task, a deci-

sion tree trains two orders of magnitude faster and often reaches

better performance. We used a decision tree from the scikit-learn

package [10] with the default settings as our д classifier. All mod-

ifications from Subsection 4.3 specific to a neural network were

omitted: class balancing and confidence thresholding. We also dis-

abled the state-action block size threshold because the number of

unique transitions generated by this environment is low and the

decision tree does not make many mistakes. Despite the decision

tree reaching high accuracy, we set a limit of 100 state-action blocks

to avoid creating thousands of state-action pairs if the algorithm

fails. The abstract MDP was recreated every 3000 time steps and

the task terminated after 15000 time steps.

Figure 5 compares the decision tree version of our algorithmwith

the results reported in [21]. There are several differences between

our experiments and the algorithm in [21]: Wolfe’s algorithmworks

with a Controlled Markov Process (CMP), an MDP augmented with

an output function that provides richer supervision than the reward

function. Therefore, their algorithm can start segmenting state-

action blocks before it even observes the goal state. CMPs also

allow an easy transfer of the learned partitions from one task to

another; we solve each task separately. On the other hand, each

action in Wolfe’s version of the task has a 0.2 chance of failure,

but we omit this detail to satisfy the assumptions of our algorithm.

Even though each version of the task is easier in some ways are

harder in others, we believe the comparison with the only previous

algorithm that solves the same problem is valuable.

6.3 Discussion
We return to the questions posited at the beginning of this section.

Online Partition Iteration can find the right partition of the state-

action space as long as the individual state-action blocks are clearly

identifiable. For tasks with more complex classification boundaries,

the partitions found are suboptimal, but still useful. We showed

that options speed-up learning and outperform the baselines in the

majority of the transfer experiments. Our algorithm also outper-

formed the only previous method of the same kind [21] in terms of

finding a consistent partition.

The main drawback of Online Partition Iteration is that is it

highly influenced by the accuracy of the classifier д. During state
projection, it takes only one incorrectly classified action (out of
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Figure 5: Comparison with Wolfe et al. [21] in the Blocks
World environment. The horizontal line marks the highest
mean reward per time step reached by Wolfe et al. We aver-
aged our results over 100 runs with different goals.

12544 actions used in our pucks world experiments) for the state

block classification to be erroneous. Confidence thresholding helps

in the task of stacking pucks (Figure 4b), as it can filter out most

of the errors. However, trained classifiers for the other two tasks,

arranging components and building stairs, often produce incorrect

predictions with a high confidence.

Moreover, the errors during state projection get amplified as the

partitioning progresses. Note that the dataset of state-action pairs

(inputs) and state-action blocks (classes) is created based on the

previous state partition, which is predicted by the classifier. In other

words, the version of the classifier д at step t generates the classes
that will be used for its training at step t + 1. A classifier trained on

noisy labels is bound to make even more errors at the next iteration.

In particular, we observed that the error rate grows exponentially

in the number of steps required to partition the state-action space.

In these cases, the partitioning algorithm often stops because

of the limit on the number of state-action blocks (10 for the pucks

domain). That is why the performance for the component arrange-

ment and stairs building tasks is not sensitive to the state-action

block size threshold (Figure 4a). Nevertheless, these noisy partitions

also help with transfer learning, as shown in Table 1.

7 CONCLUSION
We developed Online Partition Iteration, an algorithm for finding

abstract MDPs in discrete and continuous state spaces from expe-

rience, building on the existing work of Givan et al., Ravindran

and Wolfe et al. [5, 13, 21]. We proved the correctness of our algo-

rithm under certain assumptions and demonstrated that it could

successfully abstract MDPs with high-dimensional continuous state

spaces and high-dimensional discrete action spaces. In addition to

being interpretable, the abstract MDPs can guide exploration when

learning new tasks. We created a transfer learning method in the

framework of options [18], and demonstrated that it outperforms

the baselines in the majority of experiments.
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