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Abstract—Recent efforts to obtain high data rates in
wireless systems have focused on what can be achieved
in systems that have nonlinear or coarsely quantized
transceiver architectures. Estimating the channel in such
a system is challenging because the nonlinearities distort
the channel estimation process. It is therefore of interest
to determine how much training is needed to estimate the
channel sufficiently well so that the channel estimate can
be used during data communication. We provide a way to
determine how much training is needed by deriving a lower
bound on the achievable rate in a training-based scheme
that can be computed and analyzed even when the number
of antennas is very large. This lower bound can be tight,
especially at high SNR. One conclusion is that the optimal
number of training symbols may paradoxically be smaller
than the number of transmitters for systems with coarsely-
quantized transceivers. We show how the training time can
be strongly dependent on the number of receivers, and give
an example where doubling the number of receivers reduces
the training time by about 37 percent.

I. INTRODUCTION

Nonlinear transceivers are being considered for high-
frequency wireless communication because of their low
cost and power advantages. Examples, include systems
with low-resolution (especially one-bit) analog-to-digital
converters (ADCs) at the receiver [1]–[7] or digital-to-
analog converters (DACs) at the transmitter [8]–[11] or
both [12]–[16]. Performance analysis has shown that
high data rates with low error probability can be achieved
with multiple antennas and channel state information
(CSI) at the receiver [6].

Training-based schemes are often used in practice to
obtain channel information, where part of coherence
interval is used for training and the rest for data. In
[17], a lower bound of the capacity in a training-based
scheme for a linear system is provided, and the optimal
training length is analyzed by maximize the lower bound.
Simple analysis using a worst-case noise analysis allows
optimum training rules to be derived.

In [3], [4], lower bounds on the channel capacity
with training-based schemes are provided for systems
with linear transmitters and one-bit quantized receivers.
The authors formulate the quantized output as the com-
bination of signal, Gaussian noise, and quantization

noise uncorrelated with the signal, and provide a lower
bound by following [17] and considering the worst-case
additive noise that minimizes the input-output mutual
information in a linear system at low SNR. We consider
a more general model where either the transmitter or the
receiver can have an arbitrary nonlinearity.

We consider a general system with nonlinear
transceivers and provide a lower bound on the achiev-
able rate (channel capacity). We do not attempt to
approximate or linearize the transceiver architecture, but
instead directly deal with the nonlinearity. A step-by-
step method is provided to compute the lower bound.
When we apply our bound to a system with linear
transmitters and one-bit receivers, we can improve upon
existing known training-based results. When we apply
our bound to a system with one-bit transceivers, we
find that the optimal number of training symbols can be
smaller than the number of transmitters when we have
more receivers than transmitters. We find that the optimal
training length can decrease strongly as the number of
receivers increases.

II. TRAINING-BASED SCHEME AND CAPACITY LOWER
BOUND

We assume a classical discrete-time block-fading
channel [17], where the channel is constant for some
discrete time interval Tb, after which it changes to an
independent value that holds for another interval Tb,
and so on. We divide the interval into two phases:
Tt for training and Td for data transmission, where
Tt + Td = Tb. For a general system with nonlinear
transceivers, within one block of Tb symbols, the channel
can be modeled by

Yt = f

(√
ρ

M
HXt + Vt

)
, trXH

t Xt = MTt, (1)

Yd = f

(√
ρ

M
HXd + Vd

)
,EtrXH

d Xd = MTd, (2)

where Xt ∈ XM×Tt and Xd ∈ XM×Td are matrices of
transmitted training signal and data signal, Yt ∈ YN×Tt

and Yd ∈ YN×Td are the corresponding matrices of



received signal, M and N are the number of transmit-
ters and receivers, X and Y are the alphabet of the
transmitted signal and received signal, H is a random
channel matrix, which is fixed in one coherent time
interval, Vt and Vd are additive noise. Elements of Vt, Vd

are independent and identically distributed (iid) complex
Gaussian CN (0, σ2). Elements of H are iid complex
Gaussian CN (0, 1). ρ is the expected signal power at
the receiver. f(·) is an elementwise nonlinear function
which models the nonlinearity of each receiver.

The capacity per transmitter per channel-use is

Ct = sup
pXd

(·),Xd∈XM×Td

1

TbM
I(Xt, Yt, Yd;Xd),

where I(·; ·) is the mutual information notation. In gen-
eral, this optimization is difficult to compute, especially
for large T , M , and N . We use a series of now-standard
inequalities to obtain a tractable lower bound on this
capacity. Let xd(k) and yd(k) be the kth column of
Xd and Yd. A lower bound on Ct can be obtained
by considering xd(k) to be iid with some distribution
pxd

(x). Then,

TbMCt ≥ I(Xd;Yd|Xt, Yt)

= H(Xd|Xt, Yt)−H(Xd|Xt, Yt, Yd)

=

Td∑
k=1

H(xd(k)|Xt, Yt)−
Td∑
k=1

H(xd(k)|Xt, Yt, Yd,

xd(1), · · · ,xd(k − 1))

≥
Td∑
k=1

(H(xd(k)|Xt, Yt)−H(xd(k)|Xt, Yt,yd(k)))

= (Tb − Tt)I(xd;yd|Xt, Yt). (3)

Then, a lower bound on Ct is

Ct ≥ Cbound = max
Tt

Tb − Tt

Tb
Reff(Tt), (4)

where
Reff(Tt) =

1

M
I(xd;yd|Xt, Yt) (5)

is the effective achievable rate per transmitter in each
channel-use. The corresponding training time that opti-
mizes the lower bound is

Tt,opt = argmax
Tt

Tb − Tt

Tb
Reff(Tt). (6)

The complexity of finding Reff(Tt) is lower than Ct

since we do not need to find the optimizing pXd
(·).

Nevertheless, Reff(Tt) is still non-trivial to find since the
amount of averaging needed to compute I(xd;yd|Xt, Yt)
is generally exponential in M and N .

As a result, a tight approximation of Reff(Tt) is
needed that works for any M and N . Some efforts to
make such an approximation include modeling nonlinear

receivers as linear receivers with an equivalent extra
noise, and then using a worst-case noise analysis to
obtain a lower bound. For example, linear transmitters
and coarsely quantized (one-bit) receivers are considered
in [3] and [4], and a “Bussgang decomposition” is
applied to find an equivalent uncorrelated quantization
noise in a worst-case noise analysis. We do not employ
such methods, but compare the lower bound we obtain
with those obtained with such methods.

We approximate the bound Cbound with its limit
when M,N, Tb → ∞. We then use a novel equivalent
channel, that can be analyzed using the so-called “replica
method”. The replica method, a tool used in statistical
mechanics [18], has been applied in many communica-
tion system contexts [7], [19]–[23], neural networks [24],
[25], error-correcting codes [26], and image restoration
[27]. Although the replica method is used for a large
scale limit, [16] and [28] also show that results obtained
from the replica method provide a good approximation
for small M and N (≈ 8). A mathematically rigorous
justification of the replica method is elusive, but the
success of the method maintains its popularity.

Because we look at the large M and N limit, we
define

α =
N

M
, β =

Tb
M
, (7)

and (4) and (6) become

Ct ≥ Cbound = max
βt

β − βt

β
Reff(βt), βt =

Tt

Tb
, (8)

βt,opt = argmax
βt

β − βt

β
Reff(βt), (9)

where

Reff(βt) = lim
M→∞

1

M
I(xd;yd|Xt, Yt), (10)

Cbound = lim
M→∞

Cbound, Ct = lim
M→∞

Ct.

We assume that the elements of the training matrix
Xt are iid with 0 mean and unit variance. We find an
equivalent channel that has the same achievable rate per
transmitter as Reff . The following claim summarizes the
method we use.

Claim: Consider a nonlinear system with an unknown
channel, with training and data phase as shown in (1)
and (2). Let the elements of Xt be iid with zero mean
and unit variance. Let the elements of Xd also be iid
zero-mean unit-variance but not necessarily the same
distribution as Xt. As M,N, Tt →∞, we have

Reff(βt) = lim
M→∞

1

M
I(xd; ŷd|Ĥ), (11)

where Reff is defined in (10), xd, ŷd are the input and
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output of a new channel

ŷd = f

(√
ρ

M
Ĥxd + v̂d

)
, (12)

where the channel Ĥ is known by the receiver, the
elements of Ĥ are iid CN (0, qh), and the elements of
v̂d are iid CN (0, σ2 + ρ(1 − qh)), and 1 − qh is the
mean square error of the minimum mean square error
(MMSE) estimator of H based on the training phase:

1− qh = lim
M→∞

1

MN
E
(
‖H − E(H|Xt, Yt)‖2F

)
, (13)

where ‖·‖F is the notation of Frobenius norm. The Reff

depends on βt through qh.
The proof is shown in Appendix A and uses some

common assumptions used for replica methods [7], [19],
[20], [22]. We omit these here.

III. STEP-BY-STEP COMPUTATION OF LOWER BOUND

We partition the computational methods into small and
large M,N, Tb. These “recipes” are then applied to a
particular one-bit transceiver architecture in Section IV.

1) Derive g(z, y, σ2
0) as a function of z, y, σ2

0 from

g(z, y, σ2
0) = P (f(z + v) = y), v ∼ CN (0, σ2

0),
(14)

when Y is discrete, and from

g(z, y, σ2
0) =

∏
o∈{R,I}

d

dy
P ([f(z + v)]o ≤ [y]o),

(15)
where v ∼ CN (0, σ2

0), [·]R and [·]I are the real and
imaginary part of the enclosed value, when Y is
continuous.

Steps 2A) to 7A) below compute Cbound directly,
while steps 2B) to 10B) compute Cbound defined in
(8). The former works for small M and N when the
computation complexity is affordable. Otherwise, the
latter is appropriate. We now describe the former.

A. Small M,N, Tb

In the following steps, we need to run steps from 2A)
to 6A) for Tt = 1, 2, · · · , Tb. Then, run step 7A) to
compute Cbound.
2A) Derive

d1(xd,yd, Xt, Yt, Tt) =
N∏
k=1

Eh

[
g
(√ ρ

M
hTxd,

yd,k, σ
2
) Tt∏
p=1

g

(√
ρ

M
hTxt,p, yt,kp, σ

2

)]
,

as a function of xd,yd, Xt, Yt, Tt, where h ∼
CN (0, I). If both X and Y are discrete, the numer-
ical values can be computed and stored. Otherwise,

simplify the expression if possible. This process
of storing or simplification is the same for the
following steps.

3A) Derive

d2(Xt, Yt, Tt) =
N∏
k=1

Eh

Tt∏
p=1

g

(√
ρ

M
hTxt,p, yt,kp, σ

2

)
as a function of Xt, Yt, Tt, where h ∼ CN (0, I).

4A) Derive

d3(xd,yd, Xt, Yt, Tt) =
d1(xd,yd, Xt, Yt, Tt)

d2(Xt, Yt, Tt)
(16)

as a function of xd,yd, Xt, Yt, Tt.
5A) Derive

d4(Xt, Yt, Tt) = −
∑
xd,yd

(
pxd

(xd)d3(xd,yd, Xt, Yt, Tt)

ln

∑
xd
pxd

(xd)d3(xd,yd, Xt, Yt, Tt)

d3(xd,yd, Xt, Yt, Tt)

)
as a function of Xt, Yt, Tt, where

pxd
(xd) =

M∏
k=1

pxd
(xd,k),

xd,k is the kth element of xd. Here we used sum-
mation, but if X ,Y is continuous, the summation
should be replaced with integral. This also applies
to the following steps.

6A) Compute Reff(Tt) from

Reff(Tt) =
1

M

∑
Xt,Yt

pXt
(Xt)d2(Xt, Yt, Tt)d4(Xt, Yt, Tt),

where

pXt
(Xt) =

M∏
m=1

Tt∏
p=0

pxt
(xt,mp),

xt,mp is the mth row and the pth column of Xt.
7A) Compute Tt,opt and Cbound from

Tt,opt = argmax
Tt

Tb − Tt

Tb
Reff(Tt).

Cbound =
Tb − Tt,opt

Tb
Reff(Tt,opt),

Steps 2A) to 7A) come directly from standard
information-theoretic arguments. Unfortunately the com-
putational complexity increases very rapidly with
M,N, Tb because all of the dimensions of the quantities
involved grow. This technique therefore is limited to
small values.

B. Large M,N, Tb

We use the Claim above to show how a bound
Cbound defined in (4) may be computed. Discretize βt

3



in the range (0, β) to a target accuracy for optimization,
denoted as βt,k, k = 1, 2, · · · . Compute steps from 2B)
to 9B) for every k. Step 10B) then computes Cbound.

2B) Derive

G1(n, q) = −βt,k ln

∑
y∈Y

Eu

n∏
a=0

g(
√
ρua, y, σ

2)

 ,

(17)
as a function of n, q in a form so that G1(n, q) is dif-
ferentiable at n = 0, where u = [u0, u1, · · · , un]T ,
the real and imaginary part of u are [u]R and
[u]I, which are independent N (0, 1

2Qh). Qh is a
(n + 1) × (n + 1) matrix with 1 as diagonal ele-
ments and q as off-diagonal elements. This special
structure of Q enables us to simplify the expression
to be differentiable at n = 0 for any g(·, ·, ·) through
a simple trick. The details of the trick can be found
in our examples shown in next section. We consider
Y as discrete here. If Y is continuous, we just need
to change summation into integral. This also applies
to the following steps.

3B) Derive

F1(q, q̂) = lim
n→0

∂

∂n
G1(n, q) + qq̂ + ln(1 + q̂)− q̂

(18)
as a function of q and q̂.

4B) Solve
∂F1

∂q
= 0,

∂F1

∂q̂
= 0, (19)

and get solution q = qh, q̂ = q̂h. If there are
multiple solutions, select the solution (qh, q̂h) that
minimize F1(q, q̂). We only require numerical so-
lution and numerical methods such as Newton’s
method and secant method can be applied to solve
such equation efficiently [29]. When we have ex-
pectation over random variables (often Gaussian) in
the equation, we may need to Monte Carlo method.
In many cases, only one or two Gaussian random
variables is shown in the equation, which does not
require high computation power to get an accurate
solution. Now, with qh, we are ready to derive Reff

according to (11). qh depends on βt,k, and the in
the rest steps, only qh is needed.

5B) Let ρ̂ = qhρ, σ̂
2 = σ2 + (1− qh)ρ. Derive

G2(n, r) = −α ln

∑
y∈Y

Ew

n∏
a=0

g(
√
ρ̂wa, y, σ̂

2)


(20)

as a function of n and r in a form so that
G2(n, r) is differentiable at n = 0, where w =
[w0, w1, · · · , wn]T , the real and imaginary part
of w are [w]R and [w]I, which are independent
N (0, 1

2Qx), where Qx is a (n+1)× (n+1) matrix

with 1 as diagonal elements and r as off-diagonal
elements. This step is very similar to 2B).

6B) Derive

G3(n, r̂) = − ln Ex0,··· ,xn exp
( ∑

0≤a<b≤n

2r̂ · ([xa]R[xb]R + [xa]I[xb]I)
)

(21)

as a function of n and r̂ in a form so that G3(n, r̂)
is differentiable at n = 0, where [xa]R and [xa]I
are the real and imaginary part of xa, and xa
are iid with distribution px(xa). In many cases,
the real and imaginary part of xa are iid and it
simplifies the expression by only considering the
expectation on the real part. For continuous input
(often Gaussian), the tricks we used on examples
shown in the next section can be applied to make
the expression differentiable at n = 0. For discrete
input, the tricks used in [20] can be applied. We
also used the trick in our example, but the details
are omitted.

7B) Derive

F2(r, r̂) = lim
n→0

∂

∂n
(G2(n, r) + G3(n, r̂)) + rr̂

(22)
as a function of r and r̂.

8B) Solve
∂F2

∂r
= 0,

∂F2

∂r̂
= 0, (23)

and get solution r = qx, r̂ = q̂x. If there are multiple
solutions, select the solution (qx, q̂x) that minimize
F2(r, r̂).

9B) Compute Reff(βt,k) through

Reff(βt,k) =
1

ln 2

[
F2(r, r̂) + α

∑
y∈Y

Eu
(
g(
√
ρ̂u, y, σ̂2)

· ln g(
√
ρ̂u, y, σ̂2)

)]
, u ∼ CN (0, 1)

(24)

Note that Reff(βt,k) depends on βt,k through qh.
10B) Compute βt,opt and Cbound through

βt,opt = argmax
βt,k

β − βt,k

β
Reff(βt,k)

Cbound =
β − βt,opt

β
Reff(βt,opt) (25)

The proof is shown in Appendix B.

IV. APPLICATION OF THE LOWER BOUND

We consider two nonlinear systems as examples of the
step-by-step methods presented in the previous section.
We focus on large M and N , and compute Cbound. One
system uses linear transmitters with X arbitrary complex,
and one-bit receivers with Y = {±1 ± j}. The other
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system uses one-bit transmitters with X = {±1±j√
2
} and

one-bit receivers with Y = {±1 ± j}. The nonlinear
function is f(z) = sign(z) for both cases, where the
output of sign(z) is a complex number with the sign
of the real and imaginary parts of z as its real and
imaginary parts. This model mimicks having a highly-
nonlinear single-bit quantizer in the transceiver chain.

We let σ2 = 1, and therefore ρ is the SNR at each
receiver. For linear transmitters, we assume each element
in xd are iid CN (0, 1), and for one-bit transmitters we
assume each element in xd are iid uniform distributed
in {±1±j√

2
}. With given M,N, Tt, ρ, we treat βt as

a variable and discretize it in increments of 0.1 for
numerical accuracy.

For many of the steps, the distinction between linear
transmitters and one-bit transmitters is not needed. In
the steps where the distinction is important, we use the
subscripts “L” and “O” to indicate “linear” or ”one-bit”
at the transmitter.

1) Derive g(z, y, σ2
0) according to (14), we have

g(z, y, σ2
0) =

∏
o∈{R,I}

Q(−
√

2

σ0
[z]o · [y]o), (26)

where [·]R and [·]I are the real and imaginary part
of the enclosed value.

2B) Let α = N
M . Derive G1(n, q) according to (17):

G1(n, q)

= −βt ln
∏

o∈{R,I}

∑
y∈{±1}

E[u]o

n∏
a=0

Q(
√

2ρ[ua]oy)

= −2βt ln

(
2Ez

n∏
a=0

Q(
√
ρza)

)
,

where z = [z0, · · · , zn]T ∼ N (0, Qh), the diagonal
elements of Qh are 1 and the off-diagonal elements
of Qh are q.
We can consider za =

√
qu +

√
1− qta with

u, t0, t1, · · · , tn to be iid N (0, 1). Then, we have

G1(n, q)

= −2βt ln 2Eu[Et0Q(
√
ρqu+

√
ρ(1− q)t0)]n+1

= −2βt ln

(
2Eu

[
Q(

√
ρq

ρ(1− q) + 1
u)

]n+1
)
.

(27)

3B) Derive F1(q, q̂) according to (18):

F1(q, q̂) = −4βtEu
[
Q

(√
ρq

ρ(1− q) + 1
u

)
· lnQ

(√
ρq

ρ(1− q) + 1
u

)]
+ qq̂ + ln(1 + q̂)− q̂.

4B) Solve qh according to (19):

By solving (19), we eventually get that qh is the
solution of

q

1− q
=
βtB

2

π
Eu

(
exp(−B2qu2)

Q(B
√
qu)

)
, (28)

where B =
√

ρ
1+ρ(1−q) , u ∼ N (0, 1). The solution

qh depends on βt, and in the rest steps, only qh is
needed.

5B) Let ρ̂ = qhρ, σ̂
2 = 1 + (1 − qh)ρ. Derive G2(n, r)

according to (20):
G2(n, r) is very similar to G1(n, q). Similar to (27),
we have

G2(n, r)

= −2α ln

(
2Eu

[
Q(

√
ρeffr

ρeff(1− r) + 1
u)

]n+1
)
,

(29)

where
ρeff =

ρqh

1 + ρ(1− qh)
. (30)

6B) Derive G3(n, r̂) according to (21):
For linear transmitter, we consider each element of
xd are i.i.d CN (0, 1).

G3,L(n, r̂) = −2 ln Ew exp(
∑
a<b

r̂wawb),

where w = [w0, w1, · · · , wn]T ∼ N (0, I).
Since

Ew exp(
∑
a<b

r̂wawb) =

∫
Rn+1

dw

(2π)
n+1
2

exp(−1

2
wTDw)

= |D|− 1
2 ,

where the diagonal elements of D are 1 and off-
diagonal elements are −r̂. Therefore, we have

G3,L(n, r̂) = (n+1) ln(1+r̂)+ln

(
1− (n+ 1)r̂

1 + r̂

)
.

For one-bit transmitter, we consider each element
of xd are iid uniform among {±1±j√

2
}.

G3,O(n, r̂) = −2 ln Em exp(
∑
a<b

r̂mamb),

where m = [m0, · · · ,mn]T with each element iid
uniform in {±1}. According to [20], we have

G3,O(n, r̂) = nr̂ − 2 ln Eu coshn(r̂ +
√
r̂u), (31)

where u ∼ N (0, 1).
7B) Derive F2(r, r̂) according to (22):

For linear transmitters, we have

F2,L(r, r̂) =− 4αEuQ(A
√
ru) lnQ(A

√
ru)

+ ln(1 + r̂)− r̂ + rr̂,

5



where
A =

√
ρeff

ρeff(1− r) + 1
. (32)

For one-bit transmitters, we have

F2,O(r, r̂) = −4αEuQ(A
√
ru) lnQ(A

√
ru) + r̂

− 2Eu ln cosh(r̂ +
√
r̂u) + rr̂.

8B) Solve for (qx, q̂x) according to (23):
For linear transmitters, we get that (qx,L, q̂x,L) are
the solution of

q̂x =
αA2

π
Eu

exp
(
−A2qxu

2
)

Q(A
√
qxu)

, (33)

qx =
q̂x

1 + q̂x
, A =

√
ρeff

1 + ρeff(1− qx)
. (34)

For one-bit transmitters, we get that (qx,O, q̂x,O) are
the solution of

q̂x =
αA2

π
Eu

exp
(
−A2qxu

2
)

Q(A
√
qxu)

, (35)

qx + 1 = Eu tanh(
√
q̂xu+ q̂x)(2 +

u√
q̂x

), (36)

A =

√
ρeff

1 + ρeff(1− qx)
.

9B) Compute Reff(βt,k) according to (24):
For linear transmitters, we have

Reff,L(βt,k) =
1

ln 2

[
F2,L(qx,L, q̂x,L)

+ 4αEuQ(
√
ρeffu) lnQ(

√
ρeffu)

]
, u ∼ N (0, 1).

For one-bit transmitters, we have

Reff,O(βt,k) =
1

ln 2

[
F2,O(qx,O, q̂x,O)

+ 4αEuQ(
√
ρeffu) · lnQ(

√
ρeffu)

]
, u ∼ N (0, 1).

(37)

This result matches that in [16].
10B) Compute Cbound and βt,opt

For linear transmitters, we have

βt,opt,L = argmax
βt,k

β − βt,k

β
Reff,L(βt,k). (38)

Cbound,L =
β − βt,opt,L

β
Reff,L(βt,opt,L). (39)

For one-bit transmitters, we have

βt,opt,O = argmax
βt,k

β − βt,k

β
Reff,O(βt,k). (40)

Cbound,O =
β − βt,opt,O

β
Reff,O(βt,opt,O), (41)

V. NUMERICAL RESULTS

We provide some numerical results based on the ex-
pressions we obtained for two types of nonlinear systems
in previous section. We select an accuracy of 0.1 in our
optimization over βt.

A. Linear transmitters and one-bit receivers

For a system with linear transmitters and one-bit
receivers, a training-based capacity lower bound using
the Bussgang theorem is derived in [3], [4]. LMMSE
channel estimation is used and the channel estimation
error part is approximated at low SNR to obtain a closed-
form solution. However, with our equivalent channel
(12), the Bussgang decomposition can be applied to get
a simplified solution for any SNR. In our equivalent
channel model, MMSE channel estimation is used, which
provides better performance than LMMSE channel esti-
mation in general. The lower bound thereby obtained is

Ct ≥ CBussgang = max
βt

β − βt

β
log2

(
1 +

2αρeff

π(1 + ρeff)

)
,

(42)
where ρeff is defined in (30).

For comparison, we also consider the achievable rate
when the receiver knows the channel and each element
of xd are iid CN (0, 1), denoted as RCSIR. RCSIR can
be directly derived using steps from 5B) to 9B) with
qh = 1. And the solution of RCSIR is

RCSIR =
1

ln 2

[
4αEu

(
Q(
√
ρu) lnQ(

√
ρu)

−Q(Â
√
qxu) lnQ(Â

√
qxu)

)
+ ln(1 + q̂x)− q̂x + qxq̂x

]
,

(43)

where Â, qx, q̂x are the solution of

q̂x =
αÂ2

π
Eu

exp
(
−Â2qxu

2
)

Q(Â
√
qxu)

, (44)

qx =
q̂x

1 + q̂x
, Â =

√
ρ

1 + ρ(1− qx)
. (45)

The comparison between CBussgang, Cbound,L and
RCSIR is shown in Fig. 1. We observe that CBussgang

is generally smaller (less tight as a lower bound) than
Cbound,L.

When ρeff → 0, which can be caused by small βt or
small ρ, CBussgang and Cbound,L meet. From (33) and
(34), we have

qx,L =
2α

π
ρeff + o(ρeff), q̂x,L =

2α

π
ρeff + o(ρeff). (46)

Then, (39) becomes

Cbound,L = max
βt

β − βt

β

2α

π ln 2
ρeff + o(ρeff), (47)
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Fig. 1. The comparison between Cbound,L (39) and CBussgang (42)
at α = 1, 2 with different β for systems with linear transmitters and
one-bit receivers. Both CBussgang and Cbound,L are maximized over
βt. RCSIR (43) is the achievable rate when the receiver knows the
channel and the elements in xd are iid CN (0, 1).

which is the same as CBussgang. According to (28), for
small SNR with ρ→ 0, we have

qh =
2βtρ

π
+ o(ρ). (48)

Therefore, (30) becomes

ρeff =
2βtρ

2

π
+ o(ρ2). (49)

And we have

βt,opt,L ≈
β

2
, Cbound,L ≈

αβ

π2 ln 2
ρ2,

when ρ → 0. Hence, half of Tb is used for training at
low SNR with linear transmitters and one-bit receivers.

B. One-bit transmitters and one-bit receivers

For systems with one-bit transceivers, we show that it
is possible to have optimal training time smaller than the
number of transmitter (βt,opt < 1) even when the total
time is larger than twice of the number of transmitters
(β > 2). This result is shown in Fig. 2, where we show
the relationship between βt,opt,O and α with different
β. We see that when α is large, βt,opt,O can be smaller
than 1 and βt,opt,O decreases approximately 37 percent
when we double α as α gets large. When α is small,
according to [16],

Reff,O ≈ αc(ρeff), (50)

10
-1

10
0

10
1

10
2

10
0

Fig. 2. The optimal training time βt,opt,O (40) versus α = N
M

in a
wide range. We can see that it’s possible to have βt,opt,O < 1. Both
α and βt,opt,O are plotted in a log domain. When α is large, βt,opt,O
decreases by 37 percent when we double α.

where c(ρ) is the capacity of a single pair of one-
bit transceivers in a Rayleigh channel with channel
information at the receiver at SNR ρ, defined as

c(ρ) = 2(1− Ez (H2(Q(
√
ρz)))), z ∼ N (0, 1), (51)

where H2(p) = −(p log2 p+ (1− p) log2(1− p)) is the
binary entropy function.

The βt,opt,O obtained for small α maximize
β−βt

β c(ρeff), where ρeff is solved from (30). The cor-
responding bound Cbound,O is shown in Fig. 3. Because
of the one-bit quantization at the transmitter, Cbound,O

saturates at Cbound,O = 2 as α gets larger. With many
more receivers than the transmitters (α very large),
saturation is achieved with a small number of training
symbols, and hence βt,opt,O can be smaller than 1.

At low SNR, ρeff → 0, according to (35) and (36),
we have

qx,O =
2α

π
ρeff + o(ρeff), q̂x,O =

2α

π
ρeff + o(ρeff), (52)

and (41) becomes

Cbound,O = max
βt

β − βt

β

2α

π ln 2
ρeff + o(ρeff). (53)

According to (49), we have

βt,opt,O ≈
β

2
, Cbound,O ≈

αβ

π2 ln 2
ρ2.

Thus, as with linear transmitters, half of Tb is used
for training at low SNR with one-bit transmitters and
receivers.
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Fig. 3. The lower bound Cbound,O (41) versus α = N
M

in a wide
range. Because of the one-bit quantization at the transmitter, the rate
per transmitter can not be more than 2. Therefore, we can clearly see
the saturation effect when we increase α.

APPENDIX A
MUTUAL INFORMATION EQUIVALENCE

We show the main steps to prove our claim using
replica method. Some techniques we use are similar to
those used in [7]. According to (10), we have

Reff = lim
M→∞

1

M
(H(yd|Xt, Yt)−H(yd|Xt, Yt,xd))

(54)
Similar to [7], we apply ”replica trick” and have

lim
M→∞

1

M
H(yd|Xt, Yt) = lim

M→∞

−1

M ln 2
E ln

p(yd, Yt|Xt)

p(Yt|Xt)

= − lim
M→∞

1

M ln 2
lim
n→0

∂

∂n

[
ln Ξn − ln Ξ̂n

]
,

where

Ξn = E[pn(yd, Yt|Xt)], Ξ̂n = E[pn(Yt|Xt)].

We assume the limit of n and M can commute and
we have

lim
M→∞

1

M ln 2
H(yd|Xt, Yt) =

− lim
n→0

∂

∂n
lim
M→∞

1

M ln 2

[
ln Ξn − ln Ξ̂n

]
. (55)

Also, we consider n as integer to derive Ξn and Ξ̂n
as a function of n, and we assume the expression still
holds for real number n. Then, for integer n, we have

Ξn = E[pn(yd, Yt|Xt)]

= EXt

∑
Yt,yd

(Exd,Hp(yd, Yt|xd, Xt, H))
n+1

= EXt,[H]n0 ,[xd]n0

N∏
k=1

∑
yd,k

n∏
a=0

g

(√
ρ

M
h

(a)T
k x

(a)
d , yd,k, σ

2

)

·
N∏
k=1

Tt∏
p=1

∑
yt,kp

n∏
a=0

g

(√
ρ

M
h

(a)T
k xt,p, yt,kp, σ

2

)

= EXt,[xd]n0

[
E[h]n0

[∑
yd

n∏
a=0

g

(√
ρ

M
h(a)Tx

(a)
d , yd, σ

2

)

·
Tt∏
p=1

∑
yt,p

n∏
a=0

g

(√
ρ

M
h(a)Txt,p, yt,p, σ

2

)]]N
where yt,kp is the kth row and pth column of Yt,
xt,p is the pth column of Xt, h

(a)T
k is the kth

row of H(a), [H]n0 = {H(0), · · · , H(n)},[h]n0 =

{h(0), · · · ,h(n)},[xd]n0 = {x(0)
d , · · · ,x(n)

d }, which are
collection of replicas. We drop k at the last step because
each element in H are iid.

We introduce two (n + 1) × (n + 1) matrices
Qh = [qabh ] and Qx = [qabx ] whose elements are

defined as qabh = (h(a))Hh(b)

M , qabx =
(x

(a)
d )Hx

(b)
d

M .

Let z(a)
p =

√
1
M h(a)Txt,p, zp = [z

(0)
p , · · · , z(n)

p ]T ,

z
(a)
d =

√
1
M h(a)Tx

(a)
d , zd = [z

(0)
d , · · · , z(n)

d ]T , then
zp ∼ CN (0, Qh), zd ∼ CN (0, Qz) for large M where
Qz = (Qh ◦Qx) is the Hadamard product between Qh

and Qx. Since x
(a)
d is independent of Xt, and elements

of Xt are iid, we have

Ξn = E[xd]n0

[
E[h]n0

[
Ezd

∑
yd

n∏
a=0

g
(√

ρz
(a)
d , yd, σ

2
)

·
Tt∏
p=1

Ezp

∑
yt,p

n∏
a=0

g
(√

ρz(a)
p , yt,p, σ

2
) ]]N

= E[xd]n0

[
E[h]n0

[
Ezd

∑
yd

n∏
a=0

g
(√

ρz
(a)
d , yd, σ

2
)

·
[
Ez

∑
yt

n∏
a=0

g
(√

ρz(a), yt, σ
2
) ]Tt

]]N
,

where z ∼ CN (0, Qh).

Let

J1(Qh) = Ez

∑
yt

n∏
a=0

g
(√

ρz(a), yt, σ
2
)
,

J2(Qh, Qx) = Ezd

∑
yd

n∏
a=0

g
(√

ρz
(a)
d , yd, σ

2
)
. (56)

Then

Ξn = E[xd]n0

[
E[h]n0

[
[J1(Qh)]TtJ2(Qh, Qx)

]]N
. (57)
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Similarly, we have

Ξ̂n = E[pn(Yt|Xt)]

= EXt

[
E[h]n0

Tt∏
p=1

∑
yt,p

n∏
a=0

g

(√
ρ

M
h(a)Txt,p, yt,p, σ

2

)]N

=

[
E[h]n0

[
Ez

∑
yt

n∏
a=0

g
(√

ρz(a), yt, σ
2
) ]Tt

]N

=

[
E[h]n0

[J1(Qh)]Tt

]N
.

Therefore,

ln Ξn−ln Ξ̂n = ln E[xd]n0

[
E[h]n0

[
[J1(Qh)]TtJ2(Qh, Qx)

]
E[h]n0

[J1(Qh)]Tt

]N
When Tt →∞, based on the saddle point method,

E[h]n0

[
[J1(Qh)]TtJ2(Qh, Qx)

]
E[h]n0

[J1(Qh)]Tt
→ J2(Q̃h, Qx), (58)

where Q̃h is the saddle point of E[h]n0
[J1(Qh)]Tt . We still

need to keep it in mind that the saddle point should be
considered at the derivative of n with n→ 0. Therefore,
Q̃h can be obtained by solving

Fh = − lim
n→0

∂

∂n
lim
M→∞

1

M
ln E[h]n0

[J1(Qh)]Tt . (59)

It is not hard to show

− lim
M→∞

1

MN
EXt,Yt ln p(Yt|Xt) = Fh (60)

through regular steps used in replica method with similar
assumptions.

Now, we use replica symmetry (RS) assumption by
assuming the off-diagonal elements of the saddle point
Q̃h are equal, denoted as qh. The diagonal elements
of Q̃h are 1, which is the variance of the elements of
channel. According to [7], [30], when we obtain the
saddle point qh through (60), 1− qh describes the MSE
of the MMSE channel estimation, shown in (13).

Then, we have

lim
M→∞

1

M

[
ln Ξn − ln Ξ̂n

]
= lim
M→∞

1

M
ln E[xd]n0

(
J2(Q̃h, Qx)

)N
= lim
M→∞

1

M
ln E[xd]n0

[∑
yd

Ezd

n∏
a=0

g(
√
ρz

(a)
d , yd, σ

2)

]N
,

where zd ∼ CN (0, Qz), Qz = Q̃h ◦Qx.
Therefore,

lim
M→∞

1

M
H(yd|Xt, Yt) = − lim

n→0

∂

∂n
lim
M→∞

1

M ln 2

ln E[xd]n0

[∑
yd

Ezd

n∏
a=0

g(
√
ρz

(a)
d , yd, σ

2)

]N
.

Similarly, we have

lim
M→∞

1

M
H(yd|Xt, Yt,xd) = − lim

n→0

∂

∂n
lim
M→∞

1

M ln 2

ln

[∑
yd

Ezh

n∏
a=0

g(
√
ρz

(a)
h , yd, σ

2)

]N
,

where zh = [z
(0)
h , · · · , z(n)

h ]T and zh ∼ CN (0, Q̃h).
For the equivalent channel with known Ĥ shown in

(12), similarly, we have

lim
M→∞

1

M
H(ŷd|Ĥ) = − lim

n→0

∂

∂n
lim
M→∞

1

M ln 2

ln E[xd]n0

[∑
yd

Eẑd

n∏
a=0

g(
√
ρẑ

(a)
d , yd, σ̂

2)

]N
, (61)

where ẑd = [ẑ
(0)
d , · · · , ẑ(n)

d ]T ∼ CN (0, qh · Qx), σ̂2 =
σ2 +ρ(1−qh). The joint distribution of

√
ρẑd + v̂ is the

same as the joint distribution of
√
ρzd + v. According

to (14) and (15), we have

Ezd

n∏
a=0

g(
√
ρz

(a)
d , yd, σ

2) = Eẑd

n∏
a=0

g(
√
ρẑ

(a)
d , yd, σ̂

2),

and therefore

lim
M→∞

1

M
H(yd|Xt, Yt) = lim

M→∞

1

M
H(ŷd|Ĥ).

Similarly, we have

lim
M→∞

1

M
H(yd|Xt, Yt,xd) = lim

M→∞

1

M
H(ŷd|Ĥ,xd).

Therefore,

lim
M→∞

1

M
I(xd;yd|Xt, Yt) = lim

M→∞

1

M
I(xd; ŷd|Ĥ),

where xd and ŷd are the input and output of channel
defined in (12).

APPENDIX B
PROOF OF REPLICA METHOD TO COMPUTE Cbound

According to Appendix A, qh can be obtained by
solving Fh defined in (59).

Similarly to [21], we apply Varadhan’s theorem and
Gartner-Ellis theorem [31] and obtain

lim
M→∞

1

M
ln E[h]n0

[J1(Qh)]Tt = sup
Qh

inf
Q̂h

[
βtG1(Qh)

−
∑
a<b

2qabh q̂abh + L1(Q̂h)
]
,

where qabh and q̂abh are elements of Qh and Q̂h,

G1(Qh) = ln (J1(Qh)) , (62)
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L1(Q̂h) = lim
M→∞

1

M
ln E[h]n0

exp

(∑
a<b

2q̂abh (h(a))Hh(b)

)
.

The values of Qh and Q̂h that achieves the extremum
are called saddle point. Based on the RS assumption, we
assume the off-diagonal elements of Qh and Q̂h are the
same, denoted as qh and q̂h, respectively. Then, we have

βtG1(Qh) = −G1(n, qh),

where G1(n, q) is defined in (17). Also,

L1(Q̂h) = L1(n, q̂h),

where

L1(n, q̂h) = −(n+1) ln(1+ q̂h)− ln

(
1− q̂h(n+ 1)

1 + q̂h

)
.

Therefore, (59) becomes

Fh = F1(qh, q̂h),

where F1(q, q̂) is defined in (18). (qh, q̂h) is the saddle
point of F1(q, q̂) and we have

∂F1(q, q̂)

∂q
= 0,

∂F1(q, q̂)

∂q̂
= 0, (63)

at (qh, q̂h). If there are multiple solutions, we should use
the one that minimize F1(qh, q̂h). We finish the proof
of solving qh in steps 2B)-4B) shown in the recipe. qh

depends on βt, and for the rest of the steps, only qh is
needed to compute Reff(βt).

We use the equivalent channel shown in (11) to
compute Reff(βt) and we have

Reff(βt) = lim
M→∞

1

M
(H(ŷd|Ĥ)−H(ŷd|Ĥ,xd)). (64)

Since
√

ρ
M Ĥxd ∼ CN (0, ρqh · I), we have

lim
M→∞

1

M
H(ŷd|Ĥ,xd)) =

α

ln 2

∑
y∈Y

Ez
(
g(
√
ρqhz, y, σ̂

2)

· ln g(
√
ρqhz, y, σ̂

2)
)
, z ∼ CN (0, 1).

According to (61), we have

lim
M→∞

1

M
H(ŷd|Ĥ) = − lim

n→0

∂

∂n
lim
M→∞

1

M ln 2
ln Ξx,n,

(65)
where

Ξx,n = E[xd]n0

[∑
yd

Eẑd

n∏
a=0

g(
√
ρẑ

(a)
d , yd, σ̂

2)

]N

= E[xd]n0

[∑
yd

Ew

n∏
a=0

g(
√
ρqhw

(a), yd, σ̂
2)

]N
,

with w = [w(0), · · · , w(n)]T ∼ CN (0, Qx). The ele-

ments of Qx are qabx defined as qabx =
(x

(a)
d )Hx

(b)
d

M .

We again apply Varadhan’s theorem and Gartner-Ellis
theorem [31] and obtain

lim
M→∞

ln Ξx,n

M
= sup

Qx

inf
Q̂x

[
αG2(Qx)−

∑
a<b

2qabx q̂abx +G3(Q̂x)
]
,

where

G2(Qx) = ln
∑
y∈Y

Ew

n∏
a=0

g(
√
ρqhw

(a), y, σ̂2) (66)

G3(Q̂x) = lim
M→∞

1

M
ln E[xd]n0

exp

(∑
a<b

2qabx (x
(a)
d )Hx

(b)
d

)
.

Now we apply the RS assumption by considering the
off-diagonal elements of Qx and Q̂x are the same at the
saddle point, denoted as qx and q̂x. Then, we have

αG2(Qx) = −G2(n, qx),

G3(Q̂x) = −G3(n, q̂x),

where G2(n, qx) and G3(n, q̂x) are defined in (20)
and (21). Becasue of the symmetry, only real part of
(x

(a)
d )Hx

(b)
d is needed for computation.

Therefore, (65) becomes

lim
M→∞

1

M
H(ŷd|Ĥ) =

1

ln 2
F2(qx, q̂x), (67)

where F2(r, r̂) is defined in (22). (qx, q̂x) is the saddle
point of F2(r, r̂), and we have

∂F2(r, r̂)

∂r
= 0,

∂F2(r, r̂)

∂r̂
= 0, (68)

at (qx, q̂x). If there are multiple solutions, we should use
the solution that minimize F2(qx, q̂x). This proves the
rest of the recipe.

REFERENCES

[1] J. A. Nossek and M. T. Ivrlač, “Capacity and coding for quan-
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