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Abstract

We study the classic k-means/median clustering, which are fundamental problems
in unsupervised learning, in the setting where data are partitioned across multiple
sites, and where we are allowed to discard a small portion of the data by labeling
them as outliers. We propose a simple approach based on constructing small
summary for the original dataset. The proposed method is time and communication
efficient, has good approximation guarantees, and can identify the global outliers
effectively. To the best of our knowledge, this is the first practical algorithm with
theoretical guarantees for distributed clustering with outliers. Our experiments
on both real and synthetic data have demonstrated the clear superiority of our
algorithm against all the baseline algorithms in almost all metrics.

1 Introduction

The rise of big data has brought the design of distributed learning algorithm to the forefront. For
example, in many practical settings the large quantities of data are collected and stored at different
locations, while we want to learn properties of the union of the data. For many machine learning
tasks, in order to speed up the computation we need to partition the data into a number of machines
for a joint computation. In a different dimension, since real-world data often contain background
noise or extreme values, it is desirable for us to perform the computation on the “clean data” by
discarding a small portion of the data from the input. Sometimes these outliers are interesting by
themselves; for example, in the study of statistical data of a population, outliers may represent those
people who deserve special attention. In this paper we study clustering with outliers, a fundamental
problem in unsupervised learning, in the distributed model where data are partitioned across multiple
sites, who need to communicate to arrive at a consensus on the cluster centers and labeling of outliers.

For many clustering applications it is common to model data objects as points in R, and the similarity
between two objects is represented as the Euclidean distance of the two corresponding points. In
this paper we assume for simplicity that each point can be sent by one unit of communication.
Note that when d is large, we can apply standard dimension reduction tools (for example, the
Johnson-Lindenstrauss lemma) before running our algorithms.
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We focus on the two well-studied objective functions (k,t)-means and (k, t)-median, defined in
Definition 1. It is worthwhile to mention that our algorithms also work for other metrics as long as
the distance oracles are given.

Definition 1 ((k, t)-means/median) Let X be a set of points, and k,t be two parameters. For the
(k,t)-median problem we aim for computing a set of centers C C R? of size at most k and a set of
outliers O C X of size at most t so that the objective function ZpEX\O d(p, C) is minimized. For

the (k,t)-means we simply replace the objective function with 3 x\ o d*(p, C).

Computation Model. We study the clustering problems in the coordinator model, a well-adopted
model for distributed learning Balcan et al. (2013); Chen et al. (2016); Guha et al. (2017); Diakoniko-
las et al. (2017). In this model we have s sites and a central coordinator; each site can communicate
with the coordinator. The input data points are partitioned among the s sites, who, together with the
coordinator, want to jointly compute some function on the global data. The data partition can be
either adversarial or random. The former can model the case where the data points are independently
collected at different locations, while the latter is common in the scenario where the system uses a
dispatcher to randomly partition the incoming data stream into multiple workers/sites for a parallel
processing (and then aggregates the information at a central server/coordinator).

In this paper we focus on the one-round communication model (also called the simultaneous commu-
nication model), where each site sends a sketch of its local dataset to the coordinator, and then the
coordinator merges these sketches and extracts the answer. This model is arguably the most practical
one since multi-round communication will cost a large system overhead.

Our goals for computing (k,t)-means/median in the coordinator model are the following: (1) to
minimize the clustering objective functions; (2) to accurately identify the set of global outliers; and
(3) to minimize the computation time and the communication cost of the system. We will elaborate
on how to quantify the quality of outlier detection in Section 4.

Our Contributions. A natural way of performing distributed clustering in the simultaneous commu-
nication model is to use the two-level clustering framework (see e.g., Guha et al. (2003, 2017)). In
this framework each site performs the first level clustering on its local dataset X, getting a subset
X’ C X with each point being assigned a weight; we call X’ the summary of X . The site then sends
X' to the coordinator, and the coordinator performs the second level clustering on the union of the
s summaries. We note that the second level clustering is required to output at most k centers and ¢
outliers, while the summary returned by the first level clustering can possibly have more than (k + t)
weighted points. The size of the summary will contribute to the communication cost as well as the
running time of the second level clustering.

The main contribution of this paper is to propose a simple and practical summary construction at sites
with the following properties.

1. Tt is extremely fast: runs in time O(max{k,logn} - n), where n is the size of the dataset.

2. The summary has small size: O(klogn + t) for adversarial data partition and O(k logn +
t/s) for random data partition.

3. When coupled with a second level (centralized) clustering algorithm that ~y-approximates
(k,t)-means/median, we obtain an O(~y)-approximation algorithm for distributed (%, t)-
means/median.’

4. It can be used to effectively identify the global outliers.
We emphasize that both the first and the second properties are essential to make the distributed

clustering algorithm scalable on large datasets. Our extensive set of experiments have demonstrated
the clear superiority of our algorithm against all the baseline algorithms in almost all metrics.

To the best of our knowledge, this is the first practical algorithm with theoretical guarantees for
distributed clustering with outliers.

Related Work. Clustering is a fundamental problem in computer science and has been studied for
more than fifty years. A comprehensive review of the work on k-means/median is beyond the scope

2We say an algorithm y-approximates a problem if it outputs a solution that is at most + times the optimal
solution.



of this paper, and we will focus on the literature for centralized/distributed k-means/median clustering
with outliers and distributed k-means/median clustering.

In the centralized setting, several O(1)-approximation or (O(1), O(1))-approximation® algorithms
have been proposed Charikar et al. (2001); Chen (2009). These algorithms make use of linear
programming and need time at least (n3), which is prohibitive on large datasets. Feldman and
Schulman (2012) studied (k, t)-median via coresets, but the running times of their algorithm includes
aterm O(n(k + t)***)) which is not practical.

Chawla and Gionis (2013) proposed for (k, t)-means an algorithm called k-means--, which is an
iterative procedure and can be viewed as a generalization of Llyod’s algorithm Lloyd (1982). Like
Llyod’s algorithm, the centers that k-means-- outputs are not the original input points; we thus
cannot use it for the summary construction in the first level clustering at sites because some of
the points in the summary will be the outliers we report at the end. However, we have found that
k-means-- is a good choice for the second level clustering: it outputs exactly k centers and ¢ outliers,
and its clustering quality looks decent on datasets that we have tested, though it does not have any
worst case theoretical guarantees.

Recently Gupta et al. (2017) proposed a local-search based (O(1), O(k log(n))-approximation
algorithm for (k, t)-means. The running time of their algorithm is O (k?n?),* which is again not quite
scalable. The authors mentioned that one can use the k-means++ algorithm Arthur and Vassilvitskii
(2007) as a seeding step to boost the running time to O(k?(k + t)? + nt). We note that first, this
running time is still worse than ours. And second, since in the first level clustering we only need a
summary — all that we need is a set of weighted points that can be fed into the second level clustering
at the coordinator, we can in fact directly use k-means++ with a budget of O(klogn + t) centers
for constructing a summary. We will use this approach as a baseline algorithm in our experimental
studies.

In the past few years there has been a growing interest in studying k-means/median clustering in the
distributed models Ene ef al. (2011); Bahmani ez al. (2012); Balcan et al. (2013); Liang et al. (2014);
Cohen et al. (2015); Chen et al. (2016). In the case of allowing outliers, Guha et al. Guha et al.
(2017) gave a first theoretical study for distributed (k, ¢)-means/median. However, their algorithms
need O©(n?) running time at sites and are thus again not quite practical on large-scale datasets. In
a concurrent work, Li and Guo (2018) further reduced the value of the objective function, but the
proposed method does not output the outliers.

We note that the k-means|| algorithm proposed by Bahmani ez al. (2012) can be extended (again
by increasing the budget of centers from & to O(klogn + t)) and used as a baseline algorithm for
comparison. The main issue with k-means|| is that it needs O(logn) rounds of communication
which holds back its overall performance.

2 The Summary Construction

In this section we present our summary construction for (k, t)-median/means in the centralized model.
In Section 3 we will show how to use this summary construction for solving the problems in the
distributed model. Table 1 is the list of notations we are going to use.

X input dataset n n = | X|, size of the dataset
k number of centers K rk = max{k,logn}
t number of outliers O* outliers chosen by OPT
o clustering mapping o : X — X d(y, X) d(y, X) = mingex d(y, x)
d)x(d) ¢x(0) =3 pex d(@,0()) PX,Y) [ oX,Y) =3 oy dly, X)
OPTRY (X min d(p,C OPTY¥ (X min d?(p,C
T ocfliennio™® | TR | oo o T

Table 1: List of Notations

*We say a solution is an (a, b)-approximation if the cost of the solution is a - C' while excluding b - ¢ points,
where C' is the cost of the optimal solution excluding ¢ points.

#O(-) hides some logarithmic factors.
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Algorithm 1: Summary-Outliers(X, k, t)

Input :dataset X, number of centers k, number of outliers ¢

Output :a weighted dataset () as a summary of X

10, X;+ X,Q+ 0

fix a fsuch that 0.25 < 5 < 0.5

k < max{logn, k}

let o : X — X be a mapping to be constructed, and « be a constant to be determined in the
analysis.

while | X;| > 8t do
construct a set .S; of size ax by random sampling (with replacement) from X;
for each point in X;, compute the distance to its nearest point in S;
let p; be the smallest radius s.t. | B(.S;, X;, pi)| > B|X;|. Let C; < B(S;, X, pi)
for each « € C;, choose the point y € .S; that minimizes d(x, y) and assign o(x) < y
Xi+1 < Xz\Cz
1 1+1
T
for each x € X, assign o(x) + x

for each z € X, U (U[Z}S;), assign weight w, ¢ |0~ (2)| and add (z, w,) into Q
return )

2.1 The Algorithm

Our algorithm is presented in Algorithm 1. It works for both the k-means and k-median objective
functions. We note that Algorithm 1 is partly inspired by the algorithm for clustering without outliers
proposed in Mettu and Plaxton (2002). But since we have to handle outliers now, the design and
analysis of our algorithm require new ideas.

For a set S and a scalar value p, define B(S, X, p) = {z € X | d(z,S) < p}. Algorithm 1 works
in rounds indexed by 7. Let Xy = X be the initial set of input points. The idea is to sample a set
of points .S, of size ak for a constant « (assuming k& > log n) from X;, and grow a ball of radius
p; centered at each s € S;. Let C; be the set of points in the union of these balls. The radius p; is
chosen such that at least a constant fraction of points of X; are in C;.

Define X; 11 = X;\C;. In the i-th round, we add the ok points in S; to the set of centers, and assign
points in C; to their nearest centers in S;. We then recurse on the rest of the points X1, and stop
until the number of points left unclustered becomes at most 8¢. Let r be the final value of 7. Define
the weight of each point = in Uf;(} S; to be the number of points in X that are assigned to x, and the
weight of each point in X, to be 1. Our summary () consists of points in X, U (U/_}S;) together
with their weights.

2.2 The Analysis

We now try to analyze the performance of Algorithm 1. The analysis will be conducted for the
(k, t)-median objective function, while the results also hold for (k, t)-means; we will discuss this
briefly at the end of this section. Due to space constraints, all missing proofs in this section can be
found in the supplementary material.

We start by introducing the following concept. Note that the summary constructed by Algorithm 1 is
fully determined by the mapping function o (o is also constructed in Algorithm 1).

Definition 2 (Information Loss) For a summary Q constructed by Algorithm 1, we define the infor-
mation loss of Q) as
loss(Q) = ¢x (o).

That is, the sum of distances of moving each point x € X to the corresponding center o(x) (we can
view each outlier as a center itself).

We will prove the following theorem, which says that the information loss of the summary
constructed by Algorithm 1 is bounded by the optimal (%, ¢)-median clustering cost on X.



Theorem 1 Algorithm 1 outputs a summary Q such that with probability (1 — 1/n?) we have that
loss(Q) = O (OPTEetd (X)) The running time of Algorithm 1 is bounded by O(max{logn, k} - n),
and the size of the outputted summary Q) is bounded by O(klogn + t).

The proof of this theorem relies on building an upper bound on ¢x (o) and a lower bound on
OPTE;d(X). Namely, ¢x (o) = O(>_, pi|D;|) and OPT?;d(X) = Q(3, pi|Dil), where D; =
C;\O*, where C; is constructed in the ¢-th round of Algorithm 1 and O* is the set of outliers returned
by the optimal algorithm. See the detailed proof in the supplementary material.

As a consequence of Theorem 1, we obtain by triangle inequality arguments the following corollary
that directly characterizes the quality of the summary in the task of (k, ¢)-median. We include a proof
in the supplementary material for completeness.

Corollary 1 If we run a ~v-approximation algorithm for (k,t)-median on Q, we can obtain a set
of centers C and a set of outliers O such that (X \O,C) = O(~ - OPT?,id (X)) with probability
(1—1/n?).

The running time. We now analyze the running time of Algorithm 1. At the i-th iteration, the
sampling step at Line 6 can be done in O(|X;|) time. The nearest-center assignments at Line 7 and 9
can be done in |S;| - | X;| = O(k | X;|) time. Line 8 can be done by first sorting the distances in the
increasing order and then scanning the shorted list until we get enough points. In this way the running
time is bounded by | X;|log | X;| = O(k | X;|). Thus the total running time can be bounded by

Z O(k |X;]) = O(kn) = O(max{logn, k} - n),

i=0,1,...,r—1

where the first equation holds since the size of X; decreases geometrically, and the second equation
is due to the definition of &.

Finally, we comment that we can get a similar result for (k,t)-means by appropriately adjusting
various constant parameters in the proof. Please refer to the supplementary material for a more
detailed discussion.

2.3 An Augmentation

In the case when ¢ > k, which is typically the case in practice since the number of centers k£ does
not scale with the size of the dataset while the number of outliers ¢ does, we add an augmentation
procedure to Algorithm 1 to achieve a better practical performance. The pseudocode can be found in
the supplementary materials and the full version of this paper.

The augmentation is as follows, after computing the set of outliers X, and the set of centers
S = U[Z,S; in Algorithm 1, we sample randomly from X\ (X, U S) an additional set of center
points S’ of size | X,.| — |S|. That is, we try to make the number of centers and the number of outliers
in the summary to be balanced. We then reassign each point in the set X'\ X, to its nearest center in
S U S’. Denote the new mapping by 7. Finally, we include points in X,. and .S, together with their
weights, into the summary ).

It is clear that the augmentation procedure preserves the size of the summary asymptotically. And by
including more centers we have loss(Q) < ¢x(7) < ¢x (o), where o is the mapping returned by
Algorithm 1. The running time will increase to O(¢n) due to the reassignment step, but our algorithm
is still much faster than all the baseline algorithms, as we shall see in Section 4.

3 Distributed Clustering with Outliers

In this section we discuss distributed (k, t)-median/means using the summary constructed in Algo-
rithm 1. Our main result is the following theorem, which is based on the work by Guha et al. (2003,
2017). The proof for this theorem can be found in the supplementary material.

Theorem 2 Suppose Algorithm 2 uses a y-approximation algorithm for (k,t)-median in the second
level clustering (Line 2). We have with probability (1 — 1/n) that:
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Algorithm 2: Distributed-Median(Ay, ..., A, k, t)

Input :Foreach i € [s], Site ¢ gets input dataset A; where (A1, ..., A) is a random partition
of X
Output :a (k,t)-median clustering for X = U;c[44;
for each i € [s], Site 7 constructs a summary Q; by running Summary-Outliers(A;, k, 2t/ s)
(Algorithm 1) and sends @); to the coordinator
the coordinator then performs a second level clustering on Q@ = Q1 U Q2 U ... U @, using an
off-the-shelf (k, t)-median algorithm, and returns the resulting clustering.

e it outputs a set of centers C C R and a set of outliers O C X such that $(X\O, C) <
O(v) - OPTRH(X);

e it uses one round of communication whose cost is bounded by O(sklogn +t);

e the running time at the i-th site is bounded by O(max{logn, k} - |A;|), and the running
time at the coordinator is that of the second level clustering.

We note that in Mettu and Plaxton (2002) it was shown that under some mild assumption, 2(kn) time
is necessary for any O(1)-approximate randomized algorithm to compute k-median on n points with
nonnegligible success probability (e.g., 1/100). Thus the running time of our algorithm is optimal up
to a log n factor under the same assumption.

In the case that the dataset is adversarially partitioned, the total communication increases to
O(s(klogn + t)). This is because all of the ¢ outliers may go to the same site and thus 2¢/s
in Line 1 needs to be replaced by t.

Finally, we comment that the result above also holds for the summary constructed using the augu-
mented version (Sec. 2.3), except, as discussed in Section 2, that the local running time at the ¢-th
site will increase to O(t | A;|).

4 Experiments

4.1 Experimental Setup
4.1.1 Datasets and Algorithms

Due to space constraints, we only present the experimental results for two data sets (kddFull and
kddSp). One can find results for a number of other datasets in our supplementary materials and the
full paper.

e kddFull. This dataset is from 1999 kddcup competition and contains instances describing
connections of sequences of tcp packets. There are about 4.9M data points. We only consider
the 34 numerical features of this dataset. We also normalize each feature so that it has zero
mean and unit standard deviation. There are 23 classes in this dataset, 98.3% points of
the dataset belong to 3 classes (normal 19.6%, neptune 21.6%, and smurf 56.8%). We
consider small clusters as outliers and there are 45747 outliers.

e kddSp. This data set contains about 10% points of kddFull (released by the original
provider). This dataset is also normalized and there are 8752 outliers.

We comment that finding appropriate k£ and ¢ values for the task of clustering with outliers is a
separate problem, and is not part of the topic of this paper. In all our experiments, & and ¢ are naturally
suggested by the datasets we use.

We compare the performance of following algorithms, each of which is implemented using the MPI
framework and run in the coordinator model. The data are randomly partitioned among the sites.

e ball-grow. Algorithm 2 proposed in this paper, with the augmented version Algorithm 1 for
the summary construction. As mentioned we use k-means-- as the second level clustering
at Line 2. We fix @ = 2 and 8 = 4.5 in the subroutine Algorithm 1.



e rand. Each site constructs a summary by randomly sampling points from its local dataset.
Each sampled point p is assigned a weight equal to the number of points in the local dataset
that are closer to p than other points in the summary. The coordinator then collects all
weighted samples from all sites and feeds to k-means-- for a second level clustering.

e k-means++. Each site constructs a summary of the local dataset using the k-means++
algorithm Arthur and Vassilvitskii (2007), and sends it to the coordinator. The coordinator
feeds the unions all summaries to k-means-- for a second level clustering.

e k-means||. An MPI implementation of the k-means|| algorithm proposed by Bahmani
et al. (2012) for distributed k-means clustering. To adapt their algorithm to solve the outlier
version, we increase the parameter k in the algorithm to O (k+t), and then feed the outputted
centers to k-means-- for a second level clustering.

4.1.2 Measurements

Let C' and O be the sets of centers and outliers respectively returned by a tested algorithm. To
evaluate the quality of the clustering results we use two metrics: (a) ¢1-loss (for (k,¢)-median):

> pex\o A, C); (b) £2-Loss (for (k,t)-means): 3 x\ o d°(p, O).

To measure the performance of outlier detection we use three metrics. Let .S be the set of points fed
into the second level clustering k-means-- in each algorithm, and let O* be the set of actual outliers

(i.e., the ground truth), we use the following metrics: (a) preRec: the proportion of actual outliers
that are included in the returned summary, defined as |S| 8(3‘ | ; (b) recall: the proportion of actual

outliers that are returned by k-means--, defined as ‘OIS?I | ; (¢) prec: the proportion of points in O

that are actually outliers, defined as |O|moo| L

4.1.3 Computation Environments

All algorithms are implemented in C++ with Boost. MPI support. We use Armadillo Sanderson (2010)
as the numerical linear library and -O3 flag is enabled when compile the code. All experiments are
conducted in a PowerEdge R730 server equipped with 2 x Intel Xeon E5-2667 v3 3.2GHz. This
server has 8-core/16-thread per CPU, 192GB Memeory and 1.6TB SSD.

4.2 Experimental Results

We now present our experimental results. All results take the average of 10 runs. In our supplementary
material, results for more datasets can be found, but all the conclusions remain the same.

4.2.1 Quality

We first compare the qualities of the summaries returned by ball-grow, rand and k-means||. Note
that the size of the summary returned by ball-grow is determined by the parameters k and ¢, and
we can not control the exact size. In k-means||, the summary size is determined by the sample ratio,
and again we can not control the exact size. On the other hand, the summary sizes of rand and
k-means++ can be fully controlled. To be fair, we manually tune those parameters so that the sizes
of summaries returned by different algorithms are roughly the same (the difference is less than 10%).
In this set of experiments, each dataset is randomly partitioned into 20 sites.

Table 2 presents the experimental results on kddSp and kddFull datasets. We observe that
ball-grow gives better /1-1loss and ¢5-1oss than k-means|| and k-means++, and rand performs
the worst among all.

For outlier detection, rand fails completely. In both kddFull and kddSp, ball-grow outperforms
k-means++ and k-means|| in almost all metrics. k-means|| slightly outperforms k-means++.

4.2.2 Communication Costs

We next compare the communication cost of different algorithms. Figure 1a presents the experimental
results. The communication cost is measured by the number of points exchanged between the



dataset algo summarySize | f/1-loss | {3-loss | preRec prec recall
ball-grow | 3.37e+4 8.00e+5 | 3.46e+6 | 0.6102 0.5586 | 0.5176

kddSp k-means++ | 3.37e+4 8.38e+5 | 4.95e+6 | 0.3660 0.3676 | 0.1787
k-means| | 3.30e+4 8.18e+5 | 4.19e+6 | 0.2921 0.3641 | 0.1552
rand 3.37e+4 8.85e+5 | 1.06e+7 | 0.0698 0.5076 | 0.0374
ball-grow | 1.83e+5 7.38e+6 | 3.54e+7 | 0.7754 0.5992 | 0.5803

kddFull | k-means++ | 1.83e+5 8.21e+6 | 4.65¢+7 | 0.2188 0.2828 | 0.1439
k-means|| does not stop after 8 hours
rand 1.83e+5 | 9.60e+6 | 1.11e+8 | 0.0378691 | 0.6115 | 0.0241

Table 2: Clustering quality. £ = 3, ¢ = 8752 for kddSp and ¢ = 45747 for kddFull
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Figure 1: experiments on kddSp dataset

coordinator and all sites. In this set of experiments we only change the number of partitions (i.e., # of
sites s). The summaries returned by all algorithms have almost the same size.

We observe that the communication costs of ball-grow, k-means++ and rand are almost indepen-
dent of the number of sites. Indeed, ball-grow, k-means++ and rand all run in one round and their
communication cost is simply the size of the union of the s summaries. k-means|| incurs significantly
more communication, and it grows almost linearly to the number of sites. This is because k-means||
grows its summary in multiple rounds; in each round, the coordinator needs to collect messages from
all sites and broadcasts the union of those messages. When there are 20 sites, k-means|| incurs 20
times more communication cost than its competitors.

4.2.3 Running Time

We finally compare the running time of different algorithms. All experiments in this part are conducted
on kddSp dataset since k-means|| does not scale to kddFull; similar results can also be observed on
other datasets. The running time we show is only the time used to construct the input (i.e., the union
of the s summaries) for the second level clustering, and we do not include the running time of the
second level clustering since it is always the same for all tested algorithms (i.e., the k-means--).

Figure 1b shows the running time when we change the number of sites while fix the size of the
summary produced by each site. We observe that k-means|| uses significantly more time than
ball-grow, k-means++ and rand. This is predictable because k-means|| runs in multiple rounds
and communicates more than its competitors. ball-grow uses significantly less time than others,
typically 1/25 of k-means||, 1/7 of k-means++ and 1/2 of rand. The reason that ball-grow is
even faster than rand is that ball-grow only needs to compute weights for about half of the points
in the constructed summary. As can be predicted, when we increase the number of sites, the total
running time of each algorithm decreases.

We also investigate how the size of the summary will affect the running time. Note that for ball-grow
the summary size is controlled by the parameter {. We fix £ = 3 and vary ¢, resulting different
summary sizes for ball-grow. For other algorithms, we tune the parameters so that they output
summaries of similar sizes as ball-grow outputs. Figure 1c shows that when the size of summary
increases, the running time increases almost linearly for all algorithms.
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