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Abstract—MicroRNAs (miRNA) are ~22 base pair long RNAs 

that play important roles in regulating gene expression. 

Understanding the transcriptional regulation of miRNA is 

critical to gene regulation. However, it is often difficult to 

precisely identify miRNA transcription start sites (TSSs) due to 

miRNA-specific biogenesis. Existing computational methods 

cannot effectively predict miRNA TSSs. Here, we employed 

deep learning architectures incorporating Long Short-Term 

Memory (LSTM) and Convolutional Neural Network (CNN) 

techniques to detect miRNA TSSs in regions of accessible 

chromatin. By testing on benchmark experimental data, we 

demonstrated that deep learning models outperform support 

vector machine and can accurately distinguish miRNA TSSs 

from both flanking regions and intergenic regions.  
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transcription start sites; neural networks; deep learning 

I. INTRODUCTION 

Micro-RNA (miRNA) refers to a class of non-coding 
RNA that plays a role in post-transcriptional regulation. 
miRNA are typically ~22 nucleotides in length and play a 
role in the down regulation of the expression of more than 
30% of mammalian gene products by binding to the 
corresponding mRNA [1-3]. MiRNAs regulate biological 
processes such as cell differentiation, development, and 
apoptosis. Misexpression of miRNAs has been associated 
with diseases such as diabetes, cancer, and heart disease [4, 
5]. Understanding the regulation and expression of miRNAs 
is an essential component of understanding gene regulation 
and its role in disease phenotypes. 

Transcription Start Sites (TSS) are the locations within a 
promoter region where the transcription of gene products 
begins. The TSSs of genes that produce miRNAs are more 
difficult to study than their counterparts in genes that 
produce proteins, due to the biogenesis process undergone by 
miRNAs [6, 7]. Long sequences of primary miRNAs (pri-
miRNA) are transcribed from the genes that ultimately 
produce mature miRNAs. The pri-miRNAs are then 
processed by nuclear RNase III Drosha and a cofactor 
protein to produce precursor miRNAs (pre-miRNA). The 
pre-miRNAs are then cleaved by the RNase III Dicer to 
produce RNA-induced Silencing Complexes (RISCs). The 
RISC, together with an AGO protein, is involved to produce 
the mature miRNAs. The length of the pri-miRNAs relative 

to the mature miRNAs means that the TSSs for miRNAs can 
be surprisingly distant from the mature miRNAs. In addition, 
the TSS biogenesis process occurs so quickly that pri-
miRNAs cannot be captured in sufficient numbers by RNA-
Seq experiments. Because of these factors, it is difficult to 
identify the TSSs of miRNAs. 

Earlier computational approaches to the identification of 
miRNA TSSs focused on sequence features, such as over-
represented k-mers or CpG content, and later on the use of 
experimental data such as Capped Analysis of Gene 
Expression (CAGE) and DNase-Seq data sets [8-10]. Chien 
et al. were able to predict TSS locations for miRNAs using a 
Support Vector machine (SVM) incorporating information 
from CAGE tags generated by the FANTOM project [11], 
TSS-Seq data and H3K4me3 chromatin signatures from the 
CD4+ cell line [12]. PROmiRNA was able to distinguish 
TSS locations for miRNAs from background genomic 
sequences using an Expectation-Maximization (EM) 
algorithm incorporating information from CAGE tags 
generated by the FANTOM4 project and sequence features 
such as CpG enrichment [13]. MicroTSS identified 
condition-specific TSS locations for miRNAs using an SVM 
incorporating information from condition-specific, high-
resolution RNA-Seq data and other markers such as DNase-
Seq data, H3K4me3, and Pol II [14]. High-resolution RNA-
Seq experimental data is not always available, and Hua et al 
identified condition-specific TSS locations for miRNAs 
using a scoring function incorporating conservation 
measurements and condition-specific profile of H3K4me3, 
DNase-Seq data that are available from ENCODE project 
[15]. Two problems have remained difficult to solve 
however: obtaining precise resolution in terms of the 
predicted locations of TSSs for miRNAs; and a lack of 
training data specifically comprised of TSS locations for 
miRNAs, as opposed to training data taken from the general 
population of TSS locations. 

Deep learning models have been shown success in 
various bioinformatics applications such as protein structure 
prediction, function annotation and biomedical imaging [16, 
17], but have not been explored for miRNA TSS 
identification. In the meantime, large-scale miRNA TSS data 
has recently become available from FANTOM project. In 
this paper, we investigate the effectiveness of using deep 
learning models for high-resolution miRNA TSS 
identification. We develop two deep learning models 



including a Long-Short Term Memory Network (LSTM) 
model and a Convolutional Neural Network (CNN) model. 
Both models are trained with FANTOM benchmark data and 
tested against a Support Vector Machine (SVM) baseline for 
the purpose of identifying TSS locations for miRNAs at a 
resolution of 100 base pairs (bps). Our study shows that deep 
learning models are capable of identifying miRNA TSSs 
from both TSS-flanking regions and intergenic regions. 
Comparing with existing methods, deep learning approach 
shows superior performance. Methods 

II. METHODS 

A. Data Set Preparation 

The TSS data used for model training and testing was 
processed from FANTOM5 project [11] as follows. TSS 
regions defined as CAGE tag clusters/peaks in four cell line 
samples:  K562, GM12787, HaLa-S3 and HepG2 were first 
downloaded from FANTOM project. Since CAGE data have 
shown different peak patterns such as narrow peaks and 
broad peaks [18], we focused on narrow peaks for this study, 
i.e, tag clusters with their width smaller than 10 bps. Only 
narrow peaks that are at least 500bp away from others were 
kept, to avoid potential confusion. Because Pol II, DNase 
and H3K4me3 have been recognized as active markers for 
TSSs, we also filtered out those narrow peaks with no active 
markers in their 1 kb surrounding regions for each of the four 
cell lines. The active marker information was obtained from 
ENCODE project [19]. After removing redundancy caused 
by potential TSSs overlapping among multiple cell lines, the 
above procedure resulted in 7,610 narrow peaks. We further 
defined these narrow peaks as centers and expand them to 
1kb regions. These 1 kb regions were then used as indices to 
extract 1 kb sequences from the HG19 human reference 
genome, thus forming the TSS data set for training and 
testing.  

The positive training data set was then generated by 
extracting the central 100 bp regions of the above defined 
TSS regions. Two types of negative training data sets were 
separately generated for models that can predict TSSs from 
their flanking regions and intergenic regions respectively. 
Type I data set contains the pair of 100 bp regions flanking 
the positive training regions. Type II data set contains 100 bp 
regions randomly sampled from intergenic regions. Each of 
the two negative training data were combined with the 
positive training data to obtain two training data sets: the 
flanking region training set and the intergenic region training 
set. Two data sets were assembled because they present two 
distinct levels of difficulty. The intergenic data set was used 
to train models to distinguish between TSSs and regions that 
contain no coding or regulatory sequences, while the 
flanking data set was used to train models to identify TSSs 
from regulatory regions.  

After the positive and negative samples were assembled 
for each data set, each sequence was converted into a 100 x 4 
one-hot matrix, with each column representing the 
nucleotide at that position. The unknown nucleotide, N, was 
represented by a column of four zeros. Each sample was 
assigned a label of 0 for negative samples and 1 for positive 

samples. After assembling the two data sets, each was 
randomly shuffled and split into training, validation, and test 
sets consisting of 80%, 10%, and 10% of the samples, 
respectively. This process was repeated 5 times for both the 
flanking and intergenic data set to approximate 5-fold cross 
validation, because preliminary testing showed the results of 
both the test model and the baselines were sensitive to the 
random assignment of samples to each partition. This 
resulted in 10 data sets in total, 5 flanking data sets and 5 
intergenic data sets. 

B. Model Architecture 

Two test models were used. The first test architecture, the 
LSTM model, is similar to [20] and incorporates a 
convolutional layer and a bidirectional LSTM (bi-LSTM) 
layer. The convolutional layer recognizes local motifs, while 
the bi-LSTM layer recognizes long-term relationships 
between motifs and learns a ‘regulatory grammar’ organizing 
their global spatial arrangement. The second test 
architecture, the CNN model, incorporates two convolutional 
layers to recognize local motifs, and to recognize local 
spatial patterns among those motifs. The test models are 
adapted to recognize TSSs in 100 bp sequences. The input to 
the test models is a 100 x 4 one-hot matrix encoding the 
nucleotide present at each position of the 100 bp sequence, 
as described in the data set preparation section, and the 
output is a value between 0 and 1 measuring the probability 
that the input sample contains a TSS. The loss function used 
to train the test models was binary cross-entropy and the 
optimizer was RMSProp [21]. The test models trained for at 
most 60 epochs and performed early stopping after five 
consecutive epochs without validation loss improvement. 
The test models were implemented in Python 3 using the 
Keras library [21]. The architecture of the test models will be 
described in detail in the following subsections and will be 
illustrated in Fig. 1.  

 
(a) 

 
(b) 

Figure 1.  The architectures of the LSTM model (a) and the CNN model 

(b). 

C. LSTM Model Architecture 

The model contains eight layers in total and is detailed as 
follows. The first layer is a one-dimensional convolutional 
layer, with a window size of length 11 and 320 filters, 



resulting in 320 output channels. The size of the convolution 
window was chosen because many of the features 
surrounding TSSs, such as TATA boxes, SP1-like regions, 
and gcg motifs, are approximately 10 bps long, allowing a 
single convolutional window to contain all or most of a 
feature. The number of output channels is the same as in the 
test architecture, and changes to this number did not yield 
improvements during preliminary testing. The activation 
function used by the convolutional layer was the Rectified 
Linear Unit (ReLU) function. The second layer is a one-
dimensional max pooling layer, with both a window size and 
stride of length 5. This length was chosen because it 
maximized results during preliminary testing, and the two 
lengths are equal because that was the case in the test 
architecture and breaking that relationship was not tested 
during preliminary testing. The third layer is a dropout layer, 
used as a form of regularization during training to prevent 
overfitting. The dropout probability was set to 0.2. The 
fourth layer is a bi-LSTM layer, with 320 output channels 
per direction (for a total of 640 output channels). Changes to 
the number of output channels were found not to increase 
results during preliminary testing. The fifth layer is another 
dropout layer, also used for regularization during training 
and prevent overfitting. The dropout probability was set to 
0.5. At this point, the tensor of output values from the bi-
LSTM layer is flattened into a one-dimensional shape. The 
sixth layer is a dense layer with 1,000 nodes, used to provide 
a comprehensive assessment of the output of the bi-LSTM 
and produce a summary of a size more manageable for the 
next layer. The number of nodes was chosen because it 
maximized results during preliminary testing. The activation 
function used by the dense layer is also a ReLU function. 
The seventh and final layer is a dense layer containing one 
node, which produces the output prediction. This layer uses a 
sigmoid activation function, outputting a probability 
reflecting the model’s confidence that the input sample is a 
positive sample. 

D. CNN Model Architecture 

The architecture of the CNN model is very similar to the 
architecture of the LSTM model, with the exception that the 
LSTM layer was replaced with a CNN layer and a max-
pooling layer, and the probability of the second dropout layer 
was reduced to match the first dropout layer. The first layer 
is a one-dimensional convolutional layer, with a window size 
of length 11 and 320 filters, resulting in 320 output channels. 
The parameters of this layer were set the same as that of the 
LSTM model. The second layer is a one-dimensional max 
pooling layer, with both a window size and stride of length 5. 
The parameters of this layer were set the same as that of the 
LSTM model.  The third layer is a dropout layer, used as a 
form of regularization during training to prevent overfitting. 
The parameters of this layer were set the same as that of the 
LSTM model. The fourth layer is a one-dimensional 
convolutional layer, with a window size of length 2 and 640 
filters, resulting in 640 output channels. The size of the 
convolution window was chosen because this value 
optimized results during preliminary testing. The number of 
output channels was chosen to follow a convention often 

seen with CNNs in computer vision applications [22, 23], in 
which successive convolutional layers will double the 
number of output filters. The activation function used by the 
convolutional layer was the ReLU function. The fifth layer is 
a one-dimensional max pooling layer, with both a window 
size and stride of length 4. This length was chosen because it 
maximized results during preliminary testing. The sixth layer 
is another dropout layer, also used for regularization during 
training and prevent overfitting. The dropout probability is 
0.2, which was chosen to match the value of the first dropout 
layer. At this point, the tensor of output values from the 
second convolutional and max-pooling layers are flattened 
into a one-dimensional shape. The seventh layer is a dense 
layer with 1,000 nodes, used to provide a comprehensive 
assessment of the output of the CNN and produce a summary 
of a size more manageable for the next layer. The parameters 
of this layer were unchanged from the LSTM model. The 
eighth and final layer is a dense layer containing one node, 
which produces the output prediction. This layer uses a 
sigmoid activation function, outputting a probability 
reflecting the model’s confidence that the input sample is a 
positive sample, just like the LSTM model. 

E. SVM Baseline 

A SVM baseline introduced in Zien et al. [24] was 
implemented to evaluate the performance of the deep 
learning models for miRNA TSS prediction. The baseline 
employs an improved polynomial kernel function specialized 
to this application, which is based on the Salzberg method 
[25] and involves calculating the log odds of the conditional 
probability that nucleotide position i occurs within a positive 
sample given that nucleotide position i-1 occurred within a 
positive sample versus the conditional probability that 
nucleotide position i occurs within a negative sample given 
that nucleotide position i-1 occurred within a negative 
sample. The one-hot vectors representing the sequences in 
each data set are replaced with vectors containing the log 
odds for each position. For a pair of log odds vectors, x and 
y, the kernel function examines windows of length 3. It takes 
a weighted sum of the Euclidean distance of the log odds at 
corresponding positions of x and y within that window and 
raises that weighted sum to the power of 3. The weighted 
sums obtained from each window are summed to obtain one 
value representing the comparison of x and y. 

III. RESULTS 

To determine the effectiveness with which each model 
could classify whether a 100 bp sequence contained a TSS or 
not, the test models and the SVM baseline were trained on 
the training set of each of the five flanking and intergenic 
data sets and tested on the corresponding test sets. Each of 
the training sets contained 18,012 training samples, and each 
validation and test set contained 2,252 samples each. The 
ratio of positive and negative samples in each partition of 
each data set varied slightly due to the random allocation of 
samples but was approximately one third positive to two 
thirds negative in each case. The results of each test were 
measured using Precision, Recall, Accuracy, and F1 Score, 
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and the average results across all flanking and all intergenic 
data sets was also collected. 

A. Flanking Data Set Results  

The purpose of the flanking data sets was to test each 
model on the more challenging task of distinguishing regions 
of DNA containing a TSS from neighboring regions. As is 
illustrated in table 1, the test models performed better than 
the SVM baseline on all metrics.  

TABLE I. TEST RESULTS FOR FLANKING DATA SETS 

Data Set Precision Recall F1-Score Accuracy 

LSTM 0 0.8562 0.3671 0.5139 0.7749 

LSTM 1 0.3529 0.1094 0.1670 0.6545 

LSTM 2 0.9280 0.2984 0.4516 0.7358 

LSTM 3 0.9437 0.2694 0.4192 0.7527 

LSTM 4 0.9810 0.2640 0.4161 0.7420 

Average 0.8124 0.2617 0.3959 0.7320 

Average w/o LSTM 1 0.9272 0.2998 0.4530 0.7513 

CNN 0 0.9302 0.3288 0.4858 0.7744 

CNN 1 0.9522 0.2804 0.4332 0.7456 

CNN 2 0.8725 0.3167 0.4647 0.7340 

CNN 3 0.8649 0.3003 0.4458 0.7527 

CNN 4 0.9809 0.2615 0.4129 0.7411 

Average 0.9201 0.2975 0.4497 0.7496 

Average w/o CNN 1 0.9121 0.3018 0.4535 0.7506 

SVM 0 0.2283 0.2342 0.2312 0.4951 

SVM 1 0.2931 0.2830 0.2879 0.5147 

SVM 2 0.2969 0.2716 0.2837 0.5 

SVM 3 0.2322 0.2493 0.2405 0.4782 

SVM 4 0.2680 0.2423 0.2545 0.5058 

Average 0.2637 0.2561 0.2598 0.4988 

Average w/o SVM 1 0.2564 0.2494 0.2528 0.4948 

Additionally, both test models achieved much greater 
precision than recall on all flanking data sets. Of the two test 
models, the LSTM model demonstrates greater precision 
while the CNN model demonstrates higher recall. 

Another observation is that Flanking Data Set 1 yielded 
anomalously low performance for the LSTM model. As a 
result, the average performance of each model on every 
flanking data set excluding Flanking Data Set 1 was 
collected to illustrate the impact this had. The disparate 
impact of this data set on the LSTM model vs the CNN 
model suggests that the LSTM model may be more sensitive 
to how samples are assigned to each data set 

B. Intergenic Data Set Results 

The purpose of the intergenic data sets was to test each 
model on the less challenging task of distinguishing regions 
of DNA containing a TSS from regions of intergenic DNA. 
As is illustrated in table 2, the test models outperformed the 

SVM baseline and both of the test models achieved greater 
precision than recall, as was the case with the flanking 
datasets. It also remains the case that the LSTM model 
obtained greater precision than the CNN model, but the 
margin is smaller than it was for the flanking data sets. 
Unlike the flanking data sets, however, none of the 
intergenic data sets exhibited anomalously low performance 
for any of the models, so only the average of all intergenic 
data sets is taken here. 

TABLE II. TEST RESULTS FOR INTERGENIC DATA SETS 

Data Set Precision Recall F1-Score Accuracy 

LSTM 0 0.972 0.3408 0.5047 0.7882 

LSTM 1 0.7146 0.3981 0.5113 0.7513 

LSTM 2 0.9007 0.3267 0.4795 0.7638 

LSTM 3 0.9390 0.3072 0.4629 0.7620 

LSTM 4 0.9289 0.2776 0.4274 0.7513 

Average 0.8911 0.3301 0.4817 0.7633 

CNN 0 0.9713 0.3324 0.4953 0.7855 

CNN 1 0.9081 0.3356 0.4901 0.7718 

CNN 2 0.8974 0.3267 0.4790 0.7633 

CNN 3 0.8076 0.3684 0.5059 0.7598 

CNN 4 0.8601 0.3347 0.4818 0.7593 

Average 0.8889 0.3395 0.4913 0.7679 

SVM 0 0.2297 0.2496 0.2392 0.4973 

SVM 1 0.2154 0.2201 0.2177 0.4831 

SVM 2 0.2344 0.2253 0.2298 0.4969 

SVM 3 0.2304 0.234 0.2322 0.4831 

SVM 4 0.2347 0.2297 0.2322 0.4920 

Average 0.2289 0.2312 0.2303 0.4905 

C. Results by Cell Line 

The results for CNN-intergenic region training, CNN-
flanking region training, LSTM-intergenic region training 
and LSTM-flanking region training models contain 1220, 
1055, 1208 and 1025 predictions respectively. We further 
categorized these predictions by the four cell-lines: 
GM12878, HeLa-S3, HepG2 and K562 (Table 3). Note that, 
because most TSS regions are overlapped by cell-lines, the 
total number of cell-line specific predictions is larger than 
that of the combined predictions. Here, the evaluation on 
cell-relevant TSS prediction was only performed on the 
results obtained from deep learning models that were trained 
with flanking regions. This is because, unlike the prediction 
results obtained from models trained with flanking regions, 
the results from models trained with intergenic regions 
cannot be categorized based on the cell lines. Table 3 shows 
the test results by cell-lines, suggesting consistent accuracy 
of deep learning models across four cell lines. 

We also compared this result in K562 cell to Hua et al 
[15]. The number of predicted TSSs in K562 cell line is 718 
and 487 for our deep learning approach and Hua et al. 
respectively. Fig. 2 shows the sequence logos of both results, 



created with WebLogo [26]. Preliminary inspection of the 
sequence logos reveals a TATA box pattern at the front part. 
Since the occurrence of TATA sequences in the close 
upstream regions of TSSs is the most used feature for TSS 
and core promoter identification [18], this pattern 
demonstrates that the deep learning models consistently 
predicts putative TSS. 

Since CAGE experiments may not have captured nascent 
transcripts [26], we also compared the predicted TSSs with 
available GRO-cap data in K562 cell line from NCBI GEO 
database (GSM1480321). We manually checked 100 bp 
neighborhood of all of the false predictions and found two of 
the false positive predictions are indeed consistent with 
GRO-cap signal and might represents nascent transcriptional 
events. For example, [30594551, 30594601] at chromosome 
6 and [141523898, 141523998] at chromosome 8 are 
classified as false positive, however the GRO-cap signals 
were observed at both locations. 

TABLE III. THE PREDICTION RESULTS BY CELL-LINES. (A) THE 

NUMBER OF TRUE (LEFT) AND FALSE (RIGHT) PREDICTIONS BY CELL-
LINES. (B) THE ACCURACY OF PREDICTED RESULTS BY CELL-LINES 

 GM12878 HeLa-S3 HepG2 K562 

LSTM 623 / 57 757 / 64 637 / 65 718 / 71 

CNN 616 / 57 764 / 58 628 / 59 719 / 73 

(a) 

 GM12878 HeLa-S3 HepG2 K562 

LSTM 91.62% 92.20% 90.74% 91.00% 

CNN 91.53% 92.94% 91.41% 90.78% 

(b) 

 
(a) 

 
(b) 

Figure 2.  Sequence logos for predicted results on K562 by LSTM with flanking regions (a) and by Hua et al. (2016) (b). 

  
(a)                                                                                                             (b) 

  
(c)                                                                                                           (d) 



Figure 3.  Sequence logos for the 27 to 46 nucleotide positions of predicted positive test samples for the LSTM model on the flanking dataset (a), the LSTM 

model on the intergenic dataset (b), the CNN model on the flanking dataset (c), and the CNN model on the intergenic dataset (d). 

IV. DISCUSSIONS 

We applied deep learning models including LSTM and 
CNN models to identify miRNA TSSs from both their 
flanking regions and intergenic regions. Comparing with the 
base line SVM model, both LSTM and CNN models 
provided high-resolution miRNA TSS predictions for testing 
dataset obtained from FANTOM project. However, there is 
difference between the two deep learning models based on 
performance evaluation. In part, the difference between the 
precision and the recall achieved by the LSTM model and 
CNN model may be explained by the imbalanced nature of 
the data sets. The two to one ratio of negatives to positives 
may incentivize each network to learn to identify negative 
samples more effectively than positive samples during 
training. An additional factor may be the size of the data sets 
themselves. The trainings partition for each data set 
consisted of approximately 18,000 training samples, which is 
a small training set by the standards of typical deep learning 
training sets. Given the size of the data set and the imbalance 
of samples across classes, it may be the case that there were 
not enough positive examples for either network to 
adequately learn to identify them reliably. 

In addition, the margin between precision and recall was 
lower for the intergenic datasets than the flanking datasets, 
with both the LSTM model and CNN model achieving lower 
precision and higher recall. One possible explanation for this 
is that the underlying probability distributions for positive 
and negative samples in the intergenic data sets is more 
distinct than the probability distributions for the positive and 
negative samples in the flanking data sets, due to the fact that 
the negative samples were sampled from more distinct 
intergenic regions rather than more similar neighboring 
regions. This may have had the effect of reducing the impact 
of the relatively small and imbalanced datasets and allowed 
greater recall at the expense of poorer precision.  

The features recognized by the test models were 
examined by assembling a position weight matrix (PWM) of 
all samples predicted positive by the test models (illustrated 
in Fig. 3) and using a Pearson Chi2 test to determine which 
positions showed significant deviation from background 
noise (represented by a uniform distribution). The results 
show that across both the LSTM and CNN models, and 
across both the flanking and intergenic datasets, the positions 
that showed significant departure from a uniform 
background were concentrated in the positions ranging from 
27 to 46, the 20 positions leading up to the beginning of the 
TSS. The values most frequently held by these positions 
were T and A, indicating a TATA box. From this, it can be 
inferred that the test models learned to recognize a positive 
sample by looking for a TATA box in the 20 positions 
leading up to the expected position of the TSS. That the test 
models fixated on a single feature for identifying positive 
samples is interesting and may further explain the low recall 
scores. Any true positive sample which lacked a sufficiently 
clearly defined TATA box in the expected position would 

not have been recognized as a positive sample. This suggests 
a potential avenue for improving the performance of the test 
models: by encouraging them to consider additional features. 
True positive samples that lack sufficiently clear TATA 
boxes in the expected position may still possess other 
features that could be used to identify them. This 
encouragement could be provided by modifying the 
optimization function of the test models to apply a reward for 
recognition of diverse features or a penalty for too many 
predictions with the same features, or it could be provided by 
selecting the samples in the training set to display a broader 
range of features and a larger population of each. 
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