
Application of Deep Learning Models to MicroRNA Transcription Start Site

Identification

Clayton Barham, Mingyu Cha, Xiaoman Li, Haiyan Hu

Department of Computer Science

University of Central Florida

Orlando, United States of America

e-mail: haihu@cs.ucf.edu

Abstract—MicroRNAs (miRNA) are ~22 base pair long RNAs

that play important roles in regulating gene expression.

Understanding the transcriptional regulation of miRNA is

critical to gene regulation. However, it is often difficult to

precisely identify miRNA transcription start sites (TSSs) due to

miRNA-specific biogenesis. Existing computational methods

cannot effectively predict miRNA TSSs. Here, we employed

deep learning architectures incorporating Long Short-Term

Memory (LSTM) and Convolutional Neural Network (CNN)

techniques to detect miRNA TSSs in regions of accessible

chromatin. By testing on benchmark experimental data, we

demonstrated that deep learning models outperform support

vector machine and can accurately distinguish miRNA TSSs

from both flanking regions and intergenic regions.

Keywords-bioinformatics; transcriptional regulation;

transcription start sites; neural networks; deep learning

I. INTRODUCTION

Micro-RNA (miRNA) refers to a class of non-coding
RNA that plays a role in post-transcriptional regulation.
miRNA are typically ~22 nucleotides in length and play a
role in the down regulation of the expression of more than
30% of mammalian gene products by binding to the
corresponding mRNA [1-3]. MiRNAs regulate biological
processes such as cell differentiation, development, and
apoptosis. Misexpression of miRNAs has been associated
with diseases such as diabetes, cancer, and heart disease [4,
5]. Understanding the regulation and expression of miRNAs
is an essential component of understanding gene regulation
and its role in disease phenotypes.

Transcription Start Sites (TSS) are the locations within a
promoter region where the transcription of gene products
begins. The TSSs of genes that produce miRNAs are more
difficult to study than their counterparts in genes that
produce proteins, due to the biogenesis process undergone by
miRNAs [6, 7]. Long sequences of primary miRNAs (pri-
miRNA) are transcribed from the genes that ultimately
produce mature miRNAs. The pri-miRNAs are then
processed by nuclear RNase III Drosha and a cofactor
protein to produce precursor miRNAs (pre-miRNA). The
pre-miRNAs are then cleaved by the RNase III Dicer to
produce RNA-induced Silencing Complexes (RISCs). The
RISC, together with an AGO protein, is involved to produce
the mature miRNAs. The length of the pri-miRNAs relative

to the mature miRNAs means that the TSSs for miRNAs can
be surprisingly distant from the mature miRNAs. In addition,
the TSS biogenesis process occurs so quickly that pri-
miRNAs cannot be captured in sufficient numbers by RNA-
Seq experiments. Because of these factors, it is difficult to
identify the TSSs of miRNAs.

Earlier computational approaches to the identification of
miRNA TSSs focused on sequence features, such as over-
represented k-mers or CpG content, and later on the use of
experimental data such as Capped Analysis of Gene
Expression (CAGE) and DNase-Seq data sets [8-10]. Chien
et al. were able to predict TSS locations for miRNAs using a
Support Vector machine (SVM) incorporating information
from CAGE tags generated by the FANTOM project [11],
TSS-Seq data and H3K4me3 chromatin signatures from the
CD4+ cell line [12]. PROmiRNA was able to distinguish
TSS locations for miRNAs from background genomic
sequences using an Expectation-Maximization (EM)
algorithm incorporating information from CAGE tags
generated by the FANTOM4 project and sequence features
such as CpG enrichment [13]. MicroTSS identified
condition-specific TSS locations for miRNAs using an SVM
incorporating information from condition-specific, high-
resolution RNA-Seq data and other markers such as DNase-
Seq data, H3K4me3, and Pol II [14]. High-resolution RNA-
Seq experimental data is not always available, and Hua et al
identified condition-specific TSS locations for miRNAs
using a scoring function incorporating conservation
measurements and condition-specific profile of H3K4me3,
DNase-Seq data that are available from ENCODE project
[15]. Two problems have remained difficult to solve
however: obtaining precise resolution in terms of the
predicted locations of TSSs for miRNAs; and a lack of
training data specifically comprised of TSS locations for
miRNAs, as opposed to training data taken from the general
population of TSS locations.

Deep learning models have been shown success in
various bioinformatics applications such as protein structure
prediction, function annotation and biomedical imaging [16,
17], but have not been explored for miRNA TSS
identification. In the meantime, large-scale miRNA TSS data
has recently become available from FANTOM project. In
this paper, we investigate the effectiveness of using deep
learning models for high-resolution miRNA TSS
identification. We develop two deep learning models

including a Long-Short Term Memory Network (LSTM)
model and a Convolutional Neural Network (CNN) model.
Both models are trained with FANTOM benchmark data and
tested against a Support Vector Machine (SVM) baseline for
the purpose of identifying TSS locations for miRNAs at a
resolution of 100 base pairs (bps). Our study shows that deep
learning models are capable of identifying miRNA TSSs
from both TSS-flanking regions and intergenic regions.
Comparing with existing methods, deep learning approach
shows superior performance. Methods

II. METHODS

A. Data Set Preparation

The TSS data used for model training and testing was
processed from FANTOM5 project [11] as follows. TSS
regions defined as CAGE tag clusters/peaks in four cell line
samples: K562, GM12787, HaLa-S3 and HepG2 were first
downloaded from FANTOM project. Since CAGE data have
shown different peak patterns such as narrow peaks and
broad peaks [18], we focused on narrow peaks for this study,
i.e, tag clusters with their width smaller than 10 bps. Only
narrow peaks that are at least 500bp away from others were
kept, to avoid potential confusion. Because Pol II, DNase
and H3K4me3 have been recognized as active markers for
TSSs, we also filtered out those narrow peaks with no active
markers in their 1 kb surrounding regions for each of the four
cell lines. The active marker information was obtained from
ENCODE project [19]. After removing redundancy caused
by potential TSSs overlapping among multiple cell lines, the
above procedure resulted in 7,610 narrow peaks. We further
defined these narrow peaks as centers and expand them to
1kb regions. These 1 kb regions were then used as indices to
extract 1 kb sequences from the HG19 human reference
genome, thus forming the TSS data set for training and
testing.

The positive training data set was then generated by
extracting the central 100 bp regions of the above defined
TSS regions. Two types of negative training data sets were
separately generated for models that can predict TSSs from
their flanking regions and intergenic regions respectively.
Type I data set contains the pair of 100 bp regions flanking
the positive training regions. Type II data set contains 100 bp
regions randomly sampled from intergenic regions. Each of
the two negative training data were combined with the
positive training data to obtain two training data sets: the
flanking region training set and the intergenic region training
set. Two data sets were assembled because they present two
distinct levels of difficulty. The intergenic data set was used
to train models to distinguish between TSSs and regions that
contain no coding or regulatory sequences, while the
flanking data set was used to train models to identify TSSs
from regulatory regions.

After the positive and negative samples were assembled
for each data set, each sequence was converted into a 100 x 4
one-hot matrix, with each column representing the
nucleotide at that position. The unknown nucleotide, N, was
represented by a column of four zeros. Each sample was
assigned a label of 0 for negative samples and 1 for positive

samples. After assembling the two data sets, each was
randomly shuffled and split into training, validation, and test
sets consisting of 80%, 10%, and 10% of the samples,
respectively. This process was repeated 5 times for both the
flanking and intergenic data set to approximate 5-fold cross
validation, because preliminary testing showed the results of
both the test model and the baselines were sensitive to the
random assignment of samples to each partition. This
resulted in 10 data sets in total, 5 flanking data sets and 5
intergenic data sets.

B. Model Architecture

Two test models were used. The first test architecture, the
LSTM model, is similar to [20] and incorporates a
convolutional layer and a bidirectional LSTM (bi-LSTM)
layer. The convolutional layer recognizes local motifs, while
the bi-LSTM layer recognizes long-term relationships
between motifs and learns a ‘regulatory grammar’ organizing
their global spatial arrangement. The second test
architecture, the CNN model, incorporates two convolutional
layers to recognize local motifs, and to recognize local
spatial patterns among those motifs. The test models are
adapted to recognize TSSs in 100 bp sequences. The input to
the test models is a 100 x 4 one-hot matrix encoding the
nucleotide present at each position of the 100 bp sequence,
as described in the data set preparation section, and the
output is a value between 0 and 1 measuring the probability
that the input sample contains a TSS. The loss function used
to train the test models was binary cross-entropy and the
optimizer was RMSProp [21]. The test models trained for at
most 60 epochs and performed early stopping after five
consecutive epochs without validation loss improvement.
The test models were implemented in Python 3 using the
Keras library [21]. The architecture of the test models will be
described in detail in the following subsections and will be
illustrated in Fig. 1.

(a)

(b)

Figure 1. The architectures of the LSTM model (a) and the CNN model

(b).

C. LSTM Model Architecture

The model contains eight layers in total and is detailed as
follows. The first layer is a one-dimensional convolutional
layer, with a window size of length 11 and 320 filters,

resulting in 320 output channels. The size of the convolution
window was chosen because many of the features
surrounding TSSs, such as TATA boxes, SP1-like regions,
and gcg motifs, are approximately 10 bps long, allowing a
single convolutional window to contain all or most of a
feature. The number of output channels is the same as in the
test architecture, and changes to this number did not yield
improvements during preliminary testing. The activation
function used by the convolutional layer was the Rectified
Linear Unit (ReLU) function. The second layer is a one-
dimensional max pooling layer, with both a window size and
stride of length 5. This length was chosen because it
maximized results during preliminary testing, and the two
lengths are equal because that was the case in the test
architecture and breaking that relationship was not tested
during preliminary testing. The third layer is a dropout layer,
used as a form of regularization during training to prevent
overfitting. The dropout probability was set to 0.2. The
fourth layer is a bi-LSTM layer, with 320 output channels
per direction (for a total of 640 output channels). Changes to
the number of output channels were found not to increase
results during preliminary testing. The fifth layer is another
dropout layer, also used for regularization during training
and prevent overfitting. The dropout probability was set to
0.5. At this point, the tensor of output values from the bi-
LSTM layer is flattened into a one-dimensional shape. The
sixth layer is a dense layer with 1,000 nodes, used to provide
a comprehensive assessment of the output of the bi-LSTM
and produce a summary of a size more manageable for the
next layer. The number of nodes was chosen because it
maximized results during preliminary testing. The activation
function used by the dense layer is also a ReLU function.
The seventh and final layer is a dense layer containing one
node, which produces the output prediction. This layer uses a
sigmoid activation function, outputting a probability
reflecting the model’s confidence that the input sample is a
positive sample.

D. CNN Model Architecture

The architecture of the CNN model is very similar to the
architecture of the LSTM model, with the exception that the
LSTM layer was replaced with a CNN layer and a max-
pooling layer, and the probability of the second dropout layer
was reduced to match the first dropout layer. The first layer
is a one-dimensional convolutional layer, with a window size
of length 11 and 320 filters, resulting in 320 output channels.
The parameters of this layer were set the same as that of the
LSTM model. The second layer is a one-dimensional max
pooling layer, with both a window size and stride of length 5.
The parameters of this layer were set the same as that of the
LSTM model. The third layer is a dropout layer, used as a
form of regularization during training to prevent overfitting.
The parameters of this layer were set the same as that of the
LSTM model. The fourth layer is a one-dimensional
convolutional layer, with a window size of length 2 and 640
filters, resulting in 640 output channels. The size of the
convolution window was chosen because this value
optimized results during preliminary testing. The number of
output channels was chosen to follow a convention often

seen with CNNs in computer vision applications [22, 23], in
which successive convolutional layers will double the
number of output filters. The activation function used by the
convolutional layer was the ReLU function. The fifth layer is
a one-dimensional max pooling layer, with both a window
size and stride of length 4. This length was chosen because it
maximized results during preliminary testing. The sixth layer
is another dropout layer, also used for regularization during
training and prevent overfitting. The dropout probability is
0.2, which was chosen to match the value of the first dropout
layer. At this point, the tensor of output values from the
second convolutional and max-pooling layers are flattened
into a one-dimensional shape. The seventh layer is a dense
layer with 1,000 nodes, used to provide a comprehensive
assessment of the output of the CNN and produce a summary
of a size more manageable for the next layer. The parameters
of this layer were unchanged from the LSTM model. The
eighth and final layer is a dense layer containing one node,
which produces the output prediction. This layer uses a
sigmoid activation function, outputting a probability
reflecting the model’s confidence that the input sample is a
positive sample, just like the LSTM model.

E. SVM Baseline

A SVM baseline introduced in Zien et al. [24] was
implemented to evaluate the performance of the deep
learning models for miRNA TSS prediction. The baseline
employs an improved polynomial kernel function specialized
to this application, which is based on the Salzberg method
[25] and involves calculating the log odds of the conditional
probability that nucleotide position i occurs within a positive
sample given that nucleotide position i-1 occurred within a
positive sample versus the conditional probability that
nucleotide position i occurs within a negative sample given
that nucleotide position i-1 occurred within a negative
sample. The one-hot vectors representing the sequences in
each data set are replaced with vectors containing the log
odds for each position. For a pair of log odds vectors, x and
y, the kernel function examines windows of length 3. It takes
a weighted sum of the Euclidean distance of the log odds at
corresponding positions of x and y within that window and
raises that weighted sum to the power of 3. The weighted
sums obtained from each window are summed to obtain one
value representing the comparison of x and y.

III. RESULTS

To determine the effectiveness with which each model
could classify whether a 100 bp sequence contained a TSS or
not, the test models and the SVM baseline were trained on
the training set of each of the five flanking and intergenic
data sets and tested on the corresponding test sets. Each of
the training sets contained 18,012 training samples, and each
validation and test set contained 2,252 samples each. The
ratio of positive and negative samples in each partition of
each data set varied slightly due to the random allocation of
samples but was approximately one third positive to two
thirds negative in each case. The results of each test were
measured using Precision, Recall, Accuracy, and F1 Score,

a

and the average results across all flanking and all intergenic
data sets was also collected.

A. Flanking Data Set Results

The purpose of the flanking data sets was to test each
model on the more challenging task of distinguishing regions
of DNA containing a TSS from neighboring regions. As is
illustrated in table 1, the test models performed better than
the SVM baseline on all metrics.

TABLE I. TEST RESULTS FOR FLANKING DATA SETS

Data Set Precision Recall F1-Score Accuracy

LSTM 0 0.8562 0.3671 0.5139 0.7749

LSTM 1 0.3529 0.1094 0.1670 0.6545

LSTM 2 0.9280 0.2984 0.4516 0.7358

LSTM 3 0.9437 0.2694 0.4192 0.7527

LSTM 4 0.9810 0.2640 0.4161 0.7420

Average 0.8124 0.2617 0.3959 0.7320

Average w/o LSTM 1 0.9272 0.2998 0.4530 0.7513

CNN 0 0.9302 0.3288 0.4858 0.7744

CNN 1 0.9522 0.2804 0.4332 0.7456

CNN 2 0.8725 0.3167 0.4647 0.7340

CNN 3 0.8649 0.3003 0.4458 0.7527

CNN 4 0.9809 0.2615 0.4129 0.7411

Average 0.9201 0.2975 0.4497 0.7496

Average w/o CNN 1 0.9121 0.3018 0.4535 0.7506

SVM 0 0.2283 0.2342 0.2312 0.4951

SVM 1 0.2931 0.2830 0.2879 0.5147

SVM 2 0.2969 0.2716 0.2837 0.5

SVM 3 0.2322 0.2493 0.2405 0.4782

SVM 4 0.2680 0.2423 0.2545 0.5058

Average 0.2637 0.2561 0.2598 0.4988

Average w/o SVM 1 0.2564 0.2494 0.2528 0.4948

Additionally, both test models achieved much greater
precision than recall on all flanking data sets. Of the two test
models, the LSTM model demonstrates greater precision
while the CNN model demonstrates higher recall.

Another observation is that Flanking Data Set 1 yielded
anomalously low performance for the LSTM model. As a
result, the average performance of each model on every
flanking data set excluding Flanking Data Set 1 was
collected to illustrate the impact this had. The disparate
impact of this data set on the LSTM model vs the CNN
model suggests that the LSTM model may be more sensitive
to how samples are assigned to each data set

B. Intergenic Data Set Results

The purpose of the intergenic data sets was to test each
model on the less challenging task of distinguishing regions
of DNA containing a TSS from regions of intergenic DNA.
As is illustrated in table 2, the test models outperformed the

SVM baseline and both of the test models achieved greater
precision than recall, as was the case with the flanking
datasets. It also remains the case that the LSTM model
obtained greater precision than the CNN model, but the
margin is smaller than it was for the flanking data sets.
Unlike the flanking data sets, however, none of the
intergenic data sets exhibited anomalously low performance
for any of the models, so only the average of all intergenic
data sets is taken here.

TABLE II. TEST RESULTS FOR INTERGENIC DATA SETS

Data Set Precision Recall F1-Score Accuracy

LSTM 0 0.972 0.3408 0.5047 0.7882

LSTM 1 0.7146 0.3981 0.5113 0.7513

LSTM 2 0.9007 0.3267 0.4795 0.7638

LSTM 3 0.9390 0.3072 0.4629 0.7620

LSTM 4 0.9289 0.2776 0.4274 0.7513

Average 0.8911 0.3301 0.4817 0.7633

CNN 0 0.9713 0.3324 0.4953 0.7855

CNN 1 0.9081 0.3356 0.4901 0.7718

CNN 2 0.8974 0.3267 0.4790 0.7633

CNN 3 0.8076 0.3684 0.5059 0.7598

CNN 4 0.8601 0.3347 0.4818 0.7593

Average 0.8889 0.3395 0.4913 0.7679

SVM 0 0.2297 0.2496 0.2392 0.4973

SVM 1 0.2154 0.2201 0.2177 0.4831

SVM 2 0.2344 0.2253 0.2298 0.4969

SVM 3 0.2304 0.234 0.2322 0.4831

SVM 4 0.2347 0.2297 0.2322 0.4920

Average 0.2289 0.2312 0.2303 0.4905

C. Results by Cell Line

The results for CNN-intergenic region training, CNN-
flanking region training, LSTM-intergenic region training
and LSTM-flanking region training models contain 1220,
1055, 1208 and 1025 predictions respectively. We further
categorized these predictions by the four cell-lines:
GM12878, HeLa-S3, HepG2 and K562 (Table 3). Note that,
because most TSS regions are overlapped by cell-lines, the
total number of cell-line specific predictions is larger than
that of the combined predictions. Here, the evaluation on
cell-relevant TSS prediction was only performed on the
results obtained from deep learning models that were trained
with flanking regions. This is because, unlike the prediction
results obtained from models trained with flanking regions,
the results from models trained with intergenic regions
cannot be categorized based on the cell lines. Table 3 shows
the test results by cell-lines, suggesting consistent accuracy
of deep learning models across four cell lines.

We also compared this result in K562 cell to Hua et al
[15]. The number of predicted TSSs in K562 cell line is 718
and 487 for our deep learning approach and Hua et al.
respectively. Fig. 2 shows the sequence logos of both results,

created with WebLogo [26]. Preliminary inspection of the
sequence logos reveals a TATA box pattern at the front part.
Since the occurrence of TATA sequences in the close
upstream regions of TSSs is the most used feature for TSS
and core promoter identification [18], this pattern
demonstrates that the deep learning models consistently
predicts putative TSS.

Since CAGE experiments may not have captured nascent
transcripts [26], we also compared the predicted TSSs with
available GRO-cap data in K562 cell line from NCBI GEO
database (GSM1480321). We manually checked 100 bp
neighborhood of all of the false predictions and found two of
the false positive predictions are indeed consistent with
GRO-cap signal and might represents nascent transcriptional
events. For example, [30594551, 30594601] at chromosome
6 and [141523898, 141523998] at chromosome 8 are
classified as false positive, however the GRO-cap signals
were observed at both locations.

TABLE III. THE PREDICTION RESULTS BY CELL-LINES. (A) THE

NUMBER OF TRUE (LEFT) AND FALSE (RIGHT) PREDICTIONS BY CELL-
LINES. (B) THE ACCURACY OF PREDICTED RESULTS BY CELL-LINES

 GM12878 HeLa-S3 HepG2 K562

LSTM 623 / 57 757 / 64 637 / 65 718 / 71

CNN 616 / 57 764 / 58 628 / 59 719 / 73

(a)

 GM12878 HeLa-S3 HepG2 K562

LSTM 91.62% 92.20% 90.74% 91.00%

CNN 91.53% 92.94% 91.41% 90.78%

(b)

(a)

(b)

Figure 2. Sequence logos for predicted results on K562 by LSTM with flanking regions (a) and by Hua et al. (2016) (b).

(a) (b)

(c) (d)

Figure 3. Sequence logos for the 27 to 46 nucleotide positions of predicted positive test samples for the LSTM model on the flanking dataset (a), the LSTM

model on the intergenic dataset (b), the CNN model on the flanking dataset (c), and the CNN model on the intergenic dataset (d).

IV. DISCUSSIONS

We applied deep learning models including LSTM and
CNN models to identify miRNA TSSs from both their
flanking regions and intergenic regions. Comparing with the
base line SVM model, both LSTM and CNN models
provided high-resolution miRNA TSS predictions for testing
dataset obtained from FANTOM project. However, there is
difference between the two deep learning models based on
performance evaluation. In part, the difference between the
precision and the recall achieved by the LSTM model and
CNN model may be explained by the imbalanced nature of
the data sets. The two to one ratio of negatives to positives
may incentivize each network to learn to identify negative
samples more effectively than positive samples during
training. An additional factor may be the size of the data sets
themselves. The trainings partition for each data set
consisted of approximately 18,000 training samples, which is
a small training set by the standards of typical deep learning
training sets. Given the size of the data set and the imbalance
of samples across classes, it may be the case that there were
not enough positive examples for either network to
adequately learn to identify them reliably.

In addition, the margin between precision and recall was
lower for the intergenic datasets than the flanking datasets,
with both the LSTM model and CNN model achieving lower
precision and higher recall. One possible explanation for this
is that the underlying probability distributions for positive
and negative samples in the intergenic data sets is more
distinct than the probability distributions for the positive and
negative samples in the flanking data sets, due to the fact that
the negative samples were sampled from more distinct
intergenic regions rather than more similar neighboring
regions. This may have had the effect of reducing the impact
of the relatively small and imbalanced datasets and allowed
greater recall at the expense of poorer precision.

The features recognized by the test models were
examined by assembling a position weight matrix (PWM) of
all samples predicted positive by the test models (illustrated
in Fig. 3) and using a Pearson Chi2 test to determine which
positions showed significant deviation from background
noise (represented by a uniform distribution). The results
show that across both the LSTM and CNN models, and
across both the flanking and intergenic datasets, the positions
that showed significant departure from a uniform
background were concentrated in the positions ranging from
27 to 46, the 20 positions leading up to the beginning of the
TSS. The values most frequently held by these positions
were T and A, indicating a TATA box. From this, it can be
inferred that the test models learned to recognize a positive
sample by looking for a TATA box in the 20 positions
leading up to the expected position of the TSS. That the test
models fixated on a single feature for identifying positive
samples is interesting and may further explain the low recall
scores. Any true positive sample which lacked a sufficiently
clearly defined TATA box in the expected position would

not have been recognized as a positive sample. This suggests
a potential avenue for improving the performance of the test
models: by encouraging them to consider additional features.
True positive samples that lack sufficiently clear TATA
boxes in the expected position may still possess other
features that could be used to identify them. This
encouragement could be provided by modifying the
optimization function of the test models to apply a reward for
recognition of diverse features or a penalty for too many
predictions with the same features, or it could be provided by
selecting the samples in the training set to display a broader
range of features and a larger population of each.

ACKNOWLEDGMENT

This work was supported by the National Science
Foundation [1356524, 1149955, 1661414]; and the National
Institutes of Health [R15GM123407].

REFERENCES

[1] J. Ding, X. Li, and H. Hu, "TarPmiR: a new approach for microRNA
target site prediction," Bioinformatics, vol. 32, pp. 2768-75, Sep 15
2016.

[2] J. Ding, X. Li, and H. Hu, "MicroRNA modules prefer to bind weak
and unconventional target sites," Bioinformatics, vol. 31, pp. 1366-
74, May 1 2015.

[3] J. Ding, X. Li, and H. Hu, "CCmiR: A computational approach for
competitive and cooperative microRNA binding prediction,"
Bioinformatics, Sep 25 2017.

[4] M. Sadeghi, B. Ranjbar, M. R. Ganjalikhany, M. K. F, U. Schmitz, O.
Wolkenhauer, et al., "MicroRNA and Transcription Factor Gene
Regulatory Network Analysis Reveals Key Regulatory Elements
Associated with Prostate Cancer Progression," PLoS One, vol. 11, p.
e0168760, 2016.

[5] Y. Wang, S. Goodison, X. Li, and H. Hu, "Prognostic cancer gene
signatures share common regulatory motifs," Sci Rep, vol. 7, p. 4750,
Jul 6 2017.

[6] Y. Lee, M. Kim, J. Han, K. H. Yeom, S. Lee, S. H. Baek, et al.,
"MicroRNA genes are transcribed by RNA polymerase II," EMBO J,
vol. 23, pp. 4051-60, Oct 13 2004.

[7] P. Graves and Y. Zeng, "Biogenesis of mammalian microRNAs: a
global view," Genomics Proteomics Bioinformatics, vol. 10, pp. 239-
45, Oct 2012.

[8] H. K. Saini, S. Griffiths-Jones, and A. J. Enright, "Genomic analysis
of human microRNA transcripts," Proc Natl Acad Sci U S A, vol.
104, pp. 17719-24, Nov 6 2007.

[9] X. Zhou, J. Ruan, G. Wang, and W. Zhang, "Characterization and
identification of microRNA core promoters in four model species,"
PLoS Comput Biol, vol. 3, p. e37, Mar 9 2007.

[10] A. Marson, S. S. Levine, M. F. Cole, G. M. Frampton, T. Brambrink,
S. Johnstone, et al., "Connecting microRNA genes to the core
transcriptional regulatory circuitry of embryonic stem cells," Cell,
vol. 134, pp. 521-33, Aug 8 2008.

[11] M. Lizio, J. Harshbarger, H. Shimoji, J. Severin, T. Kasukawa, S.
Sahin, et al., "Gateways to the FANTOM5 promoter level
mammalian expression atlas," Genome Biol, vol. 16, p. 22, Jan 5
2015.

[12] C. H. Chien, Y. M. Sun, W. C. Chang, P. Y. Chiang-Hsieh, T. Y. Lee,
W. C. Tsai, et al., "Identifying transcriptional start sites of human
microRNAs based on high-throughput sequencing data," Nucleic
Acids Res, vol. 39, pp. 9345-56, Nov 2011.

[13] A. Marsico, M. R. Huska, J. Lasserre, H. Hu, D. Vucicevic, A.
Musahl, et al., "PROmiRNA: a new miRNA promoter recognition
method uncovers the complex regulation of intronic miRNAs,"
Genome Biol, vol. 14, p. R84, Aug 16 2013.

[14] G. Georgakilas, I. S. Vlachos, M. D. Paraskevopoulou, P. Yang, Y.
Zhang, A. N. Economides, et al., "microTSS: accurate microRNA
transcription start site identification reveals a significant number of
divergent pri-miRNAs," Nat Commun, vol. 5, p. 5700, Dec 10 2014.

[15] X. Hua, L. Chen, J. Wang, J. Li, and E. Wingender, "Identifying cell-
specific microRNA transcriptional start sites," Bioinformatics, vol.
32, pp. 2403-10, Aug 15 2016.

[16] K. Lan, D. T. Wang, S. Fong, L. S. Liu, K. K. L. Wong, and N. Dey,
"A Survey of Data Mining and Deep Learning in Bioinformatics," J
Med Syst, vol. 42, p. 139, Jun 28 2018.

[17] S. Min, B. Lee, and S. Yoon, "Deep learning in bioinformatics," Brief
Bioinform, vol. 18, pp. 851-869, Sep 1 2017.

[18] P. Carninci, A. Sandelin, B. Lenhard, S. Katayama, K. Shimokawa, J.
Ponjavic, et al., "Genome-wide analysis of mammalian promoter
architecture and evolution," Nat Genet, vol. 38, pp. 626-35, Jun 2006.

[19] "The ENCODE (ENCyclopedia Of DNA Elements) Project," Science,
vol. 306, pp. 636-40, Oct 22 2004.

[20] D. Quang and X. Xie, "DanQ: a hybrid convolutional and recurrent
deep neural network for quantifying the function of DNA sequences,"
Nucleic Acids Res, vol. 44, p. e107, Jun 20 2016.

[21] F. a. o. Chollet. (2015). Keras. Available: https://keras.io

[22] K. Z. Simonyan, A., "Very deep convolutional networks for large-
scale image recognition.," in International Conference on Learning
Representations, 2015.

[23] K. He, X. Zhang, S. Ren, and J. Sun., "Deep residual learning for
image recognition.," in CVPR, 2016, pp. 770–778.

[24] A. Zien, G. Ratsch, S. Mika, B. Scholkopf, T. Lengauer, and K. R.
Muller, "Engineering support vector machine kernels that recognize
translation initiation sites," Bioinformatics, vol. 16, pp. 799-807, Sep
2000.

[25] S. L. Salzberg, "A method for identifying splice sites and translational
start sites in eukaryotic mRNA," Comput Appl Biosci, vol. 13, pp.
365-76, Aug 1997.

[26] Q. Liu, J. Wang, Y. Zhao, C. I. Li, K. R. Stengel, P. Acharya, et al.,
"Identification of active miRNA promoters from nuclear run-on RNA
sequencing," Nucleic Acids Res, vol. 45, p. e121, Jul 27 2017.

