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Nonuniqueness of weak solutions to the
Navier-Stokes equation

By TRISTAN BUCKMASTER and VLAD VICOL

Abstract

For initial datum of finite kinetic energy, Leray has proven in 1934 that
there exists at least one global in time finite energy weak solution of the
3D Navier-Stokes equations. In this paper we prove that weak solutions of
the 3D Navier-Stokes equations are not unique in the class of weak solu-
tions with finite kinetic energy. Moreover, we prove that Holder continuous
dissipative weak solutions of the 3D Euler equations may be obtained as a
strong vanishing viscosity limit of a sequence of finite energy weak solutions
of the 3D Navier-Stokes equations.

1. Introduction
In this paper we consider the 3D incompressible Navier-Stokes equation

(1.1a) O +div (v ®v) + Vp — vAv = 0,
(1.1b) dive =0

posed on T3 x R, with periodic boundary conditions in z € T3 = R3/277Z3. We
consider solutions normalized to have zero spatial mean, i.e., ng v(z,t)dx = 0.
The constant v € (0, 1] is the kinematic viscosity. We define weak solutions to
the Navier-Stokes equations [49, Definition 1], [19, pp. 226]:

Definition 1.1. We say v € C°(R; L%(T?)) is a weak solution of (1.1) if for
any t € R the vector field v(-,t) is weakly divergence free, has zero mean, and
(1.1a) is satisfied in D'(T? x R), i.e.,

// v (O + (v- V) + vAyp)dedt =0
RJT3
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102 TRISTAN BUCKMASTER and VLAD VICOL

holds for any test function ¢ € C§°(T? x R) such that ¢(-,t) is divergence-free
for all ¢.

As a direct result of the work of Fabes-Jones-Riviere [19], since the weak
solutions defined above lie in CY(R; L?(T3)), they are in fact solutions of the
integral form of the Navier-Stokes equations

(1.2) v(-,t) = e""Bu(-,0) + /t e’ )APAiy (u(-,8) @ v(-, 5))ds,
0

and are sometimes called mild or Oseen solutions (cf. [19] and [39, Def. 6.5]).
Here P is the Leray projector and e!® denotes convolution with the heat kernel.

1.1. Previous works. In [40], Leray considered the Cauchy-problem for
(1.1) for initial datum of finite kinetic energy, vo € L2. Leray proved that
for any such datum, there exists a global in time weak solution v € L$L2,
which additionally has the regularity L?H;, and obeys the energy inequality
o(t)||32 + 2v f(f |Vu(s)||32 ds < ||lvo||32. Hopf [24] established a similar result
for the equations posed in a smooth bounded domain, with Dirichlet boundary
conditions. To date, the question of uniqueness of Leray-Hopf weak solutions
for the 3D Navier-Stokes equations remains however open.

Based on the natural scaling of the equations

v(x,t) = vy(z,t) = Wz, \2t),

a number of partial regularity results have been established [45], [7], [41], [37],
[53], [35]; the local existence for the Cauchy problem has been proven in scaling-
invariant spaces [30], [32], [28]; and conditional regularity has been established
under geometric structure assumptions [11] or assuming a signed pressure [47].
The conditional regularity and weak-strong uniqueness results known under the
umbrella of Ladyzhenskaya-Prodi-Serrin conditions [31], [43], [48], state that
if a Leray-Hopf weak solution also lies in LVLZ, with 2/p + 3/g < 1, then the
solution is unique and smooth in positive time. These conditions and their gen-
eralizations have culminated with the work of Escauriaza-Seregin-Sverak [27]
who proved the L{°L3 endpoint. The uniqueness of mild/Oseen solutions is
also known under the Ladyzhenskaya-Prodi-Serrin conditions, cf. [19] for p > 3,
and [21], [42], [38], [33] for p = 3. Note that the regularity of Leray-Hopf weak
solutions, or of bounded energy weak solutions, is consistent with the scaling
2/p+3/g = 3/2. In contrast, the additional regularity required to ensure that
the energy equality holds in the Navier-Stokes equations is consistent with
2/4 4 3/4 =5/4 for p = q = 4 [50], [34]. See [12], [52], [38], [44], [39] for surveys
of results on the Navier-Stokes equations.

The gap between the scaling of the kinetic energy and the natural scaling
of the equations leaves open the possibility of nonuniqueness of weak solutions
to (1.1). In [28], [29] Jia-Sverdk proved that nonuniqueness of Leray-Hopf
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NONUNIQUENESS OF NAVIER-STOKES WEAK SOLUTIONS 103

weak solutions in the regularity class L{°L3> holds if a certain spectral as-
sumption holds for a linearized Navier-Stokes operator. While a rigorous proof
of this spectral condition remains open, very recently Guillod-Sverak [23] have
provided compelling numerical evidence of it, using a scenario related to the
example of Ladyzhenskaya [36]. Thus, the works [29], [23] strongly suggest
that the Ladyzhenskaya-Prodi-Serrin regularity criteria are sharp.

1.2. Main results. In this paper we prove that weak solutions to (1.1) (in
the sense of Definition 1.1) are not unique within the class of weak solutions
with bounded kinetic energy. We establish the stronger result!:

THEOREM 1.2 (Nonuniqueness of weak solutions). There exists 5 > 0,
such that for any nonnegative smooth function e(t): [0,T] — R>q, there exists
v € CY[0,T); H3(T?)) a weak solution of the Navier-Stokes equations, such
that [ [v(z,t)|? do = e(t) for all t € [0,T). Moreover, the associated vorticity
V x v lies in CP([0,T); LL(T3)).

In particular, the above theorem shows that v = 0 is not the only weak
solution which vanishes at a time slice, thereby implying the nonuniqueness of
weak solutions. Theorem 1.2 shows that weak solutions may come to rest in
finite time, a question posed by Serrin [49, pp. 88]. Moreover, by considering
e1(t), e2(t) > 0 which are nonincreasing, such that e;(t) = ea(t) for ¢t € [0,7/2],
and e1(T) < ez(T), the construction used to prove Theorem 1.2 also proves
the nonuniqueness of dissipative weak solutions.

From the proof of Theorem 1.2 it is clear that the constructed weak
solutions v also have regularity in time, i.e. there exists v > 0 such that
v € CJ([0,T); L2(T3)). Thus, v ® v lies in C/ L N CYLL*7, and the fact that
Vv € CYL} follows from (1.2) and the maximal regularity of the heat equation.

We note that while the weak solutions Theorem 1.2 may attain any smooth
energy profile, at the moment we do not prove that they are Leray-Hopf weak
solutions, i.e., they do not obey the energy inequality or have L?H; integra-
bility. Moreover, the regularity parameter S > 0 cannot be expected to be too
large, since at 5 = 1/2 one has weak-strong uniqueness [12]. We expect that the
ideas used to prove Theorem 1.2 will in the future lead to a proof of nonunique-
ness of weak solutions in CYL?, for any 2 < p < 3, and the nonuniqueness of
Leray-Hopf weak solutions.

The proof of Theorem 1.2 builds on several of the fundamental ideas pio-
neered by De Lellis-Székelyhidi Jr. [15], [16]. These ideas were used to tackle
the Onsager conjecture for the Euler equation [18], [10], [8] (set ¥ = 0 in (1.1))

We denote by H” the L?-based Sobolev space with regularity index 8. Clearly CYHS
CPL2.
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104 TRISTAN BUCKMASTER and VLAD VICOL

via convex integration methods [46], [51], [2], [17], [1], [3], leading to the reso-
lution of the conjecture by Isett [26], [25], using a key ingredient by Daneri and
Székelyhidi Jr. [14]. The construction of dissipative Euler solutions below the
Onsager regularity threshold was proven by authors of this paper jointly with
De Lellis and Székelyhidi Jr. in [4], building on the ideas in [14], [26]. In order
to treat the dissipative term —r /A, not present in the Euler system, we cannot
proceed as in [6], [9], since in these works Holder continuous weak solutions are
constructed, which is possible only by using building blocks which are sparse
in the frequency variable and for small fractional powers of the Laplacian. In-
stead, the main idea, which is also used in [5], is to use building blocks for
the convex integration scheme which are “intermittent”. That is, the building
blocks we use are spatially inhomogeneous, and have different scaling in dif-
ferent LP norms. At high frequency, these building blocks attempt to saturate
the Bernstein inequalities from Littlewood-Paley theory. Since they are built
by adding eigenfunctions of curl in a certain geometric manner, we call these
building blocks intermittent Beltrami flows. In particular, the proof of Theo-
rem 1.2 breaks down in 2D, as is expected, since there are not enough spatial
directions to oscillate in. The proof of Theorem 1.2 is given in Section 2 below.

The idea of using intermittent building blocks can be traced back to classi-
cal observations in hydrodynamic turbulence, see for instance [20]. Moreover,
in view of the aforementioned works on the Onsager conjecture for the Eu-
ler equations, we are naturally led to consider the set of accumulation points
in the vanishing viscosity limit ¥ — 0 of the family of weak solutions to the
Navier-Stokes equations which we constructed in Theorem 1.2. We prove in
this paper that this set of accumulation points, in the CY L2 topology, contains
all the Holder continuous weak solutions of the 3D Euler equations:

THEOREM 1.3 (Dissipative Euler solutions arise in the vanishing viscosity
limit). For B > 0 let u € Cfx(T?’ x [—2T,2T]) be a zero-mean weak solution
of the Euler equations. Then there exists § > 0, a sequence v, — 0, and a
uniformly bounded sequence v'n) € CY([0,T]; HZ(T?)) of weak solutions to the
Navier-Stokes equations, with v") — u strongly in C?([0, T); L2(T?3)).

In particular, Theorem 1.3 shows that the nonconservative weak solutions
to the Euler equations obtained in [26, 4] arise in the vanishing viscosity limit
of weak solutions to the Navier-Stokes equations. Thus, being a strong limit of
weak solutions to the Navier-Stokes equations, in the sense of Definition 1.1,
cannot serve as a selection criterion for weak solutions of the Euler equation.
Whether similar vanishing viscosity results hold for sequences of Leray-Hopf
weak solutions, or for suitable weak solutions of (1.1), remains a challenging
open problem. The proof of Theorem 1.3 is closely related to that of Theo-
rem 1.2, and is also given in Section 2 below.

This content downloaded from
128.122.80.127 on Fri, 12 Jul 2019 18:40:33 UTC
All use subject to https://about.jstor.org/terms



NONUNIQUENESS OF NAVIER-STOKES WEAK SOLUTIONS 105

2. Outline of the convex integration scheme

In this section we sketch the proof of Theorem 1.2. For every integer ¢ > 0

o

we will construct a solution (vg, pg, Ry) to the Navier-Stokes-Reynolds system

(2.1a) Orvg + div (v ® vg) + Vpy — vAvy = div ]Q%q,
(2.1b) divv, = 0.

where the Reynolds stress I%q is assumed to be a trace-free symmetric matrix.

2.1. Parameters. Throughout the proof we fix a sufficiently large, univer-
sal constant b € 16N, and depending on b we fix a regularity parameter 8 > 0
such that 8b? < 4 and Bb < 1/20. We remark that it is sufficient to take b = 2°
and 3 = 2716,

The relative size of the approximate solution v, and the Reynolds stress
error }?q will be measured in terms of a frequency parameter A\, and an ampli-
tude parameter ¢, defined as

)\q - a(bQ)a
_ 38y 2
g = A} A2
for some integer a > 1 to be chosen suitably.

2.2. Inductive estimates. By induction, we will assume the following esti-
mates? on the solution of (2.1) at level g¢:

(2.2) lvgllca, < Ag,
o Il <355
(2.0 o]y, = 22"

We additionally assume

(2.5) 0 <e(t)— /3 lvgl? dz < 6441
T
and

5 .
(2.6)  e(t) — . |vg(, )2 dxgquJrOl = 0y(,1) =0 and Ry(-,1)

for all t € [0,T7.

Il
e

*Here and throughout the paper we use the notation: [|f|,, = |||l ccpr, for 1 < p <
t x

00, [Ifller = ”f”LfOCjDV = Zog\a|§1\r D% fll oo ”f”ci\ft = Zogn_g.\(quv 107 D* f|| o, and
| fll s = ||fHLtooW;,p, for s >0, and 1 < p < co.
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106 TRISTAN BUCKMASTER and VLAD VICOL

2.3. The main proposition and iterative procedure. In addition to the suf-
ficiently large universal constant b, and the sufficiently small regularity param-
eter = [(b) > 0 fixed earlier, we fix the constant M, = HeHCtl. The following
iteration lemma states the existence of a solution of (2.1) at level ¢ + 1, which
obeys suitable bounds.

PRrROPOSITION 2.1. There exists a universal constant M > 0, a suffi-
ciently small parameter eg = egr(b, ) > 0 and a sufficiently large parame-
ter ag = ao(b, B,er, M, M.) > 0 such that for any integer a > ag, which is
a multiple of the Ny of Remark 3.3, the following holds: Let (vq,pq,lo%q) be
a triple solving the Navier-Stokes-Reynolds system (2.1) in T3 x [0,T)] satis-
fying the inductive estimates (2.2)—(2.6). Then there exists a second triple
(vq+1,pq+1,f2q+1) solving (2.1) and satisfying the (2.2)—(2.6) with q replaced
by q + 1. In addition we have that

1
(2.7) g1 — vgll 2 < M.

The principal new idea in the proof of Proposition 2.1 is to construct the
perturbation v411 — v, as a sum of terms of the form

(2.8) ag)We)

where W ¢) is an intermittent Beltrami wave (cf. (3.12) below) with frequency
support centered at frequency £\,11 for € € S2. While these intermittent Bel-
trami waves have similar properties (cf. Proposition 3.4) to the usual Beltrami
flows used in the previous convex integration constructions [16, 2, 17, 1, 3] for
the Euler equations, they are fundamentally different since their L' norm is
much smaller than their L? norm (cf. Proposition 3.5). The gain comes from
the fact that the Reynolds stress has to be estimated in L' rather than L2,
and that the term vAw is linear in v. At the technical level, one difference
with respect to [26], [4] is the usage of very large gaps between consecutive
frequency parameters (i.e., b > 1), which is consistent with a small regularity
parameter 8. Next, we show that Proposition 2.1 implies the main theorems
of the paper.

2.4. Proof of Theorem 1.2. Choose all the parameters from the statement
of Proposition 2.1, except for a, which we may need to be larger (so that it is
still larger than ag).

For ¢ = 0 we note that the identically zero solution trivially satisfies (2.1)
with Ro = 0, and the inductive assumptions (2.2), (2.3), and (2.4) hold. More-
over, by taking a sufficiently large such that it is in the range of Proposition 2.1
(i.e. @ > ap) we may ensure that

s
le(®)] < llellgy = Me < 105 = 7o
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NONUNIQUENESS OF NAVIER-STOKES WEAK SOLUTIONS 107

Then the zero solution also satisfies (2.5) and (2.6).
For ¢ > 1, we inductively apply Proposition 2.1. The bound (2.7) and
interpolation implies®

00 0

1-p' /
> llvgrt = vallgsr S D Mgt — vgll 2" (vgrallen + lvgllen)”
q=0 q=0

o) 1*B/ 1*5/

g 38 gt

<SS MUEINTTTA LT A
q=0

(2.9) S MU

for 8/ < B/(s+ 8), and hence the sequence {v,},>0 is uniformly bounded CYHY',
for such . Furthermore, by taking a sufficiently large (depending on b, 8 and
B') the implicit constant in (2.9) can be made to be universal. From (2.1), (2.3),

the previously established uniform boundedness in C{ L2, and the embedding
W2l C L2 we obtain that

1850l -5 S [Pdiv (vg ® vg) — vAv, — Pdiv Ry,
< M1vg @ vgll 1 + llvgl 2 + || 4]

< M2,

Ll

where P is the Leray projector. Thus, the sequence {vg}q>0 is uniformly
bounded in C}H,3. Tt follows that for any 0 < 8" < 3’ the sum

Z(Uq—irl —Vg) =10

q>0

converges in COHS" | and since HéqHLl — 0 as ¢ — oo, vis a CVHP" weak
solution of the Navier-Stokes equation. Lastly, in view of (2.5) we have that
the kinetic energy of v(-,t) is given by e(t) for all ¢ € [0,7T], concluding the
proof of the theorem.

2.5. Proof of Theorem 1.3. Fix 8 > 0 and a weak solution u € C’fx to the
Euler equation on [—-2T,2T]. The existence of such solutions is guaranteed in
view of the results of [26], [4] for 8 < 1/3, and for 3 > 1 from the classical local
existence results. Let M, = ||ul|5. Pick an integer n > 1.

Choose all the parameters as in Proposition 2.1, except for a > ag, which
we may take even larger, depending also on M, and ' which obeys 0 < ' <
min(8/2,8/@8 +8)). We make a even larger, depending also on [, so that in

3Throughout this paper, we we will write A < B to denote that there exists a sufficiently
large constant C', which is independent of ¢, such that A < CB.

This content downloaded from
128.122.80.127 on Fri, 12 Jul 2019 18:40:33 UTC
All use subject to https://about.jstor.org/terms



108 TRISTAN BUCKMASTER and VLAD VICOL

view of (2.9) we may ensure that

o0 1_6/ . 1_(.;’ , 1
1—8/\3B—=—\—B==5— 48
(2.10) > MU Agi1 ,\qu—QCn
q=n

where C'is the implicit constant in (2.9).

Let {¢¢}->0 be a family of standard compact support (of width 2) Friedrichs
mollifiers on R? (space), and {¢.}c>0 be a family of standard compact support
(of width 2) Friedrichs mollifiers on R (time). We define

Up = (u g ¢)\;1) *t Py -1

to be a mollification of u in space and time, at length scale and time scale
AL, restricted to the temporal range [0, T]. Also, on [0,T] define the energy
function

e(t) :/ |’Un($,t)|2dl‘+5£
T3 2

that ensures (2.5) and (2.6) hold for ¢ = n.
Since u is a solution of the Euler equations, there exists a mean-free p,
such that

Oy + div (v, @ vy,) + Vp, — )\;QAvn =div (Rn),
where Rn is the traceless symmetric part of the tensor
(Un @ vn) = ((u@u) % Py-1) % py-1 — A2V,
Using a version of the commutator estimate introduced in [10], which may for
instance be found in [13, Lemma 1], we obtain that

<AMy + A2

CON n

(2.11) |72

u &[]

In addition, from a similar argument it follows that

(2.12) B M+ 27202,
t,x

(2.13) [onlles S NP0,

Setting

V=1, =\

then with a sufficiently large, depending on M, and 3, we may ensure the pair

o

(vn, Ry) obey the inductive assumptions (2.2)-(2.4) for ¢ = n. Additionally,
we may also choose a sufficiently large, depending on M, and 3, so that

3 1
B—B <
(2.14) AP M, < S| ToE
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NONUNIQUENESS OF NAVIER-STOKES WEAK SOLUTIONS 109

At this stage we may start the inductive Proposition 2.1, and as in the proof of
Theorem 1.2, we obtain a weak solution u(*») of the Navier-Stokes equations,
with the desired regularity, such that

1

- :
n

R

o T2 e = vall g <

in view of (2.10) and (2.14). Since n was arbitrary, this concludes the proof of
the theorem.

3. Intermittent Beltrami waves

In this section we will describe in detail the construction of the intermittent
Beltrami waves which will form the building blocks of our convex integration
scheme. Very roughly, intermittent Betrami waves are approximate Beltrami
waves (approximate eigenfunctions to the curl operator) whose L! norm is
significantly smaller than their L? norm.

3.1. Beltrami waves. We first recall from Proposition 3.1 and Lemma 3.2
in [15] the construction of Beltrami waves (see also the summary given in [2]).
In order to better suit our later goal of defining intermittent Beltrami waves,

the statements of these propositions are slightly modified from the form they

appear in [2], by making the substitution |—£| — &

PROPOSITION 3.1. Given £ € S2NQ3, let A € S2N Q3 be such that
Ac-£=0, |[Ael =1, A_¢ = Ag.

Furthermore, let

Let A be a given finite subset of SN Q3 such that —A = A, and let A € Z be
such that AN C Z3. Then for any choice of coefficients ag € C with ag = a_¢
the vector field

(3.1) Wi(z) =Y agBee™t "
e
is real-valued, divergence-free and satisfies
W2
5
Furthermore, since B¢ @ B_¢ + B_¢ ® Bg = 1d — £ ® £, we have

(3.2) div(W @ W) =V

_1 2 (1 —
(3.3) ’H‘3W®de_2§\|a§| (Id—¢®¢).
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110 TRISTAN BUCKMASTER and VLAD VICOL

PROPOSITION 3.2. For every N € N, we can choose ey > 0 and X\ > 1 with
the following property. Let B, (Id) denote the ball of symmetric 3 x 3 matrices,
centered at 1d, of radius ey. Then, there exist pairwise disjoint subsets

A CSPNQ* a€{l,...,N},
with M\, € Z2, and smooth positive functions
7 e C®(B(1d)  ae{l,....N} €A,
with derivatives that are bounded independently of A, such that
(a) € € Ay implies =€ € A, and ,yéoz) = 'y(:?;
(b) for each R € B, (Id), we have the identity
1 2
(3.4) R=5 3 ((®) 1d-¢29).
§€Aa
Remark 3.3. Throughout the construction, the parameter NV is bounded
by a universal constant; for instance one can take N = 2. Moreover, for each
« the cardinality of the set A, is also bounded by a universal constant; for
instance one may take |A,| = 12. Consequently, the set of direction vectors
UM Ugen, {€, Ag, Ex Ag} € SPNQ3 also has a universally bounded cardinality.

Therefore, there exists a universal sufficiently large natural number Ny > 1
such that we have

{NAE, NaAg, Na& x A¢} C NAS*NZ?

for all vectors ¢ in the construction.
It is also convenient to introduce a sufficiently small geometric constant
ca € (0,1) such that

E+E#0 = |4+ >2e

for all £,&' € Ay and all @ € {1,...,N}. In view of the aforementioned
cardinality considerations, the geometric constant ¢, is universal to the con-
struction.

The implicit constants in the < of the below estimates are allowed to

depend on N and cp, but we will not emphasize this dependence, since these
are universal constants.

3.2. Intermittent Beltrami waves. Recall cf. [22, §3] that the Dirichlet
kernel D,, is defined as

n

(3.5) Do(z) = 3 et = sin((n +1/2)z)

Pl sin(z/2)
and has the property that for any p > 1 it obeys the estimate
Dol o ~ 077,
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NONUNIQUENESS OF NAVIER-STOKES WEAK SOLUTIONS 111

where the implicit constant only depends only on p. Replacing the sum in
(3.5) by a sum of frequencies in a 3D integer cube

Q, = {g: (oK, €): j. k0 € {—T,...,r}}

and normalizing to unit size in L?, we obtain a kernel
1 1

Dy(2) i= —— Z T = Z i1 +haa+Las)
2r+1)% 25 @) L
such that for 1 < p < oo, we have
(3.6) ID,)I72 = (27)%,  and  ||Dyl, S

where the implicit constant depends only on p. Note that —Q, = Q,..

The principal idea in the construction of intermittent Beltrami waves is
to modify the Beltrami waves of the previous section by adding oscillations
that mimic the structure of the kernels D, in order to construct approximate
Beltrami waves with small LP norm for p close to 1. The large parameter r
will parametrize the number of frequencies along edges of the cube .. We
introduce a small parameter o, such that Ao € N parametrizes the spacing
between frequencies, or equivalently such that the resulting rescaled kernel is
(T/xc)3-periodic. We assume throughout the paper that

(3.7) or < e J(10Ny),

where ¢y € (0,1) and Ny > 1 are the parameters from Remark 3.3. Lastly,
we introduce a large parameter u € (A, A?), which measures the amount of
temporal oscillation in our building blocks. The parameters A, r,o and u are
chosen in Section 4 below.

We recall from Propositions 3.1 and 3.2 that for £ € A4, the vectors
{€, A¢, & x A¢} form an orthonormal basis of R3, and by Remark 3.3 we have

NAE, NaAg, Naéx Ac€Z?  forall €€ A,,a€{l,...,N}.

Therefore, for ¢ € AL, we may define a directed and rescaled (T/xo)3 = (R 2nroz)3-
periodic Dirichlet kernel by

() (5 ) = Mg (25 1)

(3:8) = Dy (Ao NA(E -z + pt), A\oNp A - 2, Ao NA(€ x Ag) - ).

For £ € A7, we define 1) (7,t) := n_¢)(z,t). The periodicity of 7 follows

from the fact that D, is T3-periodic, and the definition of Ny. We emphasize
that we have the important identity

1
(3.9) ;atn(g) (z,t) = £(§ - V)ne(x,t), forall e AL

as a consequence of the fact that the vectors A¢ and § x A¢ are orthogonal to &.
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112 TRISTAN BUCKMASTER and VLAD VICOL

Note that the map
(1,22, 23) = (AONA(§ - @ + pt), \oNpAg - £, \oNp (€ X Ag) - x)

is the composition of a rotation by a rational orthogonal matrix which maps
(e1,e2,e3) to (& Ag,& x Ag), a rescaling by AoNy, and a translation by
Ao Npputer. These are all volume preserving transformations on T2, and thus
by our choice of normalization for (3.6) we have that

(3.10) ﬁgnéﬂ%ﬂdw:l, and ”77(5)‘

for all 1 < p < oo, pointwise in time.
Letting W) be the Beltrami plane wave at frequency A, namely

(3.11) Wie) () = Wea(z) = Bee™,

we have

< 7'3/2_3/p
Lp(T3) ™~

curl W(g) = )\W(E) and div W(g) =0.
We take A to be a multiple of N, so that W is T3-periodic. Finally, we

define the intermittent Beltrami wave W ¢ as

(3.12)
Wiey(@,t) = We x o (@, 1) = N xor (2, ) We A () = ey (2, ) Wie) (2).
We first make a few comments concerning the frequency support of W ).

In view of (3.7) and the definition of 1), which yields P<oxorn, 1) = 7(e), We
have that

(3.13) PeopPsr,Wie) = Wi,
while for £ # —¢&, by the definition of ¢j in Remark 3.3 we have
(3.14) PeiPley Wiy @ Wiey) = W) @ Wer.

Note that the vector W) is not anymore divergence free, nor is it an
eigenfunction of curl. These properties only hold to leading order:

1 .. 1 Aor

AW |, =5 [[Be- Vg . s 5 =om
1 1 Aor
XCHI‘]W@) — W(f) Lo = X an(f) X Bg‘ 2 S, T =or

and the parameter or will be chosen to be small. Moreover, from Proposi-
tions 3.1 and 3.2 we have:

PROPOSITION 3.4. Let W¢) be as defined above, and let Ao, €, 7y(e) = 'yéa)
be as in Proposition 3.2. If ag € C are constants chosen such that ag = a_¢,

the vector field
> > W)

a feha
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NONUNIQUENESS OF NAVIER-STOKES WEAK SOLUTIONS 113

is real valued. Moreover, for each R € B._ (Id) we have the identity
2 2
(315) (3 () ]frg W@ W_gde = 2e(R) BB =R
EEAQ €EAOL

Proof of Proposition 3.4. The first statement follows from the fact that
N—e)(x,t) = ne(x,t). Identity (3.15) follows from (3.4) upon noting that
2Re (Be ® B_¢) =1d — £ ® £, and the normalization (3.10). O

For the purpose of estimating the oscillation error in Section 5, it is useful
to derive a replacement of identity (3.2), in the case of intermittent Beltrami
waves. For this purpose, we first recall the vector identity

(A-V)B+(B-V)A=V(A-B)— AxcurlB— B x curl A.
Hence, for £,&' € A, we may rewrite
(3.16)
div. Wigy @ Wiey + Wey @ W) )
(= Wie) @ Wigny + Wien @ W(fg) Vi)
+ 77(s>g7(5'> Wie) - VIWieny + Wiery - VIW(g))
(- (W@')( V) meien)) W(Q) + (W(s)( V) neme)) Wien
+ ﬁ(s)ﬁ(ng Wie)- W) — Aﬁ(a(ﬂ(s') Wie) x Wigy + Wigy x W)
(- (Ww)( V) meyien)) W&) + (W<s>(' V) neien)) Ween
+meninV Wi - W) -
In the last equality we have used that the cross-product is antisymmetric.

Let us now restrict to the case £ + ¢ = 0. Recall that W) = %(Ag -+

1€ X 145)6"’\5'”C ,§- A =0, and |A¢| = 1. Therefore, when ¢ = —¢ the last term
on the right side of (3.16) is zero, as W(g) - W_¢) = 1. Thus we obtain

ldiv Wi ©W(_g)+W_g © W)
(= Wiy Vi) Wl + Wi Vindy) Wie
(= (A Do) At (6% A0 V) (€ x A
= Wik (€ V) e
In the last equality above we have used that {{, A¢,§ x A¢} is an orthonormal
basis of R3. The above identity and property (3.9) of 7(¢) shows that
(3.17) v Wi @ W(_g)+W_g @ Wie) = Vit - iat”é)'

which is the key identity that motivates the introduction of temporal oscilla-
tions in the problem.
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114 TRISTAN BUCKMASTER and VLAD VICOL

Recall, the intermittent Beltrami waves were designed to include addi-
tional oscillations that cancel in order to minimize their L' norm, in a way
that is analogous to the cancellations of the Dirichlet kernel. In this direc-
tion, an immediate consequence of property (3.10) of 7), of the frequency
localization in the spatial variable (3.13), and of the frequency of the temporal
oscillations, are the following bounds for 7)) and the the intermittent Beltrami
waves W g):

PROPOSITION 3.5. Let W ¢y be defined as above. The bound
(3.18) HVN@KW(@HLP < )\N()\(TTM)Krs/2_3/p,
(319) [V 0 ng)), < (hor) (rny =

foranyl <p<oo, N>0 and K > 0. The implicit constant depends only on
N, K and p.

Remark 3.6. We note that while in the above proposition we state esti-
mates for all orders of derivatives (N and K), only derivatives up to a fixed
order, which is independent of ¢, appear in the entire proof of Proposition 2.1.
Hence the implicit constants that depend on the number of derivatives taken
are independent of ¢q. This remark also applies to estimates in later parts of
the paper (e.g. mollification estimates).

3.3. LP decorrelation. We now introduce a crucial lemma from [5] that
will be used throughout the paper. Suppose we wish to estimate

| W,
for some arbitrary function f : T? — R. The trivial estimate is
| W, S 171l [Wee | .

Such an estimate does not however take advantage of the special structure
of the (27 Ao)~! periodic function W(g)e_ikg'“”. It turns out that if say f has
frequency contained in a ball of radius p and Ao > p then one obtains the
improved estimate

| £ wee)

Sl

W) !

L’
< Wi, This idea is

one of the key insights of [5] and is summarized in Lemma 3.7 below. For

which gives us the needed gain because HW(@’

convenience we include the proof in Appendix A.
LEMMA 3.7. Fiz integers M, k, A > 1 such that

2mV/3A 1 A
- < 3 and A —ar =
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NONUNIQUENESS OF NAVIER-STOKES WEAK SOLUTIONS 115

Let p € {1,2}, and let f be a T3-periodic function such that there erists a
constant Cy such that

1D fllLe < Cp N

for all 1 < j < M + 4. In addition, let g be a (T/x)3-periodic function. Then
we have that

Ifgllze < Crllgllze

holds, where the implicit constant is universal.

4. The perturbation
In this section we will construct the perturbation wgy1.

4.1. Mollification of vq. In order to avoid a loss of derivative, we replace v,
by a mollified velocity field vy. Let {¢pc}eso be a family of standard Friedrichs
mollifiers (of compact support of radius 2) on R?® (space), and {¢.}e~0 be a
family of standard Friedrichs mollifiers (of compact support of width 2) on R
(time). We define a mollification of v, and ]fiq in space and time, at length
scale and time scale ¢ (which is defined in (4.16) below) by

Uy = (Uq *x ¢€) *t ©p,
éﬁ = (éq *x (bé) *t e

Then using (2.1) we obtain that (v, Ry) obey

(4.1)

(42&) atUg + div (Uﬁ & Uz) + sz - AU@ = div (éﬁ + Ecommutator)a
(4.2b) divue, =0,

where the new pressure p, and the traceless symmetric commutator stress
Rcommutator are given by

(4 3) ﬁf = (pq * ¢€) *t ng - |U€|2 - (‘vq|2 *x Qbé) *t SOZ) )
Ecommutator = (’l}gé’Uf) - ((’Uqévq) * ¢€) *t Pe-

Here we have used a®b to denote the traceless part of the tensor a ® b.
Note that in view of (2.2) the commutator stress Rcommutator Obeys the
lossy estimate

(44) || Reommutator|, . S £llvg @ vllen S €l1vgllen lgll e < €A,

Lo ™

The parameter ¢ will be chosen (cf. (4.16) below) to satisfy

(4.5) (OXg1) ™2 < €< A0,
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116 TRISTAN BUCKMASTER and VLAD VICOL

In particular, Ry inherits the L' bound of éq from (2.3), and in view (2.4) and
the upper bound on ¢ in (4.5), we have that

(4.6) Hi’a\

< \10)—N+1 < y—N
on S <.

Moreover, from (2.2) and the upper bound on ¢ from (4.5) we obtain the bounds

(4.7) lvg = vell oo S €llvgllen S €A,
(4.8) loeller, S €7 llogller S €70 S €77

4.2. Stress cutoffs. Because the Reynolds stress ]Q%g is not spatially homo-
geneous, we introduce stress cutoff functions. We let 0 < X, x < 1 be bump
functions adapted to the intervals [0,4] and [1/4,4] respectively, such that
together they form a partition of unity:

(4.9) Xow) + D Xi(y) =1, where Xi(y) = X(4 '),
i>1

for any y > 0. We then define

~ é@(.’lﬁ,t)
4.10 Az, t) =y ) =Y -
(4.10) X (T, 1) = Xig1(z,t) = X <<100>\qER5q+1>>

for all ¢ > 0. Here and throughout the paper we use the notation (A) =
(1 + |A|*)'/? where |A| denotes the Euclidean norm of the matrix A. By
definition the cutoffs x(;) form a partition of unity

2 _
i>0
and we will show in Lemma 4.1 below that there exists an index imax = imax(q),

such that X@) =0 for all i > imayx, and moreover that 4%max < ¢t

4.3. The definition of the velocity increment. Define the coefficient func-
tion ag; 441 by

1 éé
(4.12) Q) = Agiq+1 *= Pi/QXi,qul’Y(S) (Id N p-(t)) :

where for ¢ > 1, the parameters p; are defined by
(413) pPi = A;6R5q+14i+co

where cg € N is a sufficiently large constant, which depends on the e, in
Proposition 3.4. The addition of the factor 4° ensures that the argument of
Y(¢) 1s in the range of definition. The definition py is slightly more complicated
and as such its definition will be delayed to Section 4.4 below; see (4.25) and
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NONUNIQUENESS OF NAVIER-STOKES WEAK SOLUTIONS 117

(4.26). Modulo the definition of py, we note that as a consequence of (3.14),
(3.15), (4.11), and (4.12) we have

(4.14) >y ][ Wi @ Wien) do =3 pixyld = R,
>0 £,6'€N T3 i>0
which justifies the definition of the amplitude functions a).
By a slight abuse of notation, let us now fix A, o, r, and u for the shorthand
notation W ¢), W¢) and ) introduced in Section 3.2 (cf. (3.8), (3.11), (3.12)):

W) = Wenomm Wiy =Wenn and e = nex0mm

where the integer r, the parameter o, and the parameter u are defined by

3/4 —15/16 5/4

(4.15) =X\ o= and  p=Aj;.

The fact that Aj+10 € N is ensured by our choices a € N and b € 16N. In order
to ensure A\g41 is a multiple of Ny, we need to choose a which is a multiple of
Nyj. Moreover, at this stage we fix

—20
(4.16) =22,

which in view of the choice of ¢ in (4.15), ensures that (4.5) holds, upon taking

Ao sufficiently large. In view of (4.16), throughout the rest of the paper we

may use either /2 < \;2%° or Ay 5 < AgF, with e > 0 arbitrarily small, to absorb

any of the constants (which are g-independent) appearing due to < signs in

the below inequalities. This is possible by choosing Ay = a, sufficiently large.
The principal part of wgy1 is defined as

® ._
(4.17) war =2 2 ae Wee,
% {61\@)

where the sum is over 0 < i < ipax(gq). The sets A(,-) are defined as follows.
In Lemma 3.2 it suffices to take N = 2, so that « € {ag, a1}, and we define
Ay =A This choice is allowable since x;x; = 0 for [ — j| > 2. In order
to fix the fact that wéi)1 is not divergence free, we define an incompressibility
corrector by

@ . 1
(4.18) Wy 'y -—/\72 Zﬁ \ a(é)”(&)) X Wig).-
g+l A fEA(»L)

Ojimod2 "

Using that div W) = 0, we then have

c) 1 1
(4.19) wl) +wl?), = T 2 bt aeneoWe) = 5
q+1 7 fEA(i) att

and thus

div (w((f_?l + wéﬁl) = 0.

This content downloaded from
128.122.80.127 on Fri, 12 Jul 2019 18:40:33 UTC
All use subject to https://about.jstor.org/terms



118 TRISTAN BUCKMASTER and VLAD VICOL

(c)

In addition to the incompressibility corrector w,;;, we introduce a tem-

poral corrector w((] ll, which is defined by

(4.20) Z > ]P)H([P;AO ateynie)§

i EEA

Here we have denoted by Py the operator which projects a function onto
its nonzero frequencies Pof = f — ng f, and have used Py for the usual

Helmholtz (or Leray) projector onto divergence-free vector fields, Py f = f —

(t)
g+1
calling (3.17). Indeed, if we multiply identity (3.17) by a%g), remove the mean

and a suitable pressure gradient, the leading order term left is

— () PuPo(SafeOemie));

see (5.13) below. This term is not of high frequency (proportional to Ag4+1).
Moreover, upon writing this term as the divergence of a symmetric stress, the

V(A~!div f). The purpose of the corrector w becomes apparent upon re-

size of this stress term in L' is §,41, instead of §,19; thus this term does not
obey a favorable estimate and has to be cancelled altogether. The corrector
wffll is designed such that its time derivative achieves precisely this goal, of
cancelling the —(1/M)IP’H]P’¢0(§(1 8t77( )) term.

Finally, we define the Velomty increment wg41 by
¢
(4.21) wat == w + 'Y+ wll),

which is by construction mean zero and divergence-free. The new velocity field
Ug+1 is then defined as

(4.22) Vg1 = Vg + Wy 1-

4.4. The definition of po. It follows from (4.14) that with the p; defined
above we have

(4.23)
2
/ aoWe| dr=3_ > / aentr (Wiey ® W) dz
i>1 /T3 £ i>1 €8 €N
= Z Z / a%g)tr ][ (W) @ W(_g)) dx + error
‘ T3 T3
i>1¢eh,)
= Z}Z:pZ / X(z dx + error,
i>1

where the error term can be made arbitrarily small since the spatial frequency
of the a(¢)’s is ¢!, while the minimal separation of frequencies of Wiy @W_ (e
is Agr10 > ¢71. The term labeled as error on the right side of (4.23) above will
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NONUNIQUENESS OF NAVIER-STOKES WEAK SOLUTIONS 119

be estimated precisely in Section 6 below. We will show in the next section,
Lemma 4.3 that

(4.24) sz/ X(z dr S 6g+1A; "
i>1
In order to ensure (2.5) is satisfied for ¢ + 1, we design pp such that
2

/11" Z a@yWg| dr ~elt / |vg)? da:—3ZpZ/ X? dx.

° §€M (o) i>1

We thus define the auxiliary function

(4.25) % /Xoda: ax e(t) — 5q2+2 O).

The term —%+2/2 is added to ensure that we leave room for future corrections

and the max is in place to ensure that we do not correct the energy when

the energy of v, is already sufficiently close to the prescribed energy profile.

This later property will allow us to take energy profiles with compact support.
. . 1/2 . .

Finally, in order to ensure py~ is sufficiently smooth, we define pg as the square

of the mollification of p'/? at time scale ¢

2
(1.26) b= (") o)
We note that (2.5) and (4.34) below imply that

S 6N

1
(427) HpOHC? < 25q+1 and Hp()/ CN ~ Yq+

for N > 1. By a slight abuse of notation we will denote

Ry :{pf(g) if o # 0 and Ry # 0,

po(t) 0 otherwise.

Observe that if xo # 0 and R, # 0, then (2.6) and (4.24) ensure that py > 0.

In order to ensure that Id — p%) is in the domain of the functions ~() from

Proposition 3.4, we will need to ensure that

Ry
po(t)

We give the proof of (4.28) next. Owing to the estimate

<e

(4.28) ‘ <e,

Le= (supp x(0))

et) = | Jug(a,t)]* dw—e() = | |ug(w,t)[*| dw S £

T3 T3

This content downloaded from
128.122.80.127 on Fri, 12 Jul 2019 18:40:33 UTC
All use subject to https://about.jstor.org/terms



120 TRISTAN BUCKMASTER and VLAD VICOL

for ' € (t — £,t + ¢) which follows from Lemma 6.1 in Section 6, and the
inequality ¢'/% < 8,11, we may apply (2.6) to conclude that it is sufficient to
check the above condition when

Og+1
t) — )2 do > L=
6( ) ’]I‘S |UQ($7 )‘ €z — 200
Then by (4.24), the above lower bound implies
- Og+1
t) > 4=
M = 300

and thus

(1 Og+1 _ 5q+2) > Og+1
”]1“3\ 400 2 /= 500’

where we used (4.34) from Lemma 4.3 below to bound the integral. Finally,
using the estimate (6.4) from Section 6 we obtain

Og+1
t) > L=

Since on the support of yo we have ‘ég‘ < 1000\, “Rég4+41, we obtain (4.28).

4.5. FEstimates of the perturbation. We first collect a number of estimates
concerning the cutoffs x(;) defined in (4.10).

LEMMA 4.1. For q > 0, there exists imax(q) > 0, determined by (4.31)
below, such that

X@) =0 forall i>imax.
Moreover, we have that for all 0 < i < imax
(4.29) pi S 4imax < g1

where the implicit constants can be made independent of other parameters.
Moreover, we have
imax

(4.30) S pi*2t <36
=0

Proof of Lemma 4.1. Let i > 1. By the definition of X; we have that
X(i) = 0 for all (z,t) such that
(1007 AR Ry, 1)) < 477

Using the inductive assumption (2.4), we have that

|l <

10 10+eR
o 5 o = o 2
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since the implicit constant Cp,ax is independent of ¢ and of e (it only depends
on norms of the mollifier ¢ used to define Ry), and thus we have Cpax < )\ZR.
Therefore, if 7 > 1 is large enough such that

<100—16(1—J:1A;0+28R> S 47;—2,

then x(;) = 0. Therefore, as eg < 1/2 and since we have
<100715q—+11/\éo+253> < <6q_421)\;0+1/2> < 5(1—#)\31

for all ¢ > 0 (since b is small), we may define iy, by

(4.31) imax(q) = min {i > 0: 472 > A5}

Observe that, the first inequality of (4.29) follows trivially from the definition
of p; for i > 1 and (4.27) for ¢ = 0. The second inequality follows from the fact
that )\éléq_ﬁl < ¢~!, which is a consequence of b3 being small. Finally, from
the definition (4.13) and the bound (4.27) we have

Tmax Tmax

Z pll/2272 < 26;61 + ¢ Z )\;aa/25;f1
i=0 =1

1 C —€R -
<BE 24200 3 1o (A0, )))

Since /\éléq_ﬁl < )\20, which is a consequence of 5b being small, we can bound

the second term above as
29002 (3 + logy (AL10.1)) < 2900 "2(3 + 201og, (A)) <1

by taking a (and hence \;) to be sufficiently large, depending on er and c.
This finishes the proof of (4.30). O

The size and derivative estimate for the x(;) are summarized in the fol-
lowing lemma

LEMMA 4.2. Let 0 <4 < ipax. Then we have

(4.32) HX(i) 12 S 27",
(4.33) e on SN N
for all N > 1.
Proof of Lemma 4.2. We prove that
HX(i) S 47,

so that the bound (4.32) follows since x(; < 1, upon interpolating the L? norm
between the L' and the L™ norms.
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Pl

5 »
W <|T |HX(O)HL°° <1< 47t For
i > 2, we use the Chebyshev’s inequality and the inductive assumption (2.3)
to conclude

Hx(i) S sup’ r: 47 < <A5R5_ (Ro(z,1)/100) < 4”‘1}’
< sup‘{x 41 < Ag0, I\Rg(x t)|/100 + 1}‘

< sup’ x: 100A;535q+14’_2 < |R@($,t)’}'

E€R 1
< )\ 511-!—14 LooLl

ER —1 —1
SRV A T

proving the desired L! bound. In order to prove the estimate (4.33) we appeal
to [2, Prop. C.1], which yields

I N
Ixa o S It )\ER(SqHRg/IOO)H o+ |70, e /100)] o
. o N
< —N+1
SR+ HRf o
< E—N—&—l
< ALOp=N+1 4 \ION < \10y1-N
~ q q ~ q Y
where we have used that 6,41 < 1 and (2.4). O
LEMMA 4.3. We have that the following lower and upper bounds hold:
(4.34) / dx > "]1‘3‘
' T3 ( ) 2
(4.35) sz/ x(l z,t)dr S A g1
i>1

Proof of Lemma 4.3. By Chebyshev’s inequality, we have

. -1 T3] || B || T3
{$| ‘RZ’ > 2)\[]—€R6q+1 ‘VHB‘ }’ < _UR L1 < o 1 < | |’
270 g1 2Xq "0q41 2
where we have used (2.3). Then from the definition of x ) we obtain (4.34).
Observe that by definition,

1 é@
et (i)
; 0 ; ‘ 4\ 100Ag R 8441
S L L e A

from which we conclude (4.35). O
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LEMMA 4.4. The bounds

(4.36) la)||,. S 227 S 0.,
(4.37) lae],.. s o S0,
(4.38) Ha(f)Hcgt <N

hold for all 0 < i < imax and N > 1.

Proof of Lemma 4.4. The bound (4.37) follows directly from the defini-
tions (4.12), (4.13) together with the boundedness of the functions (¢ and pg
given in (4.27). Using (4.32) additionally, the estimate (4.36) follows similarly.
For (4.38), we apply derivatives to (4.12), use [2, Prop. C.1], estimate (4.33),
Lemma 4.1, the bound (4.6) for Ry, the definition (4.16) of £, and the bound
(4.29) to obtain the following estimate for the case i > 1:

H“(&)Hcmﬁ ? HX(i)

o 10 )

ol oo 1= 520)],.)

10 )1—N
+ /\q / )
5 2/2 pi—lg—N-',-l ”Rz‘ 1 +P,L_1/2£_N)

1 1o _ —1 _
p/2( ilg N+1)\c110+/)¢ 1)\(110N_’_pi /25 N)
N,

1/2

(439) SO L e

o, T pi HRK

S
S

For ¢+ = 0, the time derivative may land on p(l)/Q. We use (4.27) to estimate this
contribution similarly, by loosing an /=1 for each time derivative. ([

PROPOSITION 4.5. The principal part of the velocity perturbation, the in-
compressibility, and the temporal correctors obey the bounds

(4.40) o], < Moz,

(4.41) q+1' + wa(zt)rl‘ 12 S ATt Y
(442) qu+1HW1p + H ‘1+1HW1 » qu‘|'1”W1 IS SO,
(4.43) H@tquH + HatquH <02 +10ur5/2‘3/”,
(4.44) qu'HHCN + H q"'chN 4 H ‘1+1”CN <5 ((I?i:lsN)/Q

for N € {0,1,2,3} and p > 1, where M is a universal constant.
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124 TRISTAN BUCKMASTER and VLAD VICOL

Proof of Proposition 4.5. For i >0, from (4.36) and (4.38) we may estimate

<52 02N

|DYag|,, S 0

where we have used that (4, i{z = )\;20+,8b < 1, which follows from the restric-
tion imposed on the smallness of 8b. Since W ¢) is (T/A.410)? periodic, and the
condition (4.5) gives that =2 < A\;410, we may apply (3.18) with N = K =0

and Lemma 3.7 to conclude

Ha(aW(s) \

Upon summing over i € {0, ..., imax}, and appealing to (4.30), we obtain (4.40)
for some fixed constant M independent of any parameter.

1/2 —i 1
2 12 S b

12 S pi Pa~i

We (

In order to bound the L? norm of wé?l, we use (3.19) and Lemma 4.4 to
estimate

JLV a x W,
Agi1 (5)77(5)) €3)

12
1
S 5m Vaol e loll + ool [F70]],2)
< Aqlﬂ (e*l + (5;f12i)\q+10r)
< 5;fl2iar,

where we have used that =1 < )\q+15;flar, which follows from (4.15)—(4.16)
since b is sufficiently large. Analogously, bounding the summands in the defi-
nition of wéil, we have

2 < (5q+14i7"3/2

s~ 7 ‘

1 1
P 2 2 H < 2 al?a
ng L afenie)) oS5 el o)
Summing in ¢ € {0,...,imax} and &, and employing (4.29), we obtain

80T by < i/z(s%
L2~ e b~ Al Y

c t
el + s
In the above bound we have used the inequality ¢/ < o172, which follows
from (4.15)—(4.16).

Now consider (4.42). Observe that by definition (4.17), estimate (3.18),
and Lemma 4.4, we have

[ S0 3 Naelon, [Weo |y,
7 fEA(l)
(4.45) SZ Z €_1Aq+1r3/2_3/p

% ﬁEA(i)

S U201,
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NONUNIQUENESS OF NAVIER-STOKES WEAK SOLUTIONS 125

Here we have also used (4.29) in order to sum over i. For the analogous bound

(c)

g1, using (3.19) and Lemma 4.4 we arrive at

on w

—l(ﬁV a x W,
Agid ©e) (€)

Wie
S )\(11+1 (7% a@me)],, + 2k |V a@mo)],,)
sLo0le: ), 00 ol
< e (A ar)2r3/2_3/p+£/\2 o’
~ )‘q+1 q+1 )\q—I—l q+1

SO 2P (o)

where we used Ag1107 < Ag+1. The above bound is consistent with (4.42)

((121 since summing over i and ¢ loses an extra factor of £~! that may be

absorbed since ¢~lor < 1. Similarly, in order to estimate wéﬂl we use the

bound (3.19) and Lemma 4.4 to obtain

1
HHPH(P #0 aé)”?@f)u

for w

wlp

a(é)ﬂm HW@\

2 )
L2?p

77(5)\ 1o T HW(&)\

L2p

S

1 .
S L2 Oqonyr =,

Summing in ¢ and £ and using (4.29) we obtain

(t) < 35_3/261/2

5/2
3-3 —92 3/0—3/,0T
quJrlHWLp ~ g+1(Agr107)7 N

“

Thus (4.42) also holds for w((;j)rl, as a consequence of the inequality or”2 < p,
which holds by (4.15).

Now consider the LP estimates of the time derivatives of w((fjr)l and w((;zl.
Estimates (3.18) and (4.38) yield

Jow, < Eijg” ool Jowial],
S0 Y Ngrrorp)r P
i ey

SO 2o,
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126 TRISTAN BUCKMASTER and VLAD VICOL

Similarly, using (3.19) and (4.38), we obtain

(e LP~Z£XA: 4}15@ V. agee XW@))
SSYO)
% §eA(Z) ‘

ZZH

SN i

ez [2m© [y, + 10 51,)

(1+1

which is a bound that is consistent with (4.43), upon noting that £~lor < 1
holds.

For N = 0, the bound (4.44) holds for w); in view of (3.18), (4.38),
(4.29), and the fact that ¢~1r°* <« A / . For the derivative bounds of wf(ﬁ)l,
we use (3.18) and (4.38) to conclude

_N N 3
o, < I, [Pl 5 unomss
from which the first part of (4.44) immediately follows in view of our parameter
choices (4.15)—(4.16). Indeed, (4.15) gives Agp10rp = )\qflﬁ = A2, /11 and
P = )\q/f:l The bound for the C’Nt norm of w'%, and w'"), follows mutatis

q+1 q+1
mutandis. O

In view of
the definitions of wg41 and vgyq in (4.21) and (4.22);
the estimates (4.7) and (4.8);
the identity vg11 — vg = wgr1 + (v — vg);
the bound 6/\35;{2 + 0717271 < 1, which holds since b was taken to be
sufficiently large,

the estimates in Proposition 4.5 directly imply

COROLLARY 4.6. For N € {0,1,2,3} and p > 1, we have
3M51/2

(4.46) [wg+1ll2 < 3 Ya+r
(4.47) log1 = vgll 2 < M6,

(4.48) [wgi1 e S €2 Agpar™? 7,
(4.49) lewgrilley, < Aq‘lts”/i
(4.50) lvg+illoy, < /\(q?:iSN)/ ’
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NONUNIQUENESS OF NAVIER-STOKES WEAK SOLUTIONS 127

Therefore, setting N = 1 in the above estimate for v,4; we have proven
that (2.2) holds with ¢ replaced by ¢ + 1. Also, (4.47) proves the velocity
increment bound we have claimed in (2.7).

5. Reynolds stress

The main result of this section may be summarized as follows:

ProproSITION 5.1. There exist a p > 1 sufficiently close to 1 and an
er > 0 sufficiently small, depending only on b and B (in particular, independent
of q), such that there exist a traceless symmetric 2 tensor R and a scalar
pressure field p, defined implicitly in (5.7) below, satisfying

(5.1) Ovg41 + div (vg41 ® vg41) + VD — VAV = div R
and the bound
(5.2) IR, S Afim0gr2,

where the constant depends on the choice of p and ep.

An immediate consequence of Proposition 5.1 is that the desired inductive
estimates (2.3)—(2.4) hold for a suitably defined Reynolds stress ]quH; see (5.5)
below. We emphasize that compared to E, the stress I:?qﬂ constructed below
also obeys a satisfactory C! estimate.

COROLLARY 5.2. There exists a traceless symmetric 2 tensor ]-quﬂ and a
scalar pressure field pg41 such that

Ovg+1 + div (Vg41 @ vg41) + Vpge1 — VA = div éq+1.
Moreover, the following bounds hold:

(5-3) Hétﬁ—l' It < )‘;j? q+2>
(5.4) | Ry o, S Al

Before giving the proof of the corollary, we recall from [2, Def. 1.4] the
2-tensor valued elliptic operator R that has the property that Ruv(z) is a sym-
metric trace-free matrix for each z € T2, and R is a right inverse of the div
operator, i.e.,

divRv =v — ][ v(x)de
T3

for any smooth v. Moreover, we have the classical Calderén-Zygmund bound
IIVIR||1p—rr S 1, and the Schauder estimates ||R|lp_ 0 + [Rllcoco S 1,
for p € (1,00). Since throughout the proof the value of p > 1 is independent
of ¢, the implicit constants in these inequalities are uniformly bounded.

Proof of Corollary 5.2. With R and p defined in Proposition 5.1, we let
(5.5)  Rgi1 =R(PgdivR)  and  pgi1 =p— A~ divdiv R.
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128 TRISTAN BUCKMASTER and VLAD VICOL

With the parameter p > 1 from Proposition 5.1, using that ||Rdiv ||, ;» S1
we directly bound

] e Ll

The estimate (5.3) then follows since the factor )\;f’f can absorb any constant
if we assume a is sufficiently large.

Now consider (5.4). Using equation (5.1) and the bounds of Corollary 4.6
we obtain

D —2€R
Lp S HRHLP S Agi1" Og2-

= |RPu(div B)|

Rg+1 ‘

C1
S 10vg41 + div (vg41 ® vg41) — VAVg4 ][

C’l

N Hatvq—l-lucl + qu—i-l ® Uq—HHcZ + qu—l—lucs
< A

by using the Schauder estimates ||[RPg|| oo S 1. Similarly, we have that

0By, < 10:Bevgs + div (w411 ® vg11) = ¥Ag41) | co
S |02 var1 | o + 190001 ® vl on + 10041l o
rg )\24*17

which concludes the proof of (5.4) upon using the leftover power of \,11 to
absorb all ¢ independent constants. O

5.1. Proof of Proposition 5.1. Recall that vy41 = wgy1 + ve, where vy is
defined in Section 4.1. Using (4.2) and (4.21), we obtain

(5.6) divR—Vp = —vAwgi +8t(wl(1€r)l +wz(1(21)+div (Ve ® Wyt1+Wgt1 ® vg)
+div ((w((;?l +w((,i)1) ® Wqp1 +wf£)1 ® (wéi)l_i_wéi)l))

+div (W @ w®) + Re) + 8wl

+div (Rcommutator) - fo
(57) :(le E]inear + Ecorrector + Eoscillation + ﬁcommutator)
+ V(P —pp).

Here, the symmetric trace-free stresses Elinear and Ecorrector are defined by
applying the inverse divergence operator R to the first and respectively second
lines of (5.6). The stress Reommutator Was defined previously in (4.3), while the
stress Eoscillation is defined in Section 5.3 below. The pressure P is given by
(5.11) below.

Besides the already used inequalities between the parameters, ¢, r, o, and

Ag+1, we shall use the following bound in order to achieve (5.2):
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—9 5/p—3 3/29-1 —1\1/p\3(1—1/p)
2o (PP )/”AQH
(5.8) 3=/ ord=

10 —2eR
T Bage T B T S e O

In view of (4.15)-(4.16), the above inequality holds for b sufficiently large, g
sufficiently small depending on b, parameters eg,p — 1 > 0 sufficiently small
depending on b and 3, and for Ay = a sufficiently large depending on all these
parameters and on M.

In view of the bound E)\S < )\q_lo, the estimate (4.4) for Reommutator i
consistent with (5.2). Hence it remains to consider the linear, corrector and
oscillation errors in (5.7).

5.2. The linear and corrector errors. In view of (5.2), we estimate contri-
butions to the R coming from the first line in (5.6) as

‘ ’ Rlinear

L S IR@Aw )l + [R@(wf) +wih)]
+ [ Rdiv (ve @ wy + wes1 @ ve)

Slhogirlhpns + 5 JoRent (u21)],

Lp

+ l[oell oo llwg+1ll Lo

(»)

4
(59) 5 /\q ”wq—l—lnwl,p + Hatwffrl P

1
Agt1

< A;Efz)\q_klr%*g/p + +1€72)\q+10ur5/273/p
q

< K*QU,ur‘E/Q*S/p,

where we have used v < 1, )\3)\q+1 < opr, the identity (4.19), the inductive
estimate (2.2) to bound |lvg| ;e S |lvellor S [lvgllor, estimates (4.43) and
(4.48). Next we turn to the errors involving correctors, for which we appeal to
LP interpolation, the Poincaré inequality, and Proposition 4.5:

< HRdiV ((wéle + wf;tll) ® wg+1 + w((f—)&-)l ® (wéﬂl + wfﬁl))’

Reorrect
H corrector L

Lr
c c 1-1/p
S H(wt(1421 + wé:)-l) ® wq+1 I | w ( )1 + wéll) ® wq+1H
c 1/p 1- 1/?
+ ‘w((zl—?1 ® (w ((1—21 +wéll) I 1(11331 ®( q+1 +w q+1 H

(r2e ) g AT

S
— 3(1-1
5( 3/2€ 1 1)1/p>\qs_1 /p)‘

Due to (5.8) this estimate is sufficient.
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130 TRISTAN BUCKMASTER and VLAD VICOL

5.3. Oscillation error. In this section we estimate the remaining error,

Roscination, which obeys
(610) (v Fosctason) + TP = div () @ w®) + o) + 0l

where the pressure term P is given by

1
P=>rxy+52. > a(oa(s')(Paéo Wi W)

i>0 1,5 §EA ()& EN()
(511) 1 1 { 2 2
—2 2 AT, afyet)
i geA?‘i)

)

Recall that from the definition of wéﬁl and of the coefficients a(), via
(4.14) we have

(5.12)

div (wépﬁl ® wé@l) + div R,

=Y Y v agae e @ W) + div B
13 EEN),E €Ay

=) > a(@Q(s') Wie) ® Wer) — ][ Wi @ W, dr) )

1,5 EEA(),E €A T

(V Zﬂix?i>>
i>0

=Y Y v ageePalin Wi eWe))
iJ €M) EA()

( v X mx@;) :

>0

Eeery

Here we use that the minimal separation between active frequencies of W¢) @
W ¢y and the 0 frequency is given by Ay 10 for & = —&, and by eadgy1 > Agr10
for £ # —&. We proceed to estimate each symmetrized summand EentE@e ¢
individually. We split

Eeey + Ee g :([P#O szqgw/z Wie) @ Wieny + Wy W@g) V agae))
+(TP’¢0 a(&)a(g'gdiv Wie) ® Wien +Wiey @ Weg )
= Eeern) T Eee 2)-
Here we used the fact that E(&/) + E(&g/) has zero mean to subtract the mean
from each of the the two terms on the right-hand side of the above. We have

also removed the unnecessary frequency projection Ps»,. o5 from the second
term.
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NONUNIQUENESS OF NAVIER-STOKES WEAK SOLUTIONS 131

The term E¢ ¢ 1) can easily be estimated using Lemmas 4.4 and B.1,
estimate (B.2), with A = /=1, C, = £72, k = X+10/2, and L sufficiently large, as

[REce ], < 1917 Beew|

S H!V\_l@;éo Posfion Wig @ Wief) v a@a(e))))

p

Lp

1 1
S 1+ W) @ W e
62)\(14_10' ( gL ()\q+10_)L—2> H (f) (f ) Lp

1
S 52)\(14_10' ”W(f)’
r3=5/p

~ 62)\q+10' '

Wen '

L2p L2p

In the last inequality above we have used the estimate (3.18), and in the second
to last inequality we have used that for b sufficiently large and L sufficiently
large, we have £~%(A\,110)27L < 1. Indeed, this inequality holds under the
conditions L > 3 and ®(Z —2)/16 > 20L. After summing in i and £ we incur an
additional loss of £~1. By (5.8) this bound is consistent with (5.2).

For the term E(¢ ¢ 9), we split into two cases: £ +¢&' # 0 and £ + & = 0.
Let us first consider the case £ +¢&" # 0. Applying the identity (3.16) and using
(3.14), we have

agaeldiv Wy ® Wie) +Wiey © W)
= a(s)%) W(sfg‘ v meie))) W(Q) + W(sg' v ngnen)) W)
+ a(fw(s')??(@??((wv Wie - Wien)
= a(@ﬂ(e)PZCAQqH( v 77(5)”@5')) Wiey @ Wie) + Wie) © Wier)))
b9 agaeWe We) Ly ae)0(e)) Presryn Wie) Ween)
— 4@ Prebn (Wi - Wien) Vimgne)).
The second term is a pressure, and to the remaining terms we apply the inverse
divergence operator R. We estimate R applied to the third term analogously
to E(¢¢r 1), and R applied to the fourth term can be estimated similarly to the
first term. Thus it suffices to estimate R applied to the first term. Applying

(3.19), Lemma 4.4, estimate (B.2) of Lemma B.1, with A = ¢~!, C, = (72,
Kk = cAAg+1, and for b and L sufficiently large (L > 3 and b(L — 2) > 20L
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132 TRISTAN BUCKMASTER and VLAD VICOL

sufﬁces) we obtain

HR a(e)a(er) P>cA<x 1( Y eynieny) Wien © Wigy + Wie) © Wien)) )

i HV M) .
S <1+€L)\q+1> Agi1

Lp

ort=
~ EQ
Summing in ¢ and i we lose an additional £=! factor. By (5.8) this bound is
consistent with (5.2).

Now let us consider E(¢ ¢ 9) for the case £ + & = 0. Applying the identity
(3.17), we have

E¢,-¢2) 2(9760 a?ov’??s)—a?s)(iat 77?&)))
(5.13) Lv a?&)PZAqiw/z ) *(P#O chqglm e)) Vae)
1 1
—Mat@aéo aé)né)ﬁ)—kﬁ(@’ #0 ”?s)at afe) €)

Here we have used that P;,goné) = ]P)Z)\q+1d/277(2§), which holds since 7 is
(T/Ag110)3-periodic. Hence, summing in ¢ and 4, using that M) = N(—¢), bairing

with the 8tw((]tll present in (5.10), recalling the definition of wffll in (4.20), and

noting that Id — Pz = VA~!'div, we obtain

SN Blee + ol

LEEAG,

VoY > 4 P>Aq§w/z e))

i SEA“)
-2 Br Banlio n) Vad)
(5.14) eent,
v oy > Ald("at aleye)€)
i §€A
D3 Gwo tod ) €).
7 EEA

The first and third terms are pressure terms, and to the remaining terms we
apply the inverse divergence operator R. Thus it suffices to estimate R applied
to the second and the last term above. We split the second term of (5.14) into
its summands, apply R, and estimate each term individually, similarly to the
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NONUNIQUENESS OF NAVIER-STOKES WEAK SOLUTIONS 133

estimate of RE ¢ 1y. Using (3.19), Lemma 4.4 and Lemma B.1, estimate

(B.2), with A = £=1, C, = £72, k = Xa+19/2, and for b and L sufficiently large
(L >3 and (L —-2)/16 > 20L), we obtain
(5.15)
(HRPA () Valy ||, < ! 1+ !
> ‘1+10/2 (6) (E) Lp ™~ 62)\(1_’_10- EL ()\q+10-)L72
r3=3/p
~ g0

Summing over ¢ and i we lose a factor of ¢~!. Lastly, applying R to the
last term on the right side of (5.14), the bound on each summand is a simple
consequence of (3.19) and Lemma 4.4:

(5.16) R *Z > s dulad g

i geAl, .
§;Z > [uate g,
( geAz.)
1
$u2 X ool ool oo

(%)
S IR
ne

€—2r3—3/p < ,',.3—3/1)

where we have used that Agy10 < p. Using (5.8), the bounds (5.15) and (5.16)
are consistent with (5.2), which concludes the proof of Proposition 5.1.

6. The energy iterate

LEMMA 6.1. For all t and t' satisfying |t —t'| < 2¢, and all i > 0, we
have

(61) /) /l | < 81/2

(6.2) ‘/ vg(, ) dx —/ ]vq x, ) dx| < 07,

(6.3) L[ 3t - ) da] < 07,
T3

(6.4) |o(t) — p(t')] S £,
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134 TRISTAN BUCKMASTER and VLAD VICOL

Proof of Lemma 6.1. In the proof of the lemma, we crudely use a factor
of A, to absorb constants. First note that (6.1) follows immediately from the
assumed estimate HeHCtl < M,. Using (2.2) we have

\ / oy, t)[2 dar — / g, ) de| < 0llugllZ < A%,
T3 T3 t,x

which implies (6.2). The estimate (6.3) follows in a similar fashion, from
Lemma 4.2. Finally, (6.4) follows directly from the definition of p(t), (4.34)
and the bounds (6.1)—(6.3) above. O

LEMMA 6.2. If po(t) # 0, then the energy of ve41 satisfies the following
estimate:

(6.5)

d 5
e(t) — / |Uq+1(x,t)]2 dp — 294+2 < Y942
TS 9 1

Note that the above lemma implies that if po(t) # 0, then

S0t
oft) = [ Inyla. ) do > S,

and thus (2.6) is an empty statement for such times.

Proof of Lemma 6.2. By definition we have
(6.6)

[ oo 0 do= [ jode0f da
T3 T3

+ 2/ We1(z,t) - vp(z,t) do +/ lwgi1 (2, t)[* da.
T3 T3

Using (4.14), similarly to (4.23), we have that

/‘wqﬂajt da:—32pz/x (x,t) dx

>0

=2 X / L HOUNP2r e, (Wie)  Wign)dw =2 E,(t).
,7>0€EA ;)& EA()

Using the standard integration by parts argument

[ 1Posgdsl =1 [ 1911917 Byl S Nl "

with L sufficiently large, we obtain from (4.38), since £~! < A\ 410, that

(6.7) ‘/ ’wqﬂazt dx—BZpZ/ X(z (x,t)dx| =

= |E,(1)] < £
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NONUNIQUENESS OF NAVIER-STOKES WEAK SOLUTIONS 135

We consider two sub-cases: p(t) # 0 and p(t) = 0. First consider the case
p(t) # 0; then using the definition of p, we obtain

32[)2/ XGy (@, 1) d

>0

= 3p(t) [y (ant)da
T3

3 ()=o) [ (oo 3% [ 3ot do

T3 i>1
0g+2
= clt) = [ loa(o 0 do 3 (ult) = p(0) [ Blant) o - 2.
T3 T3
For the case that p(t) = 0, we have that by continuity for some t' € (t—¢,t+7),
J,
e(t') — |vq(33,t/ dx — 3201/ 2z, ') do — 22 = 0.
T3 i>1 2
Thus applying Lemma 6.1 we conclude that for either case p(t) # 0 or p(t) = 0,
J,
(6.8) SZpl/ X2 (x,t)dx — e( +/ |vg(z, t)|* da + A2 < gt
i>0 T3 2
When p(t) # 0, in the above estimate we have used the bound |pg(t) — p(t)] <

'/, which follows from the definition of py in (4.26) and the estimate (6.4)
established earlier.
Observe that using (2.2), the definition of vy, and (4.7) we have

(6.9)

)/ lvg(,t)] dw—/ lvg(z,t) 2| <

Further, using also (3.13), (4.8), (4.38), and integration by parts, we obtain

S HUqHLoo [lve — quLoo S /\85 < 0,

‘/ We1(x,t) - ve(z, t)' de < ”qu +w¢(1tl1

I

i>0 €€A ()

Bt TR N N W Ha(f WHCN
i>0 £€A ()

SO AN

L llellen

/ © (@, t) - ve(w,t) dz
T3

In the last line we have used (4.15) and the fact that summing over £ and 4
costs at most an extra £~'. Taking N sufficiently large, we obtain

(6.10) ‘ /T g 0) vl )| de S OONE S 08,
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upon taking b > 400. Using (4.40) and (4.41) yields

‘/ [wyr1(z,t)[*de — /‘wqﬂmt dz

(p) (t)
(6.11) S (lwgrall o + [0l | L) (Jwih]], . + [0 ,.)
< ‘Sq—i-lg_llu—1
<0
Thus we conclude from (6.6), (6.7), (6.8), (6.10) and (6.11) that
J
/ [Vg+1(, 1) %2 551/27
from which (6.5) immediately follows. O
LEMMA 6.3. If po(t) =0, then vg41(-,t) =0, éq+1(-7t) =0 and
39
(6.12) o(t) = [ fopsa(a o) < 22
T

Proof of Lemma 6.3. Since po(t) = 0, it follows from the definition of pg
and p that for all ¢’ € (t — ¢, + ), we have

Og+2
t) — " dz — 33" p; t') dx < 412
e(t') /Tg\vq(x, x Zp/xlzn x 5

1>1
Using (4.35), this implies that
0

(6.13) e(t) = | fa(a )" do = =52 S X001,

Using that A % and the ratio dg+20, +11 can absorb any constant, from (2.6)
we conclude that vy(-,t") = 0 and Jf?q(‘,t’) =0forallt € (t—¢t+{). Hence
vg(+,t) = 0 and Ry(-,¢) = 0. This in turn implies that y;(-,t) = 0 for all i > 1.
Since in addition po(t) = 0, it follows by (4.12) that a()(-,t) = 0 for all i > 0,
and thus that wg41(-,t) = 0. Hence we have that vgyq1(-,t) = 0. Moreover,
since the {x;(z,t)}i>1 and p(l)/ ?(t) are nonnegative smooth functions, it follows
that Oyx;(-,t) = 0 for all ¢ > 1 and that 8tp(1)2(t) = 0. Hence we also obtain
Orae)(+,t) = 0, and from the definition of wq41 we have 9wy 1(+,t) = 0. Since
vg vanishes on (t — £,t + ¢) and vy, wey1, Opweyr, Ry, all vanish at time ¢, it
follows from (4.3) and (5.7) that R(-,t) = 0, and therefore éq+1(',t) =0.

Using (6.13) and (6.9) (note that £~'/* may be used to absorb constants),
we obtain

2 = — Vgl 2 Vgl 2 Ve T 2
o)~ [ g =et) = [ oG+ [ oGt = [ gt

< 2Yat2 g/4<i_
- 8 + - 4
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In the last inequality we used that Bb? is sufficiently small. Hence we obtain
(6.12). O

We conclude this section by using Lemmas 6.2 and 6.3 to conclude (2.5)
and (2.6) for ¢+ 1. Observe that the estimates (6.5) and (6.12), together imply
(2.5) for ¢ + 1. From (6.5), if

0,

2 q+2
- x,t der < —+——=
/]I‘3 |Uq+1( ) )| = 1007

then po(t) = 0. Hence from Lemma 6.3 we obtain that v,41 = 0 and éq+1 =0,
from which we conclude (2.6).

Appendix A. L? product estimate

Proof of Lemma 3.7. For convenience we give here the proof from [5]. We
first consider the case p = 1. With these assumptions we have

7l < 3 /T 1fdl

where T} are cubes of side-length 2% For any function h, let h; denote its
mean on the cube T;. Observe that for x € T}, we have

2)| = [F;+ f@) —
< [7i]+ sup|£(x) =7
21V/3

\fJH SuPIDf\

27rf 27?[

<|f,|+ =2 D7 + sup |Df - Dj|

27r\f

S‘EM— ‘ij‘+fsup‘D2f)

< ‘f] ‘4— sup‘DQf]’+fsup‘D2f D2fj

Iterating this procedure M times we see that on 7T} we have the pointwise
estimate

M
1< 3 @nv3s) (D[ 4 2 v/3s )M DM | e

m=0
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Upon multiplying the above by |g| and integrating over 7}, and then summing
over j, we obtain

M
gl <3 | (!9! D (2mvan )" \Dmij o
J T} m=0

+ (273571 ) DM £l oo gl 1

M
m 1 m
< Z (27T\/§/—i 1) Z W | D f||L1(Tj) ||g||L1(Tj)>
m=0 J J

+2nV3eHM DY f oo gl -
Since g is a T)j-periodic function, we have

_ T
HgHLl(’]I‘?’) = W HQHLl(Tj)

for any value of j, and since the interiors of the {7} are mutually disjoint,
based on the assumption on the L' cost of a derivative acting on f and the
Sobolev embedding, we conclude from the above that (here we used the Sobolev
embedding of W4+L1l ¢ [*)

1 M — m m
19l ersy < 9] gl prersy Y (V3™ [ID™ fl 1oy

m=0
+(2mV3e M DM F| gl o
1 M
< g lalloy 22 @mVastmane

m=0

+ (2nV/3r )M NHC g
< (1+ 2T lgll ooy

The case p = 2 follows from the case p = 1 applied to the functions f2 and ¢2,

and from the bound
D77 g(z ) ID a0 5 L )ames = e

k=0 k=0
Here we are thus using that A7/3BA~1 < 2 /3 < 1 so that we have a geometric
sum. O
Appendix B. Commutator estimate

LEMMA B.1. Fiz k > 1, p € (1,2], and a sufficiently large L € N. Let
a € CF(T3) be such that there exists 1 < X < k, and C, > 0 with

(B.1) HDJ@HLOO < CN
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for all 0 < j < L. Assume furthermore that [r5 a(x)P>f(x)dx = 0. Then we
have

K

(B.2) (91 @ P, {ca 14 L) £l

for any f € LP(T?), where the implicit constant depend on p and L.
Proof of Lemma B.1. We have that

’v‘_l(a P>y f) = ‘v’_l(PS'ﬁha P>y f) + ‘V’_l(PZK/Qa P>, f)

(B.3) - .
= (P2 V7)) (Panppa Poi f) + V[T (Porppa Py f).

Note that [is P>pg(z)dr = 0 for any function g, and thus the assumption
that a P>, f has zero mean on T3 implies that PsrpalP>, f also has zero mean
on T3. We then use

[

LP—LP

which is a direct consequence of the Littlewood-Paley decomposition, and the
bound

<1

Lp—Lp ™~ 7

19178 20|

which is a direct consequence of Schauder estimates (see [22]). Combining
these facts and appealing to the embedding W1#(T3) ¢ L>(T3), we obtain

917 @ o), S - [Pera Po],, + [Povpa Poct

r ™

b

Fllzw
) e

K

)w

K

S (lall o + & || P2

< (lalloe + > | D*Popal],

L
) A2l Y 11
< ol + 21 -

K

The proof of (B.2) is concluded in view of assumption (B.1). O
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