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Abstract

Many machine learning tasks require sampling a
subset of items from a collection based on a param-
eterized distribution. The Gumbel-softmax trick
can be used to sample a single item, and allows
for low-variance reparameterized gradients with re-
spect to the parameters of the underlying distri-
bution. However, stochastic optimization involving
subset sampling is typically not reparameterizable.
To overcome this limitation, we define a contin-
uous relaxation of subset sampling that provides
reparameterization gradients by generalizing the
Gumbel-max trick. We use this approach to sam-
ple subsets of features in an instance-wise feature
selection task for model interpretability, subsets of
neighbors to implement a deep stochastic k-nearest
neighbors model, and sub-sequences of neighbors
to implement parametric t-SNE by directly com-
paring the identities of local neighbors. We improve
performance in all these tasks by incorporating sub-
set sampling in end-to-end training.

1 Introduction

Sampling a single item from a collection is common in ma-
chine learning problems such as generative modeling with la-
tent categorical variables, attention mechanisms [Kingma et
al., 2014; Xu et al., 2015]. These tasks involve optimizing an
expectation objective over a latent categorical distribution pa-
rameterized by a neural network. Score-based methods such
as REINFORCE [Williams, 1992] for estimating the gradient
of such objectives typically have high variance. The reparam-
eterization trick [Kingma and Welling, 2013] allows for low
variance gradients for certain distributions, not typically in-
cluding categorical distributions. The Gumbel-softmax trick
[Jang et al., 2016] or Concrete distribution [Maddison et al.,
2017] are continuous relaxations that allow for reparameter-
ized gradients with respect to the parameters of the distribu-
tion. Among many others, this enabled generative modeling
with latent categorical variables without costly marginaliza-
tion and modeling sequences of discrete elements with GANs
[Jang et al., 2016; Kusner and Hernández-Lobato, 2016].

In this paper, we consider the more general problem of
sampling a subset of multiple items from a collection without

replacement. As an example, choosing a subset is important
in instance-wise feature selection [Chen et al., 2018], where
the goal is to select a subset of features that best explain the
model’s output for each example. Sampling subsets of neigh-
bors also enables implementing stochastic k-nearest neigh-
bors end-to-end with deep features. Stochastic optimization
involving subset sampling, however, does not typically have
relaxations with low-variance reparameterization gradients as
in Gumbel-softmax. To overcome this limitation, we develop
a continuous relaxation for approximate reparameterized gra-
dients with respect to the parameters of a subset distribution
to enable learning with backpropagation. In our setting, the
Gumbel-max trick (and thus Gumbel-softmax) is not directly
applicable since it requires treating every possible subset as
a category, requiring a combinatorial number of categories.
We use an extension to the Gumbel-max trick which perturbs
the log-probabilities of a categorical distribution with Gum-
bel noise and takes the top-k elements to produce samples
without replacement. Ignoring ordering in these samples al-
lows for sampling from a family of subset distributions using
the same algorithm. We give a general algorithm that pro-
duces continuous relaxations with reparameterization gradi-
ents using top-k relaxations. We then show that a recent top-
k relaxation [Plötz and Roth, 2018] can be used in our algo-
rithm and study the consistency of this top-k relaxation.

Our main contributions are the following:

• We give an algorithm for a reparameterizable continuous
relaxation to sampling subsets using top-k relaxations
and a extension to the Gumbel-max trick.

• We show that the top-k relaxation of [Plötz and Roth,
2018] is consistent in the sense that the ordering of in-
puts is preserved in the output in many practical settings.

• We test our algorithm as a drop-in replacement for sub-
set selection routines in explaining deep models through
feature subset selection, training stochastic neural k-
nearest neighbors, and implementing parametric t-SNE
without Student-t distributions by directly comparing
neighbor samples. We improve performance on all tasks
using the same architectures and metrics as the origi-
nal 1.

1Code available at https://github.com/ermongroup/subsets.
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Algorithm 1 Weighted Reservoir Sampling (non-streaming)

Input: Items x1, . . . , xn, weights w = [w1, . . . , wn], reser-
voir size k

Output: Swrs = [ei1 , . . . , eik ] a sample from p(Swrs|w)
1: r← [ ]
2: for i← 1 to n do
3: ui ← Uniform(0, 1)

4: ri ← u
1/wi

i # Sample random keys
5: r.append(ri)
6: end for
7: [ei1 , . . . , eik ]← TopK(r, k)
8: return [ei1 , . . . , eik ]

2 Preliminaries

2.1 Weighted Reservoir Sampling

Reservoir sampling is a family of streaming algorithms that
is used to sample k items from a collection of n items,
x1, . . . , xn, where n may be infinite [Vitter, 1985]. We con-
sider finite n and only produce samples after processing the
entire stream. In weighted reservoir sampling, every xi is
associated with a weight wi ≥ 0. Let w = [w1, . . . , wn]
and Z =

∑n
i=1 wi be the normalizing constant. Let ej =

[ej1, . . . , e
j
n] = [0, · · · , 0, 1, 0, · · · , 0] ∈ {0, 1}n be a 1-hot

vector, i.e., a vector with only one nonzero element at index j,

where ejj = 1. We define a weighted reservoir sample (WRS)

as Swrs = [ei1 , . . . , eik ], a sequence of k 1-hot (standard ba-
sis) vectors where e

ij represents selecting element xij in the
j-th sample. We wish to sample Swrs from

p(Swrs | w) =
wi1

Z

wi2

Z − wi1

· · ·
wik

Z −
∑k−1

j=1 wij

, (1)

which corresponds to sampling without replacement with
probabilities proportional to item weights. Modeling samples
without replacement allows for sampling a sequence of dis-
tinct items. For k = 1, p(Swrs|w) is the standard softmax
distribution with logits given by log(wi).

[Efraimidis and Spirakis, 2006] give an algorithm for
weighted reservoir sampling (Algorithm 1). Each item xi is

given a random key ri = u
1/wi

i where ui is drawn from a
uniform distribution between [0, 1] and wi is the weight of
item xi. Let the top k keys over the n items be ri1 , . . . , rik .
We define the function TopK(r, k) which takes keys r =
[r1, . . . , rn] and returns [ei1 , . . . , eik ] associated with the top-
k keys. The algorithm uses TopK to return the items Swrs =
[ei1 , . . . , eik ] as the WRS. Efraimidis and Spirakis proved
(Proposition 5 in [Efraimidis and Spirakis, 2006]) that the
output of Algorithm 1 is distributed according to p(Swrs|w).

2.2 Gumbel-max Trick

Given w as in (1), log(wi) are logits for a softmax dis-
tribution p(xi|w) = wi/Z. The Gumbel-max trick [Yel-
lott, 1977] generates random keys r̂i = log(wi) + gi by
perturbing logits with Gumbel noise gi ∼ Gumbel(0, 1),
then taking xi∗ such that i∗ = argmaxi r̂i as a sample.
These samples are distributed according to p(xi|w) = wi/Z.

The idea is to reparameterize the sample as a determinis-
tic transformation of the parameters w and some indepen-
dent noise gi. Then by relaxing the deterministic transforma-
tion (from max to softmax), the Gumbel-softmax trick allows
for training with backpropagation [Maddison et al., 2017;
Jang et al., 2016]. Similarly, we use an extension of the
Gumbel-max trick to decouple the deterministic transforma-
tion of the parameters (in our case, a top-k selection function)
and the randomness (Gumbel noise gi), and we relax the top-
k function to allow for backpropagation.

3 Reparameterizable Continuous Relaxation

for Subset Sampling

3.1 Setup

We represent a subset S ∈ {0, 1}n as a k-hot vector, which
is a vector with exactly k nonzero elements that are all equal
to 1. We define the probability of a subset S as the sum of the
probabilities of all WRS with the same elements

p(S | w) =
∑

Swrs∈Π(S)

p(Swrs|w) (2)

where Π(S) = {Swrs : S =
∑k

j=1 Swrs[j]} is the set of all

permutations of elements in S represented by sequences of
1-hot vectors. Here, Swrs[j] is the j-th 1-hot vector in the se-
quence. By simply ignoring the order of elements in a WRS,
we can also sample from p(S|w) using the same algorithm.
Note that this is a restricted family of subset distributions.
Since each distribution is over

(

n
k

)

subsets of size k, the full

space of distributions requires
(

n
k

)

− 1 free parameters. Here,
we reduce the number of free parameters to n− 1. While this
is a restriction, we gain tractability in our algorithm.

3.2 Gumbel-max Extension

We extend the Gumbel-max trick to sample from p(S|w).
The main intuition is that the outputs of the reservoir sam-
pling Algorithm 1 only depend on the ordering of the random
keys ri and not their values. We show that random keys r̂i
generated from the Gumbel-max trick are monotonic trans-
formations of the random keys ri from Algorithm 1. Be-
cause a monotonic transformation preserves the ordering, the
elements that achieve the top-k Gumbel-max keys r̂i have
the same distribution as the elements that achieve the top-k
weighted reservoir sampling keys ri. Therefore we can sam-
ple from p(S|w) by taking the top-k elements of r̂i instead.

To make the procedure differentiable with respect to w,
we replace top-k selection with a differentiable approxima-
tion. We define a relaxed k-hot vector a = [a1, . . . , an] to
have

∑n
i=1 ai = k and 0 ≤ ai ≤ 1. We relax Swrs by

replacing all eij with relaxed 1-hot vectors and relax S by
a relaxed k-hot vector. Our continuous relaxation will ap-
proximate sampling from p(S|w) by returning relaxed k-hot
vectors. We use a top-k relaxation RelaxedTopK, which is
a differentiable function that takes r̂i, k, and a temperature
parameter t > 0 and returns a relaxed k-hot vector a such

that as t→ 0, RelaxedTopK(r̂, k, t)→
∑k

j=1 TopK(r̂, k)[j],

where TopK(r̂, k)[j] = e
ij is the 1-hot vector associated with



Algorithm 2 Relaxed Subset Sampling

Input: Items x1, . . . , xn, weights w = [w1, . . . , wn], subset
size k, temperature t > 0

Output: Relaxed k-hot vector a = [a1, . . . , an], where
∑n

i=1 ai = k, 0 ≤ ai ≤ 1
1: r̂← [ ]
2: for i← 1 to n do
3: ui ← Uniform(0, 1) # Random Gumbel keys
4: r̂i ← − log(− log(ui)) + log(wi)
5: r̂.append(r̂i)
6: end for
7: a← RelaxedTopK(̂r, k, t)
8: return a

the j-th top key in r̂. Thus Algorithm 2 produces relaxed k-
hot samples that, as t → 0 converge to exact samples from
p(S|w). Note that we can also produce approximate samples
from p(Swrs|w) if an intermediate output of RelaxedTopK is
a sequence of k relaxed 1-hot vectors [ai1 , . . . ,aik ] such that
as t → 0, [ai1 , . . . ,aik ] → TopK(r̂, k). This means that the
intermediate output converges to a WRS.

Proposition 1. Let RelaxedTopK be defined as above. Given
n items x1, . . . , xn, a subset size k, and a distribution over
subsets described by weights w1, . . . , wn, Algorithm 2 gives
exact samples from p(S|w) as in (2) as t→ 0.

Proof. Let the random keys in Algorithm 2 be r̂ and the ran-
dom keys in weighted reservoir sampling be r. For any i,

r̂i = − log(− log(ui)) + log(wi)

= − log(−
1

wi
log(ui))

= − log(− log(u
1/wi

i )) = − log(− log(ri)).

Fixing ui, since − log(− log(a)) is monotonic in a, r̂i
is a monotonic transformation of ri and TopK(r̂, k) =
TopK(r, k). Let TopK(r, k) be samples from Algorithm

1. By construction of (2),
∑k

j=1 TopK(r, k)[j] is dis-

tributed as p(S|w). As t → 0, Algorithm 2 pro-
duces samples from p(S|w) since RelaxedTopK(r̂, k, t) →
∑k

j=1 TopK(r̂, k)[j] =
∑k

j=1 TopK(r, k)[j].

This fact has been shown previously in [Vieira, 2014] for
k = 1 and in [Kim et al., 2016] for sampling from p(Swrs|w)
without the connection to reservoir sampling. Kool et al. con-
currently developed a similar method for ordered sampling
without replacement for stochastic beam search. Note that Al-
gorithm 2 is general to any choice of top-k relaxation.

3.3 Differentiable Top-k Procedures

A vital component of Algorithm 2 is a top-k relaxation that
is differentiable with respect to the input keys r̂i (a random
function of w). This allows for parameterizing w, which
governs p(S|w), using neural networks and training using
backpropagation. We propose to use a recent top-k relax-
ation based on successive applications of the softmax func-
tion [Plötz and Roth, 2018]. For some temperature t > 0,

define for all i = 1, . . . , n

α1
i := log(r̂i), αj+1

i := αj
i + log(1− aji ) (3)

where aji is a sample at step j from the distribution

p(aji = 1) =
exp(αj

i/t)
∑n

m=1 exp(α
j
i/t)

(4)

for j = 1, . . . , k steps. In the relaxation, the aji is replaced

with its expectation, p(aji = 1), such that the new update is

αj+1
i := αj

i + log(1− p(aji = 1)) (5)

and the output is ai =
∑k

j=1 p(a
j
i = 1) for each i. Let

a
j = [p(aj1 = 1), . . . , p(ajn = 1)] be relaxed 1-hot outputs

at step j and a =
∑k

j=1 a
j be the relaxed k-hot output. Plötz

and Roth show that as t → 0, [a1, . . . ,ak] → TopK(r̂, k)

and thus a →
∑k

j=1 TopK(r̂, k)[j] so that this is a valid

RelaxedTopK. Thus the relaxation can be used for approxi-
mately sampling from both p(S|w) and p(Swrs|w). Next we
show that the magnitude of values in the output relaxed k-hot
vector a preserves order of input keys r̂i for t ≥ 1.

Theorem 1. Given keys r̂, the top-k relaxation of [Plötz and
Roth, 2018] produces a relaxed k-hot vector a where if r̂i ≤
r̂j , then ai ≤ aj for any temperature t ≥ 1 and k ≤ n.

Proof. By induction on k. Fix any r̂i ≤ r̂j . For step k = 1,

we have a1i ≤ a1j since the softmax function preserves order-
ing. Assuming the statement holds for 0, . . . , k, we want to

show that αk+1
i ≤ αk+1

j , which suffices to imply ak+1
i ≤

ak+1
j by the order-preserving property of softmax. Define

α̂k
i =

exp(αk
i /t)∑

n
m=1 exp(αk

i
/t)

= p(aji = 1). Then

αk+1
i = αk

i + log
(

1− α̂k
i

)

exp(αk+1
i ) = exp(αk

i )
(

1− α̂k
i

)

.

Comparing αk+1
j and αk+1

i through the ratio,

exp(αk+1
j )

exp(αk+1
i )

=
exp(αk

j )

exp(αk
i )

(

exp(αk
i /t) + c

exp(αk
j /t) + c

)

where we can view c =
∑n

m=1 exp(α
k
m/t) − exp(αk

i /t) −
exp(αk

j /t) ≥ 0 as a non-negative constant in this analysis.

Note that
exp(αk

j )

exp(αk
i
)
= exp(αk

j − αk
i ) ≥ exp((αk

j − αk
i )/t) =

exp(αk
j /t)

exp(αk
i
/t)

for t ≥ 1. Therefore

exp(αk+1
j )

exp(αk+1
i )

≥
exp(αk

j /t)

exp(αk
i /t)

(

exp(αk
i /t) + c

exp(αk
j /t) + c

)

≥ 1

for any c ≥ 0. Thus αk+1
i ≤ αk+1

j , implying ak+1
i ≤ ak+1

j .





Model IMDB-word IMDB-sent

L2X 90.7± 0.004 82.9± 0.005
RelaxSubSample 91.7± 0.003 83.2± 0.004

Table 1: Post-hoc accuracy (%, 95% interval) on explaining senti-
ment predictions on the IMDB Large Movie Review Dataset. L2X
refers to the model from [Chen et al., 2018] while RelaxSubSample
is our method.

Model MNIST Fashion-MNIST CIFAR-10

Stochastic NeuralSort 99.4 93.4 89.5
RelaxSubSample 99.3 93.6 90.1
CNN (no kNN) 99.4 93.4 95.1

Table 2: Classification test accuracy (%) of deep stochastic k-nearest
neighbors using the NeuralSort relaxation [Grover et al., 2019] and
our method (RelaxSubSample).

The original model for word-based sentiment classification
(IMDB-word) is a convolutional neural network [Kim, 2014],
while the original model for sentence-based sentiment pre-
diction is a hierarchical LSTM (IMDB-sent) [Li et al., 2015].
The explainer and variational distribution models are CNNs
with the same architectures as in L2X [Chen et al., 2018].
Following L2X, we use k = 10 for IMDB-word and k = 1
sentences for IMDB-sent. At test time, all explainer models
deterministically choose subsets based on the highest weights
instead of sampling. We evaluate using post-hoc accuracy,
which is the proportion of examples where the original model
evaluated on masked features XS matches the model on un-
masked X . We use cross validation to choose temperatures
t ∈ {0.1, 0.5, 1, 2, 5} according to the validation loss. Our
model (RelaxSubSample) improves upon L2X by up to 1%
by only changing the sampling procedure (Table 1).

4.3 Stochastic K-Nearest Neighbors

We give a stochastic k-NN algorithm where we use deep fea-
tures tuned end-to-end for computing neighbors. We follow
the setup of Grover et al., using m = 100 randomly sam-
pled neighbor candidates and the same loss. We defer details,
including architecture, to Grover et al..

We compare to NeuralSort, which implements kNN using
a relaxation of the sorting operator [Grover et al., 2019]. We
fix k = 9 nearest neighbors to choose from m candidates
and search over temperatures t = {0.1, 1, 5, 16, 64} using the
validation set, whereas NeuralSort searches over both k and t.
RelaxSubSample approaches the accuracy of a CNN trained
using the standard cross entropy loss on MNIST (99.3% vs.
99.4%) and increases accuracy by 0.6% over the NeuralSort
implementation on CIFAR-10 (Table 2).

Note that NeuralSort implements a relaxation to the sort-

Model m = 100 m = 1000 m = 5000

NeuralSort 0.010s 0.073s 3.694s
RelaxSubSample 0.010s 0.028s 0.110s

Table 3: Forward pass average runtimes (100 trials) for a small CNN
selecting k = 5 neighbors from m candidates using the NeuralSort
relaxation [Grover et al., 2019] and our method (RelaxSubSample).
Results were obtained from a Titan Xp GPU.

Model d MNIST 20 Newsgroups

Par. t-SNE (α = 1) 2 0.926 0.720
RSS-SNE (no pretrain) 2 0.929 0.763
RSS-SNE (pretrain) 2 0.947 0.764

Par. t-SNE (α = 1) 10 0.983 0.854
RSS-SNE (no pretrain) 10 0.998 0.912
RSS-SNE (pretrain) 10 0.999 0.905

Par. t-SNE (α = 1) 30 0.983 0.866
RSS-SNE (no pretrain) 30 0.999 0.929
RSS-SNE (pretrain) 30 0.999 0.965

Table 4: Trustworthiness(12) of low dimensional embeddings of size
d ∈ {2, 10, 30} for parametric t-SNE (Par. t-SNE) and RelaxSub-
Sample SNE (RSS-SNE) on MNIST and 20 Newsgroups. Pretrain
refers to layer-wise pretraining using autoencoders.

Model d MNIST 20 Newsgroups

Par. t-SNE (α = 1) 2 9.90 34.30
RSS-SNE (no pretrain) 2 11.80 36.80
RSS-SNE (pretrain) 2 8.31 35.11

Par. t-SNE (α = 1) 10 5.38 24.40
RSS-SNE (no pretrain) 10 4.97 29.39
RSS-SNE (pretrain) 10 4.56 28.50

Par. t-SNE (α = 1) 30 5.41 24.88
RSS-SNE (no pretrain) 30 3.51 29.39
RSS-SNE (pretrain) 30 3.05 28.90

Table 5: Test errors (%) of 1-NN classifiers trained on low dimen-
sional embeddings of size d ∈ {2, 10, 30} generated by parametric
t-SNE (Par. t-SNE) and our model (RSS-SNE).

ing procedure, while in kNN we only require the top-k el-
ements. We use the top-k relaxation from [Plötz and Roth,
2018], which computes k softmaxes for a runtime and stor-
age of O(km). NeuralSort requires O(m2) time and storage
as it produces a m × m permutation matrix for each input.
Table 3 shows forward pass runtimes of a CNN using our
method and NeuralSort for different values of m and k = 5
neighbors. While runtimes for small m are comparable, our
method scales much better for larger m (Table 3).

4.4 Stochastic Neighbor Embeddings

We consider the problem of learning a parametric embed-
ding which maps a high-dimensional space into a lower-
dimensional space while preserving local neighbor structure.
This problem is addressed by parametric t-SNE [van der
Maaten, 2009], which represents pairwise densities of data-
points in the high-dimensional space as symmetrized Gaus-
sians with variances tuned so that the perplexity of each point
is equal. The pairwise densities in the low-dimensional space
are modeled by Student-t distributions to address the crowd-
ing problem, a result of the volume shrinkage from the high
to low-dimensional spaces. Student-t distributions have heav-
ier tails, allowing for distant points in the high-dimensional
space to be modeled as far apart in the low-dimensional space.
The objective is to minimize the KL divergence between the
pairwise distributions in the two spaces.

We propose to learn such a mapping without the use of
Student-t distributions. Our insight is that the goal of preserv-
ing local structure can be achieved by preserving the neigh-
bor rankings, which is insensitive to scaling of distances.
In our RelaxSubSample-based stochastic neighbor embed-



(a) MNIST

(b) 20 Newsgroups

Figure 4: 2D embeddings generated by our model (with pretrain)
on 10000 MNIST datapoints and 15000 20 Newsgroups datapoints.
Colors represent different classes. (Best in color.)

ding (RSS-SNE), we aim to preserve the distribution of k
neighbors around each point. We define the neighbor dis-
tributions as follows. Let X = {x1, . . . , xn} be the train-
ing data. Let w(i, j) = exp(−‖xi − xj‖

2
2) be exponenti-

ated negative pairwise squared distances. For datapoint xi,
let w(i) ∈ R

n−1 be the pairwise distances from xi to other
points. Then we model the neighbor distribution for xi as
p(Swrs|w(i)) as in (1). Note that we sample sub-sequences
because we want to preserve neighbor rankings. Let h be our
parametric embedding function. Similarly, letting ŵ(i, j) =
exp(−‖h(xi) − h(xj)‖

2
2) and the pairwise distances involv-

ing h(xi) be ŵ(i), the neighbor distribution in the low dimen-
sional space is p(Swrs|ŵ(i)). We aim to match these distribu-
tions by comparing the neighbor samples to avoid the crowd-
ing problem. For each xi, let a sample from p(Swrs|w(i))
be [ei1 , . . . , eik ] where e

ij are 1-hot vectors correspond-
ing to a selected neighbor xij . Let a relaxed sample from

p(Swrs|ŵ(i)) be [ai1 , . . . ,aik ], k intermediate relaxed 1-hot
outputs of the top-k relaxation from [Plötz and Roth, 2018].
We minimize the objective

1

n

n
∑

i=1

k
∑

j=1

1

ej−1
< e

ij ,− log(aij ) > (7)

where we aim to match samples from the neighbor distri-
butions in the two spaces, putting more weight on matching
closer neighbors. While we can directly match the neighbor
distributions p(Swrs|w(i)) and p(Swrs|ŵ(i)) without sam-
pling, they are defined in terms of pairwise distances that can-

not be matched due to the crowding problem. We find that
sampling from both distributions is necessary to keep the loss
agnostic to scaling of distances in the different spaces.

We compare with parametric t-SNE [van der Maaten,
2009] on the MNIST [LeCun and Cortes, 2010] and a small
version of the 20 Newsgroups dataset [Roweis, 2009]2. Fol-
lowing van der Maaten, we compare the trustworthiness and
performance of 1-NN classifiers of the low dimensional em-
beddings on the test set. Trustworthiness [Venna and Kaski,
2006] measures preservation of local structure in the low di-
mensional embedding and is defined as

T (k) = 1−
2

nk(2n− 3k − 1)

n
∑

i=1

∑

j∈N
(k)
i

max(r(i, j)−k, 0)

where r(i, j) is the rank of datapoint j according to dis-
tances between datapoint i and other datapoints in the high-

dimensional space, and N
(k)
i is the set of k nearest neigh-

bors in the low dimensional space. Trustworthiness decreases
when a datapoint is in the k nearest neighbors in the low
dimensional space but not the original space. As in van der
Maaten, we use T (12), comparing 12 nearest neighbors.

We use the same feedforward networks as in van der
Maaten as embedding functions. For all experiments, we set
t = 0.1 and train for 200 epochs with a batch size of 1000,
choosing the model with the best training loss. We sample
neighbors only within each training batch. We find that k = 1
is sufficient to learn the local structure. For k > 1, we observe
a trade-off where 1-NN accuracy decreases but trustworthi-
ness either stays the same or increases. It was important to
add a small bias (1e− 8) to the relaxed k-hot vectors for bet-
ter optimization. We compare two versions of RSS-SNE, one
trained from scratch and another using layerwise pretraining.
We pretrain layer l by treating layers 1, . . . , l as an encoder
and adding a 1 layer decoder to the original space; then we
optimize the MSE autoencoder objective for 10 epochs. Note
that the original parametric t-SNE used a similar layerwise
pretraining scheme using RBMs. RSS-SNE models consis-
tently have higher trustworthiness and competititive 1-NN
test errors when compared to parametric t-SNE (Tables 4,
5). Since trustworthiness compares 12 nearest neighbors, this
suggests that our embedding has better overall structure as
opposed to focusing on the immediate neighbor.

5 Conclusion

We present an algorithm for relaxing samples from a distri-
bution over subsets such that the procedure can be included
in deep models trained with backpropagation. We use the al-
gorithm as a drop-in replacement in tasks requiring subset
sampling to boost performance. Our algorithm has the poten-
tial to improve any task requiring subset sampling by tuning
the model end-to-end with the subset procedure in mind.
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