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PRICE OF ANARCHY FOR MEAN FIELD GAMES

RENE CARMONA!, CHRISTY V. GRAVES? AND ZONGJUN TAN?3

Abstract. The price of anarchy, originally introduced to quantify the inefficiency of selfish behavior
in routing games, is extended to mean field games. The price of anarchy is defined as the ratio of a worst
case social cost computed for a mean field game equilibrium to the optimal social cost as computed
by a central planner. We illustrate properties of such a price of anarchy on linear quadratic extended
mean field games, for which explicit computations are possible. A sufficient and necessary condition to
have no price of anarchy is presented. Various asymptotic behaviors of the price of anarchy are proved
for limiting behaviors of the coefficients in the model and numerics are presented.

1. Introduction

The concept of the ‘price of anarchy’ was introduced to quantify the inefliciency of selfish behavior in finite
player games [9] [10] [14] [17] [18] [19]. In this report, we extend the notion of price of anarchy to mean field
games (MFG). Mean field games were introduced by Lasry and Lions [15] and Caines and his collaborators [13]
to describe the limiting regime of large symmetric games when the number of players, N, tends to infinity. A
mean field game equilibrium characterizes the analogue of a Nash equilibrium in the N = oo regime. Thus, as
in the finite player case, it is possible that the mean field game equilibrium is inefficient. In fact, in the paper
of Balandat and Tomlin [2], they present a numerical example that shows that mean field game equilibria are
not efficient, in general. The suboptimality of a mean field game equilibrium is also illustrated numerically for
a congestion model in a paper of Achdou and Lauriére [1]. In addition, the price of anarchy for linear quadratic
mean field games is studied in a paper of Graber [11]. More recently Cardaliaguet and Rainer gave in [5] a
partial differential equation based thorough analysis of the (in)efficiency of the mean field game equilibria.

In this report, the goal is to define the price of anarchy in the context of mean field games, and to compute
it for a class of linear quadratic mean field game models, which can be solved explicitly. In fact, we consider
an even more general class of games by allowing for interaction between the players through their controls, in
addition to interaction through their states. This is often referred in the literature as extended mean field game,
or mean field game of control. We compare the social cost of a mean field game equilibrium to the cost incurred
when the players execute a strategy computed centrally.

We consider a system of N players whose private states are denoted at time ¢ by X}, X2, ---, XN. To keep
the presentations simple, we assume the state space is R. We denote by u the empirical distribution of the
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states, namely:

1 N
Hy = Ni=16X:'

We assume that these states evolve in continuous time under the influences of controls of, a2, --- , ol € A,
where the set of admissible controls, A, will be defined later. Let v}¥ denote the empirical measure of the

controls:
1 N
Vi:N = ﬁ Z Jai.
i=1

We also assume that if and when interactions between these states and controls are present, they are of a mean
field type, i.e. through N and v¥. The time evolution of the state for player i is given by the It6 dynamics:

dX! =b(t, X}, uN ol v )dt + odW,.

We work over the interval [0,T] limited by a finite time horizon T € R*. We assume the drift function
b:[0,T] xRxP(R)x AxP(A) > (¢t,z,u,a,v) = R is Lipschitz in each of its inputs. For the sake of simplicity,
we assume that the volatility, o, is a positive constant.

Cost Functionals

We assume that we are given two functions f : [0,7] x R x P(R) x A x P(A) 3 (¢,z,p,0,v) — R and
g:RxP(R) 3 (z,p) = R which we call running and terminal cost functions, respectively. We assume f and ¢
are Lipschitz in each of their arguments. The goal of player i is to minimize their expected cost as given by:

T
Jial, . aV) =E[/ £ X0 b uN ) de + g(Xh, i)

Social Cost

We restrict ourselves to Markovian control strategies o = (a4 )o<:<T given by feedback functions in the form
a; = ¢(t, X:) and we let A denote the set of such controls. If the N players use distributed Markovian control

strategies of the form a! = ¢(¢, X}), we define the cost (per player) to the system as the quantity JéN):

N
N 1 i
JS )ZEZJ(al,---,o:N).
i=1

We shall compute this social cost in the limit N — oo when all the players use the distributed control strategies
given by the same feedback function ¢ identified by solving an optimization problem in the limit N — co. We
take the social cost to be the limit as N — oo of JéN), namely:

N
1 .

li J(N): li J? | — N

Nooo ™ ® N—IE:;ON; (-, a)

N—oo

N T
- 1 i i i
= Jim Y B] [ A Xt ot X0, i+ o).
i=1
N—oo

T
= lim E[/ <f(ta 'aﬁ%;:é(tu ')1”?)3“’? > dt+ <g(a“¥y)aﬁ¥ >:|a
0

if we use the notation < ¢, p > for the integral [ ¢(z)p(dz) of the function ¢ with respect to the measure p.
Now if we assume that in the limit N — oo the empirical distributions p converge toward a measure p;, and
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thus vy = L 25\;1 04z, x7) also converges toward a measure v;, where v¢ = iz 0 &(t, )71, then the social cost of

the feedback function ¢ becomes:

T
SC(9) =/0 < Ft - ey bt )y ve)s e > A+ < g(- s ur)s pr >,

with the expectation, E, disappearing when the limiting flows g = (u¢)o<¢<r and v = (v¢)o<i<r are determin-
istic.

We would like to evaluate SC(¢) in the N = oo regime directly, without having to construct the deterministic
measure flows it and v as limits of the finite player empirical measures. To do this, we assume that propagation
of chaos holds and that the states of the N players become asymptotically independent in the limit as N — oo.
We consider a representative agent whose state is given by X = (Xf Jo<i<T, the continuous time solution of
the stochastic differential equation of McKean-Vlasov type:

dX? =b(t, X7, L(XT), 6(t, X7), L((t, X7))dt + odW, (1)

controlled by ¢. Then we can identify pt as the law of a representative agent using the feedback function ¢, i.e.
pe = L(X?), and similarly, we can identify v as the law of the control, such that v; = £(¢(¢, X?)). Thus, in
the N = oo regime, we rewrite the social cost as:

T
SC(9) :/0 < f(t, -, LXD), 6(8, - ), L(d(8, XT))), LXT) > di+ < g(-, L(X7)), £L(X7) >,

where X ¢ satisfies equation (1). For the remainder of the paper, we work in the N = oo regime. As mentioned
earlier, ¢ should be identified by solving an optimal control problem. We consider two distinct problems:

e ¢ is a feedback function providing a mean field game equilibrium. We detail more precisely what is

meant by ¢ providing a mean field game equilibrium in section 1.1.
e ¢ is the feedback function minimizing the social cost SC(¢), without having to be a mean field game

equilibrium, in which case we use the notation SCMEV for SC(¢). This is a control problem of
McKean-Vlasov type, which is detailed more precisely in section 1.2.
The two problems are detailed more precisely in sections 1.1 and 1.2. In section 1.3, we define the price of
anarchy based on these two problem formulations. The class of linear quadratic models is explored in section
2, where we provide some theoretical results on the price of anarchy for this class of games. This includes our
main result, Theorem 2, which provides a sufficient and necessary condition to have no price of anarchy. In
section 2, we also prove some limiting cases and show numerical results. We conclude in section 3.

1.1. Nash Equilibrium: Mean Field Game Formulation

The goal of this subsection is to articulate what is meant by a feedback function providing a mean field
game equilibrium. To begin, we define what we call the mean field environment. By symmetry of the players,
we suppose all of the players in the mean field game use the same feedback function, ¢. Then the mean
field environment specified by ¢ is characterized by £(X{ Jo<e<T and L(¢(t, X?) Jo<i<T where the dynamics
of (Xf Jo<t<r are given by equation (1). Since we search for a Nash equilibrium, we consider a representative
agent who wishes to find their best response, ¢’, to the mean field environment specified by ¢, in which case
their state is given by X¢+¢ = (Xf !’qb)ugth solving the standard stochastic differential equation:

Xyt = b(t, X, LKD), 8/ (8, XP%), L((t, XP)))dt + 0dW,.

Consider the function:

T , ]
S(¢',9) = [/0 < flt, L(XD), (8, ), L((t, XE)), L(XE ) > di+ < g(-, L(XF)), L(X{ ) >]-
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The best response for the representative agent in the mean field environment specified by ¢ is the feedback
function minimizing this cost, namely ¢* = arginfy S(¢’, ¢). Assuming the minimizer is unique (which will be
the case for the models we consider), this defines a mapping ® : ¢ — ¢*. If there is a qB such that ‘I’(ng) = quS,
then the players are in a mean field game equilibrium.

Thus, the search for a feedback function providing a mean field game equilibrium can be summarized as the
following set of two successive steps:

(1) For each feedback function ¢ : [0,T] x R 3 (¢, z) — R, solve the optimal control problem
¢* = argig,fs(é', ¢)-

Define the mapping ®(¢) := ¢*.
(2) Find a fixed point ¢ of & such that &(¢) = ¢.

When these two steps can be taken successfully, we say that ng provides a mean field game equilibrium. Note
that X#% = X% and therefore S (45, quS) = SO(&) gives the social cost for the mean field game equilibrium
provided by q5 Notice that there could possibly be many feedback functions providing a mean field game
equilibrium. Let N denote the set of all such feedback functions providing mean field game equilibria, as
detailed above, i.e.

N={6:[0,T] xR > (t,z) = R | &(¢) = 6}.

1.2. Centralized Control: Optimal Control of McKean-Vlasov Type

The goal of this subsection is to articulate how to compute the cost associated with the control problem of
McKean-Vlasov type, SCMEV | The central planner considers the following control problem:

-

o= argil;fSO(qb)
T
= arginf l /0 < f(t, -, L(XD), 0(t, -), L(3(t, X)), LX) > dt + < g(-,L(XP)), LX) > .

Thus, the cost of the solution to the optimal control problem of McKean-Vlasov is given by:
SCMEV — 5C(4).

Remark 1. We are not concerned with uniqueness for the control of McKean-Vlasov type problem, because
SCMEV = SC(¢p,) = SC(¢s) is still well defined even if there are two different optimal feedback functions ¢,
and @2 minimizing SC(¢).

1.3. Price of Anarchy

We have described two approaches to compute the optimal feedback function ¢. In the mean field game
formulation, we require ¢ € N, where N denotes the set of feedback functions providing mean field game
equilibria. In the optimal control of McKean-Vlasov type formulation, the optimal control to be adopted by
all players is computed by a central planner, who optimizes the social cost function SC(¢) directly. Thus, we
necessarily have:

SCMEY < SC(¢), Vo e N.
In other words, there is a ‘price of anarchy’ associated with allowing players to choose their controls selfishly.
We thus define the price of anarchy (denoted PoA) as the ratio between the worst case cost for a mean field
game equilibrium and the optimal cost computed by a central planner:

SUPgep SC(¢)
PoA = —==ymv—
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2. Price of Anarchy for Linear Quadratic Extended Mean Field Games

The class of linear quadratic extended mean field games is a class of problems for which explicit solutions
can be computed analytically, and thus, we can compute the price of anarchy explicitly.

To begin, we need to describe in more detail the two problems that will be used to compute the price of
anarchy: the linear quadratic extended mean field game, and the linear quadratic control problem of McKean-
Vlasov type with dependence on the law of the control. To specify the problems, we only need to specify the
drift and cost functions, b, f, and g introduced in section 1. For the linear quadratic models, we take the drift
to be linear:

bt 1, ) = by ()5 + By (B + ba(t)ex + o ()7,
where /i denotes the mean of the measure y, namely, i = [, zdu(z), and similarly for 7. We take the running
and terminal costs to be quadratic:

F(t,3,m00) = 5[5 + 4O (@ — sOR? +r(0)a? + ()@ — 5()9)°]
o) = 5 [are® + ar(e — sr)?]

Remark 2. If by(t) = 0 and 7(t) = 0, then we have the standard mean field game or control problem of
MecKean-Vlasov type. (See Theorem 1 for assumptions that provide existence and uniqueness.)

2.1. Linear Quadratic Extended Mean Field Games

To solve the linear quadratic extended mean field game (LQEMFG), we begin by considering the reduced
Hamiltonian for this problem:

H(t,z,f,0,7,y) = [bi(t)z + bi(t)E + ba(t)a + ba(t)7] y

+ % [a()z® + 4(t)(z — s(t))? + r(t)a? + 7(t)(a — 5(t)7)?] ,

and whenever the flows i = (fi¢)o<i<T and ¥ = (¥;:)o<i<T are fixed, we consider for each control process
a = (a¢)o<i<t the adjoint equation:

d}/t = _81‘H(t: XE: ."131 g, Ijta }]t)dt + thWh YT = a:I:g(X'I"-; 'C(XT))-
According to the Pontryagin stochastic maximum principle, a sufficient condition for optimality is:
OaH(t, X, fit, 61,7, Yy) = 0.

Thus, we find the optimal control:
_ T(t)3(t)7 — ba(1)Y;

o r(t) + 7(t) @)
When solving the fixed point step, we identify 7 = E(&;). By taking the expectation, we find:
_ _miaN_ MFG . MFGp _ ba(t)
rnp=E(a&)=¢ (t)E(Yz), with ¢ (t) = T T —50)
Thus, from equation (2) we have:
& = aMFE ()Y, + M FC()E(Yy), (3)
with: o
QMFC () — _ ba(2) and  BMFO(1) = 7(t)s5(2)ba(t)

r(t) +7(t)’ (@) + () (r(0) +7(6) (1 - 5(2))
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Note that ¢MFC(t) = aMFE(t) + bMFCE(t). The solution of the mean field game equilibrium problem is given
by the solution to the FBSDE system:

(4)

dX; = [bi(t)X: + b1 ()EX; + aMFC (£)bo(t)Y; + (BMFC (£)by(t) + MFEC(t)by(t))EY;] dt + odW,
dY; — [(a(t) + a(¥))Xe — q(t)s()EX: + by (£)Yz] dt + Z:dWr,

with initial condition Xy = £, a random variable with finite mean and variance, and terminal condition Y =
(gr + @r)Xr — grs7EXr.
This is a linear FBSDE of McKean-Vlasov type, which can be solved explicitly under mild assumptions (or

at least in the case of time-independent coefficients which we will consider later. See Appendix A). Let 7MF¢,

gMFG gMFG and vMFE denote the solutions for this problem as described in the appendix so that:

Y _ T."thGX T (—IUFG nI\«fFG E?IFG, ]E(Yt) _ ﬁibeGfi\«fFG,

E(X;) =2MF¢, Var(X;) = vMFC,

¥

provide a solution to the LQEMFG problem. Then from the appendix, we have:

e a scalar Riccati equation for gMF&:

e 7+ [T @) (ba(t) + b2(8)] - (7)? + (2b1(8) + ba(2)) - 7T + a(t) + q(8)(1 — s(1) =0, (5)

with terminal condition #M¥¢ = gr + gr(1 — sr),
e a linear first order ODE for zMFC:

FIFC = [bu(t) + by () + MPO@)(ba(t) + Ba(®) - 71FC] - 7, (6)

with initial condition Z}FE¢ = E(¢),
e a scalar Riccati equation for nMF&:

G 4 aMEC ()b (8) - (1 FC) + 260 (8) - 0T +q(t) +a(t) =0, (™)

with terminal condition nM¥¢ = g + gr,

and where the dot is the standard ODE notation for a derivative. And thus, we obtain explicit solutions for

_,EibeG and Ué\«IFG:
TMFG ]E(g)efo(b1(s)+b1(s)+[c”FG(s)(bz(s)+bz(s))] 717C ) ds (8)
t
YMFG Vm_(g)efo2[b1(8)+aMFG(8)bz(8) " Clds | 2 / &2 L2 [pr () +a™FC (w)ba (w)ny T Cdu g (9)
0

Let SCMFCG .= SC(¢MFC) in which ¢MFCE = ¢MFCG(t 1) is the feedback function specified by this solution,

namely, from equation (3), we have:

HMFC (¢, 1) = gMFC (4)yMFCy 4 [aMFc(t)(ﬁi\JFG — gMFGy 4 bI\«fFG(t)ﬁéUFG] FMFG,
Then we can compute the social cost as described in section 1.1:
SO.M"FG 5 I:(Q‘T +QT) MFG T (QT +QT(1 _ ST) )(-E.M'FG)Z

T
+ /D [a(t) + q(t) + (r(t) + 7() (@7 ()" 7)) v} FCdt (10)

T
+ /D [a() + a(t)(1 = s(1)* + (r(t) + 7(£)(1 = 5(£))*) (M C (@) ")’ (f?’fm)zdt},
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where we have used the fact that:
E(éM’FG(t, Xt)) — CM’FG(t) . ﬁ?IFGf?IFG and VGT((,?BMrFG(t, Xt)) — (aMrFG(t)'I}?IFG)Z . U?IFG_

2.2. Linear Quadratic Control of McKean-Vlasov Type Involving the Law of the Control

To solve the linear quadratic optimal control problem of McKean-Vlasov type involving the law of the control

(LQEMKYV), we begin with the reduced Hamiltonian, which is the same as in the LQEMFG problem:
H(t,z, fi, o, ,y) = [bi(t)z + bi(8)i + ba(t)a + ba(8)7] y

+ % [a(t)z® + 4(t)(z — s(t))* + r(t)a? + 7(t)(a — 5(t)7)?] .

Since we require 7 to be equal to E(cy) throughout the optimization, it is not sufficient to minimize the
Hamiltonian with respect to the a input alone in order to guarantee optimality. A sufficient condition for
control problems of McKean-Vlasov type involving the law of the control is derived in [6]. Since we consider
a Hamiltonian that depends on the means of i and ¥ instead of the full distributions, the sufficient condition
reduces to the following (see section 4 in [6]):

aﬁH(t': Xta ]E(Xt): &t: E(d’g), I/t) + ]E I:ai'H(t'l tha ]E(Xt): &t: E(d’g), 1':}t):l = 03

where the adjoint equation is given by:

dYy

Yr
and where (X , f’, &) denotes an independent copy of (X,Y, ). In the present LQ) case, the sufficient condition
can be used to solve for:

— [3::H(ta Xe, fie, e, 7, Ye) + E [8£H(ta Xe, fie, G, 71, }m’t)” dt + Z,dW;
89(Xr, £(Xr)) +E [039(Xr, £(Xr))(Xr)|

& = aMKV ()Y, + MKV (1E(Y,), (11)
with:
GMEV (1) — _ ba(2) and BMEV (4) — _ 1 = oo T(0)3()(3(t) — 2)(ba(t) + ba(2))
D=+ ™ P O mr (M” 0+ T~ SO )

Then E(&;) = MKV (£)E(Y;) with:

ba(t) +ba(t)

cMKV(t) _ aMKV(t) + b‘M-KV(t) = _T(t) T ',F(t)(]. — E(t))z .

So the solution of the optimal control problem of McKean-Vlasov type is given by the solution to the FBSDE
system:

dX; = [bl () X; + b1 (HEX, + a™EV (£)ba(t)Y; + (BMEV (£)ba(t) + MEV (1), (t))]EYt] dt + odW;

_ (12)
dY, = — [(g(t) + q(#)) X¢ + s(£)3(t) (s(t) — 2)BX; + b1 (8)Y; + b1 ()EY;] dt + ZodWr,

with initial condition Xy = £, and terminal condition Yr = (gr + gr) X1 + srdr(sr — 2)EXr.

As in the previous section, this is a linear FBSDE of McKean-Vlasov type, which can be solved explicitly
under mild assumptions (or at least in the case of time-independent coefficients which we will consider later.
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See Appendix A). Let gMEV pMEV zMEV and oMKV denote the solutions for this problem as described in
the appendix so that:

Y _nthVX _|_(—M’KV nI\erV)—I\«fKV E(Y) — —M’KV M’KV

¥

¥

]E(Xg) _ —I\JKV VGT(X;) — U.M'KV,

provide a solution to the LQEMKYV problem. Then from the appendix, we have:

e a scalar Riccati equation for MKV :

MKV 4 [eMEV (8)(ba(t) + b2(2))] - (TTEV)? +2 (b (t) + 51(2)) - BMEY +q(t) +a(t)(1 — s(t))2 =0, (13)

with terminal condition #MXV = g7 + gr (1 — s1)?,
e a linear first order ODE for a‘:i\’f KV,

MKV = [by(8) + B (8) + MKV (1) (ba(t) +Ba(1)) - 7HEV] - 2KV, (14)

with initial condition Z3/KYV = E(¢),
e a scalar Riccati equation for nMEV:

T-#\«fKV M’KV(t)bZ(t) (nM’KV) +2by(t) - nM’K‘V +q(t) + q(t) = 0, (15)

with terminal condition nM&V = g1 + gr,

and where the dot is the standard ODE notation for a derivative. And thus, we obtain explicit solutions for

:E.i\«fKV and U?IKV:
MKV — F(¢)elo (0r(0)+01(a)+[eM "V (@) (ba() +B2(0))] 02"V ) (16)
oMKV Var(f)eff' 2[by (8)+a™ KV (8)ba(s)-n ) KV ]ds + Jz/ &2 L2 [ () +a™ 5V )ba (wymy *V]du g o %
0

Then SCMEV = SC(¢MKV) where ¢MEV is the feedback function specified by this solution, namely, from
equation (11), we have:

4151‘\«11’}1(‘/'(’5, I) _ aI\erV(t)nibeVI T [aI\erV(t)(ﬁi\erV _ ni\erV) _’_bI\erV(t)ﬁi\erV] E?IKV.

CM’KV

Then we can compute the social cost, denoted S , as described in section 1.2:

SCMRY = ~[(ar + @)l XY + (ar + Fr(1 - sr)?) (FHEV)?
+ / [a(®) +a(8) + (r(2) + 7(£) (@™ K (O)rMKY )] oMKV di (18)
+ / [a(t) +a(t)(1 = s(t)? + (&) + ()1 = 5(E)) (Y OV )] (@15 )%,
where we have used the fact that:

]E(qf)MrKV(t, Xt)) —_ CM’KV(t) ) ﬁibeVfibeV and VGT((,?BMrKV(t, Xt)) — (GIHKV(t)n?fKV)Z i Ui\(fKV‘
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2.3. Theoretical Results
For the remainder of the paper, we assume the coefficients are independent of time and non-negative:
(bl(t)! El(t): bg(t), 52(”: Q(t): g(t): T(t)': F(t)': S(t): E_,(t)) = (bl-: El: 521 BZ: q,q,T,T, s, §) € (R+)101

(QT: qr, ST) € (R+)31
and therefore,

(aM’FG(t),bI\«fFG(t),cI\«fFG(t)) _ (aM’FG, bI\«fFG,cM’FG‘)
(GM’KV(t), MKV (t),cMKV(t)) _ (aI\«fKijI\«fKVch\«fKV) )
Also, it will be convenient to denote:
MFG _ -2
c by r+7(1-3) _MFG _MKV
A= — . =\ = . 19
MEV " ho+ by T+7(1—35) ] Ug Tt ) W =T (19)
and to make the following observations:
aMFG — MKV _. o qMFG — MKV _. oMFG — MKV _. (20)
Theorem 1. Assume the following:
b > 0 by + 52 > 0
r+7 > 0 r+7(1—3 > 0 r+7(1—372% > 0 21)
g+q > 0 g+gl—s) > 0 g+dl1—s5?% > 0
gr+aqr > 0 gr +qr(l—sr) > 0 gr +qr(1—sr)> > 0.
Then there exists a unique solution to the LQEMFG problem, and there exists a unique solution to the LQEMKV
problem. And therefore, PoA = %ﬁ;ﬁ where SCM¥C and SCMEV are given by equations (10) and (18),

respectively.

Remark 3. Note that existence in Theorem 1 follows from the explicit construction in Appendiz A, because
the above conditions provide eristence to the solutions of the Riccali equations. Uniqueness comes from the

connection between LQEMFG or LQEMKYV and deterministic LQ optimal control. (See section 3.5.1 in [8]).
Proposition 1. Assuming (21), if furthermore,

(b1 5Y + sq(s —1)] -2V =0, Vie[0,T] (22)
(CMFG _ CMKV) GMEVZMEY _ o v ¢ € [0,T) (23)
str(sr —1)-zp " =0, (24)

then PoA =1.
Proof. Comparing the FBSDE systems (4) and (12), and using the fact that a™¥¢ = aMXV and pMFCG —
MKV — (MFG _ MKV the result is clear. (]

Remark 4. Recall from Remark 2 that in the standard mean field game, by = 7 = 0, and thus, A = 1. Although
Proposition 1 is a simple result, we will see shortly in Corollary 3 that in the case when A = 1, the sufficient
condition given by equations (22)-(24) is also a necessary condition to have PoA = 1. We can see that in the
standard mean field game setting, Proposition 1 is similar to Theorem 3.4 in [5] which characterizes the global
efficiency of mean field game equilibria in the case of a separated Hamiltonian. See also Remark 6.1 in [16],
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where it is noted that the mean field game and control of McKean-Vlasov type problems are the same for a
particular model of flocking. We also note that Proposition 3.3 in [11] provides a similar result to Proposition
1 for a different notion of price of anarchy.

Corollary 1. Assuming (21), if furthermore, by = 0, sq(s — 1) = 0, spgr(sy — 1) = 0, and MFCE = MKV
then PoA =1.

Corollary 2. Assuming (21), if the initial condition ¢ is such that E(£) = 0, then from equation (16), MEV =0
for allt € [0,T], and thus, PoA =1.

Using the observations in equation (20), we can rewrite:

1 1
SCMFE = ~(qr +ar)or + 5

+5 / [g+a(1 = )* + (r +7(1 = 8)*) (M7 7 )] (217, (25)

T
(ar + @r(1 —s7)?) (27 7C)° +%/ [q+ @+ (r +7)(any)?] vedt
0

1 — 2 _MKV\2 1 T — . 2
= (ar+ar(1—s1)?) (zr*Y) +§/D [a+ @+ (r +7)(am;)?] vedt

1
SCMEYV = §(QT +qr)vr + 3

T
+% /0 [g+a(1—)* + (r + 71— 3)*) (M V"5 V)2)| (25 de. (26)

In the following, we intend to simplify the explicit solutions (25) and (26) for the social costs in the LQEMFG

and LQEMKYV problems. First, consider the quantity A := fo gMEC)2(FMFC)2qt - Using equation (5), we
have:

1 T T
A= _ FMFG(ZMFG)2g, / ob: + B \MFG 1_ MGy |
MFG (b, + by) l/o go idt+ | [(2b1+b)7 " + (g +a(1—9))] (7 7°)

then using integration by parts for the first term in the bracket:

— 1 gMFG(MFG)2 _ pMFG (zMFG)2 T MPG_MFG . :MFG
A=  MFG (b, + by) l"h‘ (7 7)) = (Zo ") — A My T Iy Tt

T
+ /0 [(2b1 +b1) "¢ + (g +a(1 — 5))] (f?fpc)zdt] ;

and together with equation (6) yields:

A=2A— CMrFG(I];z - 52) l—beG(IRIFG)Z —M’FG(E(&-))Z _|_/ [ bl'-'}'MrFG + (q + q(l _ S))] (.L‘ fFG)Zdtl

Finally, we arrive at:

@ TO) — AT E©) + fy [Bi! " + g+ a1 = )] (@ FO)de

A =
cMFG by + by)

If we denote:

1 [T 1
hyar == 5/ [q+ @+ (r + 7)(an:)?] vedt + E(QT‘F@T)”T;
0
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and use the terminal condition for 7€ then equation (25) can be rewritten as:

SOMH = huar 13 / A7 + (g +a(1 = 5)") = Mg +a(1 = 9))] (2"79)*dt, 27)
+ 5)‘ [ FC(E))? — (ar + ar(1 — s7))(@H F9)*] + (QT +ar(1 — sp)?)(ZMFC)2.

Similarly, equation (26) can be rewritten as:

SCMKY = hyap + 7V (E(E))”. (28)

Let’s denote the (weighted) difference between the solutions of the Riccati equations associated with M F¢

and nM’K‘V by
An‘t _ )\T:."M-FG T—?I\JKV = uy — wy. (29)

Proposition 2. Under assumption (21), the difference in the social costs in the LQEMFG and LQEMKV

problems can be represented by:

. MFG MKV 1 (52 + 52)2 —IUFG 2
ASC = SCMFE - SCMIY — 5 2 s | (A dt. (30)

Proof. The solutions 7M€ and MKV for the Riccati equations (5) and (13), respectively, are well defined
under assumption (21) (see Appendix A). We notice that A7 defined in (29) satisfies the following linear
first-order differential equation:

d(Af,
dAm) dtnt) = 1A + B, Anp = xgg PG — g KV
with coefficients: (bs + a)?
- + 02 _ _
—  _9b —9 2 \FMFG | mMKV
Ve 1 1+7—|—F(1—§)2( + ),
Be = bidt™"C + (g +d(1—)?) — Mg +q(1 - ).
Since gr +gr(1—sr) = MFC, gr+gr(1—sr)? = pHEV and A}t FE — KV = Afjp, we deduce from equations

(27) and (28) that:
1 T
ScMrFG _ ScMrKV — 5 lAﬁO(E(g))Z AW(IM’FG ‘2 / ﬁt(:Ei\JFG)2dt‘|
0

_1 /T[ ST | (U89 ) ey

dt dt

FMFG2 | _ o M _MFG\ _
/O [ 5 (bl B e 5)2)\?}; Ye | dt

1 (b + by)? LEMFGy2
) r—l—r(l—s)2/ (AT )dt,

(W] I

l\ﬁl'—‘

where we use equation (6) for the fourth equality.
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Remark 5. We can see directly from Proposition 2 that the social cost in the LQEMFG problem is larger than
(or possibly equal to) the social cost in the LQEMKYV problem. This result is consistent with the definition of
the price of anarchy in section 1.3.

Note that we can write:

ASC
It will be useful for us to note here the scalar Riccati equations associated with u; = AgMFC, w, = GMEYV
and 7;:
iy —2A%u; — B%u? +C* =0, up =DY, (32)
w; — 24w, — BYw? +C¥ =0,  wp = D", (33)
i —2A™; — By} +C" =0, nr =D, (34)
with:
u E'1 w 7
AY = — bl-l-E s A :—(bl‘l'bl), An:—bl,
5.)2 5,)2 2
oo (bt B g k)2 B
r+7(1—5)2 T+ 7(1—5)2 T+T
C* = XMg+q(1-s)), CY=q+q(1-s)* C"=q+4
DY =Mgr +qr(1-sr)), D¥=gr+ar(l1-sr)’, D"=gr+ar. (35)

If B* #£0, B*D" > 0 and B*C" > 0, we have (see equation (73) in Appendix A) the existence and uniqueness
for u; which can be expressed by:

Cu(1 — e~ (B —8)(T-1)) 4 Du(6F — 5;6—(63 —8.)(T—1))

YT TBuDu(1 — e~ 6i—80)(T—0) 1 5f e (L —60)(T—1) _ g

(36)

with 0f = —A" 4+ /(A%)2 + BuC*. Under assumption (21), the above conditions on B%, C*, and D" are
satisfied, and we have §,; <0 <4}, u; > 0 for all ¢ € [0,T), and ur > 0. We have analogous expressions for w;,
and 7, in terms of 6% and 61?, respectively. Note that B* = BY =: B.
It will also be useful to compute the derivative of u; with respect to time ¢ from the explicit form in equation
(36):
du;  (B(D")? 4 2A4"D* — C¥) - (65 — 67)" e~ 0L —0)(T—1)
&% _ 5-
dt [BDu(l — e~ (-8 (T—1)) 4 §f e~ (6 —8u)(T—t) 5;]
Note that u; is increasing if B(D%)? +2A%D* — C% > 0, and likewise, decreasing if B(D%)2 +2A*D% — C* < 0.
Theorem 2. Assume (21) and the initial condition £ satisfies E(§) # 0. Let A%, A¥, B, C*, C%, D", and
DY as defined in equation (35).
e When by > 0, we have PoA = 1 if and only if:

(37)

D¥=D%=:D and BD?+2A“D — C"= BD? +2A*D —C% =0. (38)
e When by =0, then A* = AY and we have PoA = 1 if and only if:

D*=D" and C*=Cv. (39)



ESAIM: PROCEEDINGS AND SURVEYS 361

Proof. From an analogous equation to (36) for w, we know that under assumption (21), wg > 0. Thus, with the
assumption E(£) # 0, we have 0 < SCMEV < oo. Hence, PoA = 1 if and only if ASC = 0. Since zMFC #£0
for all t € [0,T], from Proposition 2 and the continuity of u; and w;, we deduce that:

PoA=1 ifand only if  u, =w,;, VYte][0,T].

From equation (37) and the uniqueness of solutions to Riccati equations (32) and (33), it is easy to check that
if the conditions in (38) and (39) are satisfied, then u; = D% = D% = w; for all ¢ € [0,T], and thus, PoA = 1.
Suppose now that PoA = 1. Then u; = w; for all t € [0,T] and clearly:

D" = ur = wr = D¥.

Now, if we take the difference between the two Riccati equations (32) and (33), and by using u; = w; for all
t € [0,T], we obtain:

204" — Ay w, =C* - C", Vtel0,T). (40)
Since 2(A% — A¥) = by, in the case when b; = 0 we must have C* = C*. Otherwise, equation (40) implies that
uy = wy = (C* — C"™) /by, are constant for all ¢ € [0,T]. Thus, the time derivatives of u; and w; should be zero.
From equation (37), and the fact that ;7 — d, > 0, we deduce:

B(D")? +2A"D"* — C" =0.

Similarly we also have B(DY)% + 2A¥ D" — C¥ = 0.
O

Corollary 3. Assume (21) and A = 1. Then the sufficient condition (equations (22)-(24)) from Proposition 1
15 also a necessary condition to have PoA = 1.

Proof. Assume PoA = 1. Since A = 1, we have ¢M¥& = ¢MKV and thus, condition (23) holds. If E(¢) = 0,
clearly conditions (22)-(24) hold, as noted in Corollary 2. If E(£) # 0 and b; = 0, from Theorem 2, we have
D% = D¥ and C" = C" which together with A = 1 imply conditions (22) and (24), similarly as Corollary 1.
Now, if E(¢) # 0 and b; > 0, from Theorem 2, we have D* = D¥ which implies condition (24). Finally, the

condition B(D)? + 24D — C* = B(D)? + 2A*D — C* = 0 implies MKV = w, = D = ;&= = 200=2)

and thus, we have condition (22).

We study in the following the variation of PoA by letting only one of the coefficients tend to zero or to
infinity. In order to make the following computations easier to follow, we repeat equations (30), (28), (8), and
(9), which we recall is equivalent to equation (17), using the above notations. Assuming (21), we have:

T
ASC =3B [ (w=w)? - (a0, (a1)
0
1 /T g 1
scMkV =2 [ o+ a+ Bt wae+ LT or 4 Sun(E(O)Y, (42)
0
féwpc _ E({)efg(b‘+51_3“’)ds, (43)
t
vy = Var(s)ef(: 2(b1—B"n.)ds —+ 62/ ez f:(bl_Bnnu)duds_ (44)
0

by r+7(1-35)?
by+by T+TF(1—35)

In the following propositions, we utilize the following assumption to make their proofs simpler.

Also for convenience, recall the definition from equation (19): A =
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Assumption 1. Assume (21). In addition, assume: by > 0, D¥ > 0, D¥ > 0, D" > 0 and the initial condition

satisfies E(§) # 0.

Proposition 3. Assuming Assumption 1, then:

lim PoA=1 and lim PoA =1.

00 T—00

Proof. First, we consider r — oo. For every given r > 0, we have existence and uniqueness of the solutions uf,
wi and 7] to the scalar Riccati equations (32)-(34). Note that we have added the superscript r to emphasize
the dependence on this parameter.

When r — co, we have:

bo
AT — AT = —,
by + bo

and
BT — 0, B"" —0,

CWr — CWr=%® .= \r2%(g 4 q(1 — 5)), D%" — DUr—=% .= A\r> (g + gr(1 — s7)).
Let " 7°° : [0,T] — R be the solution to the linear first-order differential equation:

l"—}DO) _ 2A‘u T—}OO _|_ Ou , o0 — 01 ul"T—}DO — D‘U.,T—}DCI.

Then we have:
QT QT

_2A4%(T—t)
2Au )e T oau

It is easy to show directly from their explicit solutions (see equation (36)) that for every time ¢ € [0,T],

— —
u;‘ oo:(Du,r oo

lm uj =u] 7%, and thus, lim B"u] =0.

T— 00 oo

Next, our goal is to bound the u] uniformly over ¢t € [0,7] for large r. Note that A* < 0, B", C*",
AT g e DT DT 5 () and 6, < 0 < §;". Let € > 0. Then there exists a 7* > 0 such that
max{B", C%" D%"} < max{C®r= Dwr=>>} 4 ¢ =: ( for r > r*. Thus, we can deduce that for r > r*, and

for every ¢t € [0,T]:
Crr 4 DU —677) _ C+ A HE
|| < SH (BT NT—t) T g quo—2T\(A 242
From equation (43) and by the bounded convergence theorem, we have for every ¢ € [0, T:

?

]]m I_.EU'FG T E(&)e(bl +b1)t —. ftﬁfFG,T—}oo.

-MFG,r

Moreover, T, is uniformly bounded for ¢ € [0, T]. From the non-negativity of u}, we have:

‘zi"fmﬂ“ < |E(€)|e®T vt e [0,T].

Similarly, for every t € [0,T:
P T— 00 . r—0o0
r]]—'H;lo wp =twp 7, T]Eglo n = )

and the functions w] and 7} are uniformly bounded over ¢ € [0,7] and large r. By the bounded convergence
theorem we have for every t € [0,T]:

].lm/ (ut t) ( -MFG,r Zdt—/ (ur—}oo_ T—}GO) ( ﬁfFGT—}DO)Zdt < o0,
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and thus, from equation (41):

T
lim ASC™ = lim ~ . B" / (uf —w!)2(EMFETY24t = 0.
0

oo T 00
From equation (44) and by the bounded convergence theorem, we have for every ¢t € [0, T:
t
lim o] = Var(£)e®" + 02/ 2118 gg —; oI,
T 00 0

We also have w7 > 0 and v{ 7> > 0 for ¢ > 0. Hence, from equation (42):

r—0o0

1 T
lim SCMKV.r — 3 ( / (g + q)vi~7*°dt + (qr + qr)vy "> + wS*“’(E(‘E))Z) > 0.
0

Therefore, from equation (31), we have:

lim PoA" =1.
r—oo
By replacing A" 7% with AT7® := - b2__(1—3), the proof can be repeated, and we obtain lim PoA™ =1. [
2+b2 T—oo

Proposition 4. Assume Assumption 1. If:

q+q1-s) _q+q(1-s)?
r+7(l—5 r+7(1—-35?2

then:
lim PoA=1.
bo—roo
Otherwise,
lim PoA > 1.
bo—roo
Proof. When by — oo, we have:
Aoz — THTU=8) _ jbasoo  Bba o0 BTz 00

rr(1—&)
Cu.,.bg — )\bz—}oo(q+§(1 _ S)) = Cu,.bg—}co, Du.,b2 — Abz—}oo(qT +Q_T(1 _ ST)) = Du.,.bg—}oo > 0,

and A", (A", C", D"),(A",C", D7) are independent of ba. Moreover, we notice that:

6$’b2 At (A'u,)Z Clu,bz q+ 6(1 — S)
_ = — — + = + — — > + — — =: *+e5,,
by + by bz + bo (b2 +b2)?  r+7(1—-35)? baooo r+7(1-3)

and thus, limp, yo0 6772 — 67°%2 = +4oo. For the sake of simplicity, denote hy(ba,t) := (ba + bp)ul? and
hy (b, t) == (by + bz)w??. From equation (36), for all ¢t € [0,T), we deduce:

( b2 L Dubs 50z )_ ( Ccvb2 4 puwb 6,0 )e—(é‘j‘%—a;“’?)('}‘—t)

hu(ba ) = N2+l batby) \by+b by +by
s ( —5;‘._5'-'2 n Dusbz ) 4 ( 6¢,b_2 _ Dbz ) 8_(63_‘52 _57b2)(T—1)
(b2 +b2)?  r+7(1-35)° (b +b2)2  7+7(1—3)?

1 2 _.
m} (r+7(1—35)%)es, =: cu.
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Similarly, for all ¢ € [0,T):

. ) B ) + q(1 — 5)2

q+q
T
Next, we derive a strictly positive uniform lower bound for (b2 + l_)g)ugz over [0,T] and large by. Let ¢ :=
1 min {cgu,D““-b?_’m}. Then there exists a b;"u’mwer > 0 such that for all by > b;’u"mww:
u

2
max{ ba + by

and thus for all ¢ € [0,T:

and

lim bon?? = (r + F)es. =: ¢ with e5 =
ol Doy (r+T)es, =:cp, 5

é‘-l—,bz »

— .ba 1
, uo , Du,bz _ Du.,.bz—}oo ,‘ _ ’} < (1,
’52+52 (es)]| bt balf =

—cs,

D‘u,bg 6;,'-,b2
(5;1‘:572 _5;:5‘-‘2) + Bbz2 Dubz
N (D% = 1) (es, — )
= (1(2¢s, +2¢1) + (Dwb27o0 4+ £4)/(r+ 7(1 — 5)2)

hy (b2, t) > (bg + by)

=111, > 0. (45)

Then, by the same technique in inequality (45), there exists a b;’n’!ower > 0 and my > 0 such that for all
by > by™' 7" and all ¢ € [0, T):
bznfz > my. (46)
From equation (37), we see that ¢ ~ u? is increasing if B%?(D""2)? 4 24“D%%2 — C*%2 > (. Since
limyp, oo BY2(D™?2)2 4 24%DUP2 — C%P2 = oo, there exists a by ™"PP*" > 0 such that for all by > by “PP" we
have | D2 — D%?27%°| < 1 and t + u%? is increasing. Therefore,

ugz < ug_'z —_ D‘u,bz < Du.,.bz—}oo +1, Vie [O,T], by > b;,.u,upper'

By the same argument for w?? and 7.2, there exists a by PP¢" > by PP guch that:

fM, vieeoT], by > by, (47)

b2 bo
Uy >

bz
Ju?

ma ,

and such that the functions ¢ — u?, ¢ — w?? and ¢ — 5? are increasing on [0,T].

Case 1: Assume:
g+q1—s) q+q(1—s)?
r+7(1—35) r+7(1-35)2
Then ¢;5, = ¢s5,, and therefore, ¢, = ¢, =: ¢. We want to show that limp, ﬁ% = 0. Our approach is to
split the interval [0, T] into two parts: [0,T/2] and [T'/2,T]. Since v?? > 0 for all ¢ € [0, T, from equations (41)
and (42), we have SCMEV:02 > b2 (E(£))? and thus:

ASCPz 1 ba 7 ba ba\27 M FG,ba\2 b r ba b2\2 7~ M FG,ba\2
SCMEV, < wbE]E(f)z B A (ug® —wy?)(z, 7?)°dt+ B - (ug® — wi®)(z, ) dt
0 z

(48)

- AW %Z)wgg (I;Jz + Igﬂ) ,
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with:
b, (b2 +b2)? / wp?)? 2(b1+b1)t _ bzft b2
= s |l iy 28" [ upds ) dt
_ batb / B 2 2(by+by)t ~2(bo +by) /t
= -t ), [hu(b2,t) — hy (b2, t)]” - € exp T ra—s2 ), hy(b2,s)ds | dt
and

b _ _(ba+b2)® / . b2y2_2(by+by)e (_ 2(ba + b2) /t )
L = r+r1—3)2 (u? — wl?)?%e exp A =3)2 Jy hy(b2, s)ds ) dt.

Fix € > 0. In the following, we show that [ ih <e and I 32 < € for large by. First, consider I ;’2. Recall that
for t € [0,T/2], we have limy, ;o hy(bo,t) = limy, o0 by (ba,t) = ¢, and for all by > by"PP*", the functions
[0,T/2] > s+ ul? and [0,T/2] > s — w?? are increasing, and thus, [0,T/2] 5> s hu(bg,t) and [0,T/2] =
s ++ hy(ba,t) are increasing. (Note that 7/2 < T is chosen arbitrarily, since the above limits do not hold at

T.) Let {3 :=min 1 £, Le—T(®1+b2) /el Then there exists a by > by"PP" such that for all by > by’ 1 and all
3:32 2
s € [0,T/2] we have:

c— (2 hy (b2, 0)

S h"u(szs) hu(bZ1TX2) C+C'2:
Cc— Cz S hw(bZ-: 0)

< <
hw(bz,s) < hw(b,T/2) < e+ (.

A IA

Thus, for any t € [0,7/2] and by > b;‘,h:

t
|hu(b2,t) — hw(bz,t)lz <4¢; and / hy(ba, s)ds > (¢ — (2)t > g -t.
0

Therefore,

T

%2 < 4¢3 orh) _(batba) /7 exp (—72(52 th) ¢ .t) dt

r+7(1—3)?2 r+7(1—35)2 2
42T (b1+51) _ _(ba+ba)e T
:7(1—6 mz)q&gfj (49)
[

where the last inequality comes from the definition of (5.
Next, consider I22. Since u}? is positive over [0, T], we know from the inequalities (45) and (47) that for all

by > max{b"PP" by "™} and all t € [T'/2,T):

b2 _
Uy wt

t z
< sup Iubzl + |wb2| < 2M, and / hy(bs, s)ds > / hy(bs, s)ds > zmu > 0.
0<s<T 0 0 2

Hence, there exists a b;"rz > max{b, “PP", b;’u’wwer} such that for all by > b;’fz:

T T (by + bo)
. &P (—m ’"‘) dt

b2 < (b2 + by)? AM2 2T /
= k1(by + bz)3e—ﬁz(bz+5z) <e, (50)

2 = r+7(1-35)2

2

ZTM"E 2(by+51)T

with k1 : T 5)

> 0 and kg = m > 0 are constants independent of bs.
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Let b} := max{by™ b3"2}. Then inequalities (48), (49) and (50) give for by > b3:

<=
SCMEVE: = (b, + by)ywl? — hw(b2,0) — ¢/2 ¢

ASCP: Iz 1k _cte 2 4de

Since the proof holds for arbitrary € > 0, and ¢ = /(g + @(1 — 5)2)(r + 7(1 — 5)2) > 0 is independent of by and
€, we conclude:

) ASCP2
S serve = O

and thus, from equation (31):
im PoA”™ = 1.

by —roo

Case 2: Assume:
g+q(l—s) , g+q(1-s)?
r+7(1—5) " r+7(1—35)2

Then ¢, # cy. We want to show that limp, , ., PoA% > 1. To do so, we will show that (b + bo)ASC? >
Cnum > 0 and by SCMEVib2 < M, < oo for large bs, where cpum and M., are two constants independent of
by. We assume in the following that by > b;’baﬂc = :max{b;"u’mwer,b;’ﬂ’mwer, by"PPe"}, as defined prior to Case
1. Therefore, s — ub2, s+ w? and s+ 7 are increasing functions. Moreover, from inequalities (45)-(47), we
have hy(ba, t) > my > 0, banl? > my, > 0, and 72 < M < oo, for all ¢ € [0,T].

Step 1: We derive a lower bound for (by + by)ASC®? by adapting the techniques used in inequality (49).
We have shown that for every ¢t € [0,T/2], limp, so0 hu(b2,t) = cy and limp, ,o0 hey(bo,t) = cyp. Let (3 =
h(?)% — by. Then, there exists a by™™ > max{by"****, (s} such that for all by > b3™™ and all
s €[0,T/2]:

Cuy — |eu — cwl /4 hy(b2,0)

< hy(ba, s) hyu(b2,T/2) cy + |eu — cw| /4,
cw—|ew —cw| /4 < hy(b2,0)

< <
hw(b215) < hw(b‘Z;TXQ) < Cw+|cu_cw|z4a

A IA

which implies that for all ¢ € [0,T"/2]:

t
BB, ) — hao(bay )] > = leu — cul s ha(b, 8)ds < (cu+  Jcu — col ) .
2 4
0

Thus, similar to inequality (49), for all by > b3™"™, we deduce:

_ by +b z
(bs + by) ASCY > 2‘; sz2/0 (w2 — wb?)2(FMFCb2)2g

lew — cul® (B(€))? [T [ 2kt by) I
> 8(r+7(1—5)2) (b2 +‘52)\/0 exp [ P (Cu + 1 |cu Cw|) t] di

_ lew—cul® (B(9))? (1 _ e—%‘aﬂ(bﬁaﬂ)
16(cy + ley — cwl/4)
|Cu - '3'1|u|2 (E(G))Z 1

== . 51
= 16(cu + |cu —co|/a) 2 mum (51)
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Step 2: We derive an upper bound for b,SCMXV:%2 From equation (42), we have:

T
% / B2 (nb2)2 L houidt.  (52)
0

+q [T + g
by SCMEVibz l% /D bovedt + %bzw + —wo 2(E(¢))?

v

=: Jin = Jsz

We derive the following two results which are useful for deriving upper bounds for Jfg and Jgg. First, let

¢
K3 1= ?_T: > 0 and (b, t) := /0 e~2B™? [im2dugs Gince bane > my, for all t € [0,T7:

i
by - I(bo,t) < bzf exp (—Qi_mﬂ (t— s)) ds = i(1 — e habat) < i, Vtel0,T]. (53)
0 T+T K3 K3
Next, using equation (34), integration by parts, and since —A“,nt ,C",l(b2,t) > 0 we deduce:

/ B2 (52)2 - U(by, t)dt = / (n%2) - U(ba, t)dt + / ' (—24m +C) - (b2, )t

T
[n;’ﬂ(bz,ir) —pitea,0) - [ ot L2 Dy

A%

T
= — [ ot [i0) - (<2B"0f) + 1] e+ Uba, T
0

T T
> 2 / B2 (nb2)2 (b, t)dt — / nr2dt.
0 0

After rearranging terms, we obtain:

T t T
ba /0 B'?:bZ(qSZ)?-( /0 3—23”="2f:wi”“ds) dt < /0 bony?dt. (54)

First, consider Ji2. From equation (44) and inequalities (46) and (53), we have that for all by > bj""*** and
forall ¢ € [0,T]:

T
_aRgmba ft _ _opgmba gt
bzvz —_ Vﬂ.'l"(f)ezht -bge 2B Iy meds + o2 b«z/ e‘Zbl(t 8) .e—2B 1. Nudu J g
0

< Var(§)e™ T - hpe 7™t 4 g2 T, (1)
2
< T (Var(f)bge_mbzt + "—) :
K3

Let b*J1 > pr:basie gych that for all by > b;"‘h:

_ 1 1
(b2 + bg)wgz <ecw+ Ecw, and bge f3beT < —
K3
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Then for all by > b;"h:

T 2
< 2L gt / (Var(g)bge—'“ﬂbzt + "—) dt
0 K3

LTt o (Var(s)b e T 1 )+ T (B() - (b + Bo)u?

2 2(bz + b2)
(¢ + 9T [Var(§) | o (gr + Q*r)BZblT Var(§) | 0%\ | 3cw(E(§))?
S 2 |: K3 * K3 ] * 2 ( K3 + Hg) + 4
=i M_}l. (55)

Next, consider the quantity J§ 2, which can be written as:

1 r 2 ¢
Jbz = — A (bznfz) Var(£)e?™ . by exp (—2B”’b2/0 nsds) dt

2(r+17)
o? T bz ¢ bz 2 ¢ 2b 2B™b2 [tpbag
+?b‘2/ B z(mz) (/ e 1(t—s)— ! fs M “'ds) dt.
0 0

We will make use of Lemma 1, which appears below, and states that there exists a b;’l > 0 and a constant M;
independent of by such that for all by > b;‘s:

T
/ bont2dt < M. (56)
0

Since limy,_, o, bonl? = cy for all t € [0,T/2], there exists a by > max{b}", by "} such that for all by > b2

1 1
by < g+ 5oy, VE€[0,T/2], and blehE < —

= K3

b
Thus, together with inequalities (46), (47), (54), and (56), and for k4 = M, we deduce that:

2(r+7)
2 ZblT b
/ bz'!}' Zdt

Va'r(g)eZblT ¥ 2 T opmba [t by
ba < bz Kabat bz1213 _—2R Jo m32ds
I < | () bt [ty at

2 2_260,T
3ep )" 1 —Kaby L 2 13 —rabyZ L oe’
< — ) —(1—e""27) + M* - bye ™27 . —
_ﬁ4[(2) ﬁs( € )+ 2€ B) D) l
9 M?T o2e?1T ),
<_(Z’2?+ 5 )+ 5 L= My, (57)

Now, from equation (52) and inequalities (55) and (57), we have for all by > b;’dm := max{b’ s b*’JZ}
by SCMEV:b2 = J2 4 T2 < My, + My, =: Men. (58)

Finally, putting together inequalities (51) and (58) and for bj*“**** := max{bs, b3™"™, b3*"}, we have for all
bz > b*,casez'

IN b2 T ba
b2 452 <2, and thus, ASC = (?2 +52)ASC > Crum
by SOMKV,bz (bzgrbz) (bySCMKV:b) 2Men

> 0.
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Therefore, from equation (31), we conclude:

lim PoAP > 1.

by —roo

The following lemma was used in Proposition 4.

Lemma 1. Assume Assumption 1. There erists a b;’l >0 and a M* > 0, such that for all by > b;’t:

T
/ bonl2dt < M.
0

Proof. Since limp, ;o bgn? = ¢y, there exists a b;"l > 0 such that for by > b;’l, we have bzngz <ep+ % Clearly
there exists a by > 0 such that for by > by*:

bang? = by D" = ba(qr +qr) > ¢y + 2.

Let b;"s such that for by > b;"‘g, the function ¢t — bgni’g is increasing. Since for by > max{b;’l,b;’z,b;’s}, the
function t — bg?}tbz is increasing and continuous, by the intermediate value theorem, there exists a t; € [0,T]

such that bT’}‘bgz =c¢p+1, and bgmbz < ecp+1, for all t < ;. From an analogous equation to (36) for nfg , We
2 2

have for by > max{b;‘-lj b;"Z, b;,g}:

b —.b —.b
on 715:1—’ 2 _ D7 4,72 . ._,._,d‘n‘ 2 D" —(6+'52—6‘_’52)(T—t3 )
5 T D" —rman e+ (D amen e :

1=bn?? —c, <
ey, = pn ;"2  pn e_(a¢="2—a;"’2)(q"—agg)

T4 b2 r4-r

After rearranging terms:

D" 5;,1'12 cn . 51-;-,1'12
r+f_l b3 O

“ (59)
02 Dn +.by_s—.b .
_(sFb2 _g— b2y —
< (_Dn 12 +r+f(1+cn))e & n )T,
. . 5—b2 . o . sk . *,4
Since we have limp, o L = limp, o0 T = limp, 00 5 G, | = 0, there exists a b, > 0 such that
2

* 5-b2 §+ib2
for by > by, |2 (14 en) + 2 +D”( .

by > max{by", by? b5° b3t}

Dn o2  pm +.by_g—b +
-~ <|-pn _(an 25, 2)(T_tbz)_
2(T+F)_( b, +r+f(1+c‘7))e

— caﬂ)] < 2(?—_:?), and thus returning to inequality (59), for

After rearranging terms:

20, %2(r + 7
bz(T _ tgz) < 1 In (_&

s, ) b +2(1+ cn)) . (60)
W )
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. . §+-bz . 6-bz .
Since limp, o0 T =G5, = —limp, s 00 5 there exists a b;’s > 0 such that for by > b;’S:
—,ba +.ba —.,b2
cs,, —5._,? : 3ecs 6‘”? P2 5._,? '
— < < —7 and ¢5 < ———— < 3c¢5..
2 = by — 2 O = by = 2

Returning to inequality (60), for by > b3" := max{by", b5%, b3>, b3, b3 }:

1 1
bo(T —t;,) < —In (3(r +F)es, +2(1+¢;)) = —In (5, +2).
5 b

n

Finally, for by > b;’l:
T th, T
/ bonl2dt :/ bgq;’ZdH/ bon?dt <t} (cn + 1) + bo(T — t,) D"
0 0 t;,

Ui
< T(ep+1)+ D—]n(5cﬂ +2) = M.
cs,

Proposition 5. Assume Assumption 1. If by = 0, then:
lim PoA =1,
bo—0

whereas if by > 0, then:
lim PoA > 1.

bo—0

Proof. Case 1: First, consider the case by = 0. As by — 0, we have:
B — 0, Bmb2 0,

and A = % (A%, C*, D", (A¥,C™, D¥),(A",C",D") are all independent of by. We can then use the

same technique shown in Proposition 3 to conclude that limy, o PoA = 1.

Case 2: Now, let’s assume by > 0. As by — 0, we have:
b3

——2 = B0 BmP2 —s 0, C%P2 — 0, D2 — 0
r+7(1—5)2 ’ ' ’ ’

A—0, B2 _—

and A", (AY,C%,D%),(A",C", D") are independent of by. Moreover, we have:

lim 6" = —24* >0, and lim 6" =0.
bz—0 b2—0
Thus, from equation (36) we deduce that for every fixed time ¢ € [0,T7], limy,_,o u?2 = 0.

Similar to Proposition 3, we can derive a uniform bound for ufg over [0, 7] for small b;. Indeed, for any fixed
€ > 0 there exists a b5 > 0 such that for any by < b3:

/ u)2 2
max { B?2,C"b2, D"} < B¥7°° 4 ¢ = (, and thus, lub?| < ¢ +2ev(AY) tcg, Y telo,T].
g Aue—2T/(AP
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From equation (43), the assumption E({) # 0, and by the bounded convergence theorem, we derive that for
any fixed t € [0,T7:

FMFGb by+by )t _MFG,bz—0
b]z]mo * =E()e ™ = 7 T#O.
It can also be shown that ‘E?IFG’bzl < |E(€)|e®+P)T for any ¢ € [0,T] and by > 0.
Moreover, since B?27% > 0, B*>7°C" > 0, B»7°D" > 0, we have lim;, o w? =: w?*7° and w’?~" is

strictly positive over [0,T). It is easy to check that w?g is also uniformly bounded over [0, T] for small b;. Hence,
from equation (41) and the bounded convergence theorem, we deduce:

bhm ASObg — Bbz—}{)/ ( ba—0 —i\JFG,bz—}O)Zdt>O.

Since B™2 — 0, A7 < 0,C" > 0, and D" > 0, using the same argument shown in Proposition 3, we deduce
that 1?2 is uniformly bounded over [0, T] for small by and for all t € [0, T:

cn cn
: by __ n_ —2A"(T—t) . bp—0
lim 2 = (D —QATI) € + oqn =M
From equation (44) and the bounded convergence theorem, for all ¢ € [0,T):

¢
lim o2 = Var(£)e?™! + 02/ e201(t=8) dg —=: 2220 5,
bo—0 0

and thus, 0 < lim, ¢ SCMEV:D2 . We conclude limg, 50 PoA® > 1. O

Proposition 6. Assuming Assumption 1, then:

lim PoA =1.
ba—ro0
Furthermore, if rr(l-g)’ # gridr(l—er)” then:
r4+7(1—8) qr+qgr(l—ar) .
lim PoA > 1.
bo—0

Proof. Case 1: When by — 0o, we have:
A2 0, B 00, C%P2 0, D%P2 0,

and A%, (AY,C%, DY), (A", B",C", D") are independent of by. Following the same technique used in Proposition
4, we can show that:

+.b2 _ +,b2 =1 _ <\2
T iy L {C ok k) NSO WAL Y | k(i) WP
b2—00 /by + by r+7(1—3) b2—o00 by + by r+7(1—3)

and, for all t € [0,T):

limg, o0 (b2 + b2) Ful? = (r + 7(1 — 5)%)es, = cu,
limg, (b + bo)wy? = (r + 7(1 — 8%))es,, =

Next, we provide a uniform upper bound for ui’g over [0,7) and large bs.
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Let ¢; :== 2 min{cs,, cs,}. Then there exists a b3™ > 0 such that for all by > b3,
6;’":52 51::52

max Y G, |y | T /=
{Vbz-i-bz Vb2 +bo

Then with equation (36), for any ¢ € [0,T] and by > b3,

u,bz ,bo +,b2 _ 5—.b2
et D (% 5" G+ Gi(2es, +26)
&2 N s, — C1

Cwbz

Vbz-i-gz ,

D‘U.,IE'Q

- (_cau) »

1
, —/———— ¢ < (1-
¢m+m} G

bz
Uy <

(61)

By the same argument for w?g and together with inequality (61), there exists a by “FP*" > by" and M > 0 such

that:
max {

Furthermore, we can get a uniform lower bound for (b + 52)%“?2_

Denote (3 := b2 (H'T(l jfg((fT:)QT(l 1)) Then for all t € [0,T] and b2 > by™ we have:

u?

: } <M, Vte[0,T), by > by ePer. (62)

(by +5)3 Dubagt G (e5, — G1)

(5+ Be _5ob2) 4 Bhapubs — (1 (2es, +261) + Go/(r + 7(1—5)?) =M. (63)

| (B2 + Ba)Fup?
Now, we adapt the method used in Proposition 4 to prove limg, ., AS CP = 0. Consider the two quantities:
5 T E 7 5 1 . (T . B B
Iy = ;B" /0 (ug? —w()*(zy ") %ds  and  I* := o B” /T (ul? — wh?)*(zMF902)2ds.
z

Fix € > 0. In the following, we will show that ASC' bz — =1 bz + 1 b2 < 2¢ for large by. First, consider I] b2,
Let (3 := cu/2. Because lim;, ., BbZ(D” i"2)2 + 2A%Dwb2 C” bz > 0, from equation (37), there exists a
b*’mc > by PP so that for all by > b*’mc the functions s — ub2 and s — wb2 are increasing, and so that for all
sel0,T/ 2]

%—@Sﬁﬁiﬂ%?<ﬁﬁﬁﬂmh<®ﬁ%ﬂm < cu+ s,

km+&m§skm+&mgg@,am.h@+&m?sk@+&m§

Thus, for any by > E;’mc we have:

E(¢)’
2 +7(1 -5 Jo
<m—m (1t ) ——0,

Vba + by b2—ro0

_ E©2(C+(ewt)?) M (cu—Ca)T
2(cu—Ca) rr(1-5)?

I_);’I‘ > E;"O such that for by > 5;"}1,_“'6 have I;’i <e
Now, we consider the quantity I2*. Since ul? is positive over [0,7] and from inequalities (62) and (63), we
know that for all by > by"PP*" > b3 and t € [T/2,T],

- 1/2 _ _
_ 2(bp+bgz) / f;(bz—i_bZ)aﬁuzgdsdt

) T o T
I = ((52 +ba)ug? — (by + bz)w:}z) e2(b1+b1)t T r a5

with &1 : and ko = are independent of by. Therefore, there exists a

b2
Uy _wt

t _
<2M, and / (by + by) 2ul?ds > %mu
0
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Thus, similar to inequality (50), there exists a by”2 > by“PP*" such that for all by > by’
I3 < ky(by + by)2eaVoatte < ¢,

m(£)282(51+51}3‘ﬂ42
Tr(1—5)2
Hence, for all by > b} := max{b;"*, 55>} we have:

where k3 1= and k4 1= H_i}%é)g are independent of by.

ASC? =% 4 [0 < 2.
Since the proof holds for arbitrary € > 0, we obtain:

lim ASCPz =0.

by —roo

Moreover, recall that 7; and v; are invariant with respect to by and 0 <y <00 for t > 0. Clearly we also have
wp? > 0 and limg, , ., wh? = 0. Thus, we obtain: 0 < limg,_, ., SCMEV:b2 < 00, and conclude that:

lim PoA® —1.

by —roo

Case 2: When by — 0, we have:
_ _ _ 2 _ _
A2 - Aszm = rrf;(lf__s_-:))‘: B’ - r+w"(blz—§_)2 =: BEZ_}D >0, )
C"H.,bz — Abz—}o(q _|_ q(l _ 3)) = Cu,b;—}(} > 0, Du,bz — Abz—}o(qr + qr(l _ ST)) = Du,bz—}u > 01

and A" (A¥,C¥, DY), (A", B",C", D") are independent of by. Let u®~% : [0,7] — R be the solution to the

limiting Riccati equation:
— I/ — — — — - —
(ugz—yo) _ QAUU?Q—}D _ Bbz—}O(ui}z—}O)‘Z 4 owbo0 — ung—yo — Dwb2—0 (64)

which we recall has an explicit solution. It is easy to show directly from the explicit solutions that for every
time t € [0,7], lims, ,ouy* = uf?”". Next, our goal is to bound u;* uniformly over t € [0,7] for small by,
following the methodology of the proof of Proposition 3. For any € > 0, there exists a b5 > 0 such that

max{Bb2, Cu:b2 Dub2} < max{Bb2—0 Cw:b2=0 Duba—0) 4 ¢ —: ¢, for all by < b3. Thus, for all by, < b} and for

every t € [0,T:
W] < Ca+ 2Ca/(A¥)2 + &
1T _gpue—2T/(ANP+
Similarly, for every time ¢ € [0,T], limj, w?z = wi’z—’“, and w2 is uniformly bounded over [0, T] and small

by. From equation (43), the assumption E(£) # 0, and by the bounded convergence theorem, we have for every
te[0,T):
Jim gf1FOP — E(g)els Crth—BR e gMPGES0 2 g, (65)
2
Moreover, M ¥ Gb2 g uniformly bounded for all by < b3 and for all t € [0,T]. From the non-negativity of u,,
we have:

|77 < [B@©I ™7, Ve [0,T), ¥y <
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- 2 _ 2 = = =
By the assumption TT':F((II__S;) # qq“;"_'l_q;;_ ((11—_:;;;)) , we have D%?270 o£ D% and thus by continuity, u?z_}o # w?z_m

on a set of positive Lebesgue measure. Thus, by the bounded convergence theorem, we deduce:

_ _ T _ _ 2 - 2
lim ASC?: = %Bbﬁo / (= —wf20)" (2795=0) dt > . (66)
0

ba—0

Meanwhile, 77; does not depend on by, and therefore, the variance v; also does not depend on by. Clearly

0 <wv <oofort>0and0<w)?”? < oo, and thus, 0 < limg, . SCMKVb2 < oo, Hence, we deduce:

lim PoA™ > 1.
ba—0

O

Remark 6. Consider Assumption 1 and the case when bo tends to zero. We have 0 < SCMKV,b2=0 oo,
and therefore, limg, ,, PoAb =1 if and only if limg, ., ASC? = 0. Since we can pass the limit as in equation
(66), we have an analogous result as Theorem 2 but for the limiting coefficients A, A, Bb2—=0 Cwb2=0 Cw,

D”’Ez_’u, and D¥. Therefore, the assumption in Proposition 4 Case 2, r:_'i_i((ll__?; # qqit-qqz((ll_—?;})z , which is

equivalent to Du:b2—0 # DV, is sufficient, but not necessary, in order to have limp, ,o PoA®? > 1.

Proposition 7. Assuming Assumption 1, then:

lim PoA=1 and lim PoA = cc.

by —oo bi— oo

Furthermore, if:
by r+7(1—35)2
by +by 7T+7(1—3)

(gr + ar(1 - s7)) # ar + ar(1 — sr)?,

then:
lim PoA >1 and 1lim PoA > 1.
b1—0 b1—0
Proof. Case 1: Consider by — oo. Since limp, ;0 A% = limp, 0 A¥?* = —0c0 we have:

lim B(D")? +2A"" D" - C* = lim B(D")? + 24" D" — C" = —oc0.
1— 00

by—oo
by by
Denote gy(b1,t) == B%‘l— and gy (b1,1) == Bﬂb‘l—. For all ¢ € [0,T), we have the limits:
lim g,(b,t) = lim g, (by,t) =2 (67)
by —oo bi— oo

From equation (37), and together with equation (67), there exists a b]""**" > 0 such that for all by > b7"PP"
the functions ¢ — u?‘ and t — wgl are decreasing and such that:

sup {gu(bla t): gw(bla t)} < max {gu(bla 0): gw(bl': 0)} <3.
0<t<T

Fix € > 0. There exists a b]""* > b}"*PP*" such that for all b; > b}, and for all ¢ € [0,3T/4],

|gu(b1:t) - gw(bla t)| = max{gu(blat) - gw(bla t)': gu.r(bl:t) - gu(blat)}
< max{gy(b1,0) — guw(b1,3T/4), gu(b1,0) — gu(b1,3T/4)}

€

A

3
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and 1 5 5
gw(bl':O)ZQ_E:E: Qu(blat)zgu(bla3Tx4)Z§-
We adapt the methodology in Proposition 4 and split the interval [0,T] into two parts: [0,37/4] and [3T/4,T).

For all b; > b;’h , similar to inequality (48), we have:

ASC™ I
SCMKV.hy — gw(bbo)’

where
ar _ t
1 = b 7 (@b, ) = gubr, ) 2 exp (zblt ~ 21 [ g, s)ds) dt
0 0
s aT 5
< e2e?aT . p, / exp (2b1t —2b; - §t) dt
0
= 6283_5%1 . §(1 — e_blT)
4
S ﬁlfzj
in which k; := %eﬂr}l, and

IS —51/ (gu(b1,t) — gu(b1,t))* 201t - (25115—251 gu(51,3)d5)

T
< by (3+3)2T / exp (let—%] / gu(bl,s)ds) dt
ar 0

5
73)

Therefore, there exists a b > b;’fl , so that for by > b}, we have Igl < e. Hence, for all b; > b7,

ol

< 366251Tbl : %exp (251 T — 2by -

b _1
=9Te?" The 20T .
b —reo

ASC™ L' +I3
SCHRVE = g,,(b1,0) = 5

(mf +€).

Since the proof holds for arbitrary € > 0, and x; = % s independent of b; and e, we conclude that:
lim PoA™ =1.
by—oo

Case 2: Now, consider b; — co. Since A%?* < 0 and limg o |A%P1| = 0o, we have the following limits:

51-1-,51 _ 5;,51 —9 (Au,ﬁl)z + BCu - y 00, _51:,51 = AWb 4, ;‘(Au,El)z + BCu — s 0,
b —reo

bi— oo

~\2
_ - b
Ji’bl_bl"'%—k\/(bl—rﬁl) he \1+1—1
E] E]_ E] E‘l—}OO{Q 2 ’
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We also have for t € [0,T):

7 _(&tb1_g—.b . F _F T _
6:_:,1'316 (6571 =6, )(T—1) < (5;1—:571 _—» ,bl)e (6571 =6, "1 )(T—1) - s 0,
b —reo

_ . 5
which implies: limg, ., Ji’ble_(aﬁiﬁbl_au T = Therefore, for t € [0,T): limg _, 1;—)‘1—1 = £. By the same

by
argument, we have for t € [0,T): ].irl:Lg,l_mcl —t%‘l— = %_

Since limy, _, o, B(D*)?+2A4%% D%~ C% = —c0 and lim;, _,,, B(D¥)?+24%" D¥ —C* = —oo, from equation
(37) there exists a Bt‘zower such that for b; > E’;,iower:

b1 wal
Uy 1 T/2 2 1
0 | =L -2V < —
mENT, Bl e, Bl 1B

and such that the functions ¢ — uf‘ and ¢ — w?‘ are decreasing. Thus, for all ¢ € [0,7/2] we have:

51 E'l

1 Wy w
il T i R Qe T g e et 2
0<3 =3 =BVBSB 1B>F =7,
Thus, for all b; > 517" and all ¢ € [0,T/2],
51 51
wy Uy 1
ot > 68
by by | — 2B (68)

Note that 7;, and therefore, v, are independent of b;. Thus,

b1
Wy 2
—(E — 0.
+ SR EE)? +

1 : 1 T
E_zscMrKV,bl — @ l/ [q+q+Bﬂn?] vedt + (q*r +§T)vr
1 1 |Jo

Now, consider:

T T = 2
1 B B z ub‘ wb‘ t 5 B

—ASC™ > Z(E(€))? / L | 2ot mBut)de gy 69
B2 z 5 ®E)” | (bl bl)e (69)

Since uf‘ is decreasing for by > E;‘Iower, we have by — Buf‘ > by — Bugl. We have the following limits for
te[0,T):
lim by — 67" =—2b, lim —6;"b, = BCY,

b —reo b —reo

lim 6 01b e~ (P —00")(T—0 — 0 Jim (6751 — by)e~(GEP1 =60t (T-1) — g
El—mo u 51—}00 u

and thus,

—BC* + BD%(by — 63%) — 601y + (63015; + BC® + BD¥(6;01 — by))e~ @i~ ")T
BDv — 57" + (53" — BDu)e- (68" —6™)T

E] - Bug‘ =

— —2b;.
by—oo
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Since 1111151_;00(51 - Bugl) = —2b; < 0, there exists a b} > E;"mwer, such that for b, > b}, (b; — Bug‘) > —3b;.
Returning to inequality (69), and using inequality (68) we have for by > b}:

1 3 z b, £4+2(B1— Bull)e E(£)? /% —dbyt
_ 1 1 1 0 > 1 )
SO E(g) 432 /D e a> =g [T e ta >0

Therefore, limg _, ., EIZASC& > 0, and thus,

ASCH _ LAsch
blh—}oo SCMKVE: EP—?loo LSCMEVh -

We conclude limg, _, PoAbr = oo.

Cases 3 and 4: First, we consider b; — 0. We have A%01 — A%01=0 54br 540120 0 and 601 —
5,170 < 0, and similarly for A¥:01, Anb1) §E01 and 5#3‘-51. Clearly we have for all ¢ € [0,T7], limp, o ufl =:

w70 limy, o w? =: w? 7Y and limp, 072 =: n?* 7. Next, we show that the three sequences are uniformly

bounded. Let 0 < e < —0; "2 0. There exists a b] > 0 such that max { |67 — 67270, |67:0 — 67270} < e
for all b; < b}. Then for all b; < b} and ¢ € [0, T:

C"H. _|_D'H. (§+,b1 _5 bl) C"H. _|_D'H. (6+,b1—}0 5—@?1—}0 +2€)

b
|ut1 - —5 bl - 6— bl—}u —€ ’
u
- - - o —F 2 — p—
and similarly for wbl and nfl . From the assumption b—zb_fs; - % gr +@r(1 — s7) # gr + @r(1 — s7)?,

we have D" # D" and thus by continuity, bl_}u # w?‘_}o on a set of positive Lebesgue measure.
From equation (43), the assumption E(£) 75 0, and by the bounded convergence theorem, we have for every

te[0,T):

_ tep by —0 _
bhmD' MFG,hy E(s)efo (b1—Buj )ds = :BtﬁfFG,bl—}O 7& 0.
1—

Moreover, Z7 ¥ is uniformly bounded over b; < bt and ¢ € [0,T], i.e

\fi‘“‘“‘-‘“ < [E()|enT, Vte[0,T], by < bj.
Therefore, by the bounded convergence theorem, 0 < limy, ,0 ASC? < oo and limp, o vf = T..l'tb ‘_}0, which
is bounded over t € [0,T]. Thus, 0 < limp, 0 SCMEVh1 < o0 and we conclude limy, .o PoA?* > 1. The proof
can be repeated to show limj, o PoA" > 1. O

2.4. Numerical Results

The price of anarchy for the class of linear quadratic extended mean field games that we consider is given by
the ratio of the two quantities given by equations (25) and (26), which are explicit, up to evaluating integrals.
Using the simple rectangle rule to estimate integrals, we numerically compute the price of anarchy when the
coeflicients are time-independent, non-negative, and satisfy Assumption 1. In particular, when we allow for full
interaction (i.e. through the states and the controls), we choose the following default values:

T=1 b=1, by =1, 52=1, bhy=1 o0=1,
g=1,s=05 r=1,7=1,5=05 gr=1, gr=1, sp =0.5.

1,
1,

£
q
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Unless otherwise stated, the parameters stay at these default values. For results involving only interaction
through the states, we set by = 0 and 7 = 0. For results involving only interaction through the controls, we set
by =0, =0, and gr = 0. Figures 1-5 show the price of anarchy as we vary one parameter at a time for each of
three interaction cases: full interaction (i.e. through the states and the controls), interaction only through the
states, and interaction only through the controls. The results show various limiting behaviors, such as some of
the cases proved in the previous section.

1.30 T T T T T T
= full interaction = full interaction
1.25 == throughstates (| 7@ [ through controls | |
----- through controls 4
1.20 g
|
E 1.15 — -] q
1.10 - )
105} ]
! J
I
1.00 L L T " n
[} 2000 4000 6000 BODO 10000 6000 BODO 10000
T
FIGURE 1. PoA as we vary r (left) and 7 (right).
7 : : . . 1.0035 . T T
= full interaction ) = full interaction
6L == through states || 1003 = == through states [q
----- through controls % w through controls
10025 |
1002t e 1
0015 | 0 _em===TTTTT0 4
1.001 E
1.005 E
1 .
0 100 150 200

FIGURE 2. PoA as we vary bs.

Figure 1 confirms as in Proposition 3 that lim,_, ., PoA = 1 and lim;_,., PoA = 1. Propositions 4 and
g+q(l-s) _ g+q(1-s)®
r+r(1—5)  r+r(1—8)2
limp, y00 PoA = 1. In the cases of interaction only through the states or interaction only through the controls,
then 913(1—9) £ g+q(1—s)®

rr(1—58) 7 r4r(1—8)2? ©
when there is only interaction through the states, then by = 0 and we see that limy, ,0 PoA = 1. When there
is full interaction or only interaction through the controls, then by > 0 and we see that limp, ,o PoA > 1.
For Proposition 6, Figure 3 confirms that lim;, .o PoA > 1 and limg, ., PoA = 1. Note that the condition
r+7(1-3)* P gr+gr(l—sr)?
r+7(1-8) gr+gr(l—sT)
necessary, assumption. This agrees with the conclusion of Remark 6. In Figures 4 and 5, we note that

Proposition 7 is confirmed. The condition b;fbg - % (gr + @r(1 — s7)) # qr + Gr(1 — s7)? is satisfied

and we see that

5 are confirmed in Figure 2. In the case of full interaction, we have

and we see that limg, ,o, PoA > 1, confirming Proposition 4. For Proposition 5,

is not satisfied for the full interaction case, and is therefore a sufficient, but not
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FIGURE 5. PoA as we vary b;.
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for all three interaction cases and we see that limy, ;0 PoA > 1, limp, _,o PoA > 1, limp, ;oo PoA = 1, and

limg, ., PoA = oo. Thus, the numerical computations confirm the results presented in Propositions 3-7.
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3. Conclusion

We defined the price of anarchy (PoA) in the context of extended mean field games as the ratio of the worst
case social cost when the players are in a mean field game equilibrium to the social cost as computed by a
central planner. Since the central planner does not require that the players be in a mean field game equilibrium,
the central planner will realize a social cost that is no worse than that of a mean field game equilibrium. Thus,
PoA > 1.

We computed the price of anarchy for linear quadratic extended mean field games, for which explicit compu-
tations are possible. We identify a large class of models for which PoA = 1 (see Proposition 1 and Corollaries
1 and 2), as well as giving a sufficient and necessary condition to have PoA = 1 (see Theorem 2 and Corollary
3). We also derive some limiting cases where PoA — 1 as certain parameters tend to zero or to infinity (see
Propositions 3-7). The numerics support our theoretical results.
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Appendices

A. Solving Linear FBSDEs of McKean-Vlasov Type

Consider a linear FBSDE system of McKean-Vlasov type:

dX; = (af X; + ofEX; + a}Y; + a!EY;) dt + cdW;, Xo=¢,

! ) ] 70
dY, = (b7 X, + bTEX, + b'Y, + bYEY,) dt + Z,dW,, Yr = Xr +FEXr. (70)

For the LQEMFG model considered in section 2.1, the FBSDE system in equation (4) is of the form of equation
(70) if we set:
af =bi(t), ag =bi(t), af =a""C()ba(t), af = 6" ()ba(t) +MTE ()ba(2)
bt = —(q(t) +a(t)), b = q(t)s(t), bf = —bu(t), b =0
¢ =qr +4r, ¢f = —qrsr-
For the LQEMKYV model considered in section 2.2, the FBSDE system in equation (12) is of the form of equation
(70) if we set:
af =bi(t), af =bi(t), af = aM*V ()ba(t), af = 6"V ()ba(t) + MKV ()ba(t)
b = —(a(t) +a(t)), b = —s(t)a(t)(s(t) — 2), b} = —ba(t), b = —bs
¢ = qr +ar, ¢ = srqr(sr —2).
Now we return to the general FBSDE system (70). By taking expectations in equation (70), and letting z;
and 7; denote EX; and EY;, respectively, we get:
T = (af +af)T; + (af +af), To =E(6), )
9t = (0F +50)Te + (O +6))7e,  §r = (7 + ),

where the dot is the standard ODE notation for a derivative. We then make the ansatz §; = 7:Z: + X+ for
deterministic functions [0,7] > ¢t — 7 € R and [0,T] 5 t — ¥: € R. By plugging in the ansatz, the system in
equation (71) is equivalent to the ODE system:
e+ (af + af); + (af +af — b = b)) —bf —bf =0, fr =" +c7,
Xe + (7e(af +af) b b))% =0, Xxr=0.

The first equation is a Riccati equation. Note that y; solves a first order homogeneous linear equation. Thus
xt =0, ¥t € [0,T]. Once the equation for #; is solved, we can compute Z; by solving the linear ODE:

z, = (af +af + (af +af))T,,  To = E(§),

and thus, ) )
T, = E(£)elo (@utai+(al+al)iu)du,

Once we have computed (Z;)o<i<T, We can rewrite the original FBSDE system:

dX; = (af X; + afY: + af) dt + 0dW;, Xo=¢,
dY, = (B X, + bYY, + 80) dt + Z,dW, Y = Xp + ¢,
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with:
af = (af +aff)Te, B = (b +b¥q)Te, < =czr.
Now we make the ansatz: Y; = . X; + x, which reduces the problem to the ODE system:

Mo+ agn; + (af —b{)n —bf =0, nr=c",
Xt + (_biv + a’?nt)Xt + anu??t - bzu =0, xr= CD,
Zg = OT}t.

Again, the first equation is a Riccati equation. Note that it is not necessary to solve for y; because of the
relationship:

Tty = o = E(Y:) = E(e Xt + x¢) = m:Ts + X

Thus, x; = (7t — 7¢)Ze-

In summary, the solution to the linear FBSDE of McKean-Vlasov type is reduced to solving linear ODEs
and Riccati equations. It will also be useful to compute Var(X;), which we denote by v;. After we have solved
the above equations, we have:

dX. = ((af + alne)Xe + alxe +a?) dt + 0dW,, Xo=¢.

Thus

¥

t
v, = Var(X,) = Va'r(f)e-'rtf 2(a5+a3ms)ds 4 02/ 2 2 (ai+akmu)du g
0
In the case where the coefficients are time-independent, the Riccati equations for 7 and 7 can be solved

explicitly.

Scalar Riccati Equation

If the scalar Riccati equation:
pr — Bp} —2Ap, +C =0,

with terminal condition py = D satisfies:
B#0, BD>0, BC >0, (72)
then it has a unique solution:

O(1 — =6+ =07)T=1)) 4 D5+ — 5=~ —87)(T-1))
Pt~ "BD(1 — @G —3)T-0) { ge-(67—6)T—0) _ 45

with 6= = —A+ \/(A)2 + BC.

Furthermore, if B — 0 and A # 0, we can deduce that the limiting solution of the scalar Riccati equation
coincides with the linear first-order differential equation:

(73)

pt_2APt+C:03

with terminal condition pr = D, namely:

- CN\ _2am-, C
pr = (D QA) = + 7k
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If B— 0 and A = 0, the limiting solution of the scalar Riccati equation coincides with the linear first-order
differential equation:
pe+C=0

with terminal condition pr = D, namely:

pr=D+C(T —t).

Hence, returning to the linear FBSDE (70), for 7, we use:
A= —%(az +a®* —b —b¥), ,B=—(a¥+a¥), C=—-(b"+b"), D= &+ .

The conditions (72) are satisfied if —(a¥ +a¥) > 0, —(b% + b%) > 0, and ¢® + & > 0.
For n;, we use:
A=-1@"-b), B=-a, C=-b°, D= "
The conditions (72) are satisfied if —a¥ > 0, —b® > 0, and ¢® > 0. Returning to the LGEMFG and LGEMKV

problems, if we assume the coeflicients are non-negative, we see that these conditions are exactly assumption

(21).



