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Abstract

Coherent vortices are often observed to persist for long times in turbulent 2D flows even
at very high Reynolds numbers and are observed in experiments and computer simula-
tions to potentially be asymptotically stable in a weak sense for the 2D Euler equations.
We consider the incompressible 2D Euler equations linearized around a radially sym-
metric, strictly monotone decreasing vorticity distribution. For sufficiently regular
data, we prove the inviscid damping of the 6-dependent radial and angular velocity
fields with the optimal rates [|u” (1)|| < (r)~! and Hue(t)” < (£)~2 in the appropriate
radially weighted L? spaces. We moreover prove that the vorticity weakly converges
back to radial symmetry as t — 0o, a phenomenon known as vortex axisymmetriza-
tion in the physics literature, and characterize the dynamics in higher Sobolev spaces.
Furthermore, we prove that the 6-dependent angular Fourier modes in the vorticity
are ejected from the origin as + — oo, resulting in faster inviscid damping rates than
those possible with passive scalar evolution. This non-local effect is called vorticity
depletion. Our work appears to be the first to find vorticity depletion relevant for the
dynamics of vortices.
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1 Introduction and Statements of Results

In polar coordinates (r,0) € [0, 00) x T, the two-dimensional Euler equations in
vorticity formulation read

~0
8@4—12’8,&—{—”789&):0, (1.1

where the velocity vector & = (ii", ii?) is recovered from the vorticity @ by means of
the streamfunction v, via the relations

- 1 ~F 1 ~0 ~ 1 7 7
O =—=0u" + =0,(rit”), w=\-=0V,—0,v ),
r r r
1 1 ~ -
- 8rr+_ar+_2899 Y=o
r r

Any radially symmetric configuration 2 = € (r) is a stationary solution of (1.1) and
the above relations simplify to

1 1
Q=-9,(rU), U=-9,Y, —(8”—1——8,)\11 = Q. (1.2)
r r
In what follows, we denote

U(r) 0 W (r) 9r82(r)
u(r) = =— , = .

(1.3)

Writing o(t, r, 0) = w(t,r,0) + Q(r) and dropping terms quadratic in @ gives the
linearized 2D Euler equations which are the main object of study in this paper:

orw + u(r)dgw — B(r)dgyr =0, (1.4a)
1 1

- <arr + -0+ —2899> Y=o, (1.4b)
r r

(0, r,0) =" (r,0). (1.4¢)

By expanding the solution w to (1.4) as a Fourier series in the angular 6 variable,
namely

o.r.0) =Y ot.re’  ye.r.0) =Y et (15)

keZ keZ
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we perform a k-by-k analysis of the linearized equations, since for any integer k we
have that

dwp + iku(wg — ikB)Vr = 0, (1.62)
1 k>
— Mg = — <3rr + ;8r - r—2> Yr = wi. (1.6b)

Note that wo(z, r) = wp(0, r) (i.e., the f-average of the solution), and therefore we
restrict to k # 0 without loss of generality. Similarly, by reality we only consider
k > 1 without loss of generality.

1.1 Background

The stability of vortices is one of the most fundamental problems in the theory of
hydrodynamic stability and has been considered by many authors, starting with Kelvin
[62] and Orr [54] and continuing to present day in both mathematics and physics
(see e.g. [2,18,33,34,36,40,43,49,57] and the references therein). Nonlinear stability
results in weighted L2 spaces (of the vorticity) are available using energy-Casimir
methods [29], however, these results do not provide a clear description of the long-time
dynamics. Experimental observations, computer simulations, and formal asymptotics
(see e.g. [2,3,36,57] and the references therein) suggest that a vortex subjected to a
sufficiently small disturbance might return to radial symmetry as t — oo in a weak
sense. Specifically, it is observed that the vorticity in the angle-dependent modes is
stirred up around the vortex into a spiral pattern (sometimes called ‘filamentation’)
and eventually the angle-dependent modes weakly converge to zero as t — oo. This
weak convergence is called vortex axisymmetrization and is thought to be relevant to
understanding coherent vortices in 2D turbulence [17], atmospheric dynamics [51,58],
and various settings in plasma physics [22,57,71]. Our paper appears to be the first
mathematically rigorous confirmation of this behavior for vortices in the linearized
2D Euler equations and the first paper to obtain an accurate prediction of the decay
rates for general initial data.

When studying the stability of the planar Couette flow, Orr [54] identified another
effect associated with vorticity mixing: the strong convergence (in L?) of the velocity
field to equilibrium as + — oo. This effect is now often called inviscid damping.
Further studies of the 2D Euler equations linearized around planar shear flows were
made by Case [20], Dikii [27], and Stepin [60]. More recently, the linearized problem
was revisited in [45] and optimal rates were deduced by Zillinger [73,74] for shear
flows close to Couette flow and later by Wei et al. [66] for more general strictly
monotone shear flows in a channel. See also [24,75] for inviscid damping of Taylor—
Couette in an annulus and [69] for inviscid damping in stratified shear flows. The
recent works of Wei et al. [67,68] deduce optimal inviscid damping rates for the
some shear flows with non-degenerate critical points. This latter works also confirmed
the predictions of Bouchet and Morita [16] that the linearized 2D Euler equations
can have a faster inviscid damping rate than if the vorticity were evolving under
passive scalar dynamics. We prove a similar effect here as well; see the discussion
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following Theorem 1.1 for more details. Finally, see [44] for an approach to the
problem which is well-suited to treating general problems but obtains less precise
decay estimates.

Inviscid damping is closely related to Landau damping in the Vlasov equations,
which arises in the kinetic theory of plasmas and galactic dynamics. Landau damping
involves the rapid decay of the self-generated electric field in a plasma in the absence of
any dissipative mechanisms and was first predicted by Landau in the Vlasov equations
linearized around a homogeneous Maxwellian [41]. The predictions matched with
experiments [47] and many works on the linearized Vlasov equations followed (see
[25,35,55,63] and the references therein). In Vlasov, the decay is caused by the mixing
of particles traveling at different velocities whereas in 2D Euler it is caused by the
mixing of vorticity. Due to the special structure of the Vlasov equations, inviscid
damping for the linearized 2D Euler equations (with the exception of the Couette flow
[39,54]) is significantly harder than the linearized theory of Landau damping near
homogeneous equilibria (and in general the rates are much faste—on T” x R”" the
decay can be exponential).

All of the above mentioned works on inviscid and Landau damping only apply
to the linearized Euler or Vlasov equations (respectively). The work of [19] first
demonstrated the existence of (analytic) Landau damping solutions to the nonlinear
Vlasov equations (see also [37]). Later, Mouhot and Villani [52] demonstrated that on
T" x R", all perturbations small enough in a sufficiently regular Gevrey class give rise
to nonlinear dynamics that matches the linearized dynamics (and in particular, rapid
Landau damping). This work was followed subsequently by a variety of others on
Landau damping in nonlinear Vlasov and related models (see e.g. [9,15,31,32,70] and
the references therein). In [14], it was shown that Orr’s inviscid damping predictions
for Couette flow hold also for the nonlinear 2D Euler equations in T x R, provided
the perturbation is small in a sufficiently regular Gevrey class. At sufficiently low
regularities, it was proved in [45,46] that linearized and nonlinear dynamics do not
necessarily agree (for both 2D Euler and Vlasov). High regularity does not play a
special role in the linear theory, however, it was shown in [5] that on T x R one
cannot (in general) extend the linearized theory of Landau damping to the nonlinear
Vlasov equations in any Sobolev space (however, see [9]). This is due to the plasma
echoes, anonlinear oscillation observed in experiments in [48]. The work of [5] showed
the existence of solutions to Vlasov with arbitrarily many, arbitrarily small, plasma
echoes. Similar nonlinear echoes are observed in experiments on vortices in the 2D
Euler equations [71,72] (see also the analyses of [64,65]). Hence, we expect the linear
and nonlinear regularity requirements to be drastically different. For this reason, it is
important to study the linearized Euler equations is in as high regularity as possible
(preferably Gevrey class), and determine if such high regularity can be propagated in a
suitable sense (see Remark 1.4 below). If the answer is ‘no’, then it might be possible
to introduce nonlinear instabilities even for Gevrey or analytic data in the nonlinear
equations.

Mixing involves a transfer of vorticity from large to small scales. When there is
diffusion present, it has been shown that this can enhance the dissipative time-scale. For
example, Kelvin showed in [39] that x-dependent modes of the linearized Couette flow
in T x R decay on a time-scale like O (v~!/3) as opposed to the natural heat equation
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time-scale of O (v™1) (denoting v to be the inverse Reynolds number). This effect has
been called the ‘shear-diffuse mechanism’, ‘relaxation enhancement’, or ‘enhanced
dissipation’ and has been studied many times in linear and some nonlinear settings
in both mathematics [4,6—8,10-13,23,26,33,38,43,67] and physics [1,30,42,56]. Thus
far, it has also proved challenging to obtain enhanced dissipation estimates on the
linearized Navier—Stokes. Ideally, the goal is to obtain both simultaneously on Navier—
Stokes; it seems the best result in this direction for non-trivial shear flows is [67]. See
[26,33,43] and the references therein for the most recent results on the 2D Navier—
Stokes equations linearized around the Oseen vortex.

1.2 Statement of Main Results

Throughout the article, we assume the following conditions on the background vortex:

(VD 0= S )™

(V2) |rd-)/ Q)| Sj (r) 6 forall j > 0;

(V3) 0,Q2() <0,Vr >0,

Among the above assumptions we single out that €2 is assumed to be smooth, and the
fact that Q2 is assumed to be strictly monotone. Indeed, strict monotonicity is a well-
known sufficient condition for the linearized stability (see also Remark 1.11 below).

We additionally take the following orthogonality condition on the initial condition of
(1.4):

oo .
/O o'l (r)yr?dr =0, (1.7)

which removes the neutral modes that arise due to the translation invariance (see
Lemma 1.7). Recall that for smooth functions w, the asymptotic expansion of wy (r)
at the origin is necessarily in the form (see e.g. [3])

w(r) ~ r* (a0+a1r2+a2r4+-~) as r — 0. (1.8)

Let x be a smooth cut-off which is 1 for r < 1/2 and O for r > 3/4 and denote

Fe(r) = o' (n)V/r — %x(r)rk“/zw;;’fo, (1.9)

By (1.8), for smooth w}", we have Fy(r) ~ rk*2%1/2 as  — 0 and thus we may use a
stronger weight for Fy at the origin than for ;. To state our main result, for § > 0 we

define smooth weights wy s, w5, wr s and corresponding L?-norms which satisfy
the following asymptotics:

12

00 2

wy.s(r) & min {0 ] g ([T 8D )
V.8 0wy 5(r)

(1.10a)
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1,2
00 2
wpa(r) & min [ A2 k260 ] g e ( | —|g2(r)(|)dr) ,
I 0 w5
f.8
(1.10b)
< g\
wF,s(r)%min{rk““*‘s,r*k“*”‘s}, lgllz | = (/ g ()dr>
’ 0 wF"S r
(1.10¢)

We assume that (rd, )/ w, s satisfies the same upper bounds as ws 5 (up to a j-dependent
constant). Noting that (V3) ensures 8 > 0, we also make use of the Lz—space normed

by
1/2
e
Il = (/0 o rdr) ,

which is the natural energy space for the equations (see Lemma 2.2). The main result
of the paper is as follows.

Theorem 1.1 Let k # 0, and assume (V1)—(V3). For all 1 > § > no > 0 and any
smooth w,’(" e L2NL? 5 satisfying the orthogonality condition (1.7), the solution
w, ¥ to (1.4) obeys the followzng inviscid damping estimates

5400 |4, 6-2j+no J
= K k [onire|
0 (kt>2 L% s/

1@l 2 |

(ke) rup @] 2 | + [rug®] 2

1
s — | K50 |l | + Zk6 2j+10 [ (3, )ka‘ i (1.11)
(kt) L 54
Furthermore, there exist fi.1(t,r) and fi.2(t, r) such that
wp(t,r) = e KO gyt r) + 7O fro e, 1), (1.12)

and the following vorticity depletion estimates hold

in
@0

(rdy)’ Fy

n
+ Z k2(=)+no
j=0

IVrad)" fi® | 2 s (k2"+1+% , ) (1.13a)
F.5 LFV{),/4

[¢ar" fia ] 12

U ontasno | i 20— )43+ j
Sé,n,m) M (k n 10 w;(no +JX:(:)]{ n—=j 10 (rar)]Fk L%'A,M . (113b)

forall 0 <n <max(2, k) in (1.13a) and for all 0 < n < max(l,k — 1) in (1.13b).
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Remark 1.2 By density we can extend the results to cover any a)};” € L? (satisfying
(1.7)) for which the norms appearing on the right-hand sides above are finite.

Remark 1.3 The L? norms we are using in Theorem 1.1, namely (1.10), are natural
in light of (1.8) and are well-suited for studying vorticity depletion. However, these

~ —1
L2 —L2 k
1.8 V.8

norms are quite strong at the origin (and infinity). Note that H Ak_l ‘

(as opposed to k2 as one might expect), which explains why some of the powers of k
in Theorem 1.1 are slightly higher than might be at first expected. Similarly, note that
Fj contains information about the second term in the expansion (1.8).

Remark 1.4 The correct analogue of propagation of regularity for mixing problems is
the regularity of e/*"“") wy (¢, r), the object which measures the difference between the
passive scalar and full linearized (or nonlinear) dynamics. Regularity of this object is
often studied in dispersive equations and it is sometimes called the ‘profile’; see e.g.
[14] for more discussions (note that regularity of this type was called ‘gliding regu-
larity’ in [52]). Understanding regularity of the profile plays a major role in all of the
works involving nonlinear inviscid/Landau damping [5-8,10,14,15,19,52] including
those which obtain results in Sobolev spaces [9,31]. Theorem 1.1 deduces higher reg-
ularity of the vorticity profile than is necessary to prove the (1.11), at least for k > 3.
However, as regularity plays a crucial role in the nonlinear theory, it seems appropriate
to study it as carefully as possible in the linear problem. This goal has motivated many
of the primary aspects of our approach.

Remark 1.5 Because in this work we were only concerned with obtaining finite
Sobolev regularity of the vorticity profile, we have not carefully quantified how the
constants in (1.13) depend on n. This is sufficient for any fixed Sobolev space of
interest, but e.g. for the end-point cases such as n = k — 1 and n = k, we have not
quantified the rate at which the constants grow in n as n = k — 00, an issue which
becomes important at infinite regularity.

A direct consequence of (1.13) is the following weak convergence result which
shows that the solution weakly converges back to a radially symmetric vortex.

Corollary 1.6 (Vortex axisymmetrization). For all k # 0, wi(t, r)—0 in L? 52 48
t — +o0.

The above corollary is due to the bound (1.11), (1.13) and interpolation. Another
direct corollary of Theorem 1.1 shows that the vorticity behaves as a passive scalar
evolution in the limit #+ — 400 (the analogue of ‘scattering’ in dispersive equations):

Corollary 1.7 (Scattering to passive scalar evolution). There exists Wk, +o0 € L? s such
that

lim

Wi (1) — Wk, +0
t—+o00

’eiktu

2
Lf’(3

Using (1.12) and (1.13) we only get a weak convergence result. To upgrade to the
stated strong convergence, we read a bound on 9; ( fi.1 (¢, ) + fr.2(t, r)) directly from
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equation (1.6a) in the correct weighted space in view of the decay of § (see Lemma
2.1). This, combined with the strong decay of fi.2(¢, r) in (1.13b), implies the desired
strong convergence.

Remark 1.8 If we additionally proved that (r,)/ Jk.1(t) converged as t — =£o0 in
szy s then of course scattering in stronger spaces would follow immediately. This
seems likely with some mild technical refinements of our method, but we did not
pursue this direction.

Remark 1.9 Vortices with a Gaussian distribution of vorticity constitute an important
class that satisfies our assumptions (V1)—(V3). Specifically, we can consider vortices

with
A r? ¥ 1) A /’1 | r? q
X —_ . V) = ——— — — ex D r
arr? P\ a2 ML 2w )y 7 P72

having length scale L > 0 and total circulation A > 0. In view of the notation
introduced in (1.3), we can compute

Q. L(r) =

Al r2 A }"2
M/\,L(V)=gr—2 1 —exp —z) |’ ,BA,L(V)ZWCXP —12)
(1.14)

Remark 1.10 The restriction j < max(k, 2) and the loss of k2 per rd, derivative (as
opposed to k) are due to difficulties specific to the vortex case. We expect that our
methods can easily be adapted to get boundedness of e'¥"*™M ¢y (y) in H* forall s > 0
for strictly monotone shear flows on T x R. Our methods may also be able to shed
further light on higher derivatives of etktu(y) gy, (y) in the case of achannel T x [—1, 1]
(see [66,73]).

Remark 1.11 The strict monotonicity (V3) plays a crucial role. See e.g. the studies
[2,36,53,59] showing various kinds of pathologies in non-strictly monotone vortices,
including embedded neutral modes (as occur e.g. in Rankine vortices) and non-normal
algebraic instabilities. See also the recent nonlinear counter examples to inviscid damp-
ing around a vortex constructed in [21] without monotonicity.

The angular velocity of the background vortex u(r) satisfies u’(0) = 0, which
indicates that the mixing is weak at the vortex core. For well-localized data sup-
ported near the origin, one can show that the passive scalar evolution (e.g wi (¢, r) =
e iktu(r )a)f{” (r)) generally cannot give rise to inviscid damping faster than |lu” (¢)|| <
(t)~1/2 and ”ue (1) ” < (1)1 (see the proof of Lemma 2.15 below for more details).
Hence, the non-local term in (1.6a) improves the inviscid damping rate in (1.11). A
related effect was conjectured for shear flows with non-degenerate critical points (e.g.
points such that u’(y.) = 0 but u”(y.) # 0) by Bouchet and Morita [16]. Bouchet
and Morita predict that vorticity will be ejected from the critical point, allowing the
break-down of the mixing there to have less effect than naively predicted. Specifically,
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4 Page 100f 192 J. Bedrossian et al.

Bouchet and Morita predict that the vorticity should behave as

wp(t,y) = e KWy o (y) + 0@7) for some y > 0 such that wy s (ye) = 0.
(1.15)

In [67,68], the authors prove that indeed the inviscid damping for such shear flows can
be faster than passive scalar. The authors directly study the evolution of the stream-
function via methods somewhat different from our approach (though a number of
common themes exist); our methods and theirs each have their own advantages and
disadvantages. Specifically, our methods obtain more precise information about the
vorticity directly, and thus the inviscid damping (1.11) is a straightforward conse-
quence of our vorticity decomposition (1.13) (see Lemma 2.15). A vortex analogue
of the depletion effect (1.15) (more carefully quantified) is described by (1.13):

k
w(t,r) =e KO (e, 1)+ 0 (%) asr — 0,

fealt,r) =00k asr — 0.

Although a hint of the vorticity depletion effect can be seen in the numerics and formal
asymptotics of [3], our work appears to be the first to precisely connect this depletion
effect to vortex dynamics.

Physically, vorticity depletion in the vortex seems related potentially to the cen-
trifugal force that will tend to move vorticity away from the vortex core. This effect is
over-powered by inviscid damping away from the vortex core, however near the core,
there is apparently a balance that allows to alter the decay rate. See Remark 2.5 for a
brief discussion of how it is deduced mathematically.

In what follows, we denote (r) = +/1 + r2. We use the notation f < g if there
exists a constant C > 0 such that f < Cg (and analogously f 2 g) and f ~ g if
f S gand f = g. We use the notation f <, ... g to emphasize that the constant
C depends on a, b, .. .. The implicit constants will never depend on the quantities c,
k,r, e, or a)f(” or similar variables except where otherwise noted (see below for the
appearance of these quantities). Finally, we let x be a smooth, non-negative function
which satisfies x (r) = 1 for |r| < 1/2 and O for |r| > 3/4.

2 Preliminaries and Outline of the Proof

2.1 Skew-Symmetric Structure, Neutral Modes, and Contour Integral
Representation

The following lemma is a basic consequence of the Biot—Savart law for radially sym-
metric functions (recall u(r) = 27) 1r—2 for Q(s)sds).

Lemma 2.1 (Basic properties of the vortex). Every Q(r) satisfying conditions (V1)—
(V3) satisfies the following:
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o B(r)>O0forallr >0,u'(r) <O0forallr € (0,00), u(r) > 0 forall r > 0, and
u'(0) = 0;

o |(ro))/B(r)| <) (r) " forall j = 0;

o |rd) u(r)| <y (r) =2 forall j > 0;

o forr <1 there holds u'(r) ~ —r and for r > 1 there holds u'(r) ~ —r=3;

e there holds the identity

3u'(r)

r

B@r) +u"(r) +

0, Vre(,o0). 2.1
We rewrite (1.6a) in terms of the vorticity alone as
dwp +ikLywr =0,  Lii=u(r) + B’ (2.2)

A key observation is the following, which is a straightforward calculation via Schur’s
lemma.

Lemma 2.2 The operator Ly, : Lé — L% is bounded and self-adjoint with respect to
the inner product

r

B(r)

dr.

(81, &2)p = /0 81(r)ga(r)

It follows that the L,zs norm is a conserved quantity:
) t 2 00 |,,iN 2
/ Mrdr = / Mrdr, vVt e R. 2.3)
0 B(r) o B

Remark 2.3 This conserved quantity is the quadratic variation of the Casimir used in
the energy-Casimir method of nonlinear stability [29].

The next lemma regards the neutral modes that arises due to translation invariance.
Note that the conservation law in Lemma 2.4 below is equivalent to the conservation
of [g2 xwdx under the Euler flow.

Lemma 2.4 (Neutral modes and orthogonality condition (1.7)). When k = +1, we
have the conservation law:

o0

p A w11 (t, r)r*dr = 0. 2.4)

Moreover, in view of (2.1), it is easy to check that
Ys(r) =ru(r), ws(r)=rp(r) (2.5)

is a steady state for (1.6a) with k = =+ 1 (this is also pointed out in e.g. [3]). In
particular, ws(r) = rB(r) is a neutral eigenmode for L.
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Proof of Lemma 2.4 Indeed, dropping the time dependence and the indices k = +1, a
straightforward calculation (note that the boundary terms vanish due to L% conserva-
tion) shows that

[ wwom - perwenrar = - 7 [Fuen v + s
— W)+ 2B |ar
— [ [P e 30w )
+ 2B dr =0,

where we made use of (2.1) in the last equality. Hence, from (1.6a) we infer (2.4).
That (2.5) is a steady state is also simple consequence of (2.1). O

As a result of the self-adjointness of Ly, (1.6a) falls under essentially the same
framework as Schrodinger operators. Hence, for all w}{” IS L%, the solution to (2.2)
can be represented via the formula (see [61, Proposition 1.9])

wt,r) = e KL gin Gy = fim — [ e~iket [(c —ie— L)
e—0+ 2mi JR
—(c+is— Lk)—l] i (r)de. (2.6)

Using (2.2), the function
A = (z— L) 'of"(r)  rel0,00),z€C

satisfies the so-called inhomogeneous Rayleigh equation (explicitly writing out Ay):

2 in
Ly, & >5k+ PO &, = ) 2.7)

By 4~y — — - .
(rr+rr r2 u(r) —z k u(r) —z

Note that for z = c +ie with ¢ > 0 (2.7) is a smooth perturbation of Ay and hence we
will not have qualitative smoothness or local-integrability problems for ¢ > 0. Such
difficulties arise only in the limit ¢ — 0. By replacing ®; with

o, = «/}_”&Sk
to eliminate the first-order derivative term, we obtain

in 1.2
M RAY;:=0,, + 14 3 k + (,3)(r)
u\r)—=z

u@r) —z°’ r ’ (2.8)

RAY, @ (r, z) =

supplemented with the boundary conditions that @ vanishes as 7 — 0 and oo (asymp-
totic analysis shows that ®y(r,z) ~ r**1/2 as r — 0 and ®(r,z) ~ r'/>7* as
r — oo provided that z # u(0)).
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In what follows, normally we will set z = ¢ £ i e and suppress the ¢, ¢ dependence
to write

1/4 -k )

RAYz =0y + 2 u(r) —cFie

r

Finally, from (2.6) we deduce that

1
wi(t,r) = lim —
e—0+ 271

ket " (r) — B(r) B (r, ¢ — ie)
R u(r) —c+ie

u(ry—c—ie

) —ﬂ(r)5k(r,c+i8)} y

—lku(r)t m( ) + /3( ) lim / —ikct |:<Dk(r, c+ i8)

2win/T e—0t JR u(r) —c—ie
_Slrc—ie) ’f)} de 2.9)

u(r) —c+ie

Remark 2.5 The vorticity depletion mechanism for both shear flows and radial vortices
is related to the second order singularity in the Rayleigh operator (2.8) at the critical
pointr, = u -1 (¢) and at r = 0. However, unlike the shear flow case, here an additional
challenge arises due to the collision of r, with the singularity in Ay atr = 0.

In this work, vorticity depletion is isolated through a detailed analysis of the funda-
mental solution of the Rayleigh equation (2.8), especially evident in the estimate on
the Wronskian, which has a clear singularity near the origin (see Lemma 5.2). This,
in turn, is deduced with a detailed analysis of the behavior near the ‘critical layer’
of the fundamental solution of (2.8) as r. — 0 that depends heavily on the detailed
monotonicity properties deduced in Sect. 4.6 below. As it is such a subtle effect to
capture mathematically, we are currently unaware of any simple heuristic or easily
checkable structural condition that could help to find where a similar behavior could
be expected in other settings in fluid mechanics or kinetic theory.

2.2 Outline of the Proof fork =1

In this case, the proof of Theorem 1.1 is based on the explicit formulas

Br) ("
2/()

fia@r, 1) = rp(r) / e =l 11 (p)

fia(r) = &) + 5—— | " (p)p>dp,

pu’(p)

which can be obtained thanks to the explicit solution of the homogeneous Rayleigh
problem for k = 1:

o(r,2) =3 —2); (2.10)
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(c.f. (2.5) and see Sect. 3.1). The vorticity depletion effect is encoded in the property
that

fl1(r)=0@>) as r—0

instead of just an O(r) behavior, while

fialt.r) =0 <<2—>> as r—0,

which vanishes slower at the origin, but decays in time. The rigorous arguments needed
to complete the proof of Theorem 1.1 for k = 1 are carried out in Sect. 3.2.

2.3 Outline of the Proof for k > 2

The case when k > 2 presents fundamental differences compared to the case when
k = 1. To simplify notation, we omit the dependence on k of the functions involved
except when it is relevant.

2.3.1 Depletion Trick and Contour Integral Decomposition

The first step of the proof is to isolate the asymptotic expansion at the origin from the
rest of the profile. For this, we will apply the following trick, in which we remove a
harmonic function (with a smooth cutoff) from ®. Besides the function F in (1.9), we
define

X(I")I"k+l/2 )
Y(r,2):=®(,z) — Ww;fo, (2.11)
Fu(r)i= — % (@ + DX OA 2 4P oy, @1

where we recall that x is a smooth, non-negative function which satisfies x (r) = 1
for |r| < 1/2 and O for |r| > 3/4. From (2.8), we deduce that

F(r)

RAY,Y = ——
u(r) —z

+ Fi(r). (2.13)

Going back to (2.11), we have from (2.9) that the profile
fa,r) = o, r),

satisfies

_F(r) Br) .. ik(u(r)—o)t [ Y(r,c+ie)  Y(r,c—ie) :|
fe.n= JT +27n'\/751£(r)1+/Re u(ry—c—ie ulr)—c+ie de
(2.14)
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Next, we sub-divide the integrals in (2.14) in several natural pieces. First, we isolate
the contributions near and far from the spectrum (2.14) via the smooth cut-off function

1 —Rs/2<c=<u(0)+1/2
Xo(c) =10 c < —Rs (2.15)
0 c¢>u()+3/4,

where Rs > 0 will be fixed later (depending on §), so that

Ftr) = F(r) B(r) lim f“(o)“ eikr—cy Y(r,c+ie)
’ \/I_‘ 27Tl‘\/78~>0+ —R; u(ry—c—ie
Y(r,c—ig)
- d
u(r)y —c+ ie] Xo(€)de
B(r) lim eik(u(r)fc)t Y(r,c+ie)
2wiNT e—0t JR u(ry—c—ie

Y(r,c—ie)
—m] (1 — Xg(C))dC (216)
Further, define
Fei= u_l(c), c e (0,u(0)]. 2.17)

The region r ~ r, is known in the classical fluid mechanics literature as the critical
layer [28]. Near the points ¢ = 0 and ¢ = u(0) there are a variety of subtleties in the
resolvent. This can be expected due to the change in the nature of the singularities in
the Rayleigh equation (2.8) at these points. Since the first-order singular point at the
critical layer merges with the second order singularities at » = 0, oo, the influence
of ¢ in (2.8) will be felt much more, hence, we need to pass to the limit ¢ — 0 in a
non-uniform way over the spectrum ¢ € [0, #(0)]. From Lemma 2.1 and considering
the points where (#(0) — 0)? ~ €2 and ¢2 ~ &2, we see that the natural place to divide
the complex plane is along the curves & & r2 for r. < 1 and & ~ .2 for ro > 1.
A small, but crucial, point is that we can afford some flexibility in this boundary. Let
a € (0, §) be a parameter chosen sufficiently small in the sequel depending only on §
(from Theorem 1.1). Define the set

Iy, = {z =c+iseC:ce(0,u0), Ks <min(r>+e, r;H)} (2.18)

and the associated smooth cut-off function

wormr () [ o)
(koe)~ 2+ (koe) 7

@ Springer



4 Page 16 of 192 J. Bedrossian et al.

Then, we further divide the contour integral by

_ F(r) IB(r) . (0 ik(u(r)—c)t Y(r, c+ 15)
f(t’r)_7+2ﬂi\/781—l>rg+/0 ¢ |:u(r)—c—i5

Y(r,c—ie) rod

_Y@e—ie) ]
u(r) —c+ie Xi{fe

+ LD iy / O kur-on [ X(roc tie)
27ir s—>0+ J_g, W) —c—is
Y(r,c—ie) ]

Tu0) —cxie | @0 T alrede

L PO / ciku—on | Y(rctie)
2misfr e~ Je u(r) —c—is
Y(rs Cc — i8) ]

Tut) —ctis | T XeleDde (2.19)

The first term will be thought of as “close to the spectrum”, whereas the latter two
terms will be considered “far from the spectrum”. Given the singular integrals in the
representation formula, the two relevant quantities appearing are

X(r,c,e)=Y(@r,c+ie)—Y(r,c—ie), (2.20a)
A(r,c,e) =Y(r,c+ie)+Y(r,c—ie) =X +2Y(r,c—ie) (2.20b)

so that from (2.19) we write:

f.r)

F(r) B(r) u© jeeik)—oy
—_ — 1' e A ’ ’ d
\/; + 27'[1\/7 g_1>n(}+ /(; (u(r) _ 0)2 + €2 X1 (rc) (V c 8) I

Br) . /-u(()) (u(r) — C)eik(u(r)—c)t
lim
0

X d
2wiNr O u(r) — ¢)2 + &2 X1 (re)X(r, ¢, &)de
N I RS
i o0t Jogs u(r) —c—ie
Y(r,c—ie)
AW o = xy (e
u(l’)—C+i8:|X (@ = X (re))de
PO fim [ eikwrr—on | Y et i)
2mi/r o0t Jr u(r)—c—ie
Y(r,c—ie) a O oo
u(ry —c—+ie Xo (€))acC. .

See Fig. 1 for a summary of how the limiting procedure in (2.21) is carried out below.

There is one additional decomposition necessary in order to see the vorticity deple-
tion effect—the decomposition in fi and f>. While F(r)r~!/? has better decay at
the origin than w};"(r), it is clear that for, e.g. r. = 1, both A(r, c, a)r_l/2 and
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X (r,c,e)r~ /2 can be expected to have the same asymptotic expansion at the ori-
gin as the solution of the Laplace equation (specifically, ~ r¥). Hence, at any fixed ¢,
clearly f cannot have better decay at the origin (qualitatively speaking) than w}‘(" (r).
We instead deduce that the leading asymptotic expansion is decaying in time. We
divide the contribution from X in two pieces, by means of

x1(rre) =11 = x /2D x G /r)lxi(re),  x2(r,re) = x (/2D x T /re) xi(re).

Note that x(r/2)x(r/r.) = 1 whenr < 1 and r, > 2r. In this way, we can rewrite
(2.21) as

oy =1im [ff @) + 0+ f500 + f50.0)], (2.22)

where

. F(r) ’3('.) u(0) iEeik(u(r)_C)t
fie.n = Voo 2miyr o (u(r) —co)? + &2
By "0 (u(r) — c)eiku=ox
ivro W)=+ &2
B [0 () — c)et—or

L r) = 2i e Jo W) =+ 2 x2(r,re)X(r, c, g)dc, (2.24)

x1(re)A(r, ¢, e)dce

x1(r,re)X (7, ¢, e)dc, (2.23)

I II O IIT 1A% .
- - . y » +1e
 —Rs 0 - u(0) e
- . e . —i€
I II VO IL v
rcw—e_ﬁ | ITCN—EH%

Fig. 1 This figure summarizes the limiting procedure used to treat (2.21). Region III represents /. The
contribution from this region is further decomposed into flS and f2E (see (2.23) and (2.24) below) which
converge to the decomposition in (1.13). The limiting procedure is done by constructing the Green’s function
for RAY; and making analyses of the resulting integral operators (carried out in Sects.4—6 together with
“Appendix B”). In regions I and IV we apply energy estimates on RAY; to prove these contributions vanish
(carried out in “Appendix D). Here § > 0 is traded to gain the flexibility to take o > 0. In region II, we
apply a compactness-contradiction argument with a second order comparison principle that shows these
contributions also must vanish (carried out in “Appendix D.1.2”)
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. B [HOF e [ Y Hie)  Y(rc—ig)
fS(t’r)_Zm'\/? ¢ |:u(r)—c—ie_u(r)—c+i8:|
X Xo (e)(1 = x1(re))de, (2.25)
P _ BW) iku(ry—oy | Y(ric+ie)  Y(r,c—ie) B
fet.r) = 2wiNT Re u(ry—c—ie u(r)—c-+ie (1= xo (e)de.

(2.26)

In order to prove Theorem 1.1 we moreover need to express (rd,)/ f for j < k. In
what follows, denote dg as:

1
9 = —— ) 3 + 9. (2.27)

It is important here that u’ does not vanish. The significance of this derivative, which
has the form d; 4 9, with z = u(r), is the following: formally integrating by parts in
¢ assuming that no boundary terms appear gives:

o, (/00 hu(r) - B, c)dc> = [ b - om0, e
0 0

The G refers to the terminology of “good derivative” in [66], where an analogous
derivative arises for a similar reason. Iterating gives,
o0 2i8u/(rc)eitk(u(r)—u(rc))

(u(r) —c)? + &

. . 1
rd) fi(t,r) = (rd) F(r) + 5— /
2ri Jo

x (ru (r)dg)’ (x:(rc)ﬂ})

L/ itk —u(e) (u(r) — oy (re)
2mi (u(r) —c)? + &2

A(r, c, g)> dr, (2.282)

x (ru' (r)dg)’ (Xl(r rc)ﬂj_)X(r c, g)) dre, (2.28b)

Ooeitk(u(r)—u(rc)) (u(r) — o' (rc)

- 1
i) fr 1) = 2mi /0 (u(r) —c)? + &2

X (ru/(r)BG)j (Xz(r re) ﬂ\;_)X(r c, 8)) dr.. (2.28¢)

This formula will be used below to obtain higher derivative estimates on f and f ]-8.
Finally, in order to complete our characterization of vorticity depletion, we obtain a
decay estimate on (rd,)’ f; like O(t~"). For this, we will integrate by parts in r,:

(u(r) —c)

. 1 .
9.)/ e t, - _ ttk(u(r)—u(r(.))ar
(rop)) fr (1) wkt )y © :

/ j ,3(7‘)
X (ru’(r)ag)’ | x2(r, rc)7X(r, c,e) | | dre. (2.29)
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Notice that in the formulas above, near » = 0, the derivatives landing on X or A will
be roughly O (r?)d% ; we will see that each d¢ ‘costs’ r~2 near the origin. Indeed, we
have the following observation regarding F and F:

Lemma 2.6 There holds

Jo67]

1+ in
Sek ‘wk,o

4
Se Xl Fls, o [o6E
¢ m=1 '

2
LF,5+2 LF,(S+2[

2.3.2 Vanishingforz ¢ Ipas & — 0

The contributions of f¢ and f7 (2.25) and (2.26) vanish as & — 0. Hence, the only
relevant values of the spectral parameter ¢ are those contained in the interval [0, u(0)],
the range of u, which is the continuous spectrum of the operator Ly in (2.2). The
precise statement is contained in the following theorem.

Theorem 2.7 Assume k > 2, and let j € {0, ..., k} be a fixed integer, o < §/8, and §
sufficiently small. Then for all t € R,

tim (1007 f a5, )2 |+ 10007 5691 | =0.

The proof of this theorem is contained in “Appendix D”. The main ingredient is a
set of careful energy estimates on a slightly more generalized version of the Rayleigh
problem (2.13), as stated in Theorem D.1. These estimates allow to trade some § > 0
for freedom to choose o > 0 in (2.18). The estimates are then used in an iterative way,
to bootstrap from the initial L? bound up to the k-th derivative. Indeed, the functions
X, Y, A and their dg derivatives satisfy an equation of the type

+

. F:
RAYL T Y(edtie)= — 4T LR 2.30
L3571V ek ie) = T Ry (230)

where R; and F; depend on F, F, and lower order derivatives of Y. The difficulties
we face are summarized below.

© The energy estimates depend on the region where ¢ ranges, and, in turn, on the
asymptotic expansion of # near r = 0 and r = co. Hence, the bounds are necessarily
different and have to be treated on a case-by-case basis. The non-uniformity in which
& — 0 discussed in the previous section plays a key role. Moreover, bounds have to
encode the correct integrability in ¢, as the formula (2.25) deals with the endpoints
¢ = 0, u(0), while (2.26) requires integrability as ¢ — % oo.

© While in most cases a (weighted) energy estimate for (2.30) is obtainable by multi-
plication by Y, and integration by parts, the case near ¢ = 0 requires a contradiction
argument. Due to compactness, a failure of the energy estimate would imply the exis-
tence of a localized solution to RAY+¢ = 0, which is ruled out by a second order
comparison principle against the homogeneous solution atk = 1 associated with (2.5).
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¢ In the iterative process, R; contains coefficients (that depend on u and B) that are
very singular and that require a gain of 72 at 7 = 0. This is related to the “cost” of taking
dg derivatives, discussed above. This loss can be handled up to k — 1 derivatives, by
keeping track of the weight correction allowed in the energy estimates (the parameter
y in Theorem D.1). The case j = 0 is carried out in detail in Sects. D.3-D.4 in
“Appendix”, while the generalization to derivatives up to kK — 1 is handled in Sect.
D.5.1 in “Appendix”.

© The k-th derivative is handled directly by expanding the Rayleigh operator in (2.30)
and exploiting the elliptic regularity due to the second order derivative presentin RAY 1
(see Sect. D.5.2 in “Appendix”).

2.3.3 Green’s Function for the Rayleigh Problemforz € Iyas € — 0

2.3.3.1 Homogeneous Rayleigh Problem While for £ = 1 the exact solution (2.5)
allows the construction of the Green’s function in a fairly direct way (for all z € C),
the picture in the case k > 2 is complicated by the lack of explicit formulae for the
solution to the homogeneous Rayleigh problem RAY ¢ = 0. In Sect. 4, we derive the
existence of a unique solution ¢ of the form

¢, 2) =P, 0)w@)—2z), zE€ Iy,

which satisfies P (r¢, z) = 1,9, P (r¢, z) = 0. The function P also encodes the behavior
of ¢ away from the critical layer (essentially, the precise asymptotics as r — 0 and
r — 00). Theorem 4.1 treats the general case when z € [, while Theorem 4.2 focuses
on further properties when z € (0, u(0)) is real-valued. The convergence estimates
are stated in Theorem 4.3. The proofs are articulated in different steps.

¢ Existence and uniqueness of P is proved through an auxiliary function P, related

to P via
F\32
P(r,z) = (—) P(r,z),

Te

which satisfies a proper integral equation, treatable under the contraction mapping
principle in weighted L°°-based spaces (note this step shares some similarity with
[66]). In this way, existence, uniqueness, and the nearly correct behavior at 0 and
oo (up to a small correction) in both r and r, is obtained at once, along with suitable
bounds (Proposition 4.6). Note that the definition of P is informed by the exact solution
(2.10) in the case k = 1.

© When z € (0, u(0)) is real, further monotonicity properties of P, are available (see
Theorem 4.2). Of extreme importance is the fact that ¢ only vanishes at the critical
layer, when r = r., along with the correct k-dependence of the estimates involved.

¢ In order to prove that the complex solution ¢ (r, z) only vanishes at the critical layer
for every z € I, we prove convergence estimates for P(r,c £i¢) — P(r, c) and its
various derivatives, in the correct L°°-weighted spaces. This is carried out in various
steps. In Sect. 4.2, we use again the function P, and we derive sub-optimal (in both r
and r¢) convergence estimates. Similarly, we treat dg P near the critical layer in Sect.
4.3 and 9, P in Sect. 4.4. The optimality in r is then obtained in Sect. 4.5. In both
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cases, factors related to rc2 and r 2 appear in the convergence estimates, due to the
nature of the singularities at », r. = 0, co. This is the primary practical motivation
behind the definition of the region I,, and the subsequent non-uniform passage to the
limit as ¢ — 0. Indeed, only for z € I, are we able to deduce that ¢ (r, z) # 0 for all
r # r¢, a key property (as we see from (2.31) below).

2.3.3.2 Inhomogeneous Rayleigh Problem In order to construct a Green’s function
for RAY;, from (2.8), we again use reduction of order. For z € I, \Ran u, we define the
two homogeneous solutions which each satisfy one of the boundary conditions via:

1

5. Z)2ds.
(2.31)

Ho(r,z>=—¢(r,z>/0 md‘“ Hoo(r,z)=¢<r,z)/r

Note that Hy and Hy, are well defined by absolutely convergent integrals for
z € I, \Ranu and are solutions to the homogeneous Rayleigh equation (4.1), whose
Wronskian is

M@ = Holr 200 Hoolr.2) = Hoolr, 203, Hotr,2) = [ opids. 232)
0o ¢°(s,2)

One of the crucial lemmas is Lemma 5.2, which provides the following lower bound
uniformly for z € I,

|M(c +ie)| > kmax(r3, r)).

Note that the singularities at r. — 0 and r, — oo are in fact a gain. These gains are
crucial for obtaining the vorticity depletion, and arise from the detailed asymptotic
analysis of ¢ around the critical layer. Hence, the Green’s function for the Rayleigh
operator for z € I, \Ranu is

1 {HO(F,Z)Hoo(V/,Z), r<r, 233

!/
G070 = 3@ | How D ool 0, 7 7
In addition to the lower bound on M, precise estimates on Hp and H, follow from our
study of ¢ (r, z) (see Sect. 5) as well as convergence as ¢ — 0. Due to the apparently
singular integrals that appear as ¢ — 0 in (2.31), it is not obvious that Hy(r, c *ie)
and Hx (7, c £i¢) converge, but cancellations for ¢ > 0 ensure we have well-defined,
log-Lipschitz limiting functions Hy(r, ¢ £i0), Hxo (r, ¢ £i0) (as expected from shear
flows [28]). See Sect. 5 for more details.

The Green’s function gives us representation formulas for Y :=Y (r, ¢ £ ie) and
X:=X(r,c,¢)fore > 0 (see Lemma 6.3),

u(s) —c

—(u(s) ot F(s)ds

o0
Yi:/ Gg@r,s,cxie)
0

+ /OO Gg@r,s,cxie) F(s)ds + /00 G@r,s,c xie)Fy(s)ds
0 0

(2.34a)

(u(s) —c)? + &2
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X:/ B (r,s C)LF(S)(LS‘
o XEETT T (s) — )2 4 €2
+/(; (/(; ﬁ&%e( ,so,c)B;;g(so,s,c)dso)
u(s) —
F(s)ds

% (u(s) — 0)2 + g2

+/é (/0 %Bg& (1550, C)BXG (50, 5, c)ds0> F.(s)ds,
(2.34b)

where
BY) (r,s,0) =G(r,s,c+ie)
X\ 0P O R
> 2iep(s0)

o R GG s, e+ ie)G0s0, 5, ¢ — ie)dso,

/0 (u(sg) — c)? + €2 (r» 50 )G (s0 )dso

1 .
B)(()Gs B;(lg‘e(r’s()vc)29(7’75070-{-18).

2.3.4 Representation Formulas and Boundedness for (rd,)/f; and (rd,)/f,

The details of the below discussion are given in Sect. 6 below.

2.3.4.1 Iteration scheme and representation formulas for 3’ derivatives for
J < k — 1From (2.28), we see that a key step in the proof of Theorem 1.11s estimating
8/ Xand 8 A for z € I. The crucial property of dg derivatives is that they vanish
on functlons of u — ¢, and hence, the commutator [dg, RAY.] is not more singular
than RAY, itself at the critical layer (see (6.2) below). As a result, we are able to use
an iteration scheme of the following general form to control higher derivatives; this
iteration scheme is one of the insights for obtaining higher regularity of the profile.

Lemma 2.8 (Iteration lemma for BéX and BéY fore > 0). For Fj, R;, R;?, & defined
below in Lemma 6.1 we have the iteration

i 2ie 1 5'+1
RAY 8j+1X——( 3J+ >+j—+R
+76 (u—c)2 42\ Jjtl —p u—c—ie j+l
. Ft
Ravpalflyt = S pE
*%6 u—cFie * R

The quantities R}, &}, R;, and F; depend only on 8éX and Béonr 0<t=<j—-1
(as well as u, B, F and Fy).

Using the recursion scheme described in (2.35) and Fubini’s theorem, it is not hard
to formally verify the following Proposition by induction, which allows to directly

express BéX and 8(];Y in terms of F' and F, in a form essentially the same as (2.34)
except with much more complicated kernels. See Lemmas 6.4-6.6 below.
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Proposition 2.9 Forall j < k — 1, there hold representation formulas of the general
form for various kernels B and weights w for ¢ > 0:

a]y _ Z/ BYSJ[(r s, C)( (Sl;(s)c)2+ 2wS;j,Z(S)aéF(S)ds

+ E f B ( ) 2 ( )3(;@ F(s)d
L r’ S, C)——— —————Ws- Ky KY Ky
0 Yaj.L (u(s) —c)? + &2 bt

J o0
+ Z/ ByG:j.o(r, s, wg.j.e(s)dG Fi(s)ds
0
=0
+ Similar terms with different B, w, (2.36)

where by “Similar terms with different B, w” we mean terms with exactly the same
formal structure, except with different B kernels and weights w (however, all of the
omitted terms will share the same estimates). Similarly, for various kernels B and
weights w we have a similar representation formula for ¢ > 0:

. J 00 2i
iy _ (D ie ¢
X = Z/O By o(r.s, c)mwm;j,@(s)acns)ds

J 00 00 .
2igB(s0) P
—i—Z/O (/0 m X(S]e(r so,c)Bxajz(so,s c)dso
=0
2ie
X —
(u(s) —c)2 + &2
J 00 00 .
2iep(s0) (D @
" Z/O (fo (u(so) — ) + &2 Bis:je(r-50- By, j ¢ (s0. 5. €)dso
=0

) %wm;;,e@)aénsms

J 00 00 :

Z 2ieB(s0) ) )
+ —B 5 B RO d

zzo/O (/0 (u(so) — ¢)2 + 2~ XGiJ. (7,50, ) XG 70050, 5, ©)dso

X WxG:j.0(5)dG Fu(s)ds
+ Similar terms with different B, w. (2.37)

wxs2:j.0(8)d5 F(s)ds

Furthermore, in each term above, the weights satisfy an estimate of the following form
forsome 0 < £’ < j — € and all m > 0 (different ¢ for each term),

|(595)" we 1. (8)] S max(s ™2, 52¢). (2.38)
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Along with (2.36) and (2.37), the proof of Proposition 2.9 derives also an associated
recursion for the various B kernels appearing above (see Lemmas 6.4—6.6). That is,
the kernels B( ) ¢ are determined from Bi ; |.m Via afew canonical integral operators
involving the Green s function G. A crucial idea of our method is to use these recursion
formulae on the B’s, together with precise estimates on G, to obtain precise estimates
on all possible B kernels by induction. This method allows us to treat all of 8éX and

aé Y for j <k — 1 simultaneously (as discussed below, the method only stops due to
the max(r—2, r2) losses coming from 3¢ ). Define the bounding functions

2
r
. : 2
K(r,s,c):= 1r0>1 + 1rcfl (15<r<rc + 1s<rc<r<lr_L2 + 1s<rc<l<rrc

2
2
+ 1rc<x<r<1r_2 + lrc<s<l<rs +1lic<r

2 2
: 2
+ 1r<s<rc + 1r<rc<s<l S_LZ + 1r<rf<l<src + 1rc<r<s<1 S_2

+ 1 craresr” + 11<r<s>, (2.39a)

sk=1/2 pht1/2
B(r,s):= <1S<, =it 1,<Ssk+—l/2) (s)* (2.39b)
Lye(r,s) =k’ max (};2, slz, r2, sz)[. (2.39¢)

The full properties and the estimates obtained on the kernels are laid out in Definitions
6.7 and 6.8 below. The main result in Sect. 6.3.1 is the following.

Proposition 2.10 For j < k — 1, each of the kernels BX Iy appearing in (2.36) and
(2.37) is Suitable (20", ¢" +n, y) of type I for some y € (0,1), 1 > n > 0, and some
integer " > 0 (difference for each kernel). For j < k — 1, each of the kernels BX* I
and By j ¢ appearing in (2.36) and (2.37) is Suitable (20", ¢" + 1, y) of type II for

somey € (0, 1), 1 > n > 0, and some integer " > 0 (difference for each kernel). In
particular, each satisfies the uniform-in-¢ boundedness:

1
‘Bi; e(r, s,C)

Sn |u/(s)| K(r, s, c)B(r, s)Lypn i (r,s)

B( ; (s s, c)‘ Sy ’u (s)‘ K, s, c)B(r, s) Ly E”+n(r s),

and each of the kernels satisfies analogous log-Lipschitz regularity estimates and con-
vergence estimates as ¢ — 0 (see Lemmas 6.10-6.14). Finally, all terms in Proposition
2.9 satisfy the additional constraint

e+ 40" <j, e+ + 4+ <. (2.40)
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Remark 2.11 The gains encoded by K, the fact that in certain regions of (r, s, ¢)-
space K is much smaller than 1, are what ultimately allows us to deduce the vorticity
depletion effect and are inherited from precise estimates on G. The losses encoded by
L are inherited from the max(r —2, r2) losses inherent in dg derivatives. It is crucial
that the losses in £ do not depend directly on r.

Remark 2.12 The constraint (2.40) arises due to the fact that each application of d¢g to
(2.35) can land either on X, Y, F, F, or on the fixed coefficients that depend only on
the background vortex. Each application will lose max(r—2, 2), and hence there are
max(r~2, r2)/ powers to distribute between different factors that the kernels and the
weights account for.

2.3.4.2 Extension to 8g or r.o, 8é with j <k — 1 It is not clear how to obtain

estimates for even a single r. derivative, e.g. 0. Bé: the commutator [9,,, RAY,] is too
singular near r. to use an approach similar to the one we used on dg. Moreover, the
arguments of Proposition 2.10 break down at j = k due to the singularities in the
right-hand side of (2.35) at zero and infinity (encoded by the constraint (2.40)). In
order to overcome this difficulty, first notice that while the commutator [9,, RAY.] is
too singular to use an approach like what we used on d¢, we should nevertheless expect
to be able to estimate o, Bé Y by elliptic regularity. Indeed, away from the critical layer,
it is a straightforward extension of our methods to show directly that 9, derivatives of
(2.36) and (2.37) should not be significantly worse than the 8(1;X and 3(]; Y themselves.
The next observation is that, just as dg arises when taking 9, derivatives in (2.28),
similarly, dg arises when taking 9, (or dg) derivatives of (2.37) and (2.36) (see Sect.
6.4 for details). Therefore, while it seems intractable to build a reasonable iteration
scheme for taking multiple d, and 9,_, it turns out we can take a single 9,, 9, away
from the critical layer, or a single additional dg derivative near the critical layer, of
(2.36) and (2.37). For f>, we only need 0, away from r ~ r. and hence this will be
sufficient. For f, away from r ~ r. we write

ru’(r)

"o = roy + ———
ru (r)dg = roy T

Fe arc s

and estimate these two derivatives separately (whereas for » ~ r, we naturally leave
the derivative as is). See Sect. 6.4 for details.
2.3.4.3 Convergence and boundedness of (r3,)’ fi and rd,)’ S5 Next, our goal

is to pass to the limit ¢ — 0 and obtain L? bounds on (9, )/ Jf1and (r 9,)/ 2. The first
proposition gives convergence in the weaker weighted space L2 5 and boundedness

of the limit in the weighted space which is 2 stronger at the origin.

Propqsition 2.13 Forall j < k, we have the convergence of (r8,)jf18 (t,r) to a limit
(roy)’ fi(t, r) in the norm:

tim | 0,07 (£ = f1)

=0.
L?M
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Moreover, there holds the uniform-in-t bounds for n < k in the stronger weighted
space: for all n > 0,

n
+ ZkZ(ﬂ—an H (rar)jF‘

5 .
i—0 L% 54

n < 2n+1 in
r ~n,0, ,
[P0 fil | Snoan k2 oty

Similarly, we prove the requisite decay O (t~!) of f> in the natural L? s space.

Proposition 2.14 For all j < k — 1, we have the convergence of (rd, ) @, rta
limit (rd,)! f2(t, r) in sz 5

tim | 97 (15 - f2)

=0.
2
Lys

Furthermore, there holds the following decay estimate forn <k — 1: for all n > 0,

n+1

i p .
+ DN Sl H (rB,)JF‘ Lo
=0 F.5/4

1
[G00" fall 2, S5y el

in
(kt) @0

Propositions 2.13 and 2.14 give the vorticity depletion characterization in (1.13).
Combining (2.28) and Proposition 2.9, the proof of Propositions 2.13 and 2.14 reduces
to passing to the limit as ¢ — 0 in operators of the type arising in Proposition 2.9 (and
obviously bounding the limiting operators) with the B’s satisfying a list of properties
such as those alluded to in Proposition 2.10 (the actual list is much longer; see Sect.
6.3.1). This involves a number of very technical decompositions over (in general)
four variables r, sg, ¢, s adapted to the various asymptotic behaviors near the origin,
infinity, and the critical layer. The various Holder regularity properties of the kernels
becomes important for passing to the limit in the iterated singular integral operators
arising. The details are carried out in “Appendix B”.

Finally, via the Biot—Savart law, integration by parts in r, and the Hilbert—Schmidt
lemma, Propositions 2.13 and 2.14, directly imply Theorem 1.1, as the next lemma
shows.

Lemma 2.15 (Vorticity depletion implies optimal inviscid damping). The vorticity
depletion estimates (1.13) imply the inviscid damping estimates (1.11).

Proof of Lemma 2.15 We may without loss of generality consider the case |kt| > 1.
Denote G (r, p) to be the Green’s function for the Laplacian restricted to the k-th
angular Fourier mode, i.e.

>
=

»»l
i)
IA
~

Gi(r, p) =

=
bl\\
E
A
\
~
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Using the decomposition of wy as in (1.12), we have

o0

oo
Yi(t,r) = / Gi(r, p)e™ P fi.1(t, p)dp + / Gi(r, p)e ™ ®) fio(t. p)dp
0 0
=Yt 1) + Yo, ).
It is convenient to denote

2 1
suka—" ’|«/7(r3r)"fk;l(t)”L2’” + sug(kt) Zk—" I (ra,)nfk;z(t)”L% = M,
! , > =0 1

20 n=0

where by (1.13) we have that My is bounded in terms of the datum w,’;". For the
contribution from .2, we integrate by parts and obtain

0 _ie—iktu(p) 1
/ 9 ( —Gi(r, p) fr2(t, p)) dp
0 u'(p)

Wy, 28 (1)

W20l _

kt)(k
(kt)(kt) wy 25 ()

o ~1
5/0 Tz(r’p)(kt)(Ifk;z(t,p)l+k |(pap)fk;2(l‘,p)|)dp’

wy 5(0)

where

Iy(r,p):

_ wrs(p)G(r, p) <I(;08p)Gk(r,p)| N kplu”(p)| +k>
plu' () |wy 26 (r) Gi(r, p) [t (p)] '

Using that (recall the strong decay imposed on f (1.10b) at infinity),

wrs(0)Gi(r, p)
plu'(p)|wy 25 (r)

12, O L20ar apy S K H

L%(drdp)
. pk rk
wf,a(/)) min {r_k’ p7}
S L
[’ (p) [wy,25(r)
L%(dr dp)

we obtain,

Mo
|20 L3 5 S (kt)(kt)’

as desired. Similarly, for the Y. contribution, we integrate by parts in p twice, keeping
track of the boundary terms arising from the second derivative of the Green’s function.
We arrive at

5 —miktu(r) S (6, 1)
(kt)“ Y1 (2, 1) = 2e W' (r))2

0 1 G (r,
e (g (Gt )
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from which we deduce

kt)2|1//k;l(l7")|
Wy 26(r)
2wp 5(r) Vrl fie1 ()l
T wy s (MONVrW (n)* wrs(r)
o0 VB (i 01+ K71 1G08p) fiea 2 o)) + K21(00)? fic1 (1, p)])
o], ne )

(

dp

where

2
Ti(r. p) = wr,s(p)Gk(r, p) <|(,03p) Gi(r, p)|

P2 (' (0)2 /Wy 25(r) Gi(r, p)
3plu” (P)\ 1p9,Gi(r, p)|

k{3

* <+ W ()] ) Ge(r. )

K2p2u" (p)|  3k*p* (" (p))? 3k2p|u“<p)|>

u'(p)] W' (p))? lu'(p)]

. wr,5(p) min {f—: ;—’Z}
~ P2 ()2 pwy s (r)

+ k2

Therefore, using that

. ko k
wr,s(p)min {2, 7]
2+1/2( /( ))2 ( ) 51
o0 Jo u'(p)) wy 25(r
L>®(dr) ¥ L2dr dp)

H wrs(r)

wy, 25 (M) /r (' (r))?

which may be checked directly, we obtain that

My
”1”’“‘(””%,25 S 22

which is the desired estimate. The inviscid damping of the velocity field follows in a

similar manner from the Biot-Savart law, or by noting that r (u}, ui) = (ik, —roy )Yy,
and we omit these details to avoid redundancy. O

This completes the proof of Theorem 1.1.

3 Dynamics of the k = 1 Mode

In this section we give the proof of Theorem 1.1 for the mode k = 1. For this, we
derive an equivalent formulation of (2.9) as follows. From (1.6a) we obtain that

3, (eiku(r)twk> _ eiku(r)tikﬁ(r)wk.
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An integration over time then yields

'
KO gy (1, 1) = wll (r) + ikB(r) / kT (¢, r)dr.
0
Now, by writing the evolution equation satisfied by 1, we infer that

2i§r)r 11%1+ Re*"’“‘f [D(r, c —ie) — D(r, c +ie)]dc,
E—>

Yi(t,r) =

and therefore

ekt (1, r) = a)};" (r) +

1— ik(u(r)—c)t
A li / s [®r(r,c+ic)
R

- im
2iA/1 e—0+ u(r) —c

—®p(r,c—ie)]de. 3.1

We remark that this is roughly the form used in [66] (though the contour integral is
set up slightly differently).

3.1 An Explicit Representation of the Vorticity Profile

The case k = 1 is special, because the homogeneous Rayleigh problem has an explicit
solution

¢(r,2) = (u(r) — 2)r*’* solves RAY.¢ = 0.

This fact may be verified by a direct computation, in view of (2.1). Additionally, this
special solution has the property that

lim ¢(r,2) =0
r—0

and thus it may be used directly in the construction of the Green’s function for RAY,.
This fact is yet another special property of k = 1. Using the reduction of order
technique (see e.g. [50]), one obtains another independent solution to RAY, = 0

Hoor.2) = $(r. 2) / i
r,z2) =¢(,z —,
- ro9(s,2)?
which vanishes as » — 00. One verifies that the Wronskian of these two solutions is
¢ 0, Hoo — 0;¢p Hoo = —1,
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and thus we may directly combine ¢ and Hy, to obtain the Green’s function for the
k = 1 Rayleigh operator:

_¢(r’ Z)Hoo(pa Z)a r<p,

G , 0, —
0 D=0 (. D H(r2). F > .

(3.2)
The upshot of (3.2) is that the solution of the inhomogeneous Rayleigh problem for
k=1,

" (1)1

RAY,®| =
z¥1 u(r)—z

for z € C, is given by

i (p) /P a
u(p) —z

In order to derive a formula for the vorticity profile

®1(r,2) = /0 Gi(r, 0, 2) (33)

fi,r) =",
we appeal to the representation formula (3.1) which yields

,3(}") l_ei(u(r)fc)t
lim / fmem 7

fl(t,r):w (r)+ \/7»3—>0+ u(r)—c

[®1(r,c+ie)—Di(r,c—ie)]dc.
(3.4

Further, setting z = ¢ - ie in (3.3) and using essentially that fooo a)’i” (r)r2dr =0, we
may pass to the ¢ — 07 limit in the contour integral of (3.4), to obtain

Nt r)y = fin@) + finlr, 1), (3.52)

fin@) = ol (r) + f (/()) ol (p)p*dp (3.5b)

fia(r. ) =rB(r) / e/ U= £ (p) d_ (3.5¢)
r pu'(p)

where as usual we used the notation r. = u~!(c) for ¢ € Ran(u) = (0, u(0)]. The
proof of the convergence as ¢ — 07 of the expression in (3.4) to the expression in
(3.5) is rather tedious, but direct. We thus omit these details. Alternatively, one may
directly verify (by plugging in) that the vorticity

wi1(t,r) =e O r) (3.6)
obeys
w1 +iu(r)wy —iBr)Y =0, Ay = oy, 3.7

which is what we are after in the first place.
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3.2 Vorticity Depletion and Inviscid Damping

A few comments are in order concerning the decomposition (3.5). Although fi.;(r)
is time independent, and thus it does not decay with ¢, it is unusually small near the
center of the vortex, that is

fi1(r) = 0(3) as r— 0,

instead of just an O (r) behavior. To see this, using the notation in (1.9) for k = 1, one
expands

a)l (r)_a) r+0(r) as r— 0, (3.8)

and uses the precise Taylor series for u and 8 near r = 0 (note that 8(0) = —4u” (0)
from (2.1)). Inserting this in (3.5b) shows that the coefficient w’i’fo of r cancels out,
leading to the O (r?) behavior (recall (1.8)). This is the vorticity depletion due to the
non-locality of the linear equation. Moreover, if a)’i" is compactly supported away from
r = 0, the same holds for f.1. On the other hand, for the time dependent contribution
to f1 we have the asymptotics

finat,r)=0 <<:—>> as r — 0,

which vanishes only O (r) as r — 0, but instead decays in time.
We now make this intuition rigorous. Using the notation of (1.9), we rewrite

; _ B(r)
o' (r) = r VPR + rx () o 3.9)
where a)l o =1lim, ¢ r_la)’i” (r) (recall (1.8)), and by definition we have that
3/2+42 f <1
r or r
F ~ ’ - 3.10
1) {rl/za)’l’l(r), forr > 1. ( )

The important observation is that (3.10) is precisely consistent with the definition of
the weight wr s in (1.10c), when k = 1. Inserting (3.9) in (3.5b) and using (2.1), it
follows after a short computation that

B(r)

3/2F d
T ,() 1(p)dp

fia@) =r V2R + =

4ol B(r)

Lo s J 20 @x e (3.11)

We note that the last term on the right side of (3.11) vanishes identically for» < 1/2,
by the definition of the smooth cut-off function yx, and behaves as g(r)r forr > 1. It
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follows from (3.10)—(3.11) and the definition (1.10c) that
IVrfiilz, Slefol +1FL - (3.12)

In a similar way, using that the operator r 9, is scale invariant, we may apply derivatives
to (3.11) and obtain that

[VrCan fialz S il + 1Pz, + 103 Fillz

F,8/2

and

|vrean? fi|

< |@i" 2 ‘
el IR Ly, 13RI+ 302

2 2
LF.

F.8/2

which completes the proof of the first half of (1.13).

We obtain similar estimates for f1., by using (3.5c¢), the already established bounds
for fi.1, and integration by parts. For instance, for the weighted L? estimate on fiz
we have

itfi,2(r) =rp(r )/ ’(“(r) ”(p»t) fra(p) ’(,o)

i) —u(p) _WF.8/2(P) J_(pap)fl 10 4
f Lo-rrp(r)e P2 ()? wrs2(p) @
_ > i(u(r)—u(p)t wF"S/Z(p)(u (p) + 2,0u”(p)) \//_)f];] (p)d
f p>rrB(r)e 05/2(u' (p))3 wr.,s5/2(p)

(3.13)

wr.5/2(r) /r fi;1(r)

r' (r))? wrsp(r)

+/rB(r)

Upon dividing by w 7 5(r) and using that

‘ VrB(r) wr sy (r)
wy s(r) ru'(r)? ~
rB(r)  wrsn(p) <1
P2y s(r) P32 (p))? 1212 ~
rB(r) wrsp(p)W'(p) +2pu”(p)) <1
p>r 572073 ~ b
wyr s(r) P> (u'(p)) 1212

and, in view of the already established bounds on f}.1, we conclude that

el S IVrhall,, + IVreoo fallz | S leliol + 1R
+1C)Fill 2

F.o)2 "
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In order to bound the weighted rd, norm of fi.2, we apply an rd, derivative (which
preserves scale) to (3.13) and then divide by w 7 5. Similar L%L% bounds hold for the
kernel which arises, and the norm of /7 (r9,)? fi .1 enters the calculation (but we have
it already bounded in the suitable norm). We omit these computational details. This
concludes the proof of the second half of (1.13).

The proof of inviscid damping for the stream function now directly follows from
Lemma 2.15 and the bounds established on f1.1 and fi.2. We note that for k = 1 the
stream function has a particularly nice formula

= M —iu(r)t
vit,r) = — iB(r) (e N, "))
—iu(r)t 00 . ' '
- _eiﬂ(r) U frat.r) = —r/r (u(r) — u(rc))e*””(’f)—fclb’ll,ggdrc,

(3.14)

which could also have been used to obtain inviscid damping, by integrating twice by
parts in r., as was done in [68].

4 The Homogeneous Rayleigh Problem for k > 2

We consider here the homogeneous version of Eq. (2.8), namely

.1

1/4—k*  B(r) 3
arr¢>+< e u(r)_z>¢—0,

for k > 2.In this section we construct a specific solution for z € C in aneighborhood of
the spectrum and study various properties. Most of the estimates exploit the following
weight, defined as

R [0 N PN (7 St
I (7S s N A [0 e S
4.2)

using also the notation Lé’y as in (1.10a). In what follows, we will often use the the
following smooth cutoffs:

k(r —re)

Xe(r,c) = x < > x#(r ) =1-=xc. (4.3a)

c

Note that [dg x| < rnax(rc_z, rcz) ‘Xé(@)‘ and x/ is supported away from the
critical layer; analogous observations hold also for 79, x. and r.9;, xc).
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Theorem 4.1 (Homogeneous solutions for k > 2). Assume k > 2, let 9 € (0, 1/2),
and define

D¢y = (0, 00) x ((0, u(0)) + i(—¢0, £0)) C (0, 00) x C. (4.4)
There exists a unique solution ¢ : Dy, — C to (4.1) of the form

¢(r,z) = P(r,2)(u(r) —z) 4.5)

with P : D¢y, — C such that P(r¢,z) = 1 and 0, P(rc,z) = 0 for every z €
(0, u(0)) +i(—eop, €0)). Moreover, ¢ is continuously differentiable with respect to r
and r..

The proof of this theorem is carried out throughout Sect. 4. Let Qg, O~ be defined
via the identities

1/2—k
or,z) = (;) Qo(r,2)(u(r) —z), Vre(0,r], (4.6)

c

and

-\ 12+
¢@r,z) = (r—> Oco(r,)(u(r) —2),  Vr € (re, 00). 4.7

c

Moreover, the functions
Bo(r,z) = (k+1)Qo(r,z) =713, Q0(r,z), 1 =re, (4.8)
and
Boo(r,z) = (k = 1)Qoo(r,2) +r0:Qoo(r,z), 1 =re, (4.9)

will play an important role. When z is real and belongs to the interval (0, ©(0)), more
can be deduced.

Theorem 4.2 (Further properties for the real solution). Assume that z = ¢ € (0, u(0)),
and let ¢ (r, c) be the unique solution to the problem posed in (4.5). Then

Qo(r,c) >0, 9,Q0(r,c) >0, Vre(,r., (4.10)
and
Ox(r,c) >0, 0,0x(r,c) <0, Vre(r.,00). 4.11)
Moreover,

Qo(r,c), Qoo(r,c) = 1, 173, Qo(-, ) llL0,r)> 170 Qoo (5 O llL2 (e 00) S k-
(4.12)
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Finally, there is a constant & depending only on u such that for all r. € (0, 00), there
holds for all \r — rc| < 8orc (uniformly in k and r.),

2k—1 2 _
I —5—lre = r| < Bo(r, ¢) < re =7l Vre.rl (4.13)
rC
and
p2k—1 2 _
k> st e =71 S Bo(r, ) < lr —rel,  Vre€lre, o0). (4.14)
r c

As a consequence, the theorem proves that, when the spectral parameter ¢ €
(0, u(0)), the only point at which P vanishes is the critical layer, while otherwise
P is bounded away from O uniformly, thanks to (4.12). Combining this with suitable
convergence estimates deduced below, we deduce non-vanishing properties of the
complex solution as well. However, due to extra factors of 72+ and r 27> (see e.g.
Lemmas 4.11-4.14), this information will only be available in the domain [, given in
(2.18). Eventually, s« will be chosen to be a multiple of «.

Theorem 4.3 On the domain (r, ¢) € (0, 00) x I, we have

(ra,)-/P”Loo < k., j=01, 4.15)
¢
(u(r) — z)rzarrP” < K, (4.16)
L3ap
|redr. P|| o S K2, (4.17)
[
() (P(rockie) = Proo)|  Sae™  j=01  @18)
¢
|redr (P(r.c £ie) = P(r.o)| o Sae™, (4.19)
[
|ropredr, (P(roc£ie) = Proe) x| oo Sa €™ (4.20)
¢

where x is defined in (4.3), and we have the (uniform in ) Lipschitz bound

|ro,P(r,c tieg)| < k3|r—rcl7 421
w¢,a/2(ra re) Ie

and convergence estimate

<, e%a. (4.22)

~

@) = &)r*d, (P(r,c £ i) = P(ro D, ,

Finally, for every r € (0, 00) and r. € 1y such that

I'e

z’

lr —rel >
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there holds (uniformly in ¢)

[royredy, P(r,cLie)]
w¢,a/2(rs re)

<4 k4, (4.23)

while if

Te
Ea

[r —rel <

we have the pointwise bounds (uniformly in &)

[ogP(r,c xie)| Sakz,
Wea/2(r, Te)
|r8rBGP(r,c:|:i8)|< glr —re

Sa k , (4.24)
wqb,a/Z(rv re) re

min{r?, r%)

min{r2, r%)

and the convergence estimates

|(rd,) dG(P(r,c £ie) — P(r,c))| <

2 }’72} <a gl | j=0,1. (4.25)
w¢,0{/2(r7 re)

cr'c

min{r

Remark 4.4 The estimates on P of the above Theorem 4.3 can also be written in terms
on Qp, Q. Of particular importance are

|07 (Qutric£ie) = Qutri )| | Sa o™, (4.26)
[reth, (Qu(r,c & ie) = Qur, )] oo S £, 427)
[rovren, (Qur, e Fie) = 0ulr, ) st | oo S €, (428)

where 1, = ﬁ and e = 0, co. From (4.26) combined with (4.12), we infer that

1Qe(r. D)l ~o 1, Iroy Qe D)l Sa k. (4.29)

The first estimate is crucially stating that ¢ vanishes only at the critical layer, when
r=re.

The proof of Theorem 4.3 combines Lemmas 4.11-4.14 and Remark 4.15 below
for »x = /2 with the definition of /. Once (4.26) is established, the bounds (4.15)
and (4.29) follow from (4.12) and (4.6)—(4.7), while (4.22) is precisely (4.72). The
rest are stated in an equivalent way in Propositions 4.6 and 4.9.

4.1 Existence and Uniqueness of Solutions

Fix z € C be such that ¢ = Rez € (0, u(0)). We will denote by ¢; = ¢(r, z) the
homogeneous solution for the k = 1 Rayleigh problem devised in (2.10) (see Sect.
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3.1), namely

1\ 32
¢1(r,z) = <r—> (u(r) —2), (4.30)

appropriately normalized at the critical layer. We will look for a solution ¢ to (4.1) of
the form

o(r,z) = ¢1(r,2)P(r, 2), 4.31)

and set up a contraction mapping argument for P, which satisfies

~ — K .~
3, (qsfa,P) + $2P =0, (4.32)
subject to the boundary conditions
Pire,y=1, 8P(re,2)=0. (4.33)

Integrating (4.32) twice and using (4.33), we infer that

k2 -1 re g
B / s(u(s) —z)“P(s, z)ds (4.34)

arﬁ(r,z) = —m g

and

P(r,2) =14 K> — 1)/ ﬁ/ fs(u(s) —2)2P(s, 2)ds dp=: 1 + T[ P].
w(p) —2*J,
(4.35)

The above expression will be useful to set up a proper fixed point scheme to deduce
existence and uniqueness of P. For further reference, we can take a 9, of the above
expression, taking into account that z = u(r.) &£ i¢, obtaining

0, P(r,2) = T8, P14 20k — 1) / ) > / " ss) - 27 BGs, ds dp

p3(u(p) — 0
22— 1)/ wire) /rcs(u(s) — 2)P(s. )dsdp

03 (u(p) — 2)?
—¢ (kz—l)r/ ;d
T Pae =92
=T.[0,, P1+ T\ + 1o + I3. (4.36)
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Notice that the above expression is valid for ¢ > 0. Using integration by parts, we
derive the equivalent formula

o P(r, 2) = To[0,, P+ (K — 1>u/<rc>[ 1 =y / "pu(p) ~ 2 F(p, dp

r3u () (u(r)

re 1 1 re 2~

re 1 re s 5~
+ff m/}; Os <m> (u(s) —2)°P(s,z)dsdp

re 1 e g S
- -/r o3 (u(p) —2)? /p u'(s) (u(s) =2)79s P(s, 2)ds dp]' (4.37)

This is the formulation that we use also at ¢ = 0 as no singular integral appears here
(see Sect. 4.4 below).

4.1.1 An Auxiliary Weight
With the convention adopted in (2.17), we define an auxiliary weight w = w(r, r¢) to
solve the ODE

1 1

A2_1r—2w:0, @(rc,rc)zl, 8rw(rc’rc):()’

(4.38)

~ 3.
— 0y W — —0,W +
r

where A > k is a parameter that we leave unspecified at the moment (one should think
of A as close to k). In fact, we can solve the above ODE explicitly, to find

N A+1/r\*0 A—1r\A!
) = r A-l(r , 439
wir.re) = =4 <rc> t o (rc) (4.39)

Notice that, given a fixed r. > 0, w attains its minimum at r = r, and
w(r,re) > 1, Vr > 0. (4.40)

The following properties of w will prove useful later.

Lemma4.5 Letc € (0,u(0)), A > k and w be given by (4.39). Then

r’ 1 re 1 ~ ~
/ — / sw(s, re)dsdp = — (Wr,re) —w@',re)), Yr,r' > 0.
r P P As—1

(4.41)
Furthermore, for any b # £A and for A = k + s with > € (0, 1), we have
re r1+b
b~
/ sTW(s, re)ds| <p - wr,re), Vr>0. (4.42)
-
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Moreover
re ’,.2
/ sw(s, re)ds| < —|r —relw(r,re),  Vr >0, (4.43)
r I'e
and
re
/ sbﬁ(s, re)ds| <p max{r, rc}blr —relw(r, re), Vr > 0. (4.44)

Proof of Lemma 4.5 Equation (4.41) is obtained by explicitly computing the integrals
from formula (4.39). Turning to (4.42)—(4.43), we first observe that

- —b—1 A-1
/ sbw(s9 rc)ds = A——HrbH |:<L> — (L) :|
; 2A(A +b) e re
_ Lrbﬂ r o _(Z - (4.45)
2A(A —b) 7o 7o ' '

By considering the different cases r < r. and r > r. and the different ranges of
b # £A with respect to A, (4.42) follows immediately from the definition (4.39).
Also, (4.44) is obvious from (4.40). Regarding (4.43), we use the fact that if r < r,
then applying the mean value theorem to the function (0, 1] 3 x + x4 and using
(4.39), we have

Te r2 r —A—-1 r 2A ”2 r —A—1 r
/ sW(s, re)ds|=—— (—) <—) —1]| < — (_> 24 | — — 1)
- 2A \r¢ Te 2A \r. re
24 r? -
< ﬁzlr —relw(r, re). (4.46)

A similar computation, applied to the function [1, c0) 3 x +— x24A_ also show that if
r > re, then

[ sasna < 2 2 = relr, (@.47)
j sw(s, re S_A+1rcr relw(r, re). .
The two estimates can be grouped together as in (4.42), concluding the proof. O

4.1.2 Existence and Uniqueness of P

We begin with proving existence, uniqueness and some regularity for (4.35). Itis clear
that existence and uniqueness of P is equivalent to existence and uniqueness of P in
Theorem 4.1. Morever, all the properties on P translate into properties of P, since

32
P(r.z) = (;) P o). (4.48)

c
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Proposition 4.6 Let &g € (0, 1/2) and D, as in Theorem 4.1, and suppose w is given
by (4.39) with A = k + . Then (4.35) has a unique solution P € L%O(DEO) such that

109, Pl =113 9,) Pllose S k'™, j=0,1, (449
and
() = 2)r?0p, Pllpse o k. (4.50)
Moreover

ro.P(r, 2)| <K lr —re , @.51)

w(r,re) re
foranyr,r. > 0.
Thus, thanks to (4.48), Proposition 4.6 immediately proves the bound

Ir8,) Pllzgs, Sse k', j=0,1. (4.52)

Proposition 4.6 is based on the contraction properties of the operator 7, in (4.35). This
approach can be viewed as a refinement of an analogous argument in [66] to the more
complicated vortex case.

Lemma 4.7 If Z € L°°(Dy,), there holds

21
VAES 4.53
vl KA TAS (4.53)

I TG 2] <

where W is given by (4.39).

Proof of Lemma 4.7 By linearity, we can assume that || Z| g = 1. In view of (4.35),
(4.30), and the monotonicity of u (hence |u(s) — z| < |u(p) — z| in the integral), we

have the immediate bound
k2 -1 re 1 re
f —3/ sw(s, re)ds dp‘ )
r p P

w(r’ rc)

‘@‘sz[wZ]‘ <

From (4.41), we readily obtain

=10, r)—1
A2 —1 W(r,re)

‘WITZWZ]‘ < (4.54)

which implies (4.53). O

We can now proceed with the proof of the main result of this section.
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Proof of Proposition 4.6 The existence and uniqueness of P follows from the contrac-
tion mapping principle. Indeed, from (4.53) and the fact that @ is bounded below (see
(4.40)), the operator 1 + T[] : LY — L% isa contraction whenever A > k2.
Moreover, from (4.35) and (4.53), the unique solution P satisfies

1 15 k2
+ o mwee P]’ <1+

-1 ~
T P, o)) < — 1Pl (455

1
~( ) C)
and (4.49) with j = 0 follows. We now turn to the second part of (4.49). In light of
(4.34), we have that

2

5 - 1 e
W~ 1ra, P(r, 2)| < ﬁ||P||Loo / sW(s, re)ds| . (4.56)
) L r
Thus, taking advantage of (4.42), we deduce that
~ 21 ~
[@'rd, P(r,2)| < 1Pl L2, (4.57)

and the claim follows by combining the above estimate with (4.49) with j = 0. We
now prove (4.50). Firstly, notice that we can read 9, P directly from (4.32), obtaining

~ 3~ 2u’
P =20 F - 05 F o

r u(r) —

(r z)

(4.58)

Hence,
1Ge(r) = 2)r20, P(r D)1z S @) = 279 Pllzse + (K> = DI Pl|ss,

and (4.50) follows from (4.49). Finally, (4.51) is a consequence of (4.43) and (4.56).
The proof is concluded. O

4.2 Convergence of (r9,)/ P

As a first step towards the proof of the convergence estimates in Theorem 4.3, we
deduce a convergence estimate on P. These estimates are relevant near the critical
layer, whereas near r = 0, oo improve the estimates further below.

Proposition 4.8 Under the assumptions in Theorem 4.1, and with w given by (4.39)
with A > k > 2, there holds

I min{r2, r-2}(r8,)7 (P(r, c £ie) — P(r,¢)) I <ek . j=0,1, (459

c? L
and
Imin{rZ, -2} w(r) = Or?0, (P(r,c ki) — P(r, o) S ek, (4.60)

for every ¢ € (0, ).
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Proof of Proposition 4.8 We begin by showing the case j = 0. By setting 7 = ¢ +ie,
we use (4.35) to deduce that

2(u(p) —c) Fie
p3 (u(p) = 2)*(u(p) — c)?

P(r,c)— P(r,z7) = Fie(k* — 1)/

/’c s(u(s) — c) P(s, c)dsdp 4.61)
0
+is(k? — 1)/“ o

r PP u(p) —2)?
/ ( s[2(u(s) —c) Fie] }g(s, c)dsdp (4.62)
0
+TIP(r,c) = P(r, )], (4.63)

We now use Lemma 4.5 and (4.49) several times. Let us consider the case whenr < r,
only, since the other case is analogous. Define by = 1 — 1/k > 0. Then,

~ re l 1 e -
[(4.61) + (4.62)] gsk2||P||Lgo/ —3—/ sw(s, re)ds dp
T Jopre 07 (o) —z| J,

~ bire 1 1 re
pel1Ply [ e [CsBrases
. P -z,

~ 1 e 1
S ek || Pl ———— / —W(p, re)dp
| (c)|rc byre P
bkrc
+ ek|| P —/ —W(p,re)dp
L5 Yu(bere) — u(ro)| ¢

< o2 Do (4.64)
min{r2, re 7}

Hence, using (4.53) to control (4.63), we arrive at (4.59) \zvvith Jj = 0. We now deal
with the similar convergence estimate for the derivative of P, namely the case j = 1.
Use (4.34) to get

ro(P(r,c) — P(r, ) 2(r) —c¢) Fie Te -~
: (kz)—1 a2 lgrz(u(l(’)(—)z)z(b)t(:}l’:)—c)z/, s(u(s) = ¢)*P(s. )ds
(4.65)
:Figm/r s[2@u(s) — ¢) Fie] P(s, c)ds
(4.66)
1 re b -
—m/r s(u(s) —2)” [P(s,¢) — P(s, 2)] ds.

(4.67)
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In the same way as above, we find

w(r,re)

|(4.65) + (4.66)| < £ P[5 < sk

1 Te |
—_— sw(s, re)ds
7 r2fu(r) —z| [ . e)

while appealing to (4.59) with j = 0 we also infer that

min{r2, ra2y

[(4.67)| < | mm{r
1

r2 min{r2, ro 2y

T(P(rctie) — P(F,C))”L%O
/rc sw(s, re)ds

and (4.59) follows. Concerning (4.60), note that we can read 0, P directly from (4.32),
obtaining

L’L

w(r,re)

< ek , (4.68)

min{r2, ro 2y

&Aﬁvd)—ﬁﬁn®)=—gﬂiﬁﬁﬂ)—ﬁﬁwm
2u’ (r)

(u(r) —2)(u(r) —o)
2u’(r)

ul) -
+(k2_1)P(r,Z)—2P(r,c).
r

& P(r,2)

Za«ﬁvx>—ﬁvmm

and hence using the boundedness of u we obtain

I min{rZ, -2} () — )r?op (P(r, c £ie) — P("»C))”LI%C
< Iminfr?, r 29, (P(r, 2) — P(”’C))”L%C

U ( )
u(r) — L
+ k2|| mln{rc, - }(P(r z7) — P(r, C))||L§ (4.69)

+e& mm{rc, 62} arf;(r,z)

Given (4.59), we only need to treat the second term above. Using (4.51), if [r —r.| <
rc/2, we obtain

[’ (r)|r [r —rel

i <13 |u"(r)|r <3
|u(r)—z|| rd, P(r,2)| <k W —7 Sk, (4.70)

while if |r — r¢| > r¢/2, since |u(r) — u(re)| 2 min{rcz, rc’z}, we have

u' (r)|r lu' ()7 k2

78 Pl S

w0, P(r, )| < _—.
s Te } mln{rcz»rc }

lu(r) — z| min{r2

Thus, we can plug in the above estimates in (4.69) and use (4.59) to conclude the
proof. O
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As a consequence of (4.48), we deduce

Imin{rg, r}(rd)) (P(roc £ie) = P(roo)llrg, S ek, j=0,1,
4.71)
and
| min{r2, r=2}(u(r) — c)r?d, (P(r, c £ie) — P(r,c))||L;o%§£k4. (4.72)

Note that the last estimate is exactly (4.22). We now deal with 9 and 0, derivatives.

4.3 Analysis of 9 P

In this section, we analyze more carefully the behavior of P near the critical layer, by
making using of the differential operator dg defined in (2.27).

Proposition 4.9 Let w be given by (4.39) with A = k + 3, and let us fix r. € (0, 00).
For every r € (0, 00) such that

r
|r - rc| = fa
we have the pointwise bounds
P r,z
mingr2, r 2y 220D o (4.73a)

L T
2 B3P Dl by =l @730)

min{r ~
{67 ¢ } w(r, re) ~ re

and the convergence estimates

5 |(rd,) 96 (P(r, c £ ie) — P(r, c))|

- L kKTe,  j=0,1.
w(r, re)

4.74)

(mm{rc 1. })

Proof of Proposition 4.9 A direct computation from (4.34) yields

5 u” (r) 3k2 - 1) re -
0r0G P(r,z) = e ))28  P(r,2) + Y —2)2/ s(u(s) — z)*P(s, z)ds
K21 re -
T R o) CORE
k> —1 .
- m/r s(u(s) — 2)*3g P (s, 2)ds. (4.75)
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Thus, integrating on (r, r.) and noting from (4.33) and (4.37) that dg P (re,z) = 0,
we find

dP(r.z) = [ 2 /(('(;;2 3, P(p,z)dp

fe 3 k2 — 1 re -
_/ p“u/(p(xu(p))— 2 / s(@(s) = 2)* (s, 2)ds dp
r o

o k21 re
Sup o2/, —2)?P(s, 2)ds d
+/r p3(u(p)—z)2/p ( (s )>(“(s) 2)7P(s,2)ds dp

+ T.[9¢ P]. (4.76)

Assuming |r — r¢| < r./k, we now bound each term on the right-hand side above,
tacitly using Lemma 4.5 and the fact that |u'(r)| ~ min{r, r—3}. For the first term, we
exploit (4.49) to get

u”(p)
W (p)?"

u"(p)
u'(p)2p
w(r, rc)

< 2T 4.77)

min{r2, re 2}

3 P(p, Z)dp‘ < Ird, Pl

—————(p, rc)dp‘

where the factor of k is due to integration of w. Similarly

re 2 re - ~ )
| o | S(M(S)—Z)ZP(S,z)dsdp‘Sk,w(r—’m,
r -z P

W (p) (u(p) min{r2, re )

and

k-1 e W(r, re)
= [ — )2P(s, 2)ds dp| < k—oTe)
/r p3(u<p>—z>2/,o < e >>(”(S) PG5, s dp ‘ min{r2, r; 2}

For the last term, we use (4.41) to deduce that

. e k-1 ~
|7;[0G P]| = /r m/ s(u(s) —z)zagP(s,z)dsd,o’
-1 oG P(r, 2)|
< yERT w(r, rc)su —w(r,rc) . (4.78)

The fact that the right-hand side above is finite for all & > 0 follows from general ODE
theory, since dg P satisfies essentially a perturbation of Laplace’s equation. Collecting
the above estimate, we obtain

GP(r,z) k-1 106 P(r, 2)| -
— — sup — k,
w(r»rc) Az -1 r w(r’rc) ~

mln{rc, . }|:
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and we easily arrive at (4.73a). We now turn to (4.74) with j = 0. From (4.76), we
infer that

9 P(r,c) — 86 P(r,2) = T[9G P(r, )] — T[dG P(r, )] + V1 + (K> — 1) [V2 + V3],

where
vi= [ 1B o) — Fp, )] do,
. W (p)?
o [T 2w -0 Fie o o
» _13’8/, P (o) (u(p) — 22 (w(p) —c)Z/p ) =P advdp
) re 1 re ) ~
:F318/; p4u’(p)(u(p)—z)2/p s[2(u(s) —c¢) Fie] P(s,c)dsdp

re 1 re b ~
_3/r p4u,(p)(u(p)_z)2/p s(u(s) —2)°[P(s,c) — P(s,z)]ds dp,

L 2w —oFis (" o
v3_iwfr 03(u(p)—6)2u(p)—z)2/ 8S< (s ))(u(s) PG, dsdp

. 1 Te
#ie [ g |, () e -0 w10 Py

re 1 re 5
+/r W/p 8s< (s ))(”(5)_C) [P(S c) — P(s,Z)]dsd,o.

4.79)
Arguing as in (4.77) and appealing to (4.59), we find that
-2 < w(" re)
min{r?, r. 2} V1| < —|| min{r?, r;2}rd.(P(r,z) — P(r, C))”LEW
< ek w(r,re) '
min{rg,rc_z}
Turning to V5, we find
-
min{r2, 721 Val S emingr2, =2} Pl / !
el o fe r P (p)]|u(p) — 2|
re
xf sw(s, re.)dsdp
P
in(r2, 7P lo, ) — Bpn Dl [ ——
+||m1n{r , T p,C) — P, 2 LQO/ VTR
e v e o (o)

Te
X / sw(s,r.)dsdp
p

1Pl 2

w

<
~ 2

€
- w(r, re)
k min{rZ, ‘
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1 [l min{r2, r-2}(P(p, ¢) — P(,O,Z))”L,%?
K2 min{r2, re %}

w(”src)

IT)(}’,}”C)

< (4.80)

min{r2, ro2y

The V53 contribution is estimated as in V), with the same bound. Lastly,

T.[06 P(r. o)) = T P(r. )] _ / 2u(p) — ) Fie
K21 r PP(p) — )2 (ulp) — 2)?

X /rc s(u(s) — c)28(;13(s, c)dsdp
P

Fe 1
+i _
’8/, P(u(p) — 202
/ [2(u(s) —c) Fie] 8(;P(s c)dsdp
P
72

[0 P(r.2) — 06 P(r. 0)]
k*—1

4.81)

The first two terms are analogous to Vs, estimated in (4.80), while we deal with the
last term as in (4.78). Hence, appealing to (4.73a) we find

TPl o) = TPl 1 o 106P (. 0) = 36PGs. 2)
ey Az VTSP W(s. re)
< 8k2 w(r’rc)

. 2
min {rcz, re }

Collecting all of the above

0o Pr.0) =06 P00l K =1 10GP(s,0) —d6PGs, 2)
B(r.ro) a1 B(s.ro)

(mm{rc, . }) |:

2
<, ek,

from which (4.74) with j = 0 easily follows. We now go back (4.75), and use (4.44),
(4.49), (4.51) and (4.73a) to deduce (4.73b) by the methods above. From (4.75),

rd, 0GP (r,c) — rd, dgP(r,z) = Wi + (k% — 1) [Ws + W3 + Wyl (4.82)

where
u//(r) ~ -
| = —(u,(r))zra, [P(r.c)— P(r.2)]
L 20u(r) — o) Fie re ST
W, = :F318r3u’(r)(u(r) ST /r s(u(s) —c)“P(s, c)ds
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, 1 re .
+ 318r3u’(r)(u(r) 2 /r s[2(u(s) —c) Fie]l P(s, c)ds

3 - _
* e ot ], S =97 [P0~ o)

L 2(u(r) —c) Fie Te
M= ) — o) —z)2/ 8S< G )) (10) =P s

;iem/rrc as< T ))[2(u(s)—c):|:ls]P(s ¢)ds
—mf as( o ))(u<s>—z> [P(s.c) — P(s. )] ds
- iam / S [20u(s) — ¢) Fie] 3 P(s. ¢)ds

1 Te - ~
- m/ s(u(s) = 2)°96 [P (s, ) — P(5.2)] ds

Arguing as above, we see that 1V is analogous to Vi, without a gain in k due to the
absence of the integral, so that

@(r, rC)

min{r2, r=2}W| < ek®

erTe min{r2, re 2}

Similarly, Wh, W3 and Wi resemble V,, provided we take into account the bounds
(4.49), (4.59), (4.73), and (4.74) with j = 0, so that

. —_ w(r, re
min{r2, r=2 W + W + Wil e el — S
min{rZ, r; °}

The proof of Proposition 4.9 is now complete. O

4.4 Analysis of 6, P

We proceed with the analysis of 9. P, relying on (4.36) and (4.37). The main result
of this section reads as follows.

Proposition 4.10 (The 9,, derivative). Let W be given by (4.39) with A = k + . Then,
lredr, Pl S k2, (4.83)
and

| min{r2, r=2Yred,, (P(r, c £ ig) — P(r, N s ke (4.84)
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Moreover, for every r. > 0 and every r > 0 such that

Ie
|r —re| > ;7
there holds
|r8,r28r5P(r, 2)| <. K (4.85)
w(r, re)
and

Ird,redr, P(r.c +ie) — P(r, c))|

w(r,re)

min{r2, r%) <, ke. (4.86)

Proof of Proposition 4.10 The proof heavily relies on Lemma 4.5 and Propositions 4.6,
4.8 and 4.9, but the arguments are very similar to those used earlier. Moreover, we
shall only deal with the case

re
Ea

even for (4.83) and (4.84), since in the other case

(4.87)

|r —re| >

u'(re)re

PO 2 =2
War ~ min{r;,r. "} + ror,

rcarc = M/(rc)rcaG -
and hence the result follows from the respective bounds and convergence estimates
on dg and rd,. For the sake of brevity, we consider only the case r < r., which from
(4.87) implies that r < byr. with by = 1 —1/k > 0. To prove (4.83), we need to show
that

|redy, P(r, 2)|

w(r, re)

v,
< K3, VYr,re >0, |r—re| > ;‘

We use (4.36), multiply by . and bound each term. As in (4.78),

e 10, P(s.2)|
Tir.9. Pl < R —_—.
|Tolredr Pl < —5— (. 7e) P TE S r)

The fact that the right-hand side above is finite for all & > 0 follows from general ODE
theory, since 9, P satisfies an equation that is essentially a perturbation of Laplace’s
equation. Moreover,

AT / " 1
relZi + Zo| S KN Pllpgelu (re)lre Ty
bere P lU(p) — 2|

1
P lu(p) - z|

Te
/ sw(s,re)dsdp
o
20D / bire e
+RIP L ol [ [ sitts.raasap
r o

e ~
<K f WD 45 < K235, o), (4.88)
. P
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and
20 [ 1 2 e 2~
re|Z3l Sk rc/ _p3d'0 <k r—°2 S kw(r, re).
r

Hence, (4.83) is a consequence of the above estimates. Combining (4.59) and (4.74),
we obtain (4.84) when we restrict to the domain |r — r.| < r./k. On the same region,
to prove (4.84) we aim to show:

O (P(r,cxie)— P(r,
min{r2 r_2}|f’c (P, c £ ie) r, )l <, ke (4.89)

e w(r’rc)

Again, just consider the case when O < r < bir.. A combination of (4.36) and (4.37)
allows us to write

1

bre
~ B ~ 2 / -
O P(r,2) =TI[0,, P+ (k" — Du (r")[zfr p3(u(p) — 2)*

x /” s(u(s) — )2 P (s, 2)ds dp
P

bire 1 e ~
_2/, m/p s(u(s) —2)P(s, 2)ds dp

T bire 1
—g? / dp
wre) Jr o p3u(p) — 2)?

1 re 5~
" (bre)3u’ (brre) (u(byre) — 2)? /bm p(p) —2)"P(p,z)dp

fe 1 1 re _
’ —2)?P(s,2)dsd
+/bm ’ (p3u’(p)> u(p) —z)Z/p s(u(s) = 2)"P(s, 2)ds dp
re 1 e s B
YA Y o [ —— — 2P (s. 2)ds d
+/};ki’c /03(”(,0)—1)2[/) . <u/(s)> (u(s) —2)"P(s,z)dsdp

e 1 e s ) B
- ds P(s,z)dsdp|.
- w/bkrc ,03(14(,0) — Z)Z ﬁ u'(s) (u(s) —2) (s, 2)ds ,0]

From this, we write

7
O P(r.c) — 8, P(r.2) = T3, P(r, )] = T10, P(r, )]+ (K> — Du'(re) Y _ U,

i=1

where

byre _ 2 . _ 2
L{1=¢2ie/ 3(u(p) —o)” F3ie(u(p) —c) —¢

P3(u(p) — P (ulp) — 2)° /p () = P by

byre Te ~
j:2ie/r ' Wl)—zﬁfp s[2(u(s) —c) FielP(s,c)dsdp
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byre 1 re ~ ~
v2 m/ $(u() =27 [Ps.0) = P(s, )] ds dp,

e 2(u(p) — o) Fie re B
Uy = :i:Zw/r P (p) — () —2)° /p s(u(s) —c)P(s,c)dsdp

byre 1 e
:|:2i8/ 7/ sP(s,c)dsdp
r o pPup) =%,

byre re _ B
_2/, k m/ s(u(s) — o) [P(S,C)—P(Z,c)]dsdp,

byre 1
u =
T (n) / (o) =22 P

. 2(u(bkrc)—c):|:18 Te 2E
Uy = Fie (bkr()zul(bkh)(u(bkh) _ Z)Z(M(bkra) _ C)2 /bm (M(P) c) P(,07 c)d,O
. 1 re o~
e (bkrc)3u/(bkrc)(u(bkl’c) - Z)z /l:krc r [2(u(p) B C) * 15] P(P, C)dp
1 Te -
" W Grro ulbere) — 22 fb pu(p) =2 [Plo.0) = Plp. 2] dp

e ! 20 i [ 25
= ) —o)°P dsd
“ M/bm ”<p3u'(p)) (o) — (o) — o2 J, MO TP AR

] re 1 1 re ] -
+ie /bm 0 (p3u/(p)> @) —2)? /p s[2(u(s) —c) Fie] P(s,c)dsdp

re 1 1 Te iy ~
+/bm dp <p3u/(p)> (u(,o)—z)2/p s(u(s) — 2)* [P (s, ¢) — P(s, 2)] ds dp,

. re 2u(p) —c) Fie Fe Px~
— —c)° P
Us = q:zs/bm e, Z)Z(M(ZF) = / 3y ( e )) (u(s) —c)*P(s,c)dsdp

. Fe 1 re
:tls./bkr, m//; 83< o ))[Z(M(S)—C):FIS]P(Y c)dsdp

Te 1 e ~
B 2B o) - Bls. o] dsdp,
+/bm 103(u(;0)—z)2/,; ( (s )>(”(S) 2)?[P(s,¢) = P(s,2)]dsdp

Y 2(u(p) —c) Fie re g 2a
= s) —c)ds P(s, S
u m/bm p3(u(p) — 2)2(u(p) —c>2/p wie) ) — OV aPls, dsdp

. re 1 Te s . ~
+tie /bm P (p) —2)? /p 76 [2(u(s) —c) Fie]ds P(s, c)dsdp
+/rc : frl' > (u(s) — 2)* [0, P (s, ¢) — 3, P(s, 2)] ds dp.
bere P3W(p) —2)% ), u'(s)

Bounding these terms essentially relies repeatedly on Lemma 4.5, Propositions 4.6
and 4.8. Note that

Teld, P(r, ©)] — T[98, P(r, 2)]
k2 —1
_ m/” 2(u(p) — ) Fie
. p3u(p) — )2 (ulp) —

5 /rc s(u(s) — c)zarcﬁ(s, c)dsdp
2% J,
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+ie / m /p § [20u(s) — ) T ie] 8, Bs, c)ds dp

N T8, P(r,c) — 8, P(r,z)]
K2 —1 '

(4.90)

For the first two terms in (4.90) we obtain the bound

lredr, PllLss [re 1 e
£ 3 sw(s, re)dsdp
re byre P lu(p) — z| o

Ireds, Pllpes [brre 1 e
+ € - 3 sw(s, rc)dsdp
I'e r 14 |”(P)—Z| 0

K3 e — 7l -~ k2 1 bere (o, r
£ Mw(p,rc)dp+e——f (0 re)

re Jogre plu(p) — z| re lu(bgre) —u(re)| Jy 14
k3 " W(p, re)dp k? 1 /b”c o, ro) |
—_— P

—u(re)l Jr P

dp

Se——— do +e—
r02|u/(rc)| bire 1Y re lu(bgre)

k_zw(rvrc) < 2

re W' (r)lre ~ 0 remin{r2, 1%y

< w(rﬂrc)

~

while for the last term we use (4.54) to obtain

T.[8,, P(r,c) — 8, P(r, )]
k2 —1

<sup|d,, P(r.z) — 0, P(r, c))|
r

e 1 Fe
x/ 7/ sw(s,re)dsdp
r P Jp

1 W, re)  |redn, P(r,z) — redr, P(r, 0))]
A1 . r w(r, re) ’

Concerning the U;’s, for the first three we have

1

- byre
|U1+U2|§€||P||L°~°/ STV}
v ) pPulp) —z?

re
/ sw(s,reo)dsdp
o

+ I min{r2, r-2}(P(s, ¢) — P(s, 2)|l

c’c w

min{r2, ro2)

bire 1 re
X —_— sw(s,r.)dsdp
/r p3u(p) —z| /p ‘

1 /f’“f W(p, re)
<e¢
lu(brre) — u(re)|? J, P
1 1 bere T(p, re
+ ek — — / 0p.re)
min{r2, o *} lubkre) —u(re)l Jr P

dp
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w(rvrc)

Sek————.,
(min{r2, re })?

and

e byre 1 e byre 1
i Seris [ —tp S e e [T
')l Jr p lulp) — 2z lu'(r)llu(bgre) —u(r)l Jr p

< ek E(r,rc)2 .
(minf{r2, re °})?

Concerning the others, we only show how to deal with Uy and Us, as Ug and U7 are
treated similarly. We have

1

pw(p, re)dp
' (re) 3 lubkre) — u@re)l Ji,r,

sl S el Pllirge

~ ~ 1 Te
+ | min{rZ, r. 2} (P (s, €) — P(s, )l 3 , / P (p, re)dp
o T (re)|r3 min{r2, 7o 2} oy, ‘

w(", re)

Seh——— 55—,
(min{r2, re “})?

and, considering that |9, (,03u/(,0))_1 | ~ 1/ min{p>, p}, we also deduce that

~ Te 1 1 re -
Usl S el Pl | —— f $T(s. ro)ds dp
" S min{p2, p} [u(p) —z| J,

~ ~ 1 Te 1
+ [l min{r2, r=2}(P(r, ¢) — P(r, 2))|l poo — :
cre " min{r2, rc_z} bire min{p3, p}

Te
X / sw(s,re.)dsdp
P

1 Te 1 - w(r,re)
S ek———— — i, ro)dp S eh——
min{rg, re “} Jogr, min{p’, p~'} (min{rz, r¢ °})

Collecting all of the above, (4.89) follows. Going back to (4.34), we also infer that

rarrcarcﬁ(rv 2) _ u'(re)re fe N2 2 C2
21 P —z)3/r S = DTPE Db e — 2
u'(re)re

/ C s(u(s) — z)ﬁ(s, z)ds

r2(u(r) = 2)%

1 re .
B m/r s(u(s) = 2)*redy, P (s, 2)ds
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Hence, we argue as above to obtain (for |r — r¢| > r./k),
. 2 -2 T 2

min{r?, r < r
5 tre. e’} sw(s, re.)ds + —Cz
r*lu(bgre) —u(re)| Jy r

~ 1 Te
+ llredr, Pl / si(s, ro)ds
w oy ,

SKIP e (rre) + W(r. re)

rred oy, P(r,z)

< 1Py
21 S IPI s

1 ~ .
+ o lredr Pllogp(r, re) S k-0(r, re),

and (4.85) follows. Lastly, the proof of (4.86) is simpler than the proof of (4.89), and
is hence omitted. m|

4.5 Convergence in Optimal Weights

With the convergence estimates of the previous sections at hand, we now aim to show
the validity of the convergence estimate in Theorem 4.3. The proof utilizes the Green’s
function of the operator

which is explicitly given by
1 . pr k
L(r,p)= Y min <; ;) NN r,p >0, 4.91)

as we treat the Rayleigh problem as a perturbation of the Laplacian. We split the proof
in different cases.

45.1 TheCaser, <1

All the estimates are pointwise in r., and hence the norms and spaces here are involving
only the variable . We begin by optimizing the weight near the origin.

Lemma4.11 Let j = 0, 1. There exists a universal constant { € (0, 1/4) such that,
forallr. <1 and » € (0, 1), there hold

|20 P, e e S ST @9
L>°(0,¢r¢) rc

and

& s fe—
e 5K 4.93)
L®(0.5rc) rZ

rk—l/Z(I,ar)j (P(r,c=xie)— P(r, C))H
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Proof of Lemma 4.11 The proofs of (4.92) and (4.93) are very similar, so we focus on
the more challenging (4.93). Note that the norm appearing on the left-hand side of
(4.93) (and (4.92)) is a priori finite since RAY is a regular perturbation of Laplace’s
equation near r ~ 0.

Let us first consider the case j = 0. If r € (0, ¢r¢), then (4.52) and (4.71) imply
that

P20, PG, e i) S K ATRIE o), (4.94)
r
. - 1
rk_1/2|(r3r)j(P(r,C:bi£) _ P(r,c))| 5% 8k2+‘/r§ ]/22_—’ J = 0, 1
re”
(4.95)

Let x = x(r/a) be a smooth cut-off function at some scale @ > 0 to be determined.
Define

ge(rire) = x(r/a)[p(r,c xie) —¢(r,o)]

and compute

_ 12
<8rr + u) 8e = Lga

r _u(r) —CcFie
B +ieB(r)
(@) —cFie)(u(r) —oc)

— gar)(ar(d’(r’ ctie)—¢(r,c))

x(r/a)p(r, c)

1
— =0 x(p(r,c £ie) —¢(r,0)).
a

Using (4.91), we then have

ge(r,re) = —/ L(r, p)L).gg(p,rc)dp
0 wp) —cFie
= Lich(p)
— L(r, ,od
| 200 e o) (0. o

00 2
- /O L(r, p) (;(apX)(ap((b(p’ cxie)—¢(p,c)))

1
700 x)(@(p, c L i) — d(p, C))) dp

=> (4.96)
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Since B(p) < 1 and |u/'(ro)| =~ re asr. — 0, we have for ¢ € (0, 1/4) that
lu(p) —cFiel 212, ¥p € (0,¢r).

Hence, by choosing a = %rc, with ¢ <« 1, we obtain

_ I B(p) _
k=1/2) 5 < _/ _ P k-1/2 d
r [1(r)] < 2% Jy P u(p)_c:Fiep ge(p,re)|dp
r2k 2a % ,3(,0)
—2k+1 k—1/2 d
+2k j —u(p)_cqcisp ge(p,re)|dp
1 k—1/2
< - , . 4.97
=5 | st o (4.97)

Turning to J>, we use (4.94) to obtain

- e [" B(p) _
2 ) < ﬂf Y mpk 12P(p, c)dp|dp
0 _
2k 2a
-
vl [T | O e2p g capap
2k J, u(p) —c Fie
2a
€ _
< —2/ p)pk 1/ZP(p,c)dp‘d,o
krc 0
e ki [P -1/
S oot p' "7 dp Soep ere 7 (4.98)
e 0

For J3, from (4.94)—(4.95) we obtain the pointwise bound for p € (0, ¢r¢)

1pd, (@ (p.ctie) —p(p, )| S r2|P(p,c £ie) — P(p, o)l
+r21pd,(P(p, c £ig) — P(p, )|
+elpd, P(p,cLie)l

St ek’

k=172 e
Hence, arguing as above,
- 1 2a ' -
2 o) < a/ 1p0,(p(p. ¢ £ic) —p(p, )|p2dp
0
8k2 k=1/2 5 2a . 2 k-1/2
Soex —re TS| pmTde o ekre (4.99)
0

Finally, by (4.94) and (4.95) we obtain the pointwise bounds

) _ k=121
1p(p, c i) —(p, )"V < ekPri P

r%
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and therefore

1 2a
P2 )| < ﬁfo lp(p(p,cEie) —d(p,c))lpdp

gk _ 2a _
S ;rf “%”/ p' "#dp o ehrt M2 (4.100)
0

~ c

Hence, collecting (4.96)—(4.100), we arrive at

Soep k22
L%0,£7)

Hrk—l/de(r’ re)

Note that g. and ¢ (v, c £ ie) — ¢ (r, ¢) coincide in this region, and (4.93) is recovered
from the definition of P, together with the inequality |u(r) — c| 2 rg and a further
application of (4.94). Finally, the case j = 1 follows immediately. Indeed, taking and
rd, derivative of (4.96), we simply notice that

—(k—=1/2), p=r,

(4.101)
k+1/2, p>r.

rarﬁ(r,p)zck[,(l”,p), Ck: {

Therefore, the result follows in the exact same way, by using the estimates on g,
derived above. O

The interval (¢{r¢, R), for R > 1, independent of r. < 1, is treated already by
(4.71), which implies that for » € (¢r¢, r.) there holds,

‘ ury
P20, (P(r e ie) — P(r, )| Soee ek2H e 2, (4.102)
rC

while if r € (r., R) there holds

—k—12 1

r 1210 (P(r, e tig) — P(r, o) Soer ek*Hre 5 (4103
re

Finally, we need to correct the weight at infinity.

Lemma4.12 Let j = 0, 1. There exists a universal constant R > 2 such that, for all
re < 1 and any » € (0, 1), there hold

. & P
r_k_1/2(r3,)fP(r,c:|:i8)H SR 2+%k1+1rck 172
L(R,00) r2
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and

. & P—k—
|71 200, (PG i) = P, )| Soek kI TN,
L%(R,00) ret

Proof of Lemma 4.12 Again, we only treat the case j = 0. From (4.52) and (4.71), if
r € (R, 00) we have that

FV210,) P(roc )] So kTP =001, (4.104)
c
P29, (P(r, e £ is) — P(r, o) Sae sk””?k*]/zr;ﬁ?’ j=0.1
c
(4.105)

Let x = x(r/R) be a smooth cut-off function, with R > 0 to be determined, and
define

ge(r,re) = x(r/R)[¢(r,ctie) —¢(r,o)].
As in the proof of Lemma 4.11,

ge(r,re) = —/ L(r, p)L).gg(p,rc)dp
0 u(p) —cFie
+ief(p)

_ £ ,

/0 ") o) =T i) =0
o0 2

- /0 L(r. p) (Eapx(p/mapw(p, cxie) — p(p. o))

x(p/R)¢(p,c)dp

1
_ﬁapr(p/R)(‘p(p’ cxie)—¢(p, c))) dp

4
= Z Ji. (4.106)
=1

For the first term, we use Lemma 2.1 that |8(p)| < ()~ and that [u(p) —c Fig| > 1
(thanks to our choice of R > 2 and r. < 1) to obtain

—k—1/2 k12| [T Bp)
r i) <r A ﬁ(hp)mgs(p,n)dﬂ
1 /°° pB(p) ko1
< Z /2
S — 0 |ge(p,1e)ldp
kJr lu(p) —u(re) Fiel e
6l —k— | S
5 R 6 Hr k 1/2g€(r’ re) L(R.00) =< 5 Hr k 1/2ge(r9 re) L (R.00) s
(4.107)
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provided R > 1 is big enough. Regarding J, from (4.104) we infer that

00 tie
FRI2 )| < R f L(r, p) P x(p/R)¢(p. c)dp
o (u(p) —cFie)(u(p) —c)
e [ ke
S ;/R pB(P) P~ 21P (0, )ldp
—k—1/2 00
/g% Ere _ / p1+;4p76dp sR,% %r;k—l/2. (4108)
rC R rc

The terms involving 9, x and d,, x are estimated similarly as in Lemma 4.11, except
for the weight »%=1/2 and the fact that d,x and ,,x are supported in interval
[R, 2R]. Using that u is bounded, |u’(p)| ~ ,0_3 and (4.104)—(4.105), we obtain for
re < 1 that

1
100, (P (p, c £ie) —P(p, NI < EIP(/), ctie)— P(p,0)l

+ 1008, (P(p,c Lie) — P(p,c))l
+ &lpd, Pp, c Lie)l
—k—1/2 5
S% £k3rc P

pK—1/2 24

and

[p(p,cEtie)—¢(p,c)| SIP(p,cEie)— P(p,c)l+e|P(p,cEie)l
—k=1/2

T P
< gkt P
~x i .
0 k—1/2 rCZJr%

Hence, we arrive at

_h— 1 2R ) L
r 2 ) < R_kf 1p3,(d(p, c +ie) —d(p,c))|p *1dp
R

ok kP, (4.109)
re

and

2R
r k2 ) < =z | Plo.cEie) =, o)l 12dp
R

fr k=12, (4.110)

S%,R 2+% C
re

We then collect (4.106)—(4.110) to deduce that

ke —k—1/2
Hr k—1/2 K2r; /7

r,r SR
g8( C) LOO(R,OO) i, }"3-"—%
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since r. < 1. Since, in this region, g and P(r,c +ie) — P(r, c) satisfy the same
estimates, the proof for j = 0 is over, while the case j = 1 follows again as in the
previous lemma. O

4.5.2 TheCaser, > 1

We now turn our attention to the case r. > 1. Again, we will split in different cases.
The proofs are similar as in the previous section, so we will only highlight the main
differences. Since r. > 1, (4.52) and (4.71) entail the following estimates in the case
r. > 1 (notice that the splitting of the interval (0, co) slightly differs from the case
re < 1)

or e (0,¢):
2
ARG P e ie)] S KPS =0, (4111)
r>
_ k-1 2’,.2+J4
rk—1/2|(rar)j(P(r’ Cii{:‘) _ P(r,c))| 5% 8k2+jrc / C_’ J = 0, 1
r>
4.112)

or € (L, re):

rk71/2|(rar)j(P(r,C:l:i€) _ P(r,C))| 5%’4_ 8k2+jrf_l/2r3+%, ] = 0, 1
(4.113)

or € (re, Rre):

r 2 (r0,) (P (ry e £ i8) — P(ro )| Soer ekXHr V20 =0, 1
(4.114)

or € (Rre, 00):

r210,) T P(roc k)] S kTP =000 (4.115)
C

r_k_l/2|(r3r)j(P(r, C:l:is) _ P(l", C))l 5% 8k2+jrc_k—1/2r%rcz—%’ ] = 0, 1.
4.116)

We begin with the case r € (0, ¢).

Lemma4.13 Let j = 0, 1. There exists a universal constant { € (0, 1/4) such that,
forallr. > 1 and » € (0, 1), there hold

P29, P(r, e i) HL o St er ek k12,
e 7{

and

| 00T P tie = PC.oD] | S erd R @17)
*(0,¢
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Proof of Lemma 4.13 The proof is similar to that of Lemma 4.11, so we only treat the
case j = 0. As in Lemma 4.11, the norms appearing in this lemma are a priori finite.
For a cut-off function x = x(r/¢), the function

ge(rire) = x(r/O)[@(r.c xie) —¢(r,c)]

can be written as

. © B(p)
wrir) == [ 200 p. 1
x Lish(p)
- L(r, ,o)d
| e e 0000 0, 0

o 2
- /0 L(r, p) (E(Bpx)(ap(d)(p, ctie) —¢(p,0))

1
+g(8ppx)(¢(p, cxie)—(p, C))> dp

4

=ZJ¢. (4.118)

=1

Since B(p) < 1and |u(p) —c Fie| 2 1 in this regime, we choose ¢ < 1 to deduce
that

1
IR )] = 5 [ . 411
r i) = o {r" 7 8e(ro re) L 0.0) (4.119)
For to J>, we use (4.111) to obtain
PR S 7 f Pl 2P, )ap|dp S erzrt TP @120)

For J3, we preliminary note that
dp(d(p,cEie) —¢(p,c) =u'(p)(P(p,ctie)— P(p,c)+ (up)
—u(re))o,(P(p,c xie) — P(p,c)) Ficd,P(p,ctie),
so that from (4.111)—(4.112) we obtain the pointwise bound for p € (0, ¢)
iy k 12 245
1935 (@ (0, £ i) = $ (0, NI S k75 ;% :

Hence, arguing as above,

e -
rk—1/2 |J3(r)| < ;7](/ |p3p(¢(p,C:t18) _¢(p7c))|pk—1/2dp S%’{ 8r3+%k2rf 1/2
0
4.121)
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On the other hand, due to (4.111) and (4.112) we obtain the pointwise bounds
k-1 2},.2—&-%
@ (p. ¢ Eie) — (o, )2 oo ekPre TP
IO%
and therefore

AR = o [ 1060 i) = 600 DI p S er2

(4.122)

Hence, collecting (4.118)—(4.122), we arrive at
.m0

Since, in this region, g, and P(r,c £ ig) — P(r, ¢) satisfy the same estimates, the
proof is over. O

5%{ 8r2+%k2 k— 1/2

L(0,¢re)

Also in this case, the regime » € (¢, Rr.) for any R > 1 is already contained in
(4.113) and (4.114). For r € (Rr., 00), we follow the ideas in Lemma 4.12.

Lemma4.14 Let j = 0, 1. There exists a universal constant R > 2 such that, for all
re > 1 and any s € (0, 1), there hold

Hr_k_l/z(rar)jP(r,c:I: is)H <o g er2KMH T2,
Lo (Rre,00)
and
Hr_k_l/z(rar)j (P(r,c4ie) — P(r, c))H SR 8F2k2+]l"_k 172,

L (Rrc,00)

Proof of Lemma 4.14 We use a cut-off of the form x = x(r/Rr.), with R > 0 to be
determined, and define

ge(r,re) = x(r/Rre) [¢(r,c £ie) —(r,c)].

Hence,
ge(r,re) = — / Lo ) —LP o e
0 u(p) —cFie
o +ieB(p)
— L(r, Rr,. ,od
/ (r p)(u(p)_C:Fl.g)(u(p)_c)x(p/ re)¢(p, c)dp

/ L(r, p)( Rr. dpx9p(@(p,ctie) —¢(p,c))

R2r2 pX((ﬁ(psCil‘E)_(ﬁ(va})) dp

4
=> I (4.123)
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Since |u/(p)| = p~3 as p — oo, in this region we have that |u(Rr.) —u(re)| 2 ch’z.

Hence, since r. > 1, we can choose R >> 1, independent of 7., to have

ke L[ pB(p) ke
rk 1/2|Jl<r>|§—f —p g (0. re)ldp
k Jre, u(p) —u(re) F ie
2 —6
rZ(Rrc) H —k—1
< leVrer /2 ,
~ R r gé‘(r9 rc) LOO(RVC,OO)
L ki
< _ ; . 4.124
<5 | e et (4.124)
For J,, from (4.115) we infer that,
—k—1/2 Y —k—1/2 —k—1/2
r FAGIBS % pB(p)p [P(p,c)ldp SR,s eTe . (4.125)
Rre

The terms involving 9, x and d,, x are estimated similarly as in Lemma 4.11, except
for the weight r=¥=1/2and the fact that 8,x and d,,x are supported in interval
[Rre, 2Rr.].

Regarding J3 and Jy, using that |u'(p)| =~ ,0_3 and (4.115)-(4.116) for p €
(Rr¢, 2Rr;) we obtain

Lok=172
1936 (9, ¢ %) = $(p. N Soek oK'y

and

—k—1/2
. rl
B, £ i) = (0. O Sork oK~z

so that

r 200 <

2Rr,
/ [p0p(P(p, c £ie) —d(p, Nl 12ap

- chk Rre
oo kT, (4.126)
and
—k—1/2 1 2Rre . k1)
P ] = = | ple(psc 2 ie) — (o, Ol 2dp
R rck Rre
S ekrd TV (4.127)

We then collect (4.123)—(4.127) to deduce that

—k—1/2
§%,R 8k2rc / 5

Hr—k—l/de(r’ re)
L>®(Rrq,00)
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since r. > 1. Since, in this region, g. and P(r,c £ ie) — P(r, c¢) differ by a factor
proportional to rf, the proof is over. O

Remark 4.15 The proof carries over to optimize the weights for r.9,, P, for j=0,1
Indeed, from (4.1) we see that

ﬂ(r)u/(rc)rc

S e

The extra singularity on the right-hand side is in fact innocuous. Indeed, Lemmas 4.11,

4.12,4.13 and 4.14 are relevant in regions that are far from the critical layer, in which

lu(r)y—z| 2 min{rcz, rc_z}. Since |u/(re)|re & min{rcz, rc_2} as well, the contribution of

the singular denominator cancels. Note that for 79, 7.9, P we can simply differentiate
the Green’s function £. However, we can only deduce information away from the
critical layer, due to (4.86). We therefore arrive at the conclusion of the proof of
Theorem 4.1.

4.6 Further Properties for the Real Solution

In this section, we prove Theorem 4.2.

4.6.1 The Function Q, and Its Properties

With Qg defined as in (4.6). From (4.1) we have that Q¢ obeys the second order
equation (note that Qg is C? for r < r.),

Fu() = )5, Qo + (2 () + (1 = 20w () = ©)), Qo
=2(k+Du'(r)Qo, 1 <re, (4.128)

or, similarly,

02 w(r) = )9 Qo) + (r2u'(r) = (1 + 20 (u(r) = ©))9, Qo
=2(k + Dru'(r)Qo, r>re. (4.129)

Note that we may rewrite (4.128) as
((r) = ) (rdn Qo + (1 = 2000, 00 ) = —=2u'(r) (r3, Qo — (k+ Qo). (4.130)
Also, according to (4.30), (4.31) and (4.33), we have that

Qo(re,0)=1 and 9, Qo(re,0) = (k+ Dr. . (4.131)
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Observe also that that (4.128) and (4.131) imply

(4k — 13, Q(re, ) (4k—D(k+1)

arr >y =
Qo(re, ) 3 312

(4.132)

We begin by proving (4.10). The fact that Q¢(r,c) > O for all r € (0, r.] is clear
from (4.35) and continuity in r, so we only need to prove monotonicity. From (4.131)
it follows that 9, Q¢ (¢, ¢) > 0. Assume for the sake of contradiction that there exists
a first point r,, € (0, r.) (meaning closest to r.) such that 9, Qo (7, ¢) = 0.

Note that on (ry, r.] we have 9, Qg > 0, and thus also r2u(r) —c)d, Qo(r,c) >0
on (ry, rc). By the minimality of r,, we have that r2(u(r) — ¢)d, Qo(r, ¢) attains the
value O for the first time (from r. towards 0), and thus we must have

0, () = )0, 00(r,0)| =0, (4.133)

=r

On the other hand, evaluating (4.129) at r = ry, and using that 9, Q¢ (ry, ¢) = 0 we
obtain that

0, (r* (u(r) — )3, Qo (r, C))‘ = (2(k + Dryd (r4)) Qo (r«, ).

r=ry

Since u is monotone decreasing, we immediately arrive at a contradiction with (4.133),
and (4.10) follows.
To establish (4.12), we rely on the following lemma.

Lemma4.16 Fork > 2, define the function let By be defined as in (4.8). Then we have
Bo(r,c) = 0forallr € (0, r.]. As a consequence,

7oy Qo+ (1 —2k)3, Q0 <0 (4.134)

on (0, rc). Moreover By(rc, c) = 0 and the upper bound stated in (4.13) holds.

Proof of Lemma 4.16 Note that according to (4.131) we have that By(r¢, ¢) = 0. Then,
upon differentiating, appealing to (4.130), we obtain that

—2u'(r) B

(k—1)0-Qo + 0-Bo = (2k — 1)9, Qo — 1oy Qo =
u(r) —-c

0-
holds on (0, r.). Switching the order of the terms, we arrive at

=0y (W) = By = (k = D(u(r) = )%, 0o

which we may integrate from r to r. and obtain

u(r) — ¢)2Bo(r, c) = (k — 1) /rc(u(s) — )23, Qo(s, ¢)ds > 0, (4.135)
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appealing to that fact that 9, Qo(r, ¢) > 0. Also, (4.134) follows immediately for r €
(0, r¢), while forr = r.itrequires (4.131) and (4.132). Finally, the fact that By (r¢, ¢) =
0 is a simple computation using (4.131). Now, from (4.8), the monotonicity of Q¢ and
the positivity of By, we have the upper bound in (4.12) for rd, Q¢ as

0<9Qo(r,c) < (k+ 1)% <k + 1)Qo(:c,c) _ k-:l

while from (4.135) and the fact that u is decreasing we deduce that

(r) — ¢)*Bo(r, ¢) < (k — D(u(r) — c)? f 3, Qo (s, c)ds

r

< (kK = D(u(r) — ¢)*log(re/r), (4.136)

and the proof is complete. O

Now, from (4.134), we obtain that
9, log(d, Qo) < 8, (logr**~1)

holds on (0, r.]. Here we used that on (0, 7] we have 9, Qo(r, c¢) > 0. Integrating the
above from r to r., we infer

p2k—1
9 Qo(r, ¢) = 8, Qol(re, €)== - (4.137)
re

Inserting the above information in (4.135), which holds for all » > 0, we infer that

(k+ 1) Qo(r, &) = rd Qo(r, ©) = Bo(r, )
> & D3 Qolre, O /rc(ms) — 0%,

T we) - o2

(4.138)

In the above inequality, we drop the term —rd, Qo(r, ¢) < 0, and moreover (again by
monotonicity) we have that Qg (r, ¢) converges, as r — 0, to some limit Q¢ (0, ¢).
Therefore, we have a lower bound on Qq(0, ¢) which is

(k — 10, Qo(re, ©) /’” 2 2k—1
0,c) > — ds. 4.139
Q0(0,¢) = T 1 DO — 2 Jo (u(s) —c)7s s ( )

We then arrive at the lower bound in (4.12) through a further use of the boundary

condition (4.131). Regarding the upper bound, going back to (4.137) and re-arranging,
we have an explicit lower bound on 9, Qp, namely

3 Qo(re, Or* =1 < r2=15,00(r, ¢).

@ Springer



Vortex Axisymmetrization, Inviscid Damping, and... Page 67 of 192 4

By the fundamental theorem of calculus and using this lower bound, forany s € (0, r.)
we have

Qo(re,c) — Qols, c)

rc r(,'
/ 9 Q(r, )dr > 8, Qo(re, c)rg_zk/ r=lar
. s

9, Qo(re, ©) 2% 2k
= ZkrT [rc — ] .
c

Hence, passing to the limit as s — 0, we get the upper bound

9 Qo(re, Ore

Qo(re, ) — % > 00(0, 0).
The left-hand side however, using (4.131) is
0, Qo(re, O)re k+1 k—1
) -~ = 1 - T AT = T A
Qolre. ©) 2k 2k 2k

from which the upper bound in (4.12) follows. The lower bound in (4.13) is proven in
the next lemma.

Lemma 4.17 There is a constant §y depending only on u such that for all r. € (0, 00),
there holds for all |r — r¢| < Sorc (uniformly in k and r.),

2k—1
r
Bo(r,c) = k* T3 (re = 1),  forr <re.
c

Proof of Lemma 4.17 Since we are assuming that |[r — r.| < Sor¢, for §¢ sufficiently
small (depending only on u”), we have from Taylor’s theorem that u(r) — u(r.) ~
u'(re)(r — r.), and hence from (4.138) there holds

2 2k—1
N— (s —re)s ds.
2"‘|r r|2/

This integral is explicitly computed via integration by parts:

Bo(r,c) 2

Te 1 re
/ (s —re)? s s = —— |r —re|?r?* — / (s — re)s™ds
; 2k J,

2%
1 2 2%k+1
= —gglr =l *kr D T
+ 2 <r2k+2 _ r2k+2>
Wk + )2k +2) Ve '
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By Taylor’s theorem, there exists some ¢ € (7, r.) such that

1
262 — 22— 2k + 2 (e — 1) + 5 Ck+ 2k + D2k (re — r)?
1
+ 5(2k +2)k + D2k e — )3,
from which the conclusion follows since ¢ > r. O

4.6.2 The Function Q, and Its Properties

Analogous to (4.128), O« obeys the second order equation

ru(r) — )y Qoo + <2ru/(r) + 1+ 2k)(u@r) — C)>8rQoo = —2(k — Du'(r) Qcs,
(4.140)

or

0, (r2(u(r) = 9, 0oo) + (2 (1) + 2k = Dr(u(r) = )3, 0o
= 2k — ri (") Qo (4.141)

Note that we may rewrite (4.140) as

w(r) — ¢) (ra,,Qoo T+ 2k)a,Qoo) - —2u/(r)(ra,Qoo ok — 1)QO<,).

(4.142)
As conditions at the critical layer we have
_ 4k + Dk —1)
Qoo(re, ) =1, 3 Qoolre.0) = — (k=) 1", 8 Qoolre. 0) = — 32
Z
(4.143)

Proceeding as in the previous section, it is not hard to verify (4.11). Turning to (4.12),
we have a lemma similar to Lemma 4.16 which we state without proof.

Lemma 4.18 For k > 2, define the function let Bs, be defined as in (4.9). Then we
have Boo(r, c) > 0 forallr € [r., 00). As a consequence,

Fopr Qoo + (1 + 2k)3, Qoo < 0 (4.144)

on [rq, 00). Moreover Boo (1, ¢) = 0 and there holds the bound (4.14).
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From (4.144) and arguing as in the previous section, we infer that

(k= 1)Qoo(r, €) + 79, Qoo (r, €) = Boo(r, )
(k + D3y Qoo(re, rZ+ 17 (u(s) — ¢)?

— ds.
= () — ) EPETEE

which implies the lower bound in (4.12). The upper bound follows similarly, while
the lower bound for B in (4.14) is similar to that of By.

5 The Inhomogeneous Rayleigh Problem for k > 2

Recall from (2.31), (2.32), and (2.33) how the reduction of order technique is used
to derive two linearly independent homogeneous solutions (each satisfying one of
the boundary conditions) Hy, H, and their Wronksian M, and hence the Green’s
function for (2.8). In this section we will lay out a few technical results regarding M,
Hy, Hy, and of course by extension, G. The properties of P (equivalently Q¢ and
0oo) deduced in Sect. 4 are crucial.

Lemma 5.1 (Complex integral expansion). For e > Q and c £ie = z € Iy, define the
following quantities,

1 1
E(r,z) = o or <L/(I’)P(I’,Z)2> (5.1a)
b 7 _
R p(2) = ’ %E(r, 2)dr (5.1b)
eu'(r)
E,,(2) = / W) P 1 ——————— E(r, 7)dr. (5.1¢)

Then, we have, for z = c £ ig,

| 1 e ;e
Hy(r,z) = —¢ (s, z)/o 76, Z)ds = T OPCD —¢(r,2) (Ro,r(Z) + lEO,r(Z))
(5.2a)
1 1 ¢ ;e
Hao(r, Z)Z"’“’Z)[r ST = T 0D (R £ E 1 2).
(5.2b)

Similarly, there holds

*© 1 & . &
M(z) = /0 526, Z)ds = Ro,oo(Z) + lEO’OO(Z).
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Proof of Lemma 5.1 The lemma follows by integration by parts in the complex integral:

b b 1 1 b

/a ¢(r,z)2dr:fa w—2P¢ 2T T o P,
bWy —2)

a (u(r)_c)2+52

E(r,z)dr.

Note that boundary terms vanish when @ = 0 or b = oo by the asymptotic behavior
of P (Theorem 4.3). O

Denote the formal limits of the above quantities:

EO,r(C) =mwE(re, c)lrc<rv Er‘oo(c) =mE(re, C)lrc>r,

r / o0 /!
Ry, (c):= p.v./ E(s, c)ds, R, o0(c) :=p.v. / E (s, c)ds.
0o u—c , uU—c
Here we are defining (and in the remainder of the paper as well)
o / /
p.v./ u (s) g(s,c)ds = lim u (s) g(s, c)ds. 5.3)
o u(s)—c &'=0 Jju(s)—c|>¢’ u(s) —c

For r < r¢, by (2.1) (recall the definition of By from Lemma 4.16)

_ B)Qo(r. 2) + 2" (1 + k) Qo(r. 2) — rd, Qo(r. 2))
B W' (r)3 Q3 (r, 2) (re/r) %=1
_ B(Qo(r.2) + 2 By (r, 2)

E(r,z)

5.4
W' ()3 Qg (r, 2) (re/r) 2! eD
whereas for r > r. there holds (recall Lemma 4.18)
BOoo(r.z) — 2% ((k — 1) Qoo(r, 2) + 18y Qoo(r, 2))
E(r.2) = —
W' (r)3Q3,(r.2) (rfre)'™
oo\l - ziBOO )

 BQo(r.2) = 2% By (r.2) 55)

CWr)303,(r,2) (rfr)

Recall from Lemma 4.18 By, > 0 and that B (r¢, ¢) = 0, and hence E(r, ¢) < 0O for
r > r.. However, from Lemma 4.16 By > 0 and By(r¢, ¢), and hence E is not sign
definite for r < r.. Finally, we note that there holds

B(re)

ECe O = ity
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5.1 Estimates on the Wronksian

First, we must deduce lower bounds on the Wronskian M (c +i¢). Moreover, the gain
as r. — 0 obtained in this lemma is crucial for deducing vorticity depletion, because it
improves the bounds on K in certain regions. This proof requires a delicate use of the
monotonicity properties deduced on Qo and O in Sect. 4. In particular, the lack of
sign-definiteness of E(r, ¢) on each side of the critical layer presents a complication
for ruling out cancellations in the singular integrals which define M (z).

Lemma 5.2 (Wronskian lower bounds). For all z € 1, with z = ¢ & ie with & suffi-
ciently small (depending only on o and k), there holds the following lower bound,

IM(c +ig)| 24 kmax(r>,rd), (5.6)

and if we write M (c £i0) = Ro,00(c) £ i E,00(c), then the following uniform con-
vergence holds for some sufficiently small n > 0

IM(c +ig) — M(c£i0)| < &"max(r. >, r).
Proof of Lemma 5.2 For ¢ > 0 we have,

IM(c £ie)> = |R§ oo (c £ i8)|2 + | E§ oo (c £ is)|2 F 2Im Ej o Ro.co(c £ i€).
(5.7)

We first study E§ . (r, z) for z = ¢ £ ie. First, for all ¢ sufficiently small and all
sufficiently small n > 0, we prove

Efo(2) = % +0 (8" max (r2, rc_3)) . (5.8)

Indeed, write
o0 eu'(s)
E¢ = —— —FE(s,o)d
0000 /0 o) — ot rert S Ob

°° eu'(s)
+fo m(E(S,Z)—E(s,c))ds. (5.9)

Further decompose:

> su'(s) Y cu'(s)
|, G0t = [ G (e x) Bl o

_ Es;Oc _{_Es;();é.

0,00 0,00
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Further expand:

Es;Oc B(re) /oo eu'(s)
0

0 T Wiy Jo ) o2 +e

©e(s) B(re)
+/0 @) — o ye2 % ((u’(rc>)3 — b C)) &

By Theorem 4.3 (and (5.4), (5.5), and Lemma A.1),

2 Xcds

B(re) 2 lr —7cl 2 1 4
N————= —E(s,0)| S k" —— =~ xck“ |r — relmax(—, r. 5.10
c (u/(rc))3 ( ) Xc 2 |u’(r)|2 Xck™ | el (r? c) ( )
and hence by (A.5), for all n > 0 sufficiently small,
e;0c _ B(re)

n -3 .5
000 = —(u’(rc))3 + O("max(r. 7, r7)).

Whereas, away from the critical layer there holds by (A.1),
) 1 00 |u/(s)| 1 2k=1" [ 2k+1
EE,O#) < gk —, 2 / —, 5 : , c d
‘ 000 | S € max(rcz ry) A —|u_c|)(7,gmax(s3 s”) min _rczk71 perany s
(5.11)

1
< ¢k max(—, r?) max(rc_3, rf), (5.12)
r2

c

which goes into the error by the definition of I, (2.18). This completes the estimate
of the first term in (5.9). To control the latter term, we first decompose

o0 su’(s)
‘/0 m(E(S,Z) —E(s,c))ds (513)

Y eu'(s) B(s) 1 B 1
B /0 (u(s) — C)2 + g2 (M,(S))3 (PZ(S, 2) PZ(S, C)) ds (5.14)

© su'(s) B(s)
+/0 @) — P 4 &2 <<E (. 2) - (u'(s)>3P2(s,z>)

B(s)
B (E“’ - W)) @ 619
= Egl+ EG L. (5.16)

Then, by Theorem 4.3, for all z € I, and all sufficiently small n > O (using the same
argument as (5.12))

. o0 & |u'(s) 1 g2k=1 241
‘ES’;S‘ N Sn/ | 2| 3 max(x. 57y min  ——, S ) ds
’ o (@(s)—c)r+e s e s

< eMmax(rl, rY).
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The vanishing of £’ &l oo follows in a similar manner (due to the lack of convergence of
(5.10)ase — 0, we use atrick to combine convergence and uniform Holder regularity
from (5.10); see e.g. the proofs of Lemmas A.4 or A.4 for details). This completes the
proof of (5.8), which gives us a lower bound on ‘ES <>Q(z)‘ as well as an upper bound
on its contribution to the error in (5.7).

It is clear from (5.8) that we will need to make a detailed analysis on Ry oo(2) to
obtain (5.6). Indeed, B(r.) (u’ (re)) 3 potentially goes to zero very rapidly as r, — oo
unless we impose stringent lower bounds on § as r. — 0 (note we wish to include
the case B(r) ~ e”z). Moreover, we would like to gain the power of k as well.

As above, we divide R& o based on the decompositions of ES’ oo IN(5.4) and (5.5):

e w—ou B(s)
Ro.colcie) = /0 =02+ () Pos.cxie)
* (u—ou . B(s)
+/0 w—0?+6 (E(S’Ci’g)_ <u'<s>)3P2(s,ciis)>ds
= R\ (ctie) + RY) (c L ie). (5.17)

Denote the formal limit of the first term as

(1) < B(s)
Ro.0ol) = /0 U —c W ()3 Ps. 0)

Sub-divide via the critical layer:

n [ w—on B(s)
Rooole £ ie) = /o w—or v W) GG e
_ R(l 9 4 pU.A.

0,00
with analogous definitions also for the & = 0 limit. For Ry';7” it is straightforward to
verify the following from Theorem 4.3, (A.3), Lemma A.4, and 8(r) < (r)~° from

Lemma 2.1, for all z € I, an all n > 0 sufficiently small (note that the integration
gains k1)
‘R(l A (c + 18)‘ < max(r3, ) (5.182)
’R(l Pe+ie)— RS" 9é)(c)( < e max(r 3, ). (5.18b)

Similarly, Theorem 4.3 and Lemma A.4 imply that for n sufficiently small there holds:

‘R(l Jon ,8)‘ < max(r; 3, rd) (5.19a)
RSO (e ie) - Réfzfo)(c)l S & max(r?, ). (5.19)
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Next, we consider the convergence and uniform estimates of the second termin (5.17),
which we write as (in particular, note that since By and B, are Lipschitz continuous
and vanish at the critical layer by Theorem 4.3),

@ [ w—o Bo(s, z)
RoooleEie) = /0 (U — )2 + &2 (2 W' ()25 P3 (s, z)) as

(- ) Boo(s, 2) d
- /r (u—c)?+¢? ( (u'(5))2s P3(s, z)) :

First, by following the same argument as that applied to R(()}C)x)
analogous properties

(¢ & ie) we deduce the

\Rg?;o (c+ ie)‘ < kmax(r3, 1) (5.200)
’R(z) (c£ie) — RP_(¢)| < &"max(r 3, r?) (5.20b)
0,00 0,00 ~ c »lc/ .

Next, we establish the lower bound on R(()i))o- From Theorem 4.2 we make the crucial

observation that R(()zgo (c) is strictly negative. Further, the quantitative lower bounds

on By and B, near the critical layer will allow us to deduce lower bounds. Using the
negative definite signs and Theorem 4.2 (and Lemma 2.1):

@ ) re u 1 S4k—2
Ry (c) Sk / (re — s)ds
0.00 (5o U — € (/' (5))2s p2A=17¢

e 1 4k-3 L s
< —k / ————ds < —kmax(r. >, r)),
(—sgyre (' (8))? p =1 coe

and hence by (5.20), we have for all ¢ > 0 sufficiently small,

RS () ~ —kmax(r. >, ) (5.21a)
R (e o] ~ kmax(r 2, D). (5.21b)

Putting together (5.21), (5.18), (5.19), and (5.8), for all small » > 0 we have,
|21m anoRo,oo(C + i8)| < el rnax(rc_3, rcs)2.

Next, we use (5.7) to deduce (5.6). For r. 2 1, (5.8) is not useful, however, (5.21)
together with (5.18) and (5.19) imply (5.6) for r. > R for R large enough depending
only on u and universal constants. For r, < R, (5.21) together with (5.18) and (5.19)
imply (5.6) for k > k¢ for some ko depending only on # and universal constants.
Whereas, for r. < R and k < kg, the lower bound (5.6) follows from (5.8). O

Lemma 5.3 Fore < 1 and all z € 1y there holds the following

|red, M(2)| < 3 max(r3, ),
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and we have that for all 7 € 1, and n > 0 sufficiently small,
|redr M(c £ie) —red, M(c £i0)| < &k max(r, 2, r),

Proof of Lemma 5.3 By integration by parts

1 © u'(s) X X
,—arcM(Z) = f 28G / C2 / P rc ﬁds
u'(re) o (w—2 P2y "(re) (u — z) p

oo
1
+ f — g
o (w—2PP
From Theorem 4.3, we see that 7.0, P essentially satisfies the same upper bounds as

P (up to powers of k), and hence the terms containing x can be estimated directly
using (A.1) and Lemma 2.1. Consider for example, the latter term (estimating as in

(A.1)):
00 1 P 00 g2k—1 2k+1
—— M < i
/(; u—2)3 s N/O X7 min <r3kl’ 2%+

k 3
X <1rc<1 <1r<2min( 6’ 6) +1r>2>

+1,,.>1 (1r§1/2 + 1y>1/2 min <k3rf, k3r6>)) ds
<K max(r0, 7)), (5-22)

which is consistent with the desired estimate (the additional power of k is lost in the
term involving 9,, P; see Theorem 4.3). Turn next to the term involving .. Here, we
integrate by parts again as in Lemma 5.1:

foo"—/a(; dr—/oo u 18r<8GL)dr. (5.23)
0o (u—2)? 'P? o u—zu u' P2

Note,

! Ly (Joxe _ 1 dG P 0,06 P
_ar(aG Xe ):—/ar<GX‘_ u” xe )—2—(8r§) 6P xeddg

u u' P2 u u' P2 (u/)3 P2 u P3 u' P3
Xc0r Pog P
+ 6W (5.24)

Obtaining estimates on the contributions of the first two terms in (5.23) is essentially
the same as the estimates made in Lemma 5.2. Hence, this is omitted for the sake of
brevity. Next, consider the contribution of the term containing 9, dg P. For this, from

(4.24) we have,
39 P > k2
|rcu (rc)|'f (XC rgG )dr‘§k3/ 5 X/C dr < - .
’ o relu(re)l [reu’ (re)|
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For the term in (5.24) involving r 9, we similarly use (4.21).
Next, consider the problem of convergence as ¢ — 0. We define the expected limit
as:

o0 / 1 .
8. M (c + i0) :p.v./ — =0, (9653 ) dr
0 u

Fim <l,8r (BG /;2>) (re, )
/ / W) X#
’(rc) (u —c)2 b s /(r.:) (—c)’ P2

Convergence of the terms involving dg follows from Lemma A.4 and Theorem 4.3.
Convergence away from the diagonal follows from Theorem 4.3 along with

u'(re)

1 _ 1
u—cxie)? (u—-c)?

Fie(u —c) + &2
u—c¥ ie)z(u —0)?

X = X2

< e max(r, 2, )| |2,
u—-c

and the the analogous

1
> u—cxie)l B um—c)|~

X
2) 7+

<
emax(r T |u—c|3'

From there, the estimate follows as in (5.22) and the assumption that z € 1. O

5.2 Estimates on Hp and Hy,

Next, we outline the basic estimates available on Hy and Hy; see “Appendix C” for
proof sketches, as most are minor refinements of ideas appearing in the proofs of
Lemmas 5.2 and 5.3.

Lemma 5.4 (Estimates on Hy and Hy,). Let 7z = ¢ i € I,.

(a) (explicit expansions near the critical layer) In the region |r — r.| < r./k, there
holds:

o | L e
Ho(ry e deie) = oo = 9, k) (Ro,,(cizs) FiE],(c :I:ls))
(5.25a)
S S - e .
Hxo(r,ctie) = PG cLie) +¢(r,ckie) (Rr,oo(c:i:ls) :FzEryoo(c:l:te)),
(5.25b)
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and we record the following estimates: in the region |r — rc| < r¢/k, we write

1 1 -1 .3
— = A~ —max(r, ,r.),
u'(r)P(r,cxie) u'(re)

and

lp(r.cLie) (RS (c £ie) FiE], (c £ie))|

<1< Ir _2”| (k + [logk ‘r —re ) (5.262)
rC re
3|r_rc| r—re
T k + |logk , (5.26b)
re e

|p(r,c£ie) (RS o (ctie) FiE] (c Eig))

<l <k+ logk |~ ) (5.26¢)
}"C re
41, (k+ logk |[—© ) . (5.26d)
re I'e
In particular, for |r —re| < rc/k,
|Ho(r,c £ ie)| + |Ho(r, c +ie)| < max(r. ', rd). (5.27)

(b) (bounds away from the critical layer) In the region |r — r.| > r¢/k, there holds

Jht1/2 S22 Jht1/2
j < P - -
|Ho(r,c £ig)| S 1rcgl 1r<rC rk+3/2 + 1r5<r<1krk+2+3/2 + 1r>lkrk+3+1/2
c c c

k172 k452 Fk+1/2
T Lo\ <t 5o Hhior<re gz T bork 5555 )
re re re
(5.28a)

k—3/2 rk+1/2 rk+1/2
|Hoo(r, c* 18)| 5 lrcfl (1r<r€kr2——l/2 + lrc<r<1 r2+3/2 + 1r>1 r2_1/2>

k+5-1/2 k4+5-1/2 k+5/2
Te Te e
+1,.51 (1r<1krk_—l/2+11§r<rck Py +1r0<rrk—l/2) .

(5.28b)
(¢) (convergence) Furthermore, if we define
N .
Ho(r,c£i0) = m ¢(r,c) (RO,r(C)il”E(rc)lrc<r)
Hoo(r,c £i0) = L +¢(r. ) (Rr.oo(€) £iTE(re)ly>r)

u'(ryP(r, c)
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then we have that Ho(r, c £ 10) and Hx(r, ¢ £ i0) satisfy the same pointwise
estimates as the ¢ > 0 counterparts and there exists an n > 0 such that for
z € Iy, the difference e (Ho(r, c £ ie) — Hy(r, c £i0)) satisfies (5.27) and
(5.28a) (and analogously for Hso).

The next lemma details analogous properties on the derivatives of Hy and Hxo.

Lemmab5.5 Letz =cxtic € I,.

(a) (explicit expansions near critical layer) for 9, derivatives there holds for |r — r.| <
re/k:

. 1 )
ro,Ho(r,c tie) =ro, (m) —rord (RS,,(Z) + lES,r)
—ru'(r)PE(r, c £ig), (5.29a)
. 1 )
ro, Hoo(r,c £ig) =0, <m> +r0-¢ (R oo (2) FiE; o)
—ru'(r)PE(r, c £ ig); (5.29b)

for dg derivatives there holds (for |r — r¢| < r¢/2k):

1
Ho(r,z) = dc (m) — (u—2) (3 P) (R, (2) FiEg,)
r M/(S)

- ¢ )aG (XcE)ds
u (S)u (rc) u'(s)
/(r )d)/ E(S,Z)_ (M_Z)art (X#E(s’z))ds
(5.30a)
Hoo(r,z) = 0 (m) +(—2) (36 P) (RE oo (2) FIEE )

+¢>/ 4 (5) 596 (B ds

e )¢/ u (s)u (rc)E(S,Z) — &3% (x2E (s, 2)) ds.

(u—12)
(5.30b)
Furthermore, for |r — rc| < rc/k, there holds the estimates:
(Irdy Hoo (1, 2)| + 10 Ho(r, 2)|) 1\r—n,|<rc/k
klr —
< max(r; !, r3) (k + [log Klr=rel ) (5.31a)
C
(196 Hoo (r, 2)| + 106 Ho (7, 2) ) Vi —ro | <re /i
-1 .3
< M (5.31b)
[reu’ (re)|
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(|1 0,06 Hoo (7, 2)| + 10,06 Ho (1, 2)|) 1|r—rc|<r(y/k

-1 ,3
- kmax(rc ) <k n
[reu’(re)|

k|r—re
log ——

) . (5.31¢)

Tc

(b) (derivative bounds away from critical layer) For |r —r.| > rc/k, we have that
r —rel = re/k, k~—1rd, Hy, k73r63,‘,H0, k74r8rr68,€H0 satisfy the estimate
(5.282) whereas k~'rd, Hyo, k’3r68,(Hoo, and k74r8rrcarc Hyo satisfy the esti-
mate (5.28b).

(c) (convergence) For some n > 0, for z € I, we have the following convergence:
&M (Hoo(r,c xie) — Hoo(r,c £i0)) and ¢~ (Ho(r,c £ie) — Ho(r, c £i0))
satisfy (5.31) and the assertions in part (b) for € sufficiently small.

6 Representation Formulas and Estimates on (rd,)f;, and (rd,)f,
6.1 Recursion Relations for Derivatives of f; and f,

Next, our goal is to derive formulas for the derivatives of f; and f>. As discussed in
Sect. 2.3.4, the first step is the iteration scheme outlined in Lemma 2.8.

Lemma 6.1 (Iteration lemma for BéX and 8é Y). Set

E =0, Fy=F(r), Ry= F.(r), RS:O. 6.1)
For j > 0 if we define
zu// ﬁ/

+ + . Jy+ Jy*
Fj+1 _8GFJ. —W(FJ—ﬂZ)GY )—?8GY
2u” 1 W+ ru\ ALY E 1 :
+ R * -2 L T C o _ Jy=E
Rj+l - aGRJ (u/)ZRJ +2<4 k ) < r(u/)2 > r2 + O (W) 8raGY
2u// . ‘B/ A
5j+1 = 3(;51' - W(g] - ﬂa(j;X) — ;3&)(

2u” 1 2\ [u +ru” aéX 1 j
R}Y-_H = aGR; — WR; +2 <Z —k > (W) r—2 + 0,r <;> E)raGXj,
then (2.35) holds for all j.

Proof of Lemma 6.1 Recall that 9 commutes with functions of u — c¢. Hence, the
lemma follows from the following relation:

(96, RAYA1Z = — 3, () 8,2 + 2 vz —2 (L) (L 2
B = — _— —F Nd —_ _—— —_— —_—
G + rr W r (u,)z Y+ 4 r(u,)2 r2

+ (ﬂ— et ) z 62)

u WH? ) u—z

O
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Lemma 6.2 For coefficients ej ¢, hj ¢, qj ¢, pji, andrj e we have

j+1 j
Rjy1 = Ze/+1z30F*+ZCI;+1e3 IGYE + pjy1ed5Y ™,
£=0 =0
J
R,y = Z‘IjJrl,(araéXi+Pj+1,laéxi,
=0
j+1

]+1 —Zh/+1£30F+ZV;+1230 )

j+1 er+1 Za(;

(6.32)

(6.3b)

(6.3¢)

(6.3d)

where the coefficients are given by the following recursion formulas: for £ < j (with

the convention thate; 1 = hj 1 =0),

ejr1j+1 =1
2u//

1
ejri e = —0rejrtej1— —=ejy
j+ u' r=J J (u/)2 J

hjv1,j1() =1
2u//

1
hjt1,0(r) = ;Brhj,g +hje1— Whj,e,

and for £ < j — 1, (with the convention that p; 1 = qj —1,7rj -1 =0),

1 N\ (w +ru”\ 1
Pj+lj = Pjj-1+2 (Z —k ) (W 2

1 Zu//
Dj+1.6 = ;Brpj,e +Pje-1— WPM
1
Qj+1j =4j.j-1 +0r;
1 u//
qjv1,0 = ;qu/‘,e +qje-1— WCIM
Zu// ﬂ/
Fiy1,j(r)=rjj-1+ (u/)Z'B v
1 zu//
riv1,e(r) = ;arrj,z +rje—1— er,é-

Finally, the above coefficients satisfy the following estimates: for{ < j+1landn > 0,

|(r8,)" €16 ()] S max(r2, )/ HE

|(rd:)" hjr1,e(r)| Sp max(r=2, )7 t17E
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and for £ < j andn > 0,

|(r9:)"q j41,0(r)| S max(r—3, r) max(r 2, r3)7 ¢

|(r3:)" pjs1,e(r)| Sn K* max(r—*, 1) max(r—2, )/~

1 _ o
|0 0] S g max (2, )

(ryt

Proof of Lemma 6.2 Note
1
06 (q(r)o,2) = Jarq 0:Z +q(r)dgo, Z
1 1
=|—50q—q)d = ))0Z+q(r)ddcZ.
u u
The rest follows from Lemma 2.1. O

6.2 Integral Operators Appearing in the Derivatives of Xand Y

Define the following operators which appear in the expression for Bé YE,

© 2ig
=+ . .
Zyslgli= :l:/o g(r,s,c:l:ls)mg(s,c)ds (6.4a)
o0
+ . . (u—o)
ZY;[g]: A g(V,S,Cilg)mg(S,C)dS (64b)
o0
ZEilgli= fo G(r,s,ctie)g(s, c)ds. (6.4¢)
In an abuse of notation below, we use the definition
o
ZEt o owZit[g]i= /0 G(r, s, c £ie)w(s)d Z5 [g](s)ds. (6.5)

A more complicated set of operators arises in the formula for X and its derivatives
(using a similar abuse of notation):

76 o1 [ gD J
xolgl:= ) X&S(r’s’C)(u—c)z

Zg(s[g]:/é (/0 G_ort el iep (s0) B (F,S(),C)B)((Z;;g(so,s,c)dS())

u—c)2 4 g2 XSe
(w—c)

ot tOb

o ® 2igB(so)
Z§(G[g]:=/0 (/0 ﬂiB(l) (r,so,c)Bgé;s(so,S,c)dso g(s)ds

(u— C)z 4 g2 XGse

n Ezg(s)ds
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o °° 2ieB(so)
+ L (1)
Z5%,.gowZy,lgl:= A (fo m XrGoe (s so,c)BXrG (50, 5, ¢)dso
X w(s)asZYa [g]1(s)ds. (6.6a)
where the kernels are defined via:
B

Xae(rvsac)zg(r,s,C‘i_iS)

+ /OO 2igf(so)
0

mg(”aso,c-i-if?)g(SOsS,C— ie)dsp, (6.7a)

1 1 1 .

By = BY.e = BY3..(r.50.0) = G(r, 50, ¢ + i) (6.7b)
2 2 2 .

B;r)G . = Bg(g; e = B)((; (50,5, ¢) =G(s0,5,c—ig). (6.7¢)

The next lemma verifies the relevance of the above operators.

Lemma 6.3 (Representation formulas). Let ¢ > 0 and ¢ = ie € 1. There holds,

Y (r, e ie) = (Zy§ + Zy§) [F1+ ZygF., (6.8a)
X(r.c,e) = (Zys + Zks) [F1+ Z5 g Fsl, (6.8b)

and for j > 0 (assuming the integrands are integrable),

; o
ain (Z55 + Z58) (Fj1 + 2355 Ze]gaGF —i—Zp]gaGYi
=0 =0

— Zye | D qj.006Y* (6.9)

J
06X = (Zis + Zis) L] 1+ Zig | D eiwdgF+ ) pjadgY
j-1

- Z?(G Zf]j,ﬁaraéy_
=0

J
(Zy5 + Z55) [0+ 285 | D piedX | = ZyG | D djr1edrdgX

(6.10)
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Proof of Lemma 6.3 First, observe

2ie (F— BY) = 2ie F — pRaY"! F
(u—c)?2+¢2 T (w—c)?+¢2 “lu—c+is
2iep e
and by definition
2ief _
+
Zyg [mzm[m] = ZkGlFil.

This completes the proof of (6.8); the cases j > 0 follow similarly. O

6.3 Iterated Integral Operators
6.3.1 Recursion Scheme for Integral Operators

In this section, we will analyze the recursion algorithm derived above. By Lemma 6.2,
the F; and &; terms appearing on the RHS of Lemma 6.3 can also be expanded only
in terms of X, and Y, with £ < j.

We will write all possible operators appearing in the iteration scheme as variations
of the original operators with kernels derived from a recursive algorithm. The operators
appearing in this algorithm are of the following form:

(’)gl[wl(](r, 50, C) = /(; K (s, sg, c)%w(s)g(r, s,c+ie)ds
(6.11a)
O(Sz;l[wK](so, r,c) = /() K (s0, s, c)%w(s)g(r, s,c—ig)ds
(6.11b)
Og}g[wK](r, 50, C) = /0 K (s, so, c)(u_ilﬁw(s)g(r, s,c+ie)ds
(6.11¢)
Oé;zg[wK](so, r,c) = [) K (so, s, c)mw(s)g(r, s,c—ig)ds
(6.11d)
O wKI1(r, s, ¢) = / K (s, 50, Ow(s)G(r, s, ¢ + ie)ds (6.11e)
’ 0
OR wK1(so, 7, ¢) = / K (50, 5, )w(s)G(r, s, ¢ — ie)ds (6.11f)
’ 0
OV [wK](r, s, ¢) = / K (s, 50, Ow(s)d,G(r. s, c + ie)ds 6.11g)
’ 0
OP[wK(so, 7, ¢) = / K (50,5, Ow(s)dsG(r, s, ¢ — ie)ds. (6.11h)
’ 0

@ Springer



4 Page 84 0f 192 J. Bedrossian et al.

The proofs of the following Lemmas are given in the subsequence sections.

Lemma 6.4 Leta € {S, G, rG}. For each set of weights {wj} and ordering of oper-
ators bj € {S, 8, G, rG} there exists kernels B(I)Xa e B;?; Ybie such that (recall
abuse of notations (6.5), (6.6a))

Zxaow1Zyp, o---wyZyslgl(r,re, &)

o e 2i8M,(S()) (1)
= /0 (/(; 7('4 ) Xa (s so,c)B ’’’’’ YS;S(so,s,c)dso

(u—c)
oy

Zyp o wj1Zyp, owyZxq o Wy+1Zyp, 0wy Zyslgl(r,re, &)

o0 o0 2i8M/(S0) (1)
= ) y w—c)2 el By vby xae( SO’C)BXa Ybyi1,. ys:e (80, 8, €)dso

(u—c)
el
moreover if the last Y S operator is replaced by the allowable alternatives, the expres-

sion changes via:

Y ¥G = — 1 =9 1
(u —c)? + &2
_ i
YS— Y§ = =) e

H b
(u —c)? + &2 (u —c)? + &2

(notice that the final operator cannot be YrG; see Lemma 6.1). The operators are
obtained by the following recursion formulas:

1. To define B® we use the recursion scheme:

2) 2)
By ayby...vby \.ybye(50:7-C) = Ob, . a[wJBXa Yby....¥by 1261 (50,75 ),

and if J = 1 then Xa plays the role of bj_;.
2. To define BV we use the recursion scheme

(1) _ D )
BYb|,Yb2,...,Xa;s(r’ S0, C) - Oln;s[w1 Bsz,‘..,Xa;s](r’ S0, C)’

Lemma 6.5 For a = §, for each set of weights {wj }, and choice of operators b; €
{S, 8, G, rG} there exists kernels (depending on the weights) such that

Zyp o---owyZyp, , owyZxslgl

o0 2ie 1)
= | 7@{_@2_’_823”1 .... th/’Xa;g(r,s,c)g(s)ds

Zypyo--rowyZyp, yowyZxaowy1Zyp,,, 0 wy+12yslg]
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L[ 2ieBso) @
= /0 </(; (u —C)2+82 BYb[ ..... Yb/,Xa;s(r’SO’C)BXa,YbJH ..... YbJ/;a(SO’S’C)dSO

(u —c)
(u — c)? +82g

(s)ds,

where the last operator is changed for YS +— Y G, Y § then as above

(—c)
(u—c)? +¢?

(u—rc) 2ie
(u—c)2+¢2 i u—c) 4%

YS—YG =

YS+— Y6 =

The kernels are constructed via the following recursion.

1. To construct the BY kernels we use the iteration scheme
(1) _ D (H
BYb],sz,.‘.,XzS;s(r’ S0, C) - Ob];s[wlBsz,‘..,Xé;s](r’ S0, C).

2. The first steps of B® are given by:

2 .
B;g,mg = G(so,r,c —ie),

and to construct further kernels B®) we use the recursion scheme

?2) _ 2)
Bys yb,.... YbJ_l,YbJ;s(SO’ s,¢) = Oqu:e[wJBxa,yb.,...,Yb]_.](50’ r,c).

Lemma 6.6 For each set of weights {wj} and choice of operators b; € {S, 8, G, rG}
there exist kernels Bxs yp,,....vb, ¢ (depending on the weights) such that

- Cj (s,

o
w1 Zyp, 0---owyZyslgl = f Byb, Ybs,...Ybs;e(r, $, €) ——5——
0 (u—o

with the requisite change for YS +— Y G, Y$§ as above (as usual, the final operator
cannot be YrG). To construct the kernels we use the following scheme as above:

1. All of the basic kernels are given by
Byy.e =G(r,s,c—ieg).
2. Further kernels are constructed via
2)

BYb],...,Yb],],ij;é‘(SOa r, C) = Obj_l;E[wJBYbl,...,ij,1;8]~
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6.3.2 Estimates on Iterated Integral Kernels

The next step is to use induction to deduce the requisite estimates on the B kernels
appearing in Lemmas 6.4—6.6. In order to effectively pass to the limit e — 0in (2.28),
we need to prove that the kernels satisfy a variety of regularity properties. Moreover,
in order to close the induction argument, a variety of additional regularity properties
are required as well. These properties are outlined in Definitions 6.7 and 6.8 below.

Recall the bounding functions defined in (2.39). Further, define the following vari-
ants of the dg derivatives suitable for functions of three variables:

1 1
(r)
PN PR B 6.12
G G u/(r) r + u’(rc) e ( a)
1 1 1
8g,s) _ 3 + A, + Oy . (6.12b)
u'(r) u'(s) u'(re)

Definition 6.7 (Suitable (J, £, y) kernel of type 1). We say K®(r,s,c) is a Suit-
able(J, £, y) kernel of type I if the following properties hold for ¢ £ ie € I, with all
constants independent of ¢:

(a) uniform boundedness and regularity away from the critical layer:

|Ke(r. s, 0)| S |u' ()| K, s, 0)B(r, )Ly e (r, s) (6.13a)
[ro, Ke(r,s,0)| S |u' ()| K(r, s, )B(r,s)Lye(r, )
kl|r—re
x | k+ l\r—rc|<rc/k log———1 ), (6.13b)
c
[redr, KE(r, 5, 0| Vs—roron S K [0/ ()| K(r, 5, 0)B(r, )Ly e(r, 5)
klr—r
X <k + 1o )<r/k |lOg u > ; (6.13¢)
.
(b) regularity near the critical layer:
‘38)1(8@, s, C)’ Vs—rol<re i Lir—rel=re i
S ———k|u' ()| K(r, s, 0)B(r, )Ly e(r, s, 0) (6.14a)
|reu’ (re)l
‘3(Gr)K£(V, s, C)‘ 1|r—rC|<r(./k1|s—rl,|zr(./k
S ————k|u' ()| K, s, 0)B(r, )Ly o(r, s, ) (6.14b)
[reu’ (re)l
‘rarag)Kg(r, s, C)) Ly <rejk Ns—rel=re k
1 k|r—
S |u' ()| K(r, s, 0)B(r,s)Ly(r, s, ) (k2 + k |log Klr = rel ) ,
[reu’ (re)l I'e
(6.14¢)
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‘ag’s)Kg(r, S, C)’ l\r—r(.|<rc/k1|S—rc|<"c/k

k|u' ()| K(r, s, 0)B(r, )Ly e(r, s, c) (6.14d)

)

(6.14e)

~ reu/ (re)l
‘rarag’s)Ks(r, s, C)‘ Ly —ri<resk Ns—rel <re sk

1 k — Ic
< —— W' | K, 5, 0B, )Ly o(r, s, ) (k2 +k ‘log klr = rl

~ reu (re)|

re

(c) Holder regularity in s near the critical layer: for |s — r.| < r./k there holds:
|K®(r.s.¢) — K*(r.re, 0|

_ 14
< W/ &K 5, 0BG, $)L1 4(r, 5, 0) (M) (6.15a)

I'e

08 (K5 5,00 = KE e, )| Lrzree

_ v
k|u' ()| K(r,s,0)B(r, )Ly (r, s, c) (M> (6.15b)

~reu! (re)l re
‘3&”) (Ka(rv S, C) - Kg(r’ Te, C))‘ 1\r7r0|<rc/k (6150)

_ Y
k|u' ()| K(r, s, )B(r, )Ly 4(r, s, ) <M> (6.15d)

S
[reu’ (re) |

|r8r (Ks(r, S, C) - Kg(rv e, C))| 1\r7r5|2rc/k

2 ’ k|S _rc| Y
SE ' ()| K@, s, 0B, )Ly e(r,s,0) | ———— (6.15¢)
re
|rcarc (Kg(ra s,¢) = K*(r, re, C))| 1|r—rclzrc/k
30 kls —rcl\"
SE ' )| K, s, 0B, )Ly e(r,s,0) [ ——— . (6.15f)
re

(c) convergence: there exists an n > 0 such that ¢~ (Kg — KO) satisfies (6.13),s
(6.14), and (6.15) for z € I, and ¢ sufficiently small.

Definition 6.8 (Suitable (J, £) kernel of type II). We say K®(r, s, c) is a Suitable
(J, £, y) kernel of type II if the following properties hold for ¢ = ie € I, with all
constants independent of &:

(a) uniform boundedness and regularity away from the critical layer:

|Ke(r,s,0)| S |u' ()| K(r, s, 0)B(r, s)Lye(r, s, c) (6.16a)
|sdsKE(r, s, 0)| (6.16b)
/ kls —rel
Sk|u' )| K@, s, 0B, )Ly e(r,s,¢) | k+ Ljs—r < log ———=1 |,
I'c
(6.16¢)
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|rcarcK€(r1 S, C)| llr_r<r‘>r0/k

kls—re
SEu ()| K(r, s, )B(r, )Ly e(r, s, ) (k + 15— ro|<rosk |log Kls = rel ) ;
C
(6.16d)
(b) regularity near the critical layer:
‘B(GX)KS(F,S, N Ls—rey<re sk Lir—re=re jk
1
S ——k ‘u/(s)‘ K(r,s,c)B@r,s)Ly¢(r,s,c) (6.17a)
[reu(re)| '
la(Gr)Kg(l’, s,¢) 1|r7r6\<rp/k1|sfr5|2rp/k (6.17b)
S 7/(‘u/(s)‘]K(r,s,c)B(r,s)llj o(r,s,c) (6.17¢)
[reu/(re)| '
Sasag)KE(rs S, C) 1\r7r0|<rc/k1|s7rclzrc/k (617d)
1 kls —re
S ———— |[W'(&)|K(r,s.0)B(r, s)Lye(r.s,0) <k2 +k |log Kls = rel ) ,
[reu (re)| I'e
(6.17e)
‘3g"Y)K8 (r,s, C)‘ 1|r—rc|<rl-/k1\s—r(-\<rc/k (6.171)
1
S ————k|u' )| K@, 5, 0)Br, )Ly o(r, s, ) (6.17g)
|reu’(re)l ’
(Sasf’g’s)Kg(h s, C)’ L —rol<re ks —rel<rek (6.17h)
1 kls —
S — ‘u/(s)‘ K(r, s, c)B(r, )Ly o(r,s,c) | kK + k|log kls = rel ;
[reu’(re)| ' re
(6.171)

(c) Holder regularity in r near critical layer: for |r — r.| < r./k there holds:
|Ko(r,s,¢) — K*(re. 5, 0)|

_ Y
< |u/(s)| K(r,s, c)B(r,s)Ly¢(r,s,c) <M> (6.18a)

Ie

‘B(Gr) (Kg(r» s,¢) = K*(@re, s, C))‘ lls—rclzr(./k

_ Y
k|u' ()| K(r, s, )B(r, )Ly o(r, 5, €) <y) (6.18b)

1
~reu! (re)|

00 (K7 5.0) = K es 5, 0) [ Vismrefzropt

1 , klr —re\
< 7k|u (s)|K(r,s,c)B(r,s).CJ,g(r,s,c) _— (6.18¢)
|reu (re)| I'e
|sds (K°(r,5,¢) = K*(re, 5, 0)) | Ns—rel=re /i
2 klr —re\
<k |u (s)|K(r,s,c)B(r,s)LJ,g(r,s,c) _— (6.18d)
re
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|redr, (KE(r,s,¢) — K°(re, s, 0))| Lis—ro|=ro s

_ y
<K }u'(s)‘ K(r,s,c)B(r,s)Lye(r,s,c) (M> ) (6.18¢)

re
(c) convergence: there exists an > 0 such that ¢™" (K £—K 0) satisfies (6.16),
(6.17), and (6.18) for z € I, and ¢ sufficiently small (depending only on k).

Remark 6.9 Note that the main differences between Definitions 6.7 and 6.8 is in the
regularity requirements.

First, we prove that the Green’s function is the prototypical suitable kernel of both
types.

Lemma 6.10 The Green’s function G(r, s, ¢ & ie) is both a suitable (0,0, y) kernel
of type I and a suitable (0, 0, y) kernel of type Il for all y € (0, 1).

Proof of Lemma 6.10 Consider just the case statement of Type I; Type II is exactly
analogous.

Step 1: Proof of (6.13) First, consider the boundedness estimate (6.13a). From Lem-
mas 5.2 and 5.4 (and 2.1),

—i 31
G, s,c—ie) < max(s ™!, s*) min r—L, —
u'(s) k' kr?

gkH1/2 ght2+1/2 ght1/2
X <1r¢§115<r 15<”rk+73/2 + 1rC<s<lkr1H_27+3/2 + 15>lkrk+37_‘_1/2
C C C

rk73/2 k+1/2 k+1/2
¢ c ¢
X 1r<r(;krk_1/2 + lrc<r<1 k1372 + 1,5 k=172
rk+1/2 pk+2+1/2 rk+1/2
+ 1r6511r<s 1r<rCT3/2 + 1rc<r<1kT+3/2 + 1r>lkm
re e re

rk73/2 rk+l/2 k+1/2
¢ ¢ c
X 1s<r(-ksk_71/2 +1r(,<s<lsk+3/2 +1s>1sk_1/2

Sk+1/2 Sk+5/2 Sk+l/2
+ 1rp>11s<r 1s<1 m + 11<s<rc m + 15>rckm
re Te e

k+5-1/2 k+5—1/2 k+5/2
( ¥, / re / re / )
X

C
1r<1krk_71/2+11§r<rpkrk_‘_73/2+1r(:<rm

rk+1/2 rk+5/2 rk+l/2
+ 1rL'>I 1s>r 1r<] m + 11<r<rc m + 1r>rckk_75/2
Te Te Te

k+5-1/2 k+5—1/2 k+5/2
rc e e
S (13<1ksk—l/2 + 11§s<rcksk+73/2 + 1r5<s Sk—l/z) )

Sk_1/2 Sk—1/2 r2 Sk—1/2
s 1rc<l 1:<r<rrm + 1s<rc<r<1m% + 1~v<r0<1<rmrc2
= rk=1/ rk=1/2 rk=1/

k372 k372 k3172
+ 1, cs<r<t Ty} + lrc<s<1<rrk_71/2 + 11<x<rrk_71/2>
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Sh1/2 ph+172 2 rk+1/2
C
+1,.<1 (1r<5<,»C sy + 151 GKHI2 32 +1rcr<i<s sk+l/2s r.
AhH241/2 k2172 rkt12
+ 1 <r<s<i prEsray; Lio<r<izs e ST Licres sk—172° )
k=1/2 gk=1/2 sk=172 1
+ lr(,>1 (ls<r<1 m + 1S<1<r<r<- m + 1.;<1<r(, <" pk=1/2 E

sk=1/2 sk345/2 sk+1/243
+ 11<s<r<rc k1372 + 11<s<r[<r k=172 E + 11<rc<s<r k=172 )

rk+1/2 rk+l/2 rk+1/2
+ 1r¢>1 (1r<s<l W + 1r<l<s<rc Ws + 1r<l<rc<s WS rc_

sy P2
+11<r<s<r(;sk+71/2r s +11<r<r‘»<ssk+71/25 rr.

P2
+ 1l<rp<r<s WS ) g K, s, C)B(V, s),

which is (6.13a). The estimate (6.13b) follows from a similar argument together with
Lemma 5.5. To see the r.9,, control, first note that

—redr, M
(g(r,s,c)) 1 rTZ)(Z)Ho(r,c)Hoo(s, c) r<s
rc0r, =

u'(s) W (5)M(2) %Ho(r,c)Hoo(s, c) s>r

+ 1 re0r, Ho(r, ) Hoo (s, ¢) + Ho(r, ©)rc0r. Hoo(s,¢) 1 <
u'($)M(2) |redy Ho(s, ¢)Hoo(r, ¢) + Ho(s, ¢)rcdr, Hoo(r, ©) 1 > 5.
Hence, all the lemmas in Sect. 5 together imply (6.13c) as in (6.13a).

Step 2: Proof of (6.14) Consider the case |r —r.| > rc./k and |s — r.| < r./k as in
(6.14a). Here we have,

5 (g(r,s,c)> _ 1 redr, Hy(r, c)Hoo (s, ¢) + Ho(r, )0 Hoo(s,¢) 17 <
G w(s) ) w(s)M() |agHo(s, c)Hoo(r, ) + Ho(s, ¢)redr, Hoo(r, ¢) 7 >s

u” (s) redr M(2)\ | Hy(r, c)Hoo(s,c) r <s
a ((u/(s))3M(z) M2(z) ) Ho(r, 0)Hoo(s, ) 7 > 5.
By the lemmas in Sect. 5, we deduce (6.14a). Note further that from the lem-
mas in Sect. 5, we may deduce a logarithmically singular upper bound on
50 88 ) ((u’ )G, s, c)). This is important both to verify that the kernel is suitable
of type II but also to prove the Holder regularity (6.15) below. The estimates (6.14b)
and (6.14c) are analogous and omitted for the sake of brevity. Consider the estimates
(6.14d) and (6.14¢) next. We have
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) (g(r,s,c)> . 1 0 Hy(r, c)Hoo (s, ¢) + Hy(r, c)dgHoo(s,c) 7 <s
¢ W'(s) ) w(s)M() |dgHo(s, ¢)Hoo(r, ) + Ho(s, ©)dg Hoo(r,c) > s

W' (5)*M(2) M(z) Ho(r,c)Hoo(s,c) 1 > 5.
(6.19)

_< u (s) rcarvM(z)> [Hg(r,c)Hoo(s,c) r<s

Hence, this satisfies the desired estimates by the lemmas in Sect. 5. Similarly, we can
obtain sd; estimates as well.

Step 3: Proof of (6.15) The inequalities (6.15a) are a consequence of the log-Lipschitz
regularity of G in both variables (from Lemma 5.5); we omit the details as they are
straightforward. Finally, we note that the convergence stated in Definition 6.7 follows
from the lemmas in Sect. 5. O

Next, we prove that all possible integral operators arising in the iteration scheme
are suitable.

Lemma 6.11 (Iterated integral operators O(gj 2 and (’)gj l). LetK g(l) be aSuitable(J, ', y)
kernel of type I and Kg(z) a Suitable(J , €', y) kernel of type II. Further, suppose that

1

1 5 £+1
0 S -, —.
lw(r)| + |ro,w(r)| S max <r2 r > e

Further, suppose £ + ¢’ < k — 1/2. Then, foralln > 0and y' € (0, y),

o O [wK"Yissuitable (J+1,€'+L+1+n, y") of type ], 05 [wK " is suitable
J, ' +L+1+n,y)of type I;
o O wK P Vis suitable (J + 1,0 + €+ 1+, y") of type Il and O

Dwk P is
suitable (J, 0 + €+ 1+ n, y’) kernel of type II.

Lemma 6.12 (Iterated integral operators (’)g)). Suppose that K;l) is a suitable

(J, ', y) kernel of type I and Kéz) is suitable (J, ', y) kernel of type Il. Further,
suppose that

1 t 1
lw(r)| + 1rd,w(r)| < k> max (—2, r2> max(—, 1),
r r

andthat {+{' < k—3/2. Then, foralln > 0,andy’ € (0, y), O(Gl;)s[ng(l)] is suitable

(J+2, € +0+1+n, y") of type Iand O [wK P is suitable (J+2, £/ ++141, ')
G;e
of type I1.

Lemma 6.13 (Iterated integral operator Of] 6)). Suppose that

1 ¢
lw(r)| + |réyw(r)| < max <—2 r2> max(r 4, 1)
r
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and that £ + ¢’ < k —3/2. Suppose that the kernel Kg(l) is a suitable (J, €', y) kernel
of type I and that Kéz) is a suitable (J, ', y) kernel of type II. Then, for all n > 0
andy’ € (0,y), Of_lg[ng(l)] is a suitable (J + 1,0 + €+ 1+ n, y') kernel of type
I and Of;zg[wl(s(z)] is a suitable (J + 1,0/ + £+ 1+ n, y’) kernel of type II.

We now prove Lemmas 6.11-6.13.

Proof of Lemma 6.11 The cases of j = 1 and j = 2 are essentially the same, we will
focus on j = 1 here. The treatment of Oy is similar to, but slightly harder than, the
case Os, so we focus on the former. Define:

K(r, s0,¢) = /OOO %w(s)g(r,s,c+is)K(s,so,C)ds.

Boundedness Estimate (6.13a) Most of the non-trivial methods involved in the proof
of Lemma 6.11 appear in some form in the proof of (6.13a). Recall (4.3) and split the
integral based on proximity to the critical layer:

= [ w—=ou'(s) G@r,s,c+ie)
K(r,so,c) = /(; —(u Tt e (Xc + )(75) w(s)—u/(s) K (s, so, c)ds
= Kc+ Ky. (6.20)

First consider the problem of estimating K + forr. < 1. In the case of K -, we apply
Lemma 6.10 and (A.1),

1 -
lr =< —K ’ ’
<1 7 50) £(r, s0,0)
> Ju'(9)]
S« | |x;é lw(s)| K(r, s, c)B(r, s)K(s, so, 0)B(s, s0) Ly ¢ (s, s0)ds
0 u—=c

A

o0
bt / e e+
- si+2tmax(s?,r2) ~ =

x K(r, s, 0)B(r, $)K(s, s0, 0)B(s, s0) Ly e (s, 50)ds.

This integral is estimated by a tedious, but straightforward, calculation. Note that the
requirement ¢ + £/ < k — 1/2 is necessary to ensure the resulting integrands are
integrable at zero and infinity. The calculation is summarized via:

1 -
—— Ko, «(r, 50, C)

1
"= (s0)

_ Fh1/2 k S/(;— 1/2 X
S br=sozrest K172\ 20ty +lspzrares k=172 \ 2206+
0 0

k—1/2
1 résy ! k
+ so<re<r<1 35172 \ 20+0)+2
So
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2 k=172
résy k

+ Lyy<r<i<r 172\ 2@
0

! r2[—2s0—25,7 r2([+£’)—2) (log r)

+ max (s, 2t ,

2. k+1/2 k
C
+ Lo<r<r,<so<1 S2Sk+1/2 (rz(ue/)ﬂ)
0

0
. p2pkHl/2 [ p22k=20-20 k
Flresr=sos1 55510 2k+4 + 220420
5050
3/2+k _ /
; So/ + r3+2k 2(04-1") k
+ hreswsr<1 kT e
r SO SO
k+3/2 [ 242k—2(¢+L)
1 0 re + k
T lresso<t=r 5373 2k+4 242(0+1)
r Ky s,
0 0
_ny/ N _ _nyp!
+ max(s, 2 , P2EHe) 2, r2t 2s0 2t ){logr)
rk+1/2r3 4 k Ly
+ 1< <1< ETI (s0) T, max(m, 55°)
0

+max(1, 2072 (log s()))

r2pk+1/2 4 (r2+2k—2£

4

’
max(rc_zlZ R s%e )

c
+ lrcgrflgso k+1/2 <SO> A2k
S
0

—20 20 2(0+£')—2
g max(r 5 + max (1, 5" )(10g50>>
rk+1/2 4 r2+2k72€ ' o0
+ lrcglgrgsom(m) < : T max(r. =, s5°)
s
0
+ max(1, s§(£+£’)—2) (log s0)>

k—1/2 F2H2k=2¢
4 e
2k
So

=20 20
)

max(r,

1 L (s
+ rcglfsoﬁr rk*l/Z( 0>

+(log r) max(1, r2¢+¢)=2)

A key constraint is to not lose powers of . ! while still gaining the improvement
encoded in K, that is, we specifically want £ to be independent of r., so when e.g.
re K r, 8o, we still need to get good estimates (which one observes is indeed the case
using that £ + ¢’ < k). After simplification, we therefore have the following estimate
for all n > 0,

1,.< Ko,2(r, 50, 0)| SK(r, 50, OB, 50)L 41 0404144 50),  (6.21)

u'(s0)
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which is the desired estimate. In the case r. > 1, we similarly have (omitting the
tedious intermediate steps):

1 ~
1, o1 |—— Ko 2(r, 50, 0)| <
sl s 0.£(r, 50,0 S

00 1
2 2\ 20-7
1r¢.>1/ <S1+2€ lsil +InaX(VC,S )s 1521)
0

x K(r, s, 0)B(r, s)K(s, so, c)B(s, s0)L s ¢ (s, s0)ds
S B(r,so) Lyt1,040 4147, S0)- (6.22)

This completes the treatment of the K ..

Consider next the contributions of I?c. First consider the case that |r — r.| < r¢/k.
Near the critical layer we write

| B . G(r,re, ) K(re, S0, €) (uw — o' (s)
W(sg) el 0 ) =W T T ) / ot el
o (u — o)u'(s) G(r,s,c) K(s, so, ¢)
+/0 w—or+ ( O70s w0
—w(}’c) g(r7 rCa C) K(r()v SO’ C)) dS
u'(re) u’(s0)
= Igcl + I%CZ-

For Kcl , by Definition 6.7, Lemmas 6.10, A.1 and A.3, followed by arguments similar
to those to deduce (6.21) and (6.22) without losing powers of rcfEl we have the following
estimates:

‘Kcl(r so,c)‘ < max(r2, 1= () K (r, re, €)B(r, )

c’ C
x K(re, s0, )B(re, s0) Ly o (re, s0)
S K, so, )B(r, s0) Ly gr40+1(, 50).

Next, turn to K. By the logarithmic regularity in Definition 6.7, we have (using
|re —s| < r¢/k and Lemma A.1),

s — el

|K(S, 50, C) - K(rc, S0, C)| 5 K(r01 S0, C)B(r07 SO)ﬁj,e’(”c, SO)

re
1
x/ re 105K (re +0(s — ro), 0, )] d6
0
|s_rc|

C
kO |s — r.|
g—

re

S K(rc‘s sOv C)B(rC$ SO)
1

|,

0
g K(r(,‘ﬂ 50, C)B(r(,‘v SO)EJ,E/ (rC7 SO)

I).

kls —
X (k—i—‘logM

re

k + |lo

a0

s — 7

c
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Analogous estimates also hold for G due to Lemma 6.10 (and clearly also w). There-
fore, we have (again arguing as in (6.21) and (6.22) to avoid losing powers of r.),

< max(r2, r- D) ) TR, 1o, OB, 1)K (e, e, €)B(re, $0)L g0 (res 50)
© w—=ou'(s) |s—rel kls —r¢

. k+ [log =2 — "<l ) g

X/é X(u—c)2+82 re +[log e s

< max(r2, r- ) ) TR, 1o, OB, 1)K (e, 80, OB (e, 50)L g1 (Fes 50)

S K(r, s0, )B(r, $0) L j41,e+0+1(1, 50)-

‘kCZ

This completes the proof of (6.13a). B
rd, estimates (6.13b) Next, we estimate 79, K. By continuity of G and K,

(u—ou’  K(s,so,c) wHy(s,c —ig)
—o)2 462 u(sg) M(c—ie)

3 K (r,s0, )
u'(s0)

=ro,Hx(r,c — is)/
o (u

o0 —ou’ K(s,50,¢) wHx(s,c —i
—l—rarHo(r,c—ie)/ (u 2c)u 5 (5, 50, €) wHoo(s c. le)ds.
, (W—c)y*+e¢ u’(sg) M(c—ie)

From the arguments used to deduce (6.13a), for |r — r.| > r./k and the lemmas of
Sect. 5, we can derive (6.13b) in the same manner as (6.13a). The details are omitted
for brevity. Turn to the case |r — r.| < r./k. In this region, our goal is to deduce the
logarithmic upper bound; in order to avoid losing an additional logarithm we will need
to extract a cancellation. Write,

K(r, 50, ¢) . (u —c)u’ wHy(s,c —ig)
oo R (Z)/ o7+ ST
u — oy’ wHy (s, c —ie)
—ru ROr(Z)/ EpSC 2K(S,SO,C)WdS
. —ou'
(rar oo(r,2) —ru R, (Z)/ —Pte ————5K(s,50,¢)
wHy(s,c —ie)
— ) ds
M(c—ie)
o, H ' 'R R Ul 0L
+("r o(r,c—ie) +ru O’r(Z))/r m (s, 50, )

wHy (s, c —ie)
M(c —ie)

ds

T;.

I
.M“

Jj=1
From Lemmas 5.4 and 5.5, we deduce 79, Hyo — ru’ Rf,oo is bounded near r & r., and

hence 73 and Tj are treated using techniques used above in the proof of (6.13a). Due
to the inability to extract an additional cancellation, these terms are logarithmically

@ Springer



4 Page 96 of 192 J. Bedrossian et al.

unbounded (since f; ((”_C)“/ g(s)ds is singular near » ~ r. for any smooth g; see

(w—c)*+e2
Lemma A.3):

T3+ 11D Ve <re g S |t (50)| K7, 50, B, 50) Ly 41,0 404140 (T 50)
(k + |lo > )

which is consistent with (6.13b). For T and 75, first divide via

k|r—re

rc

T +T1T,= VM/R‘?OO(Z)/ w w ;)20)1 5 XK (s, s0, c)%
—ru ROr(Z)/ w ;)ZC)JL: 2XcK(S,So,C)%_C;)i8)ds
+ru'R;. (Z)/ (u(u— o’ ZX;éK(S so,c)%ds
— ru'Rf, r(Z)/ (w ;)26)1 ZX;éK(S,So,c)%ds

=T+ T + Tl;;ﬁ + 1o 2.

The terms Ty, and 75+ are also treated as in (6.13a) and are hence omitted for
the sake of brevity (in particular, Ré,r and R; , contain a logarithmic singularity by
Lemma C.1 but the integrals involving K do not due to x.). For the remaining terms
we use the following cancellation:

u—c)u
Tl;c+T2;c =rul< foo E(rc,Z)f ( ) - a— { ds)

C)2+ 2 /e
" o(u—ou wHy(s,c —ig)
——— . K (s, 50, —d
X,/O (u—c)2+82X (s, 50, €) M(c —ie) s

. T (u—-ou
—ru (RO,,(Z) — E(rc,Z)/O m)(cds>

® (u—ou wHso (s, c —ig)
X[ WXCK(S,SO,C)W(LY
u — o’ T o(u—-ou
(E(FL,Z)/ S ————5 5 Xeds >/0 otk
wHy(s,c —ig) w(re)
X (K(S,SO,C)W — K(rc,S(),C)m)
(u — o’ © (u—cu
(E(“)/ w—-o?+e” ”ds)/r w—c? e
K wHeo(s, ¢ —ig) K w(re)
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Note that e.g.

(u —cyu’

[o,0]
R¢ ) — E(re, 2 ———x.d
@ ECe D) [ SR s

/OO (= O (E(s,2) — E(re, 2)) xcd
= ———— (E(s,z2) — E(re, s,
ro (=) + g2 : e

does not have any logarithmic singularities by arguments used in the proof Lemma

5.2. From here, the above terms are estimated in manners analogous to the arguments
in the proof of (6.13a) and are hence omitted for the sake of brevity.

Derivatives involving 9, First we prove (6.13c). Taking a 9, derivative directly yields
(integrating by parts in s),

l’cﬁrﬂk 2/ redy, (M) w(s )MK(s,so,c)ds
0

—0)? u'(s)

o0 (u — o)u'(s) G@r,s,c+ie)
+/(; X# (W) w($)re0r, (X;éﬁlf(s,so, c)) ds

+ [mu’(rc)rc (M) w(s )3(5) < MK(& 50, c)) ds
0 _

o2 W)
3 ~
=2 _Kj.

Jj=1

Due to Definition 6.7 and Lemma 6.10, we can apply the methods used above to prove
(6.13a) to prove that (6.13¢) holds for K and K». For K3, we need to argue that the
presence of 9, derivatives on G does not stop us from finding a similar cancellation
as we used in the proof of (6.13b) above. To that end, note that for |r — r.| < r./k:

reu' (re)

u'(r)

redr Ho(r, 2) = retd (r0)dy) Ho(r, 2) — ro, Ho(r, 2),

The former term is bounded from Lemma 5.5 and hence in the neighborhood of r = 7,
we can extract the same cancellation in 153 as we did in (6.13b) so that we deduce
only one power of logarithm is lost. We omit the repetitive details for brevity, which
concludes the proof of (6.13c).

Next, consider the proof of (6.14a) (which is relevant for the region where r % r.
and so ~ r.). In this case,

3((;0)16(7',50, o) = [ 1 ar(. ( (u —c)u (58)2) w(S)X;&MK(S’SO’ c)ds
0

u'(re) (u — 0)2 + u'(s)
© (u =)/ (s) . G(r,s,c+ie)
* ./0 (m) a(GO) (w(s)X#TK(S, 50, C)) ds

© (u— o' (s) 5.5 G@r,s,c+ie)
(i) o (v (T ) reks 0 as
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Notice that since r % r., we do not need to obtain additional regularity in r in order
to satisfy Definition 6.7. From here, we may again apply the methods of (6.13a) to
deduce the desired estimates.

Next consider (6.14b) (which holds in r =~ r, but 5o % r.) Here,

00K = foo X# S, < = Ju'(s) >w(s)wl((s,so,c)ds
0

w' (re) (u—c)?+¢2 u'(s)

R EGSTLOR WY I GE R L)
+./() ((u_c)2 ) ()8 <5‘é u'(s) K(SsSO,C)>dS

+/ (  — ' (s) ) (3L <Xcg(r,s,c+i£)K(s’s0’C)> s
0o \—0o?+ u'(s)

(6.23)

Obtaining boundedness estimates is again a straightforward adaptation of the proof of
(6.13a). Next, consider obtaining (6.14c¢). For this we apply an rd, to (6.23), however,
some care must be taken due to the jumps in the derivatives of G:

ra,ag”l% =/ X£_ o ( (w —o)u'(s) )w(s)rarwl((s,so,c)ds
0

w'(re) "\ (u—c)? + &2 u'(s)

(u —cyu’(s) ) G(r,s,c+ie)
o (W) ) (e 7K )

+/ (M) w(s)rd 3(”>< CMK(S,SO,C)) ds
0

u—c)? u'(s)

3
=> Kj; (6.24)
j=I1

note that two of the potential boundary terms from r = s vanished due to the presence
of x and the assumption that |r — r.| < r./k whereas the other two boundary terms
coming from r = s vanished due to the symmetric structure of (6.19). The K and K
terms are estimated in essentially the same manner as done previously for (6.13b) and
are omitted for the sake of brevity. To treat K3, again we use a cancellation analogous
that used in (6.13b) to avoid losses of higher powers of logarithms. This is only an
issue if both derivatives land on G (otherwise the situation is essentially the same as
(6.13b)). Recall the identities:

1 .
0,96 Ho = 9,96 (m) —u' (86 P) (R, (2) FiEG,)

— (u —2)(8:96 P) (R; . (2) FiE(,) — (36 P)u'(r)E(r, 2)

, r M/(S) ,
+ (u P+ (u— Z)arp)/ w 3G (XcE)ds + Pu'(r)dg (xcE)

/( u' ( c) u'(s)
_ /(r 3 r¢)f ——FE(s,2) — 2 X0 E(s, 2)ds,
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and

0,06 Hoo = 0,06 <m> +u'(3G P) (Rf,oo(z) F iEf,oo)

+ (u = 2396 P) (R} o (2) FIEy o) + (9 P)u'(NE(r, 2)

(u’P+(u—z)8r V[ e ey ds = Pu' ) (1)

u (S)u (re) u'(s)
¢)/ —E(s,2) — X£0r E(s, 2)ds.
’( S —2)? w—2"""

We see that the logarithmically singular terms between 9,0 Hoo and 9,9 Ho in
K3 in (6.24) have a structure similar to that of 0, Hy, and 9, Hy that was exploited
in the proof of (6.13b). Note that singular terms in e.g. 9,9 Hop are u'd¢ Rar and
u'P for ﬁag (xcE)ds. After these observations, the proof follows analogously and
is hence omitted for the sake of brevity. This completes the proof of (6.14c). The
proofs of (6.14d) and (6.14e) are straightforward variants of the techniques used on
the other inequalities in (6.14) and are hence omitted for the sake of brevity.

Holder Regularity in sy near r. estimates Notice that:

Ié(r,so,c)—k(r,rc,c)zf (K (s, 50, ¢)
0

(u—c)

_K(S, e, C)) m

w(s)G(r, s, c —ig)ds.

Consider first obtaining (6.15a). The only difference between proving (6.13a) and prov-
ing (6.15a) is the lack of an analogous Holder regularity estimate on 9, K (r, 5o, ¢) —
8,1? (r, r¢, ¢) (which was used to control s = r.). This is dealt with via the following
(see the proof of Lemma A.4 for a similar approach): for 6 € (0, 1),

‘k(r, 80, C) — K(r, Fe,C) — IZ(rC, 50, ¢) + K(rc, e, c)’
- - - . 0
< (‘K(V,SO, c) — K(re, so, C)‘ + ‘K(r, e, €) — K(re, re, C)D

- - - - 1-6
X (‘K(r,so, c)—K(r,re, C)‘ 4 ‘K(rc, 5o, c) — K(re, re, C)D

(=Y (o) (et
re rc

and hence we choose ¥’ = y (1 — ). Other than this slight difference, the proof
of (6.15a) follows as in (6.13a). The rest of the estimates in (6.15) are adapted in
essentially this same way; the details are omitted for the sake of brevity.

r —re

k

re

Convergence as ¢ — 0 As seen above, verifying the boundedness estimate contains
most of the non-trivial work. Hence, for the convergence estimate, we will focus on
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this. That is, if we define

Ko(r, s0,¢) = p.v./0 u(tz)(s_) . G, Z;(CS;— ‘9 Ko(s, 50, c)ds,

we are interested in obtaining an estimate of the following form for some 7y, 72 > O:

|Rer 50, €) = Ro(r, 50, )| Sppoms €K 50, B, 500 Ly 1,504 14 (0 50)
Write the difference as the following:
Ig&(r’ 50, C) - 120(”7 50, C)

w—cw' G@r,s,c+ie)—G(r,s,c+i0) K. (s, 50, c)ds

") w=—orte u'(s)
(u—ou' G@r,s,c—i0)
(M _ C)2 + 82 M/(S) (Ké‘(s’ 50, C) - KO(S7 Ie, C)) ds

—i—p.v./ (( (u = cJu - )g(r’s’c+i0)Ko(s,so,c)ds

u—c2+e u—c u'(s)

The terms 77 and 7> are treated in essentially the same way as above (see Lemma
6.10 for control on G(r, s, c + ig) — G(r, s, ¢ + i0)). Hence, it remains to treat 73.
Sub-divide via:

u— o' u' Gg@r,s,c+i0) _,
T3:p.v./((u_c)2+82 i (xe + x) TK (s, 50, c)ds
=:T3c + T5.

For T3+ we apply (A.3) to obtain some decay and then we argue as in (6.13a). For T3,
we apply (A.4) (which applies due to the various regularity and convergence estimates
satisfied by K and G).

As remarked above, the rest of the claimed inequalities are a straightforward adap-
tation of the above arguments and are hence omitted for the sake of brevity.

Adaptation to Ogl case The case j = 2 is essentially the same. As above, we begin
by dividing based on the critical layer:

K@ (so,r, ) [ w=ou G(r,s,c+ie) K(so,s,c¢)
T'_/o m(}(c—i-x;ﬁ) wis) u'(r) u'(s) ds

=K+ K. (6.25)

The contribution from near the critical layer, IZC, is treated in essentially the same
manner as in the j = 1 case and is hence omitted for brevity. Hence, we need only to
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check the tedious but simple contributions of K +; we omit the intermediate steps for
the sake of brevity: for all n > 0,

k 207
<1 / (—L 5271
re<l S Are<1 5 oy lgo2gs<1 TS s>1
0 max(s?, r2)sl+

x x2K(s,r, c)B(s, r)K(so, s, ¢)B(so, s)ds

S Le<1K(so, 7, ) B(so, 1) L1 e404144(50, 7).

——K(s0,7,0)|1

’()

Similarly, we have the contributions from 7. > 1: for all n > 0,

o0 1
2 2\.20-7
1rc>1 ,S 1rc>1/ (mlsgl “Fmax(rc,s )s 1S>])
0

x x£K(s, 7, 0)B(s, r)K(so, s, c)B(sg, s)ds

K (s0,7,¢)

1
u'(r)

K 2(s0, 7, ¢)

151 S B(so, 1) L1 eer4149 (50, 7).

u'(r)

This completes the proof of (6.16a) in Definition 6.8. As discussed above, this estimate
involves most of the non-trivial work necessary to deduce the rest of Definition 6.8,
and hence the remaining estimates are omitted for the sake of brevity. O

Proof of Lemma 6.12 Consider the case j = 1 first. As there are no singular integrals,
we do not need to separate the critical layer from the rest, and hence the calculations
are a small variant of those done to estimate K + in the proof of Lemma 6.11 above.
As above, this is a tedious, but simple and direct, calculation, and hence we omit the
intermediate steps. For the case of r. < 1, using Definition 6.7, Lemma 6.10, and the
requirement that £ + ¢/ < k — 3/2 (to retain integrability at zero and infinity), there
G(r,s,c+is) ‘ K (s, 50, ¢)

holds
o0
<
rest = /0 W' (s) ' (s0)

00 k2 1 20
< — max | —;, 57 | K(r, s, 0)B(r, s)
0 S N
x K(s, sg, )B(s, s9)L(s, sg, c)ds
S K(r, 50, ©)B(r, s0) L j42, 0404144 (7, S0),

K(r 5o, ¢)| 1

/( 5 u ($)w(s)

and similarly for r, > 1:

K(r, 0, ¢)

00 k2 1 Y
1,51 5/0 S—3max (ﬁ,s )B(r,s)B(s,so)E(s,so,c)ds

1
u’(s0)
S B, s0) L2040 4149, 50)s
which completes the proof of (6.13a). As in the proof of Lemma 6.11, the remaining

estimates in Definition 6.7 follow from straightforward variants of the proof of (6.13a),
and hence we omit these arguments for brevity.
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As above in the proof of Lemma 6.11, the case j = 2 follows in a similar manner
with slightly different integrals. The repetitive details are omitted for brevity. O

Proof of Lemma 6.13 We will consider only the j = 2 case; j = 1 is the same. For
o (by symmetry of G),

K (s0. 7, S|

M =/ —sasg(s,r,c—is)&K(so,s,c)ds,
u'(r) o u(r) s

Boundedness estimate (6.16a) From Lemma 6.10 and definition 6.8, the proof of

(6.16a) is essentially the same as the corresponding estimate made on (’)g ),
Regularity estimates First consider (6.16¢). Taking an 9, derivative gives (using the
definition of M (2.32)),

. . r wos Ho(s,c —ig)
rop K (so, r,c) = w(r)K(so,r,c) +rorHoo(r,c —ie) | K(so,5,¢)—————————ds
0 M(c—ie)
wos Hoo (s, ¢ —i€)

o9}
+r8rHo(r,c—i8)/r K(s0,s,¢) Mc—ie)

This does not present any new challenges and hence (6.16¢) is deduced as in Lemma
6.11 (though significantly easier, as no delicate cancellation is necessary) and is hence
omitted for the sake of brevity.

The more subtle problem is d,, derivatives:

K (s0, 7, ) * 1 .
g, K(0:7.0) =/ —0,0,,G(r, 5, c — i&)w(s)K (50, 5, c)ds
o W

o

1

~|—f ——0,G(r,s,c —ig)w(s)d, K (so, s, c)ds
o u'(r)

= 121 + 122.

The treatment of K 2 is similar to the proof of (6.16a) and is hence omitted. Consider

next K. The trick is to integrate by parts so that two derivatives never land on the
same kernel (note that the boundary terms vanish):

Kl = _/r Laﬁ‘ (8r(,Hoo(r, Cc — iS)H()(S, C — l{;‘)
o u'(r)
+ Hoo(r,c —ie)dy. Ho(s,c — ie)) (w(s)K (sg, s, c))ds
- /r mas (9 Ho(r,c —ie)Hoo(s, ¢ — i)
+ Hoo(s, ¢ — i€)0y, Ho(r, c — i€)) (w(s)K (s0, s, ¢)) ds.
1

= /Or m (BrCHoo(r, c—ig)Hy(s,c —ie)

+ Hoo(r,c —ig)dy . Ho(s,c — ie)) ds (w(s)K (sg, s, ¢))ds
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+ /oo /i ) (0. Ho(r,c —ie)Hoo(s, ¢ — i€)

+ Hoo(s,c —i€)0r. Ho(r, c — ie)) ds (w(s)K (sg, s, c)) ds.

The log-boundedness (6.16d) follows from similar arguments as in Lemmas 6.12 and
6.11. Consider (6.17c) (which is relevant for r % r. and 59 = r.) for which we apply
the same approach:

o0
- 1
agO)K(so, r,c) = —/ e )Brcg(s, r,c—ie)ds (w(s)K(sg,s,c))ds
0 re

o0
+ / 0sG(s,r,c — is)w(s)a((;SO)K(so, s, c)ds.
0

Due to the restriction |r — r.| > r./k we can apply analogous estimates as in (6.16¢)
to deduce (6.17c). Similar arguments deduce (6.17a) and (6.17g) which we omit for
brevity.

Consider next estimate (6.17e). Some care is required due to the jumps in the
derivatives of G (recall this is only relevant in the case |r — r.| < r./k and |sg — r¢| >

re/k):
r8,3g)12(s0, r,c)

"]
=r3r/ M<8GHoo(r 2)0sHo(s, z) + Hoo(r, 2) ——— 0,05 Ho(s, 2)
0

/( c)
M

Hoo(r, 2)0; Hy(s, z))w(s)K(so, s, c)ds

1
+rar/ M(agHo(r 2)0s Hoo (s, 2) + Ho(r, 2)
-

3, M
M

W (r )arcasHoo(S’ 2)

)w(s)K(so, s, c)ds

+r8r/0 ;4 0o(r, 2)s Ho(s, 2)w(s) /(1 )arcK(SOvS’C)dS
+ra,/r %Ho(r 2)0s Hoo (s, 2)w(s) e )arCK(So,S,C)dS

<3GHoo(r 2)0,Ho(r, z) + Hoo(r, Z) 0r.0r Ho(r, 2)

1
re)

Hoo(r, 2)0, Ho(r, z))w(r)K(so, r,c)

M
o, M

’
M
)

(3GH0(V 2)0rHoo(r, 2) + Ho(r, 2) ——— 0,0, Hoo (', 2)

’( e)

Te

MM Heo(r 2), 8, Ho(r, z))w(r)K(so, ro)
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+ A;Hoo(r 2)0, Ho(r, 2)w(r) /(lc)arc,K(so,r,c)

- %Ho(r 2)0y Hoo (1, 2)w(r) ———0,. K (50, 7, ¢)

’( c)
+/r : <"8 06 Hoo(r, 2)05s Ho(s, 2) + 10y Hoo (r, 2) ——— 0y, 0s Ho (s, 2)
.M /( )

3. M
— M ro Hoo(r, 2)ds Ho (s, 2) Jw(s)K (so, s, c)ds

1
+/ M(ra 0 Ho(r, 2)0s Hoo(s. 2) + 18, Ho(r 2) ,( (5,
r
0,.M

ICW rarHoo(r,z),8xHo(s,z))w(S)K(SO,s,C)ds

+/0r %ra Hoo(r, 2)0s Ho (s, 2)w(s) /(1 )8,CK(s0,s,c)ds

—I—/; %ra Hy(r, 2)0s Hoo (s, 2)w(s) /(1 )Brt,K(so,s,c)ds
8 ~
=Y K;.

j=1

There are several cancellations to observe. First, we observe that (recalling |r — r.| <
rc/k) from Lemma 5.4,

O H(r,z) — 9 Hoo(r,z) = ro,¢M(2)
—re

)

— I

r —r, r
|Ho(r,2) — Hoo(r,2)| S 1,.<1 | " d (k + ‘logk’

c Te

).

and hence the terms K3 + Ky are only logarithmically singular at r ~ r. due to o K.
For K and K> we can uncover the cancellations via writing the following for r & r:

+ 1r6>1r3 Ir = rel <k + ‘logk 4

I'c re

Hoo(r, 2) ——=0,.0, Ho(r, 2) — Ho(r, 2) ———0,,0, Hoo(r, 2)

’( ) ’( )
= Hoo(r 2)0G0,Ho(r, z) — Ho(r, 2)803 Hy(r, 2)

— ——Hy(r,2)0,rHo(r, z2) + ——Ho(r, 2)0,r Hxo (1, 2)

’( ) ’( )
= Hoo(r, 2)060, Ho(r, 2) — Ho(r, 2)0G0r Hoo (1, 2)
1 _
B Hao(r. ) <k 1/4HO _ B Hy )
u'(r) r2 u—z
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1 k* —1/4 BHuo
/( )HO(I’ Z)( r2 HOO_ )

= Hoo(r, 2)969, Ho(r, 2) — Ho(r, 2)9G 0y Hoo (1, 2).

u—=z

Note the commutation relation: dGo,h = 9,0gh + d,h. Hence, K 1+ K2 is again

/)2
only logarithmically singular via Lemmas 5.4 and 5 .5. Finally the remaining terms Ks
through Ky are treated using techniques used on previously made estimates in (6.17)
and are hence omitted for the sake of brevity. The treatment of (6.171) is similar and
is hence omitted for brevity. This completes the estimates in (6.17).

Holder regularity Consider next the estimates in (6.18). As in Lemma 6.11, write

- - o

K(so,r,c) — K(re,r,c) = / (K (sg,s,¢) — K(re,s,¢)) w(s)osG(r,s,c —ie)ds.
0

The estimate (6.18a) hence follows as in the proof of (6.16a). Consider next (6.18b)
(recall |[r — r¢| > r./k in this case):

95V K (s0, 7, ¢) — SV K (re, 7, ©)

o
= —/ BS’SO) (wxe (K (50, 5,¢) — K(re,s,¢)G(r, s, c —ig)ds
0

o0
- / 880) (wx?é (K(SO’ S, C) - K(rc, S, C))) asg(r, S,C — iS)dS
0

+/ X (K(s0,5,¢) — K(re,s,0)) w(s) ———09,.0;G(r, s, c —ie)ds.
0

/( e)

Note that no boundary terms appear (as in the proof of (6.16d) above). From here,
the proof follows as in (6.16d) using the hypotheses on K. the treatment of the other
inequalities in (6.18) follow via similar reductions and are hence omitted for the sake
of brevity.
Convergence By the Lemmas in Sect. 5, the rd, derivative of Hy and H, satisfy
analogous quantitative convergence estimates as Hy and Hy, themselves and hence the
convergence as ¢ — (1is a straightforward consequence of arguments used previously;
the details are omitted for the sake of brevity. O
Finally, we verify that the original kernels satisfy the estimates necessary to run the
iteration scheme.

Lemma6.14 For a € §,6,G,rG, Bg(l; is suitable (0,0) of Type 1. For a €
S,8,G,rG, B)((Za) and By, are suitable (0, 0) of Type II.

Proof of Lemma 6.14 The treatment of ng . 18 the only case not covered by Lemma
6.10. This follows Lemma 6.11—indeed:

BY). (r.s.c) = By (r.s.c) + O} [BBYJ].
and hence we may apply the lemma if we set w(r) = (r),and £ =¢'=J =0. 0O
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Proof of Propositions 2.9 and 2.10 From Lemmas 6.1, 6.2, and (6.3), we can express
all 8é Y+ and 8éX in terms of aé F, aé F., the coefficients derived in Lemma 6.2, and
compositions of the integral operators in (6.4) and (6.6). Moreover, the coefficients
are such that if one has £” compositions and aé F (or 8é F,), then the total of all of the
losses from all of the coefficients is ¢’ with £ + ¢’ +£” < j. This condition ensures that
the compositions all involve integrable functions (for ¢ > 0) and hence we iteratively
apply Fubini’s theorem and prove Lemmas 6.4—6.6. This, in turn, implies Proposition
2.9 and finally Lemmas 6.10-6.14 imply Proposition 2.10. O

6.4 Vorticity Decomposition

In this section, we prove Propositions 2.13 and 2.14.

Proof of Proposition 2.13 We will first prove the lemma in the case n = 0, then explain
how to extend to n < k — 1, and finally, to extend to n < k.

Case n = 0 Write

F 1 [ . 2ieu’ (r,
A=ty _/ itk —u(rp)) __“1EU (re) X B )A(r c,e)dr,  (6.26)
0

\/7 2l (I/t _ C)2 + 82 1 \/—
1 > ltk(u(r) u(re)) (u — C)u (re) ﬂ( )
Py ¢ X d 6.27
27”./0 e ey 8 (OU L (1)
F
= ; X 6.28
NG + fa+ fix (6.28)
From the expansion for X, there holds
1 B eitku(r) /oo (u _ c)u’(rc) IB(r)e—iktc
ﬁwF,Sfl;X - i 0 (l/l _C)2+82X1(rvrc) UJF,S(}’)
o0 2ie
X 0 mB}(‘s;s(r, S, C)F(S)dsdrc
itku(r) o) (u _ C)I/l/(r ) ﬂ(r)e—iktc
+ f X1 (r ) ————
(w—c)+e wr,s(r)

2iep (so0)
f / (u(so) — 6)2 482 wr 5/2(50)

wrs/4(s’)  (u—c)
wr 5/2(s0) (u — ¢)? + €2

X B;;e(r so,c)BXS (50, 5", ¢)

F(s ,
—/ds dsodr,
wr 5/2(5")
eitku(r) o0 (l/l _ c)u’(rc) ﬂ(r)efikl‘c
+ . 2 2 Xl(r7 rC)—
27i Jo w—c)+e wr s(r)
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2igB(s0)
/ / (u(so) — )2 + ¢ G — o2 1 g2 WF8/2(50)

() @ , Wr () Fu(s)
X By (r.s0,¢)Bys. (s0, 8", ¢)
o XGe wr 5/2(50) WE 5/4(s")

ds’dsodr,.

(6.29)

To pass to the limit, we apply Theorems B.1 and B.18 (together with Theorem B.2).
Note that the requisite properties on the kernel are obtained by Lemmas 6.10 and 6.14
above. Hence, we have the strong L2 limit:

.  u'(r, w T
lim ﬁwglgfl;X - elkt”(r)p.v,/ u (rC)Xl(ri rc)Mﬂ(r)
£—0 . 0 u—c wr s(r)

Bxs(r,re, ¢) e KCE ()

u'(re) wr 52(re)

eltku(r) © u'(re) wr,s/2(rc) B)%(r’ re, ©)
i P.v./ (u — C) ( B c) F,S(r) ﬂ(l’) u’(rc)

e¢] /
eﬂm<nu/ BGOBR re. ', 0 2LI0)
0

wr s2(re)
1 F(s'
L)/ds’) dr,
(u —c) wr 5/4(5")

eithu() » /*oo u'(re) wr 8/2(rc
0

c

Bg(l(); (r,re,0)
27 w—0"" 0 PO e

X o0 1A I;‘)|< /
o—ikic (/ BB (e’ ) wr . 5/4(s") (s") ds’) dr..
0

wr s/2(re) Wr,s/4(s")

A crucial point to notice is that if » < 1 then x; implies that r. < 2r. This is what
allows to transfer the gain in r, from K to a gain in r in Theorem B.1 so that we may
use the stronger wr s as opposed to w s 5. Theorems B.1 and B.18 also provide the
following estimate: for all > 0 (recall (2.12)),

lim sk frxl <, K" |F F < k" |F k ‘a)
B VPwph fix| | Sn KIFLG VL S RIFLG K ol

Turn next to f1.4 in (6.28) and expand via

1 [ 2ieu (ro)e!hum—ute) gy
fia =5 X1
2mi w—c)Y?+e Jr

= fl;AX + fi;av-

(X(r,c,e)+2Y(r,c—ie))dr.
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Further expand fi.4x via x1 and xo:

fl'AX == L > eitk(u(}’)—u(r(,)) 2i8u/(rC) X1 ﬁ(r)
’ 2mi 0 (M—C)2—|—82 \/7

1 0 ieu' (r,
_/ itk —u(r)) 2t “2(“) 2X2ﬁ(r)X(r,c, e)dr,
2ri Jo (u—c)y+e Vr

X(r,c,e)dr,

= fl;ax1 + fi;ax2.

The contribution of fi.4x1 is treated in the same way as fj.x (but with different
integral operators in Theorem B.18) and is hence omitted. Next, we show that f1.4x2
vanishes as ¢ — 0. Indeed, expanding X as in f1.4x1 gives

eiktu(r) /-oo 2i8u/(l’c)
o (

VrwTls fraxa,r) = x2B(rye~ e

2i u—c)?+¢2
*© 2ig w S F
X / l2 3 F/4( )BX(;;g(r, s, c)ﬁdsdrc
0o (W—o)+e* wys(r) Wr s/4(s)
eiktu(r) /OO 2i8u/(rc) ke
e
2wi Jo (u—c)? 482

5 /00 /00 2igp(s0) B(r)wr s/2(s0)

o Jo (u(so) —c)> 42 wyss(r)
wrs4(s)  (u—c)
wr,s5/2(s0) (u — ¢)% + &2

1 2
x B3, (r.50.0) B, (s0. 5", ¢)

F(s")

wr,s/4(s")

eiktu(r) /oo Rew're)  —iktutro
o (

ds’dsodr,

2mi u—c)? 4 g2
y /00 /00 2iep(s0) Brwr s/2(s0)

o Jo (u(so) —c)>+e2  wyss(r)
wr,s/4(s")  Fi(s')
wr,s5/2(50) Wr,s5/4(s")

2)

x B)((}();;S(r’SO’C)BXG;S(S()v S,,C) dS,dsodrC.

Therefore, Theorems B.18 and Theorem B.3 imply this term vanishes in the limit
due to the support of x» (note the weaker space w s s). Turn next to fi. 4y, which we
similarly decompose via:

2 00 l-gu/(rc)eilk(u(r)fu(r()) ’3(’.)

o2 Y(r,c—ig)dr
f],AY i ) (u _ C)2 + 52 X1 \/; ( ) c
2 [ ieu (ro)e!H Ut g
2 Y(r,c—ic d
i Jo w—o2+e2 ( el

= fl.av1 + fr.ar2-

By Lemmas 6.10 and 6.14, the kernels satisfy the hypotheses necessary to apply
Theorems B.18, B.3, and B.3. Therefore, we have again that lim,_, ¢ w;lafl;Ayz =0

in L%, and that we may pass to the limit ¢ — 0in f}.4y; and deduce:
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) _1 . wr,5/2(5) 1 F(s)
g%\/;wF,sfl;Ayl = P‘U-/O () ————=B(r)Bys(r,s, u(r)) 2 G) = () wr () s
) 1 Bys(r,r,u(r))
—2171 e )ﬂ(r) ) F(r)
—/ w”m”m>marswm A
0 8(r) wr,5/2(5)

Similarly, Theorem B.18 implies that we have the boundedness for all > 0,

-1
Hx/;wp,gfl;Am

< N < M in
KINFI, + 0P, SKOIFI, + kot

2N

F.8/2

This completes the case j = 0.

Case n < k — 1 Next, turn to (r9,)" forn < k — 1. From (2.28), denote the three
contributions of f] as:

(o))" ff = (ro)"F + fix + ff.a-

Consider first f}. . After distributing the dg derivatives there are many terms all of
the general form

o !/

1 .

/ eitk(ur)—ur)) = C)zu (rc)2 Hr . 000X (s, e)dre,
0 (u—o)*+e wrsr)

for some weight H? satisfying the following for all m > 0 (depending on & through
X1

|(r8r)mH€(r’ C)| ,Sn,j,m min(ijs 77772].) (Xl + Xr<1X2r~re + Xr%1X2r<r(,) .
(6.30)

From Proposition 2.9 we have representations of the following form for a variety of
complicated integral kernels:

/ itk —utre) _C)z” (")2 H 941 %, e, e)dre
0 (u—c)>+e” wrsr)

J itku(r) o0 _ ’ —iktc
e e w
/ (u C)ZM (rc)2 HE(r o) F,s/4+2¢0(8)
ZZ:O 2ni Jo (w—c)+e wrs(r)

o ie AL F(s)
X o Bxs. (7, 5, Owxs: j e (s) —S——dsdr,
/o (u—c)2+e2 "% P wE spagan(s)

J o Litku(r) poo _ ’ —iktc
e e
+ ~ / e H(r,c)
= 2w Jo (- c)? 482 wp s(r)

2ies0)
/ / (u(so) —c)g_’_SZB}((IB)je(r’SO’C)
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ie AL F(s)
(2) G
By . ,(so, 8, 0)w SWxsa:ie(s dsdsodr
x5:,¢(50, 8, OOWF 574420 (S)wxs2; .0 )(u TR wr s S Os0dre
i itk —iktc
+ ezt u(.r) /oo (u _ C)u/(}") Ha(r,c) et te
2wi Jo (u—c)?+ €2 wps(r)
2ieB(s0) (1
/ [ TS Bys.j.e(r>50,€)
¢
@ (u—c) AL F (s)
x B (505 8, OWF s/4+20(SHwxs; j,e(s) dsdsodr,
Xsij.t (e SO U= O+ 2 wr s ar2e(s) ‘
J oo ikt
+ eztku(.r) /oo (u _ c)u’(rc) Hg(r’ C) e iktc
2wi Jo (w—c)2+ &2 wp s(r)
2ieB(so) M
B , S0,
/ / G0) — ) 4 &2 XG50 )
2 g Fils)
X BXG 0050, 8, OWF 574420 (S)wx G j.e(8) ———————dsdsodr,

Wr 5/4+20(8")
+ Similar terms with different B and w.

Recall that in each term there holds for some ¢ (different £’ in each term) |w*; je(s) } <
max(s_u/, sw). By Lemmas 6.10-6.13 (using also the recursion scheme laid out in
Lemmas 6.4 and 6.5), for sufficiently small » > 0 and y > 0, Bys;; ¢ is suitable
e, t]+n,y)of typel, B(]) j.¢ 1s suitable ey, t{+n, y) of type I for some £ and

y > 0, whereas B;; Y is sultable (2€5, €5 +n, y) of Type II for some ¢; (as above,
each term may have a different E’jf ). In all terms there holds the inequality (where for
the Bys; j.¢ terms we take £ = 0):

e+ 0] +8 <.

Note that the total losses matches with (6.30). Therefore, for 1 chosen sufficiently
small relative to §, Theorems B.1 and B.18 (together with Theorems B.2 and B.3), we
can pass to the limit ¢ — 0 in the same way as we did for the case j = 0, giving also
the L? bounds:

lim /oo itk (u(r) —u(r)) U — ou'(re) Hr, c, 8)8 X(V e evdr
e—0 Jo (u—c)>+e2 wrs(r) U2
J
5 Z |k|2(j*€)+77 HaéF + |k|2(] €)+T] Ha( F ‘
=0 F.5/4+2¢ L% 574420

< |k|2J+ﬂ+l)

Analogous to the case j = 0, the other contributions to f{ are similarly; the details
are omitted for brevity.
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Case n = k Recall that, as discussed in Remark 1.5, we do not really get useful infor-
mation about the k-dependence in the case n = k. In the case n = k, the problematic
terms in (2.28b) are those that contain BéX and a{gA; all other terms are treated as in
the case j < n — 1. Hence, the terms we must consider are:

B(r)

1 [ 2igu/ (ro)eitk@)—ut)

fria=o— fo w("ug))i T O e TR0k A e are (63D
eithu(r)—u(re (u(r) —cyu'(re) B(r)

fux=gor ) < e O T X e e

7
(6.32)

The key difficulty is that we cannot use the iteration scheme to compute this derivative
in the same manner as above. Consider fi.x and sub-divide based on the critical layer:

~ _ fo'e) eitk(u(r)—u(rc)) (u(r) _ c)u’(rc) , ' ’3(
fl;X —A i (u(r)—c)2+82(ru )" x T(Xc(r re)
Fx2(r. 1)) 0 X (r, ¢, &)dr (6.33)
= fl;Xc-Ffl;X;e- (6.34)

On the support of fl; X+, We write

u’(r)
e (re)

(ru' (r)kok x = ' P e, 05X 4 (rd () 18,057 X, (6.35)

Next, we take 9, and 9,, derivatives of the representation formula (2.37). Let us start
with the easier 9, (note that |r — r¢| 2 r./k on the support of fi.x..). Due to Lemmas
6.10-6.13, these derivatives only land on Type I kernels:

3 3 X Z/ 3 Bx(s]g(r S, C)( C)2+ sz(g];j’g(S)aéF(S)dS

o e 2ieB(sp) B
* f (/ ﬁar X8/, FLGA C)B E(SO, s, c)dsg
KZZO 0 0 (u —C) +¢
2ie
i A
(u —c)? +¢?

J o o0 .

Z 2ieB(s0) M )
+ —a B r,so,C B S0, 5, C ds

€=0‘/O (/o u—c)2 42" X SM( 0, ) xsje(O )dso

» (u—o¢)
(u —c)? + &2

J oo 00 .
2iefB(s0) B0
— 0 ,c)B ,s,0)d
+ZZ:;-/O (/0 o 7 B30 OB 05 O

wxs2:j.0(8)d5 Fds

wys: j.¢(5)95 Fds
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X WXG;j,t (S)aé F*ds
+ Similar terms with different B, w. (6.36)

ByDeﬁnition6.7,k_l)(¢(r, re)royBxs;je(r, s, c) andk_l)(#(r, rc)ang(B;j,e(r, s, C)
satisfy the conditions necessary to apply Theorems B.1, B.18, B.2, and B.3 (note
Remark B.4) with the same parameters as y«(r, rc) Bxs;j,¢ and x«(r, 7)o, BXa Iy
respectively. Specifically, the 3, derivative does not incur a loss on the weights.
Hence,

00 aith(u(r)—u(re)) — "(re
/ e (u(ry —oyu'(re)  B(r )X#(r r)ri (D r8,057 X (r . £)dre,
0

mi . ) — o2+ e X r

is treated via the same methods used to treat the case j = k — 1 above. Repetitive
details are omitted for brevity.

Turn next to 9,, derivatives, which are more technical. From (2.37), (still for
|r —re| = re/k), we have

3, 0LX = Z/ 3. Bxs:jo(r, s, c)( c)2+ Swys1: .0 ()96 F(s)ds

o 2ie ¢
+ ;/0 Bxs:je(r,s,c)or, (m) wxs1;j,¢(8)9G F(s)ds

J 00 00 :
2ieB(s0) ) @
+Z/() (/0 arc (m BX(S;j,Z(r’ 50, C)Bxg;j’g(s()’ s, C)dS()

=0
2ie
« e
(u —c)? +¢2

J 00 ) .
2ieB(s0) (M ) )
+ ————9,..B r,so0, ¢)Byy: . ,(s0, s, c)ds
;@/o (/0 o2 1 &2 e Bxa 50, OBy (50 5, )dso

o 2ie
(u —c)? + &2

J ) 0 .
2ieB(s0) (1 @
+Z/(; ([) me&j,g(rv S0, C)arEBxg;j,g(SOas;C)dSO

=0
2ie
« e
(u —c)? +¢2

J oo oo .
2ieB(s0) (1 )
+Z/(; (v/o mBXS;j,Z(r’SO’C)BXS;j,l(SO’S’C)dsO

Wyxs2:j.0(5)dE Fds

Wxs2:j.0(5)dE Fds

wxs2;.0(5)dE Fds

=0
2ie ,
<O <m> wxs2;j,0(s)dG Fds
J 00 o .
2ieB(s0) o
Y \w—erver)? OB s, 0d
+§/(‘) </0 "<(M—C)2+82> Sfl(r 50, €) xs;e(Sosc) 50
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(u—rc) ,
U —or 4 2 x99 Fds
J S 0 .
2ief(s0) " o
' Z/O </0 mar"BXS:M(r’SO’ ¢)Bys. ; (50,5, c)dso
=0
(u—-c)

Y4
mwxs;j,z(s)ac Fds

J [ 0 :
2ieB(s0) ) @ >
+ ——— By . ,(r,s0,0)0. Bye . (50,5, c)ds
%fo (/0 = 02 + 82 Dx8:g. (0230 0B, (0.5 Do

(u—c)

(u —c)? +¢2

J 00 %) :
2ief(s0) (1 ) )
+ —— By ,(r,s50,¢)Byq. . (50,5, c)ds
zg(;/o (./0 (u—c)?+¢e? x5:5,¢(7 50 By, j (S0 )dso

wxs;j’g(s)aéFds

(u —c)? + &2

J 00 00 :
2ieB(s0) ) )
+Z/O\ (A arc ((u_C)2+82>BXG;‘j,l(r’SO’C)BXG;j,E(SO’s’C)dSO

=0

X B, <&> wys: .0 ()95 Fds

X wxg;j,g(s)aé F.ds

J oo 0o .
2ieB(s0) M @
" Z/o (/o =0 + 2 BxG. . 50: By, (50. 5. €)dso

£=0

X WxG:j.0(s)05 Fuds

I 00 10 2ieB(sp)
) @
+ = B (r.s0.0)0, BSY (so,s,c)dso)
Z:o/o (/0 (u—c)? + g2 XGIL TeTXG

X wXG;j,g(s)aéF*ds
-+ Similar terms with different B, w
12
= Z T, + Similar terms with different B, w. (6.37)

n=0
Many of the terms permit a similar treatment, hence, let us only consider a few.

As in (2.28) and Lemma 5.3 (and Sect. 6), we use ﬁarth(u(s) —u(ry)) =

—M,L(x)ash(u(s) — u(r.)). Hence, we integrate by parts:

J oo
re(fo+T) =) / redr, (X(s, ©)Bxs.j.o(r, s, )
0
£=0

y 2ie
(u —c)? + &2

J 00 2i
L&
+E/ Bxs;je(r,s, c)xz(s, c)reoy, (—)
0
=0

wxs1:j.0()dE F(s)ds

(u—c)? +¢2
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X wys; j.e(5)35 F(s)ds

J 00
+Z/ reu' (re)ds) (chxa;j,e(r,s,C)wxm;j,z(S)&f;F(S))
0
=0

y 2ie d
— = ds,
(u —c)? + &2

and note we are interested in passing to the limit in the singular integral

(6.38)

00 Litk(u(r)—u(re)) _ / /
/ e W) =W Brp W)
0

i ) — 2 + &2 w5 () r re (re)

Due to the cutoffs in x.(s, ¢) and x« (s, ¢) in (6.38) and Definitions 6.7 and 6.8, we are
still in a position to apply Theorems B.1 and B.18 and that the r.0,. derivatives have
not changed the weights (as was the case for rd, ). Note that there is the leading ratio
(rt/ (r)) (reu’ (r¢))~'. The numerator of this represents a gain in the weight in r and
hence is what allows us to use the stronger weight w p whereas the loss of (reu’ (re))"Lis
balanced by the gains in K. With these observations, we may hence apply Theorems B.1
and B.18 and pass to the limit ¢ — 0, also obtaining the bounds (using Lemma 2.6):

/Oo el k) =ut) (yu(r) — cyu' (rc) B(r)
0 27 u(r) —c)® + 82 wF NN

/

lim
e—0

E ))( ' (") re (To + Ty) dr

k—1
5 Z |k|2(j*€)+7]+3 H aéF 2 + |k|2(] O+n+3 Hae F ‘

=0 F.8/4+2L Ly /4426

x£(r, rc)

L2

F”L2 ;

F.8/4

Nk ‘a)

(recall Remark 1.5). For the compound terms in (6.37) the picture is a little more
complicated as these involve the triple derivatives appearing in Definitions 6.7 and
6.8:

5 J .
1 _ ([ x£(s0,0) 2ieB(s0)
u/(r»,;” _2_:/0 </o W ((u—c)2+82>
B(a g, (s so,c)BXS /g(SO,S c)dso)

2ie
« e
(u —c)? +¢?

J %) o) .
2igB(s0) ) ) )
4 ——— B! .,(r,s0,¢0)By{ . ,(s0,5,c)ds
e§=o/0 (/0 —c)2 +e2 xa,;,z( 0,€) X&,J,e( 0 )dso

1 2ie
, E) i e(s)dE Fd
X X (s C)u/(rc) e ((u _C)2+82> Wxs2;j,0(5)9G Fds

Wxs2:,0(5)dG Fds
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I 00 /00 DieB(se) 1
+Z/0 (/0 W — 02+ e u(re)

=0

1 2
X 0 (2050, OBYY,; (50, x5, OB, (50,5, ) dso)
2ie
o e
(u —c)? 4 ¢2

T %0 /1% 2ieB(so)
+g/o (/0 w—cp +e2
X B(GS) (X#(SO, c)Bga);jl(r, 50, €)X (s, C)B%);jl(so, s, c)) dso)
2ie
o«
(u —c)? 4 ¢2

+i/°° (/°° 2ieB(s0)
=0 0 0 (M—C)2+82
x (Bg(lg);j’g(r’ 50, €) Xe (s, C)B%);j,@(m, s, C)) dm)

2ie 1 5
X
(u—c)2+e2u'(s)

J 00 00 .
2ieB(s0) (5,50 )
—i—E 73’0( 50, ¢)Byy. . ,(r, S0, ¢)xc (8, €
e=0~/0 (A (M—C)2+82 G Xc (505 €) XB,],K( 05 €) Xc( )

2
X Bg(a);j,e(so’ s, c)) dso)
2ie
==
(u—c)? +¢2

L[ [ 2ieB(so)
+Z/0 (/o w—cf + e

=0

wxgz;j,g(s)aéFdS

wxs2:.0(5)dG Fds

(wsz;,-,g(s)agF) ds

wxs2: j.¢(5)d% Fds

x 082 (xe(s0, VBY.; (s 0, )15, OBYY, (50, 5.) ) do )
2ie
X mwx(gz;j,[(s)fﬁéf?ds (639)

Itis crucial to note the very specific structure in (6.39): whenever s = r. and/or sg =~ r,
the derivatives landing on the kernels are either B(GS ) or Bg’ or BSG’SO so that one never
evaluates 9,, (or d,) of a kernel near the critical layer without the matching s or s
derivatives. A similar structure is seen also in the Z?:e T; terms which are omitted

for brevity. The last three terms instead have:

T I oo poo 2ieB(s0)
S T: = 0y
w(re) J;o ' 2/0 </o W/ (re) f((u—c>2+ez>

1 2
X 150, OB 5 (50, OB (50,5, )dso)
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X wXG;j,g(s)aéF*ds

L oo (1% 0 2igfso)
+§)/o </0 ((u—c)2+52>
1
X _8r( (X;ﬁ(So,C)B xG:j.0(Ts SO’C)BXG I z(so’s’c)> ds0>

X wXG;j,g(S)aGF*dS

T/ 2igB(so)
« 8( 0) (XC(SO, C)BxG (s s0, c)BxG J. z(SO,s,c)) dso)

X WxG:j.0(8)dG Fuds. (6.40)

Notice that near so & r. we are still using B(GSO) derivatives, despite that s can be close
to the critical layer as well. Hence, the derivatives are not quite the correct form for
directly using that B;?é; j.¢ is suitable (265,05 +n, y) of type II (for some 5 and y
and all n > 0). However,

(s0) p(2)
9Y B

5.50) 1 (2
Vo .0(s0.5.0) = 05 BEL,

2
.0(50,5,0) = =BG (50,5, €).

1
u'(s)
Note that the former is bounded near the critical layer whereas the latter is logarithmi-
cally singular there (see Definition 6.8). However, since there are no singular integral
operators or approximately §-functions in s in these terms, it is straightforward to
verify that we my still apply Theorem B.18.

Finally, putting together (6.34) and (6.35) with the associated decompositions of
(6.36), (6.37), (6.38), (6.39) (and the analogous omitted terms), and (6.40) with Defi-
nitions 6.7, 6.8 and Theorems B.1, B.18, B.2, B.3 (and Remark B.4), we may pass to
the limit in ¢ — 0 as we did in the n = k — 1 case. This gives us a (very complicated)
representation formula for fi.x, and, in particular, the bound

wko(+ZH(ra) Fl

lim /rwr s fi.x# H Sk.s.a
e—0 2

F 5/4

Next, we consider fl; xc. We directly take a dg = 8(Gr ) derivative of (2.37) and as
above, apply the usual integration by parts when sg & r. and/or s & r.. This yields
(on the support of the integrand)

J roo
] 1
8085X=Z/ Bxg;j)g(r,s,c))(#(s,c)/_
=070 u'(re)
2ie '
X O, W2t wxst;j,e(s)0g F(s)ds

(u—c)? +
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oo
+Z/ 8(Gr) (Bxs:j,e(r. s, 0)xx(s,0))
0
=0

2ie .
x w—02+e wxs1;j,e(8)0g F(s)ds

I oo die
+z§/o ((u—c)2+82>

x 95" (Bxa;j,e(r, 5, ) Xe(s, C)WXal;j,z(S)aéF(s)) ds

oo 2ief(s0)
+Z/0 </0 17 (50, €) /(C> "((u—c)2+ez>

1
X Bg(s)] /(T so,c)Bxaje(so,s c)dso)
2ie
X —
( — c)? + &2

I poo s poo 2igB(s0)
X 8(r) (X#(so, C)Bxa 5,050, O xx(s, C)BX(S NSRS C)) dso)

2ie
X —_—
(u—c)? +¢2

T %07 1% 2igB(so)
+§/o (/0 ((u—c>2+82)

2ie ¢
X mU)XgQ;j’e(S)aGFdS

L (o0 (1% 0 2igBso)
X 00 (xe(s0, B, 1,50, x5, VB, (50, 5.) ) do)

2ie
X —
(u —c)? + &2

J o0 o0 .
2igp(s0) )

+ s —

2[R
x 00 (xe(s0, OB, 4250, e, VBEY. (50, 5.0)) dso )

2ie

X —

(u —c)? + &2

wxgz;j’g(s)aé Fds

wxgz;j’g(s)aé Fds

wxs2:j.0(s)d5 Fds

wxs2:j.0(5)d5 Fds
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L0 (1% 0 2ieBso)
+Z:/0 (/0 ((M—C)2+52)

(B)((lé)] (7,50, €) x£(s, C)Bxa 70005, c)) dso)

1 5 2ie 98l Fd
Wxs i o(s s
M/(rc) Te (I/t _ C)2 + 82 X82;5,4 G

L\ oo 0% DisBso)
+Z:/o (/o ((u—0)2+e2)
(B((S J, g(r 50, C)XC(S C)BXE i, [(S(), S, C)) dS())

2 1
x ((M—C;§+82) /( ) (wX52 /Z(S)aG )ds

J 00 00
+Zfo (/0 X (50, €)—— ,()

=0

2ieB(so)
X O, ((#) BQ;;] ,(r,s0,0)B S i (50, 8, c)dS()>

u—c)?+e?

(u—o
X —
(u—c)?+¢2

L0 (1% 0 2ieBso)
+Z/O (/0 ((M—C)2+82)
X a() (X#(SO,C)BXS i (50, ©) x£(s, c)BXS] g(So,S,C)> dSo)

o (u—¢)
( — c)? + &2

J oo 00 .
2ief(s
+ Z/ (/ ( ﬂg 0) 2)
o 0o \(w—oc)F+e
X ag»s) (x;é(so, c)Bg(I;;j’e(r, 50, €) X (s, c)B;(fg;j,((so, s, c)) dso)

(u —c)
w0+ e?

J oo s opoo 2ieB(so)
y ag,so) (xc(So, c)B X5, o (s 50, €)X (s, C)BxS ], (50, S, c)) dso)

(u—o¢)
. (u —c)? + &2

wxs;j,g(s)BéFds

wys: j.(5)35 Fds

wys: j.e(s)d5 Fds

wxs:j,e(s)dG Fds
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/oo o 2ieB(s
2GR
=0 0 0 (u —C) + e
x g0 (XC(SO, OBy (150, O)xe(s, B3 ; (0.5, C)> dSO)
(u—o¢)

X (u — c)? + &2
J 00 00 .
2ieB(s0) )
+ _
ZZ:%/O </o ((u —0)? e
X (ng;jyg(r,mw)x;e(s,C)Bgé;j,@(SO,s,C)) dSO)

L, i (s)0L.Fd
X w .7 S R)
w(re) C\(u—c)?+e2 X5:.6880%

. XJZ/OO (/“ ( 2ief (s0) )
=0 0 0 (u — C)2 + 82
X (B;((l;;j’g(r,SO,C)xc(s,C)Bg;j,e(m,s,c‘)) dSO)

(u—rc) 1
x ((u o2+ 52> u/(s)as (wX(SZ;j,l(S)aéF> ds

J 00 00 1
+ s R
;:)/o (/0 X#(50, €) u'(re)

2ieB(s0) ) o)
X O, <—(u o 2 BXG;j,e(r’ S0, C)BXG;j,Z(SO’ s, c)dsg

wys: j.¢(5)35 Fds

X wXG;j,g(S)aéFdS

j o o .
2ieB(s0) )
_l’_ i —
ZZ:;/O </o ((u—c)2+82
(r) () )
X dg (x;e(SO,C)BXG;j,g(r,So,C)BXG;J»,@(So,s,C)) dSO)

X wXG;jV@(S)aéFdS

T ()
—Jo 0o \(u—c)?+¢?
x 0 (50, OB (50, VB 5 (50, 5. ©)) dso)

X wxG:j.0(s)d5 Fds
+ Similar terms with different B, w.

We see that, although slightly more technical, the overall structure of which derivatives
appear in what contributions of the integrals, is very similar to the case of 9., 8éX .
Hence, the arguments used above apply with no major variations and we may pass to
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the limit and deduce the estimate:

gkﬁa

lim \/rwr s fi:xc
£—0 12

a)ko’+ZH(r3) F‘

Ly 5/4

we omit the repetitive details for brevity. This completes the treatment of f1; X-
Turn next to fi.4. As in the cases n < k — 1, we write

5 _ 1 o0 2iSM/(FL~)eitk(u(r)7u(r”)) ' ﬁ( )
fir= s /0 S W O 00 20 (X0
+2Y(r,c —ie))dr.
= fl;AX + fl;AY-

The term ];1; Ax 1s treated in essentially the same manner as f]; x and is hence omitted
for the sake of brevity. Similarly, we see that the treatment of £ - Ay 1s made via a small
variant of the method used to treat the first term in (2.37). Hence, this is also omitted
for the brevity. This completes the proof of Proposition 2.13. O

Proof of Proposition 2.14 Recall from (2.29),

o0
i —u(r. (u(r) — o)
eitku(r) u(n))arc (

-1 ngpee _
Vs Sy = W() = o) + &2

2wktw g 5(r) /0
x (ru'(r)dg)" (Xz(r rc)ﬂ( )X(r c, 8)) dre
NG

_ /oo itk () ~u(re) ( (u(r) —c) >
2rktwy 5(r) Jo @) —c)? + &2
X Oy, (ru’(r)dg)" (Xz(r re) ﬂ\;_)X(r c, s)) dre

=frat fop (6.41)
Due to the presence of 7, the support of these integrands satisfies » < min(r./2, 1).
In particular, the integral in r. is not converging to a singular integral as ¢ — O.

Analogous to the treatment of f} in the proof of Proposition 2.13 above, we may
write f; . as the sum of terms of the general form

[T o 1 HE(r, )X (r, c; e)dre,
2kt J wrs(r)

for weights H satisfying,

|HE(r, 0)| S Lrer plrcir ™ 2 minG® 12~y max(r, 3, 1).
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From Proposition 2.37 we have an expansion as in the proof Proposition 2.13 above
which by lemmas 6.10-6.14 (using also the recursion scheme laid out in Lemmas 6.4
and 6.5) satisfies similar properties. The main difference here is that we are using a
weaker weight (w s s instead of wp 5) and we have lost an additional r_ 2 from the
integration by parts in r.. The loss in 7. is balanced by the gains in K; these were used
to recover the strong weight on f; whereas here the gains are used to gain the . 2
necessary to allow us to integrate by parts in r, to deduce. After this adjustment, the
proof of convergence follows from Theorems B.1 and B.18 (together with Theorems
B.2 and B.3) as in the proof of Proposition 2.13 and is hence omitted for brevity.
Consider next fz’i p in (6.41). The terms where d,, lands on x are treated as in f; a

For terms containing d,, 8é X, we apply the same methods as in Proposition 2.13 when
9y, derivatives were computed away from the critical layer as in (6.37). Indeed, due
to x2, the entire integrand in fzf » 18 supported away from the critical layer and hence
this is the only case we need to consider here. Hence, combining ideas in Proposition
2.13 with those used to treat fz‘i . completes the desired bounds; we omit the details
for brevity as they are repetitive. This completes the proof of Proposition 2.14. O

A Preliminary Technical Lemmas
We record a few minor technical observations used several times in the proof.

LemmaA.1 Letr,r. € (0,00) and k > 2 such that |r — r.| < rc/k. Then
o Slre<r =
e for all a € R, there exists constants c,, C, (depending only on a) such that
carcak <rok < Carcak.

The next lemma contains a few useful inequalities regarding u. The proof follows
immediately from Lemma 2.1.

LemmaA.2 There holds

xu' (1) . (kr kr 1
# <1< <1r§2 min (r_z’ ) + ﬁerZ
c
. (kr? k
+ 1;«62] 1r52r =+ erZ min —3, - , (Al)
3
and for z € Iy there holds
e’ < o 1 (A2)
et £2ta i _
(u—c)?+¢2 X# lu — c|
(w —cy’ u' 2 || x2
— < g2ta A3
w—c?+e2 u-c Xt~ lu — c| A3
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Lemma A.3 Let x. be defined as in (4.3). Then, the following holds independent of c:

/OO (u(s) —coyu'(s)
0

mxc(s,c)ds s 1, (A4)

and for |r — r¢| S re/k there holds

r /
_ klr —
[ (uls) — cpu (S)2 Xc(s,0)ds <1+ ‘log —Ir rel
0 &

(u(s) —c)> +
/OO (u(s) —oyu'(s)

I'e
k|r—re
(u(s) —c)? + &2 ’

Ic

Xc(s,0)ds <1+ ‘log

Proof of Lemma A.3 Consider just (A.4); the other estimates follow similarly (and are
slightly easier). Integration by parts yields the following for any r:

© (u—c)u'(s) - 00 R
[ g o = = [ iog (1) - 02 4 ) e, e
— _ > 1 N2 + 2
/0 ( og ((M(S) ) +¢ )
—log ((u(r) —o? 82)) 3 xe(s, ©)ds

00 N2 2
= _/ <log E(u(s) O te )> 95 Xc(s, c)ds.
0

u(r) —c)* + &?)

Choose r = (1 + %)rc and hence, on the support of the integrand,

g (U@ =+ &%) || @s) =) = @) — )| _ |
(@) —o?+e2)| 7| (W) —o?+e2) |~
and hence (A.4) follows. O

LemmaA.4 Forall 0 < y < 1, for all n sufficiently small (depending on y and «)
and all 7 € 1, there holds

00 / _ 14
/ eJw ] ('r r”') xedr < 6. (AS)
0

( —c)? +¢2 e

Let G4(r, ¢) be defined for 7z = ¢ £ ie € Iy and |r —r.| < re and (over the same
range of r, rc, €) satisfy the following estimates (uniformly in ¢) for some exponents
vi € (0, 1]:

Yo
G, ¢) — G (re, ©)| < ('r - r“') (A.6)

Tc

‘G‘E(r, &)= GOr, o) < em. (A7)
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Then for all n sufficiently small (depending on «, y;),

/

® (u—cu R * u 0
A mxcG (r,c)ds — p.v. s CXCG (r,c)ds

<Sel. (A.8)

~

Proof of Lemma A.4 Consider first (A.5). Forall0 < p < y, by Lemmas A.1 and 2.1,

e lu'(r — 4 kP o 1
/ | (2)| 2 <|r rC|> xedr < e / T dr
o (u—o?+e Te ' ()P Jo  |r —re TP

1
< ePkP max(—, "),
rcp

and hence (A.5) follows from the definition of /,. Next, consider (A.8). We have

©(u— C)M/ . oo/ 0
A —éjzxcG (r,c)ds — p.v. A XcG"(r, c)ds

u—c)*+ —
© (u—-ou .
: ./(; w—c2 +e2% (G (r7c)—G0(r,c)) ds
(=o' 1 .
+Pv/0 ((M—C)2+82_M—C)XcG (r,c)ds
=T+ T

By the assumptions on G¢, we have

Xe

GE(r. ¢) — G5 (re, ) — GO(r, ) + G2(re. c)‘
< % (|G8(r, 0) = G5 (res )| + ‘Go(r, &) — Gre, C)DV

x (‘Gg(r, ) - Gr, c)‘ n ‘Ge(rc, &) = GOre, c)‘)l_y

< gn(l=y) <|r — r"|>yy0

r'e

Therefore, setting n = y;(1 — y) and using Lemma A.3 implies

foo u—ou' d
,
o w—oryerk

T = |G° (e o) = GO, )

<e.
The proof of 7, follows from noting:

Go(r c)p.v./Oo ( s )X ds
“ o \w—o(u—c2+e>))"

T, <
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© tu’ 0 0
+ ‘p.v./o <(u o= T 82)) Xe (G (r,c) — G (re, c)) ds

The latter integral is treated by an easy variant of the treatment of 77 and is hence
omitted. The former integral is estimated via

‘ /Oo 8214/ q
"o ((u—e)((u—c>2+82>)x” ’

_ ‘/OOO Xcéas (log((u — ) +¢%) — log(u — c)2> ds

00 2 2
< f M -1 | X, ‘ ds
0 (u—c)?
< &2k? max(rc_4, r;‘),
which completes the proof by the definition of 1. O

B Boundedness and Convergence of Integral Operators
B.1 Two Singular Integrals and One Delta Distribution

Our goal is to prove the convergence as € — 0 of the following “model operator”:

LoLF10r) = /w/w/w u@r) —u@re)u'(re) (u(s) —u(re))u'(s) eu’ (so)
‘ o Jo Jo @) —ure)? + 62 (u(s) — u(re))? + 62 (u(so) — ulre))? + €2
x B 1(7, 50, 7c)DBe 2(50, 5, 7e) f(s) dsdsodr, (B.1)

in Lz(dr) as ¢ — 0, under certain assumptions on the weights B, | and B; 7.

TheoremB.1 Let § € (0, %) and assume that for some y € (0, %) we have that the
Sunctions *B¢ 1 and *B > obey the conditions (B.8), (B.10), and either (B.37)—(B.41) or
(B.42)—(B.43). Additionally, assume that there exists { € (0, y) such that conditions
(B.57)—~(B.58) hold, for some limiting weights Bo,1 and Bo 2. Then, if f € L%, we
have that the operator L, f), defined in (B.1), converges as ¢ — 0, in L? to the
operator Lol f1, defined by duality via

_ o o u'(r) M’(Vc)%o,l(r, e, Te)
(Lol f1 ¢) = —n/O (p.v./o R ) w(r)dr>

©u(s)  Booare, s 1), s
X (p.v./o 2G) — 10D )3 ((s) f(s))ds> dr. (B.2)

and the operator Ly is bounded from L* to L2, with norm less than k¢.

The first standard example of pairs of weights B, | and B, > which obey the
conditions of Theorem B.1 are:
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TheoremB.2 Let0 < j <k —1,and0 < €, £y, £y be such that L + €1 + £y < j. Let
0<¢<% and0<n< %. Consider the weights

: 2
Be1 (1 50, 7e) = 11y ro) P TINC > BO (50, r0) (B.3)
wr,s(ru (So)

,B(S())wpﬁz_,_zg(s)

Be2(s0, 8. 10) = —— B By (s0. 5. 7c) (B.4)

where B,E g) is a suitable (2¢1, £1 + n/2) kernel of type I or 11, and B zs a suitable
(284, £2+n/2) kernel of type I or I 1. Then the conditions of Theorem B 1 are satisfied
for the weighs (B.3)—(B.4). The corresponding operator L defined in (B.1) converges
to the corresponding operator L defined in (B.2), which in this case becomes

0
(Lolfl,¢) = —7 /OO (p'v'/oo x1(r,re) () min(r2, r=2)J B(l)(r rc,rc)(p(r)dr)
0 0

u(r) — u(re) wF,s(r)

[e’e} 1 ﬂ(rc)wF’%+2((Y) (2)
X p.v./(; 0G) = u o) (S>5 B (rc,v rc)((s) f(s))ds ) dre,

as operators from L? to L?. The operator Ly is bounded on L* withnorm < k&+261+262

Proof of Theorem B.2 The theorem follows from Theorem B.1, upon verifying that the
weights in (B.3)-(B.4) obey the needed conditions. This is done in Corollaries B.6,
B.11 and B.14 below. O

The second standard example of pairs of weights ‘B, | and B, » which obey the
conditions of Theorem B.1 are:

TheoremBS Let0 < j < k— 1, and 0 < £, €1, €3 be such that £ + €1 + €y < j. Let
0<¢<2$ and0 < n < %. Consider the weights

) min(r2, r—2)J
B 1 (7, 50, 70) = g, 1) — L ) B (r. 50, 7¢) (B.5)
r2w g s (ru (so)retd (re)
.B(SO)WF%_;_%(S)

Bea(so,8,10) = ——— B, B (s0, 5, 7¢) (B.6)

where Bé}g is a suitable (2¢1, £1 + n/2) kernel of type I or 11, and B(z) is a suitable
(245, £2+n/2) kernel of type I or I 1. Then the conditions of Theorem B 1 are satisfied
for the weighs (B.5)—(B.6). The corresponding operator L defined in (B.1) converges
to the corresponding operator L defined in (B.2), as operators from L% to L?, and
the limiting operator is bounded on this space, with norm bounded by k¢ t261+262
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Proof of Theorem B.3 We remark that the main difference between (B.3) and (B.5) is
a factor proportional to

besides the obvious difference of replacing x; with xo» ~ 1,<112,<,,. The theorem
follows from Theorem B.1, upon verifying that the weights in (B.5)—(B.6) obey the
needed conditions. This is done in Corollary B.7, Corollary B.11, and Corollary B.15
below. m|

Remark B.4 1t is clear from the proof of Theorems B.1, B.2, and B.3 that not all
properties of a type I or type II kernel are used. For instance, for a type I kernel,
Theorems B.2 and B.3 only use (6.13a), (6.13b), (6.15a), and the convergence as
& — 0 in these inequalities, with some positive rate €% for some ¢ > 0. Similarly,
for a type II kernel, Theorems B.2 and B.3 only use the global uniform boundedness,
weighted Holder regularity in each of the two variables not called r. near the critical
layer, and the convergence as € — 0 in these inequalities, at a positive rate.

The remainder of this section is dedicated to the proof of Theorem B.1, which is
decomposed into several steps, detailed in the following subsections. In each subsec-
tion, we show that the weights (B.3)—(B.4) obey the necessary properties, so that the
proof of Theorem B.2 is done concomitantly. Checking that the weights (B.5)—(B.6)
obey the necessary properties is done at the end of this section, yielding the proof of
Theorem B.3.

B.1.1 Convergence Away from the Diagonal sy = r,

In this section we consider the contribution to the operator L in (B.1) due to the set

r.
[lSO_rc| = EL]

We first prove an abstract lemma, and then show that the available conditions on the
coefficients B, 1 and ‘B, ; are sufficient in order to apply this lemma. Let us denote by
L1 the contribution to the operator L, in (B.1) from [sp — r.| > % i.e. the operator

Lot = [ WD Z sl ) —uto)
0 Jo Jo
X

((r) —u(re))* + &2 (us) — u(re))? + &2
e’ (so)
(u(s0) — u(re))* + &2
X llso—n:lz%%&l (r, 50, rc)Be2(s0, 8, 7c) f(s) dsdsodre. B.7)

LemmaB.5 Assume that

’%8‘1(r7 S(), rc)sBe,Z(SO, S, rC)’ /S %O(rv 503 S, rc) (BS)
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holds for some e-independent function *By. In addition, define the cut-off
lstrange - l%frfl lrc§112r§s 12rC§s + 1r§1 12r§rc (B9)

and assume that B obeys the bound

1 —

s
s r2(s)?
Bo(r,s0,5,7c) S (htrangeﬁ +d - lstrange)> “T

rz(s)2

n
X (max{rz,r_2,s2,s_2,s§,s0_2}) (B.10)

uniformly inr, so, s, and r¢, for some n € (0, %), y € (0, %) and § € (0, %). Then, if
f e L2, we have that Leilfl— 0ase — 0, in L2

Proof of LemmaB.5 Let ¢ € L*(R,) be arbitrary. We then have by (B.8) that

[W(r) —u@re)u’ (re)| |(u(s) — u(re))u'(s)]
4 (u(r) —u(re))? +e? (u(s) —u(re))? + &2
elu’(so)]
(u(so) — u(re))? + &2
X l\so—rclz%%()(r’ 50,8, 7c) | f($)o(r)| dsdsodr.

(LeaLF10), o) < /R

= /4 J(r, s0,s,rc) | f()p(r)| dsdsodredr. (B.11)
R+

Our goal is to show that the integrand on the right side of (B.11) lies in
L! (dr ds dsqg dr¢), and moreover vanishes as ¢ — 0 in this norm.

Case r. > 1 The proof is based on the following estimate (c.f. (A.1)),

lu’(p)] 1 p 1
—— S — (1 ,s1—— +1 1 — (B.12
o) —uo] ~ o=t T = \1=t o F ezt ) F Dz 1y (B2

and the asymptotic description
o
' (p)| ~ —. (B.13)
()t
Here we use (B.12)—(B.13) to estimate
¥ ’ / 1-%
L1835 |u(r) —uro)| |u'(re)l <1 Y |u’(re)l 3
S S [ ()| 5
(u(r) —u(re))” +¢ lu(re) —u(r)l
beztlypzgy | ezt 2
S > % (B.14)
(re)?lre — |53 ro) ¥
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and similarly, using that |s — r.| < % =85 >r.— % > % for r. > 1, we obtain

Y
y v
1, >183 |u(s) —u(re)| |u’ ()] < lrﬂzll\sfrclf%ls 9 531,511 €1

0 %210 Is—rel>15
() —u@e)?+e2 "~ ()|s —r| 75 (s)1Hr
(B.15)
Lastly, we have
Lozt =z 77 [ (s0)
(u(so) — u(re))? + €2
g ] o)l \
~ ez o= ooy udso) — uro)]
1, 11 1 1, ~11. 1
cZ1 so—1e|> 15 eI L <so—rc|<15 S0 3
S 10 + k 10 (1 1—+1 1S V)
5(1;(50)1_3)/ Iso — re|1FY 0= (so +re)ttr 0="0
L>il, o1 Lol o1
S <S0>3y ylSO rclzlo k2y [so r(lf]() (B16)
8¢ (s0) lso — rel'Y

since . > 1. In the above inequalities, the implicit constants are independent of ¢ and
k, but may depend on y. From the above three estimates we arrive at (recall (B.11))

4 3
L21J(r 50,8, 7e) S €51 =1d gy = (50)™" Bo(r, 50, 5., 7e)

| M=t Lyre—riz
7 2y
L) e =rl'™5 ()13
B Y
1|S—rc|§i §3 ll‘v—rﬁ'\zi
X 10 10
(7 [s —re'75 (9T
o B T e
5§ (s0) Iso — rel1=Y

At this stage we use assumption (B.10), noting that Israngelr.>1 = 12/ <, 1r.>11,<1,
(recall (B.9)) to obtain

1
lr >]J(F,S0,S,rc) 52
= 7 N 1r5511|§07rc|2% Ly< ici———+ 0 =12 <. 1,<1)
&3 rz(s)2
51
rz(s)zt re—rl<{5 1\rc—rlzll—0
X
i+3 1-5 1+%
(ry2mz [ (re)Vlre —r| 73 (re)t™t3

_ n
X (max {rz, r_2, sz, s_z, s%, 5o 2})
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(B.17)

Y
3
|S_rc|§% § l‘s_rzrlzllf() IISO_VL'lzﬁ
2 Y
(s)YH|s — o175 (s)1Hr+d 5o (S0)
+ k2y 1|507rc|§%
lso — rc|1_y .
We first note that since 7 is sufficiently small, we have
k1 | |
_ [so—rel<15 [so—rel> 15
f 1115y, = 7 (max{sg, s5.2))" T, [dso SK,
R, —k [so —rel' ™Y 8o (s0)

so that, after some manipulations, we arrive at

lrczl

Y J(raS07s’rC)dSO
e3 Jr,

1

§2
S 1rczl |:12r<rc1r<1 1

|57rc‘fi

— + A = 1< 1<1) (max {rz, r_z, s2, s_2}>n
r?(s)i

P 1
r2(s)2 [ Dppey L, vz
X Iw —r Ty
(ryz2 (re)V|re —r] 73 )

(re 3
)4
S sregz
+ 10
(S>1+y+8
1
< lre—r|< {5 ls—rel< {5

Ire=r|< 15 1
1 _Y 2
(re) 71820 (r — )Y Ire — |15 ()2 F 2
1 (max{r2, r=2})" L r<t
+

) E T s =)l el
1 (max{rZ, r~2})" (max{s2, s~2})"
r)TF TN (i
= J1@re =) Ji2@re =) + Jo1(re) o2 (re — ) J23(s)
+ J31(r)T32(N)J33(re — ) + a1 (re) T2 (r) Ja3(s),

10

()70 —re] 75

(B.18)

where the identification of the J;; functions, for 1 < i < 4,and 1 < j < 3 is the
obvious one. We then use Young’s inequality and Holder’s inequality to deduce

[, 3 =Tt =l follew)dsdrar
3

< T = lel2arsy 112 % 1 f M 2247,
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< I Jullze 12l lellzz (1F 1 22
S llelizz 11z

and similarly

A;} Jo1(re) o2 (re — )23 ()| f ()] ()| dsdrdre

< I02ellz2 10220l 2o 123l 22 l@ll 2 11 Nl 22
S el 1122

/R3 J31r)I32(r) J33(re — )| f ()| ()| dsdrdre

< I03ellz2 1032022 133l 2o l@llz2 (1 N 22
Slell2 11,2

/M Ja1(r)Ja2 () Jaz ()1 f ()| l@(r) dsdrdre
T

< I arllpr 1Ja2liz2 1Jazlizz l@llzz 1F 122
S el 171,z -

Summarizing the above estimates, we arrive at

v
/4 1,.51J(r, s0, s, re)| f($)(r)| dsdsodredr S &3 |loll2 | fll;2 — 0 as e — 0.
R+

Case r. < 1 Inthis case, instead of (B.12)—(B.13), we also have the improved estimate

' (re)|
lu(r) —u(re)| =

11 1 Se, (B.19)

\rc*V|Z 10
which is useful when r. < 1. Similar to the r. < 1 case we obtain the bounds

Y
Locie5 () —uG)l W' o)l Telestlype

Frelresily s gy

(u(r) —u(re)? + &2 Y e+ ) S e — |5
(B.20)
Y
L, <15 u(s) — u(ro)| | (s)| Sty <t Sl s 1
W) —uN2+e2 (s 4r) s —r 5 (s)1+7
(B.21)
_ 2 3
1rC§11|SO_rC|ZVTC81 V|u/(so)| k V<SO) ylrcsllho_rclf% lrcfll‘s()_rﬁzllio
(u(so) —u(re)> +e2 ™ G g — |y sg (s0)! =37
(B.22)
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From the above three estimates, and by using (B.10) we arrive at

1}’C§lJ(rv 50, S, r(,‘)

Y
€3
S lrcfll‘sofrﬁz%%o(rv 50, 8, rc)

rclrcgll

‘rc_rlf%
x 1-Z 7 trelesily,
_(rc+r) Sre—r| 73
B y
SIrc<11|s—r |<L s3 1i’cill|s —r|> %
X
1
(s—i—r)1 |s—r|1 (s)t+r
2
(50 Lt b, Lresthigrz gy
% 2 l—y ¢ (so) 137
i re” |re — sol 0 (50
3 5(s)2
s r2 (s
5 lrgfll\so_rl,e% 1strangeﬁ + - lstra.nge) 1.3
(s)2r2 (r 2t7
rclr(,<11 —r|<i
X - + rclrc<11 iz
| e+ 1)Kl — |1~ .
X (max {rz,r_z,sz,s -2 53,502})
[ s1,o1 51,11
" SPre<1 g—re|< $2 et s —relz 4
7 7
(5 7o) 75 s = rel' 75 (s) 1+
-2y
" k lrc§11|s07rc\§110 lrc§11|s07r6|2% (B.23)
2 y .
rcy|rc_SO|1_ 8o (s0)

Similar to the estimates (B.17)—(B.18) for the case r. < 1, we first integrate the sg

dependent-part of (B.23) in s to obtain that

k21, _ 1 |
_ T =lso—rel=15 Iso—rel= 15
/ lrcfl(max{sg, SO 2})7] 5 k 0—"cl=T10 Oy cl=T10 dS()
Ry rcy|50_rc|17y So (s0)
1 1 2
< rp<1k (max{s 52 lso—rel< {5 Iso—rel> {5 dso < k7
S0 — e 8o (s0)

since 7 is sufficiently small. Then, using that y < %, we have the inequality

)
r2 e
1, <1 1 +r.l 1
c 2 [re=r|<15 _r _r CHre=rl= 15
e N ) S e =] e
1 1
L) lre=rl<1g
Sr21r5<1 1-X +1|rc_r|21170 ?
lre —r|" 73
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and since on the support of 1, < 11|S7rc|< 1 wehaves <r.+ % < %, it remains to

consider the integral of ¢(r) f (s) multiplied by

1 <]J(",SO,S,V~)
/ re< . ¢ dso
Ry £3
3 :
s r n
2 =2
S lrcfl <lstrange( )1 T+ (1 - 1strange)> ( )5 (max {r , T })
sY2r2 r)2
« 1|rL.—r|§1170 1|rc—r Z% 1|S—r(-|§% 1|X—rc\21170
re—rl=5 )3 | [l —rl'TE ()%
<1 . 1 [re=r|<15 1 1|sfrf\§1—10 + 1
~ “re= 1 Y 1-Y 1 1_r 1,2y
rif%rcﬁ lre —r|" 73 (">2+3 |s —re|273 (S>2+3
1 L i< 1 L =g 1
re<l _ -z 1+o % ¥
re—rl73 (r)2 Is =773 (5)2773

Here we have used properties of the support of 1gyange (recall (B.9)). Similar to the
case re > 1, for the second term above (the one coming from 1 — 1trange) One may

use You;g’s and Holder’s inequality to check that
} lo(r) f(s)|drdsdr.

1
10
r + 1, 2y
3 2t

1 :| |: 1|S_r6‘§1
! (s)

/ - L —r<d
re< _ 7 1
R lre —r|'=3 (ry2ts

3
3
Sleli2 flle-

For the term first term (due to Igrange), We first note that

ls —rel™™

1 1
ls—rcl<1g 1
sup/ £ (s)] 00— |ds
re<1JRy s —re|2735  (s)2F7F
1 1
|57r6|5m 1
f, “f”Lz Sup 1_v + 1,2y
re<U|s —re|273 ()27 | 1245
SIflze,
so that we only are left to bound
1 _ul, [ 1 1
r<ttlres Ire—rl<
/2 ()l 11 y L - 1lOK + 145 drdre
R r2=srS Llre =173 (r)2
o 1_u Lestly <
Slelle | ——; Sup | — v
r2 e lie@n <o I rd Ir = rel' =3 It
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lrcfl
Y

rs

+ llell2

Y 1
(e

Bf—

r L2(dr) L'(dre)

Sllellzz -
Combining the above, we arrive at
Y
/4 L <1lJ(r, s0, s, 7e)(f () @(r)|dsdsodredr S €3 [loll2 | fll,2—0 as e—0
R+
which is the desired estimate, and concludes the proof of the lemma. O

CorollaryB.6 Let0 < j <k —1,and 0 < ¢, 41, £ be such that £ + €1 + €5 < j.
Assume that the functions B 1 and B in (B.7) are given by (B.3)—(B.4), where Bélg

is a suitable (201, £1+n/2) kernel of type I or I I, and Béi) is a suitable (2€5, £>+1n/2)
kernel of type I or 11. Then the operator L. 1 defined in (B.7) vanishes in L2(dr) as

e — 0.
Proof of Corollary B.6 We recall that the following estimates are available
1B (. s0, 7o)l S 1/ o) IB(r, s0)K(r, 50, 70) Lty 14027 50)

2
1B (50, 5. 7o)l < u' (5)IB (50, K0, 5. 76) L2ty 34/2(50. )

on Ri, where as before we recall the definitions

1 1
sk=z2 rktz 4
B@r,s) = |15< T+ 1., 1 (s)
rk=2 sk+a
7'2 2
K(r,s,r) = 1rc>1 + 1rcgl (13<r<rc + 1s<rc<r<1r_L2 + 1s<rc<l<rrc
2
s 2
+ lrc<s<r<lr_2 + lrc<s<l<rs +1ic5<r
2 5 r2
+ 1r<s<rl, + 1r<rl,<s<1_c + 1r<rc<1<src + lr(.<r<s<l_
52 52
2
+ 1r0<r<l<sr + 1]<r<s>
14
J 1 2 1 2
Lye(r,s) =k | max|—,r", —,s . (B.24)
r N

Recalling the definition of the weights wr 5 we obtain that
1 2
Vgoorz e 1B, 50, 70) B (50, 5,70)]
1 <1 —1-2j—
S gpregzze Mr<ilre<or 4+ 1r21) [r—‘ o S 5]

Fk3-2j=8
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Logy 0140721, 50)L2e5,0540/2(50, 5)

_1 Y/ 1>
X (SO>6B(r, s0)K(r, 50, 7¢) |:1sflsk+3 2-3 4 —SH;_ZN_i] B(so, s)K(so, s, r¢)
=:B(r, 50, 5, re). (B.25)

The above defined function By is explicit, and we need to verify that it obeys condition
(B.10). Note that the terms due to the 7 corrections in £ are already incorporated in the
(max{rz, r2, 52, 572, sg, so_2})'7 term on the right side of (B.10), so that we ignore
these factors from here on, working as if = 0. This is done by considering the

possible orderings of r, so, s, and r.. It is useful to denote by

L 1 k+l | L1 ] B(r.so) B(so, s)
s 0= [F“’”r 2][1“” BRI TS LS

r*T2
2j lrzl 1s§1 20
L(r.s.s0)= |Lrz1r™ + — G + L= 157 | Laey,0,(r, 50) L2655 (50, 5).

In view of Lemma B.17, we have that
W(r, s, so)L(r, s, so) < 1. (B.26)

Estimate (B.26) requires some care in proving and we defer the proof to the Subsec-
tion B.1.4. With this notation, and using estimate (B.26), we have that

lrgl 1rzl :|

%O(l", 50, S, rC) fs I‘SO—r‘|>r—f(1r511rc§2" + lrzl) 1 1
el=% -t i

18 1> 1
X lsfls 244 — _2K(r1 SOsrC)K(SOa s, rC)'

s%_% (SO>

(B.27)

Checking condition (B.10) for the above defined B¢ thus reduces to verifying the
uniform boundedness of

1 1
r2(s)z
J(r, s0,8,rc) = 1|s0—rc|z%(1r§11r052r + lrzl) <1strange—1 + (1 - 1strange))

s2

1 5_8 1
X [ 5”515 + 1r21:| |:le182_4 + ;2315 } K(ra 50, rC)K(S()’ s, r())ﬂ
s 4
(B.28)

r2 2

where we have used that 3y < 2, and thus (so)_2+37’ <1

Case r. > 1 Note that here we are working on the support of lyange = 0, and
by definition K(r, so, r.) < 1, K(so, s, 7.) < 1. Thus, condition (B.28) reduces to
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proving the uniform boundedness of

1,
5<r=l §>
u]]rc>1 = |: 5 5 +1r>1 |:ls<ls 5_3
r2-2 Ky 4

Since both of the above terms are < 1, so is their product, and thus

N\.n
4:-\;0
+
p—
v
|

Jrc>1 ,S 1

as desired.
Case r. < 1 From condition (B.10) we need to show that
1 1
rz(s)2
«]]rcgl = 1rcgl lstrange—l + (1 - lstrange) (1r§11rc§2r + lrzl)

§2

|/\
w

1re s 1
X [% +1r>1i| [ s<18274 + ;>1 }K(F 50, re)K(s0, 5, re)
rz"z s

(B.29)

is uniformly bounded in r, ., s, so. As in the case r. > 1, since K(sg, s, r.) < 1,
K(r, so, rc) < 1, it is clear that proving the uniform boundedness of the term J, <1
defined in (B.29), resumes to checking the uniform boundedness of J, <11,<11,<s.
Indeed, when s < r the quotient (s/r)>/2~%/* < 1, and no singularity at r < 1 arises.
This issue is avoided altogether if r > 1. Thus, we see that our desired estimate J, <1
reduces to proving the uniform boundedness of

1) 2
Jrcsll% Sl r<v — J( <1 +J’('c)51

1
rz(s)2 lﬁfrgl
= lrcsl <lstrange—| + (1 - lstrange)> |:2— + 1r21:|

S2

~

8
X I‘YSISQ_ZK(’Z 50, 7e)K(s0, 5, 7¢)

1l
rz(s)2 Leoor 1,4
+ 1 <1 <lstrange—] + - lstrange)) |:2—5 + I‘}lﬁﬁ
2

S2

~
[N

1
=LK, 50, r)K(s0, 8, 7) (B.30)

s 4

where the decomposition is basedons < l ors > 1.
When s < 1, and either s < 2r, or s < 2r, the quotient (s /r)%_% is bounded by

a universal constant, so we are left to consider the case s > 2r and s > 2r., which is
precisely the support of 1gyange. Therefore, the boundedness of inll reduces to the
boundedness of
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2
(H
“Urcgl lstrange = lstrange 1s<1
r

—K(so, s, re)K(r, s0, r¢).

3
3
_3
2

At this stage the specific form of K is useful to us. By analyzing the product
K(so, s, re)K(r, so, r.) we note that

7f< <s< <11.<1K(s0, s, re)K(r, 50, r¢)

4 4 r2

c 0
v <re<r<s<l—&5 5 T 1r.<x <r<s<l—5 5 t 1r <r<sp<s<1=—5
0= e SIr=s= s2r2 cSS0SIr=5= s2r2 cSIr=50=5= s2

r2s2
22
H1r <r<s<so<t 3 + Lrezrzs<i<sS'r
o
2 2 2
C C C
+ 1y, (150§r§rc5351S_2 + lrzwsressst 5 F brsrswsssi 3
2,2
s7rf
22
+1r < <s<so<1 4C + 1< <s<i<soS7Te
o
+ e, (Lsp<r<s<re<t + Lr<gy<s<re<i + lr<s<so<ro<1
4
+1 < +1 r
r<s<re<so<l—g r<s<rc=<l<so’c
So
_ 2 /2 /2
S\ Lso<re<r<s<i 32 + 1rc§soSVSSS1S_2 + lrcirfsoisslsj

1 ” 2,2
+ rcirSSSSOSIS_z T L <r<s<i<soST

1’2 r2 r2
+ l%fr (ISOSVErCSSIS_z + 1 <gy<ro<s<t 2 + 1< <so<s<t 2

1 ” 2,2
+ rErCSSSS()fls_z Tl < <s<1<soS7T

2 2 r2
+ l%sr <1S0§r§syn§ls_2 + 1r§So§S§n,~§lS_2 + 1L <s<so<re<t 2

2
r
4
+1r<s<r6<§‘0<l S + 1r<s<rL<l<s0r >

r2

§ l%grfsslln-ils_g-
Therefore, since r < s < 1, we are left with
J, <1lstrange S/ 1

which is the needed estimate.
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The case s > 1 is treated similarly. When s < 2r ors < 2r,, then since % <r<s,

. . _5.8 .
r is bounded from below, and thus there is no loss of r ~212. We are left to consider
the support of Lange and bound the term

2)
J,« <11§trange = lstrangelszl 5.8 5 3 K(so, s, re)K(r, s, rc)
reT 28 4

Here we use that

7“< <l<s rc ]K(SO9S rC)K(r S()’rc)

4 4
+1 5 +1 14
Y() Fe=r <s Fe=SQ=r <S FeSr=so=1<s
<re<r<l1 2 <so<r<l 2 <r<so<l

2
+1rC§r§1<s()§sr +1rC§r§l<s§x0r)

l%frfr(,§l<src

Slyoaiobair® (B.31)
Therefore, it follows that

)
2 r2
Jic)sllstrange = lstrangelszl _2 35 ,S 1
-
which concludes the proof. O
A similar result may be obtained for the weight which has x»(r, r.) instead of
x1(r, r¢), but an additional argument has to be given to control the region in which r,
is much larger than all the other parameters. We have:

CorollaryB.7 Let 0 < j <k —1,and 0 < ¢, {1, £ be such that £ + €1 + £5 < j.
Assume that the functions ‘B, 1 and B > in (B.7) are given by (B.5)—(B.6), where Bélg)
is a suitable (201, €1+n/2) kernel of type I or 11, and ng is a suitable (2€5, £>+1n/2)

kernel of type I or 11. Then the operator L. 1 defined in (B.7) vanishes in L2(dr) as
e — 0.

Proof of Corollary B.7 The proof is nearly identical to the proof of Corollary B.6, so
we only emphasize here the points which are different. As noted below Theorem B.3,
the main difference is that a factor of —5 2 r enters the estimates. Using the definition
of 1grange, We see that instead of checklng the uniform boundedness of the expression
in (B.28), we are left to check the uniform boundedness of the new expression

1

r2(re)* r2(s)? 1<

. 443
0. 50,5 7¢) =Ny e Bs0)(s0)* T 1y,

1s>1

X |:1S<152 i+ i|K(r 50, re)K(so, s, re)

S 4
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<”c)4 443 3
= Lig—r iz =5 B(s0) (s0) LR VIS PISYS.
S

1
X |:1S<1s2_2 + 212:75 ] K(r, so, re)K(so, s, re).

S 4

Since K(r, s, rc.)K(so, s, rc) < 1, the boundedness in the regions s < r. < 1, and
1 < r. < 2s follows immediately. Moreover, for the region 1, <1 1;>,. we explicitly
check that

S2

1 <1Xs>r dor<r dr <1 -7 K, s0, re)K(s0, 5, 7¢)
ré(s)

4
s 1

5 lrl,fllsererfrclrfl |:1s§l (1 + S4 + 1s530_4> + lszls_2:| 5 L.
o

We are left to consider the region where 1, >11o<,.. If . < 250, we can absorb the
bad power of rf into and s(%, and use that B(so)(s0)®"3¥ < 1 to obtain the desired
boundedness. However, in the case r. > 2r, 2s, 250, 2, there is nothing to make the
above term, and a different argument is needed.

We recall that in the definition of ngr, rc.) we have the cut-off function y;(r.),

which restricts our attention to r. < &~ z+« for some « > 0. Here this information is
used essentially. We start from the beginning of the proof of Lemma B.5, namely from
(B.11), and focus only on the remaining region 1, <112, <, 1. >112s<r. 125y<r.. We are
instead left to consider the convergence as ¢ — 0 of

/ [u(r) —uGre))u' (re)| |(uls) —ulre))u'(s)] elu’(s0)| 1 1
R () —u(re)> + 62 () — ulre))® + €2 (u(so) — ulre))? + g2 /== 22 z0sre
X1 (Vc)erjrfﬂ(So)va gﬂg(S)B(V, 50)K(r, s0, 7e) Loy 014021, 50)B(s0, $)K(so, 5, 7e) Laey ey +5/2(50, 5)
* wr,s(r)
x | f($)e(r)| dsdsodre
= /4 J(r, 50, 5, )| £ ($)(r)] dsdsodredr. (B.32)
RY

By appealing to (B.26) and the boundedness of K, similarly to (B.28) we obtain that

J(@r, 50,8, 70)

- ' (re)| ' (s)] elu’ (s0)|

~ W) — utro)? + €2 Juls) — u(re))? + 2 (u(so) — u(re))? + &
X1 s0)* sy 2 Blso) (Ters3 1720 4 15~ HHE+21)

F2—8+2n

’

X 1r§]§r(‘ 12r,2S,2S0§rc
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and using the definition of x; we obtain

J@r, 50,5, rc)
_ ju' () ju'(5)] s75 [ (s0)|
N V) = u(r))? + € uls) — ulr)? + €2 ulso) — u(re))* + &2

- 5_38 3.8
X1 (re) o) 55> Blso) (1s51s77*2’7 + 1s21s7+z+2n)

X 1r§15r012r,2s,250§rc T 421

/ / /
< o u (rc)l1 ] |u (S)I1 ] u (SO)I2 ]
lu(r) —u(re)l 3@ Ju(s) —u(re)| *@ |u(so) — u(re)|” @
5 4 3,96
05500 (121534 4 1302

5—06+4+2n

X 1y <1<r.12r 25 250,

1 S S
<e 4(2(100 0
~Y

<rc>1+2(2‘j~a) <S>2+4(2(ia) (s0) peEy

5.4 3,9
(500755 2 Bs0) (Lyzrs 34720 4 1,573 0420)

X 1r515r612r,2s,2m§rc 1 ’
F2—0+2n

by using properties of the cut-off 1, <1<, 12, 25 25y <r.» and estimates (B.12) and (B.19)
in the region |p — t| > % relevant here. As above, we first take care of the integral
with respect to sq

1-2n

/oo so " (s0)*T1B(s0) <1
; S

(s0) Fle=my

in view of the decay rate of 8. To conclude the proof and obtain the desired vanishing
as ¢ — 0, we are left to show the boundedness of

lrflgrc 12r,2s§rc

7.8 5348«
| (1s51s57*2"+1s31s 2t 4<2+a>+2’7)
/]5{3 (re) 5—8+2n

oy
X | f(s)p(r)| dsdr.dr

7.8 5448 _a
15<157_1_2"+13>]s 2ta 4(2+0‘)+2n‘

<
S U2 s el L2(ds)

1r§1
1
r775+2n

L2(dr)
Sl 2@ lelli2@r) -

This concludes the proof of the corollary, upon passing € — O. O
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B.1.2 Identifying the Leading Order Operator Near the sy = r. Diagonal
In this section we consider the set

re

{1so —rel = 7| (B.33)

and show that the contribution to the operator L, in (B.1) coming from the operators

Lealf1(r)
_ /Oofoo/w (u(r) —ur)u'(re) (u(s) —ulre))u'(s) eu' (s0)
0 Jo Jo @) —u@))? 42 wls) —ure))? 4 &2 (ulso) — u(re))? + €2
X gopy<te (Be1(r, 50, 7¢) — Be, 1(r, e, 1)) B2 (50, 8, re) f(5) dsdisodre
(B.34)
Leslf1(r)
_ /Oofoo/w (u(r) —ur)u'(re) (u(s) —ulre))u'(s) eu' (s0)
0 Jo Jo () —u@))? 42 wls) —ure))? + &2 (ulso) — u(re))? + €2

X 1“‘0*"&5%%5’1(”’ Tey Te) (%S,Z(S()v S, 7c) — %S,Z(er s, rc)) f(s) dsdsodr,
(B.35)

vanish as ¢ — 0 in L?(dr). The goal is to establish a result which is similar to
Lemma B.5. Once achieved, such a result shows that

L, 4[f]
_ /00/0700 W) —uGre)u'(re) (uls) —ure))u'(s) eu’(s0)
o Jo Joo @) —ur)? + €2 (uls) — u(re)? + €2 (ulso) — u(re))? + &2
X 1‘S0_r6|5%%5,1 (rore, re)Bea(re, s, 1) f(s) dsdsodre (B.36)

is the leading order operator with respect to ¢ in L¢[ f]. Indeed, we note that
Lelfl1=Lealfl= Lealfl1+ Leplf1+ Ley[f]

where the right side vanishes in L%(dr) ase — 0.

LemmaB.8 Let § € (0, %) and assume that for some y € (0, %) we have that

rc)'/ |%8,1(rss07rc) _%S,I(rsrc»

rC)| |%8,2(s07s7r())| 5 %O(V,S(),S, rC)

(B.37)

1, <re
Iso—rel=7 Iso — rel?

holds for some e-independent function By which obeys the bound (B.10). Then, if
f e L2(ds), we have that the operator L¢ 7[ f1, defined in (B.34), vanishes as ¢ — 0,
in L*(dr).
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Proof of Lemma B.8 The proof closely follows the proof of Lemma B.5. Similarly to
(B.11), the lemma reduces to showing that the function

[(r) — u(re)u' (r )| [u(s) — ulre))u'(s)]
(u(r) —u(re))? + €% (u(s) —u(re))? + €2

[so—=rel”

/
elu (so) djsg—r. <t =7

(u(s0) — u(re))? + &

u]](r9 S(),S,rc):=

%0(1’, SO, S7 rc)
obeys

/R4 J(r. 5. 50, r)lo(r) £ (5)|dsodsdrdre < €5 llgll 2 11 £ 2 (B.38)
4

v . .
The power law €6 is rather arbitrary.

Caser, > 1 Note thatestimates (B.14) and (B.15) hold as is, since they are independent
of the bound [sg — r¢| < % Since r. > 1 and k > 2, this restriction implies that

50> 5 > %, and we may thus replace (B.16) with

Sy
-
1’5211|A‘0—rc\5%8 & |so — rel” [u’ (so)|

(u(s0) — u(re))? + &2

5
_ so—rel” (G0l \'TE
S bzl r <5 5y
u/(s0)| & \1u(s0) —u(re)l
1,211 I TS ;
= [so—rel> 15 Tez [so—rel<1g
< (s0)*” —— 0 et ). (B.39)
kY (s0) 175 Iso —rel" 6

Estimate (B.39) is nearly identical to bound (B.16), and in particular once the (s0)3
is absorbed by the bound on B, the resulting object is integrable in so, with a bound
that is O(1) with respect to s, r., and r. All the following arguments in the proof
of Lemma B.5, for the case r. > 1 follow line by line in this case too. To avoid
redundancy we omit these details.

Case r. < 1 As before, the bounds (B.20) and (B.21) hold as is, since they are

independent of the restriction [sg — .| < % For r. < 1, the later restriction implies

[so — re| < % and also sg < %, and thus (B.22) needs to be replaced by

3y
so—rel=y _ SO0 lresilyg o
6

(u(s0) — u(re))? + &2 ~ Y iso —ro| -5
(B.40)

3 Jso=rel” |/ i
Locilgy e ™0 TW o)l sy Lro<11

2
rcy|50_rc

In the last inequality we have used that r. < 1, with the purpose of showing that the
right side of (B.40) is nearly identical to the first term on the right side of (B.22). In

@ Springer



4 Page 142 0f 192 J. Bedrossian et al.

particular, integrating (B.40) with respect to sop we obtain the same estimate as in the
proof of Lemma B.5. All the following arguments in the proof of Lemma B.5, for the
case . < 1 follow line by line in this case too. To avoid redundancy we omit these
details. O

The proof of Lemma B.8 clearly implies, mutatis mutandi, also the following result:

LemmaB.9 Ler s € (0, %) and assume that for some y € (0, %) we have that

rg/ |%6,2(S07Sa re) — Beo(re, s, rc)| < Bo(r. 50, 5. 1)
~ ’ s D I C

(B.41)

%8,1(r1r67r6)|

1, <re
Iso rc‘fkc |S0_rC|V

holds for some e-independent function 8y which obeys the bound (B.10). Then, if
f € L?(ds), we have that the operator L¢3 f], defined in (B.35), vanishes as ¢ — 0
in L2(dr).

Remark B.10 We note here that assumptions (B.37) and (B.41) may be replaced with
the dual pair of conditions

rE | Be (50,5, re) — Beo(re, s, 7¢)|

%8,1(r7s01rc)| S%O(I’,SO,S,"C)

(B.42)

1, j<re
[so rc|§k |S0—I"C|y

rg/ |%8,1("7 50, 7¢) — B 1 (r, re,

r(:)i |%8,2(rcvsar6)} 5 %0(r9S01S9rC)

(B.43)

1, j<rc
[so—rel<7F |SO_rC|V

where Bq(r, 59, s, ) obeys (B.10).
Lastly, similarly to Corollary B.6, we have that:

CorollaryB.11 Let0 < j <k —1,and 0 < £, €1, ¥ be such that £ + {1 + £, < j.
Assume that the functions B, 1 and ‘B, 2 in (B.34) and (B.35) are given by either
(B.3)~(B.4), or (B.5)—(B.6), where either B\") is a suitable (2¢1, €,) kernel of type 11

and Bfg is a suitable (2, €>) kernel of type I, or Bé}g is a suitable (2€1, £1 4+ n/2)
kernel of type I and ng is a suitable (24, {2 + n/2) kernel of type I11. Then the
operators L 2 and L, 3 defined in (B.34) and (B.35), vanish in L2(dr) as e — 0.

The proof of the corollary follows from the definition of being a kernel of type I,
respectively /1, and the proof of Corollaries B.6 and B.7. Indeed, the definitions of the
kernel types precisely show that the conditions of Lemmas B.8 and B.9 are satisfied.
Also here, we note that for the weight (B.5)—(B.6) a separate argument must be carried
out in the region {r < 1 <r.} N {2r, 2s, 259 < r.}, as in the proof of Corollary B.7.

@ Springer



Vortex Axisymmetrization, Inviscid Damping, and... Page 143 of 192 4

B.1.3 Convergence of the Operator with s = r,
In this section we give the proof of Theorem B.1. In view of Lemmas B.5, B.§, and
B.9, we have shown that under the conditions (B.8), (B.37), and (B.41), (see also

Remark B.10 for a dual pair of conditions), we have that

tim Lo = Lol oy = 0 (B.44)

where the operator L, 4 is defined in (B.36), and may be rewritten as

Loalf]= /OO/OO (u(r) —u(re)u'(re) (u(s) — ure))u'(s)
o 0 Jo () —u@re)? +e2 (us) —ure))? + &2
X %s,l(r9 Ie, rc)%s,Z(er S, 7¢)

< (u(’%lrc)—um))
X | arctan f

kel
+ arctan (W)) £(s) dsdr, (B.45)

upon performing the explicit integration in so. Therefore, computing the limiting oper-
ator for L, reduces to computing the limiting operator for L, 4. For this purpose, we
consider an arbitrary ¢ € L?(dr) and compute as before

(Leal /10, ()

/00 ( <u(kki1rc) — u(rc)) (M(l’c) - M(kk—lrc)>>
= arctan | —— | +arctan [ ——
0 € €

© (u(r) — u(re))u' (re)
) </0 (u(r) —u(ry))? + &2 Be1(r,re, re)p(r) dr>

° (u(s) = u(r)u'(s)
* </0 ) —utre)? 1 62 e e 1 (S)ds) e

foo ( <u(%r6) —~ u(rc))
=: arctan| ——MM8M8M8M8M8M8
0 &

u(re) —u(qtre)
&

+ arctan < )) M 1lol(re) Mo f1(re) dre (B.46)

where we have denoted the operators

M 1[g](re) = /"o w(r) —u@re))u'(r) u'(r)Be,1(r, re, rc)g(r) & (BAT)

0 @) —u(re))? + & m(re)u’(r)

[ ) — uG)u ()
Me2lgllre) = /0 ((s) — u(ro)? + &2

m(re)Beo(re, s,rc)g(s)ds  (B.43)
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and the weight m(r,) is at our discretion. Assume for the moment that we can show
for a fixed function ¢ € L?(R,) that we have

girg) M 1lgl(re) = Mo.1lgl(re)

/"" uw' () u'(re)Bo,(r,re, re)
= p.
0

. 2
WO —utr) | meow() SO i L)

(B.49)

and

Eli_r)r}) M 2[gl(re) = Mo2lgl(re)

= p.v.foc &m(rc)%o,z(rc,s,rc)g(s)ds in Lz(drc)
o u(s)—u(re)
(B.50)

where

%0,1("’ TeyFe) = lin})%s,l("’rmrc) and %0,2(r07s5 re) = lir%%sl(rwsarc)
e—> £—>
(B.51)

holds in a sense that is determined by Corollary B.13 below. If (B.49) and (B.50)
hold, then by (B.46), the fact that | arctan(-)| < 7, and the Dominated Convergence
Theorem, we would have that
o0
811_1310 ‘(LsA[f](V), o(r)+ ”/o Mo, 1lel(re) Mo 2 f1(re)dre
S Ell_f)%ﬂ [Meal 1= Mool f] ”szrc [Me1le] ”szn,»
+ lim 7 [Moalf1] 2 [Mealgl = Moalol 2

. 00( ( ("“n)—u(n)) (u(n)—u(—n)))
—|— hm T + arctan{ ——m888@ —|— arctan{ —m8M8M8M8M8 ™
e—0Jo & &

‘M()l (rc)M()Z[f](rc)|drc
=0 (B.52)

and therefore we have identified the limit in Lz(dr) sense of L. 4[ f], finishing the
proof of the theorem.

It remains to show that (B.49) and (B.50) hold under a suitable convergence condi-
tion of the weight. For this purpose it remains to consider the convergence as ¢ — 0,
in L2(dr,), of the model operator

M. [gl(re) = f T W) ZuC) o e (r)dr (B.53)

0o () —u@re))?+¢2
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where in view of (B.47)—(B.48) the weight 1. (r, r.) plays the role of either

u/(rc)%s,l(rs e, Te)

m(re)u'(r)

or m(rc)%sl(rw r,re).

We prove the L2(dr.) convergence of M, under suitable conditions on the differ-
ence M (r, r.) —Mo(r, rc), and then check that these conditions hold for the specific
weights that arise in (B.47)—(B.48). A simple-to-work-with set of assumptions are:

Lemma B.12 Assume that there exists 0 < ¢ < y < 1 such that the following proper-
ties hold for all v, r,:

M (r, re) — Mo(r, re)| S eEM(r, re) (B.54a)

1Mo (r, re)| S M, re) (B.54b)
kY |\r —rel”

1|r7rc\§%|9n0(ra re) = Mo(re, ro)l S —ym(", re) (B.54¢)

c

where the e-independent function M > 0 is defined by

)
ol

1-¢ 1+¢

Te r2 (ry—

M, re) = W lrcgrl_;{ +1,< Tt
c r02 (rc> 2

(B.55)

Then, for any g € L?(dr), the operator M,[g] defined in (B.53) converges as ¢ — 0,
in L%(dr.), to Mo[g), defined by

Molgl(re) = p.v. / D o, g (rydr
o u(r) —u(ro)
u'(r)

=: lim ——————Mo(r, re)g(r)dr (B.56)
=0 Jjur)—u(ro)ze’ U(r) —ure)

and this limiting operator is bounded on L*(dr.), with norm bounded from above by
kS,

Under the assumptions (B.54a)—(B.55), the proof of the above lemma is direct. We
give it here for the sake of completeness. However, before giving the proof, we state
an immediate corollary, which yields the proof of Theorem B.1.

Lemma B.13 Assume that there exists 0 < ¢ < ?T’ limiting weights Bo 1(r, re, re),
Bo.2(re, r,re), and that we may choose a weight m(r.) > 0, which obeys
redr,m(re) /m(re) Sk, such that the following conditions hold:

4
1B 1(ryresre) = Bo, 1 (ry res re)|l S 8§w9ﬁ(h re) (B.57a)
r)r,

4
1B0,1(r, re, 1)l S er))—“mr(rC)fm(r, re) (B.57b)
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K [r —rcl” r<rc>4m(rc)

1|r7rf|§%|%0,1(r, Te, rc)_%o,l("m e, re)l S y 4 M(r, re)
re (r)y*re
(B.57¢)
and
1
1B 2(re, s, 7e) = Boare, s, 1) S &8 ——=IMC(s, re) (B.58)
m(re)
1
|%0,2(r()asvrc‘)| 5 E)ﬁ(sarc) (BSSb)
m(re)
K |s —rV 1
1|_&‘7rc‘§%|%0,2(rc7 S,rc) —%0’2(1’0, rC’rc)| 5 y m(ssrc) (BSSC)

re m(re)

where the function M(r, r.) is defined by (B.55) above. Then we have that

lil% L[ f1(r) = Lol f1(r) as bounded operators L? — L2,
&—>

where the operator Ly is defined in (B.2). Moreover, the operator norm of Lo f] in
this space is bounded by k.

Lemma B.13 is a direct consequence of Lemma B.12, which implies that (B.52)
holds, and we conclude using (B.44). We omit these details. It thus remains to prove
Lemma B.12.

Proof of LemmaB.12 Let y.(r, r.) be defined as in (4.3). For any test function ¢ €
L%(dr,), we may decompose

[ @) —ulre)u'(r)
Molgho) = [ [ 7 SO DD 00 1) = Mot 7o) 2

n /DO/OO u () (u(r) —ure)) (1 = xe(r, re))Mo(r, re)
0 Jo ((r) —u(re))? + &2

+ /oo/-oo w' (1) u@r) —u@e)) xe(r, re) Mo (r, re) — Mo(re, 7))
0 Jo (u(r) —u(re))? + &2

gr)p(re)drdr,

x g(r)p(re)drdr,
N /00/00 w' (1) (u@r) —u@re)) xe(r, re)
o Jo (u(r) —u(re))? + €2

= (MOLgl. o) + (MO lg) 0) + (MPlel. o)+ (MPLel ). (B59)

g(r)Mo(re, re)e(re)drdre

Next compute the limit of the first three terms on the right side of (B.59) vanish as
e — 0.
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By (B.12) and (B.54)-(B.55), we have

(MO1e1.6)

< ket / f Ol o, re) g ()ptro)ldrdre
()

—u(rc>|1“
,S %/ / rzzr - l‘r rclf%{ + l‘r_rcli%
A N L N Gl
1-¢ 1+
r 2 (ry2
X | Vo<r = + br<re——7 | 18N (re)ldrdre
T (re) 2
|r rc|<L 1 1rc§l lryfllrfl
<k82/f [+ T li-|- 1+;1;§+1—;1;§
|r_r| <r> 2 (rc} 2 (}")Trc rTrcz
X [g(r)e(re)|drdr,
1
¢ Ipl< 1 1,.<i
Ske?lglpz llellL2 1711) T + 1:;5 =
Pl R KCORERNCO NN VRN 73t ar o

lrcsllrsl
1—¢ 1=¢

= 2
r2re L}z_r
sfe

¢
Ske? gl lell,2 — 0 as ¢ — 0.

Similarly, using (B.12) and (B.54b)—(B.54¢), which allows us to replace y with ¢ in

(B.54c) since ¢ < y, we get
(M@1e1,¢) — (MP1g1. o)

N oo |u'(r)||lr —relf 1, <
e5 ks / / CM(r, ro)lg (Mg (o) drdre
rEuGr) — u(re)| '3

S () .1 1
<szk¢/ / Ir = el < [ ""6'511*0( + ‘“’AZ{I%
E |l+§ <r>1+§

A

¢
2 lr —re
rT (r) =
X | Yo<r = + Lr<re ——7 | 18N (re)|drdre
}"cT (re) 2

¢ coroo [ L, o1 Lo <
s [ L |11—°£+<>°+: T |l8pldrdre
F—re T2

¢
< ekl gl lellz — 0 as & — 0.

~
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Moreover, a bound similar to the above shows that
M <K B.62
(gl ¢ llgllz2 el 2 (B.62)

so that the limiting operator ./\/l(()z) is bounded on L?.
In a similar fashion, by using (B.12), (B.19), and (B.54b), we arrive at

KMél)[g], <p> - (M(()l)[g], w)‘

o oo Wy, s
82/ / =M(r, re)|g(r)e(re)ldrdre
|M(”) —u(re )|1

¢ Cl|r riz [ Dpr=4; 1or'ts
& 1L r Tl
= rel TG o)
¢ 1
+1|r—rcl>i lrier—j + Ll(
=10 (r)l+§

3

N

2/\

b

% 1—¢ 14
re r2 (r)y—2
X lrcfr = + 1r<rc r lg(r)p(re)|drdr,
(re)® I
c re 2 Fe 2
58%/ /oo 1r(<‘r - % + 1+{1 1+¢ + lrillrlcil + lréll—{
r—rl'" T ST T
X |g(r)g(re)ldrdr,
< e% lgl2 loll;2 — 0 as e — 0. (B.63)
Moreover, a bound similar to the above shows that
1
(M 181, 0)] < gz N2 (B.64)

so that the limiting operator /\/l(()l) is bounded on L2.
Thus, by (B.60), (B.63)-(B.64), and (B.61)-(B.62), we know that the first three
terms on the right side of (B.59) converge as ¢ — 0 to bounded operators on L2(dr.).
Lastly, we need to consider the fourth operator on the right side of (B.59), namely

© w () (ur) —ure))
() —u(re)? +e2 %

MO [1re) = Mo(re, 1) f (r, ro)g(r)dr.
0

We note that since u: [0, o0) — (0, u(0)] is a bijection, hence upon making a change
of variables, we have that

S ()

(B.65)
w (u="(e))

IfTIllL2@r = "

L%(dc)
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so that we may change variables in the formula for /\/l?) [gl(rc) as

3) _ ; U (r)(u(r) — u(re))
Ma [g](re) = Mo(re, re)y/ 1w/ (re)l /0 () — u(rc))z )

5 (¢|u'<r‘>|xc<r,rc>> 8
[ (ro)] [’ ()]
= V' @) Mo (c), u"(c))
y /”@) (y—o) ' =" ) [ xe (™ (), u=1 ()
0o (—o?+¢? ' (u=1(c))|

B e M(@{ 0) }(C)
NCTRIDIN w10l

Thus, if we can show that the operator M§4) is bounded on LZ((0, u(0)]), uniformly
in &, and that it has a certain limit in this space, then by applying (B.65) twice, we
have proven that

[ M&1g1 = MP1e]

L2(dre)

_ M(4>[ g'() :|_M84)|: gw™'() }
VI =10 0/ @O | g
gu”'()

S M§\4) _M(()4) 2 2 —

L%2(dc)—L2(dc) |’ (u 1(.))| L2de)
_ “) 4)
= Mg _MO Lz(dc)—>L2(dC) ”g”LZ(a’rc). (B66)

Therefore, in order to conclude the proof of Lemma B.12, it remains to show that
MP - MP 50 in L2(de) as & — 0, (B.67)
and that the the limiting operator /\/l(()4), naturally defined as

M) = Mo (e), u™" ()

/ " ( lw(u—l(y)nxc(u—l(y%“_1(6))) o
X p.v. d
0 ' (u=1(c))]| M
(B.68)

)

obeys

M6 1w

L2e) S ”‘//”Lz(dc) (B.69)
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Indeed, once this is achieved, we may change variables ¢ — r,, to obtain that

M§3)[3](rc) d M(()3)[g](rc) = Mo (e, Vc)P~U~/ &Xc(ra re)g(r)dr
0 u() —utro)
=0 fim [ O g

in L%(dr.), as ¢ — 0. Combining the above with (B.60), (B.61)—-(B.62), (B.63)—
(B.64), (B.65), (B.66), and (B.67)—(B.69), we obtain that

Melgl(re) = MP1glere) + MPgltre) + M [810r0)

= p.v./ooo &‘Jﬁo(r, re)g(r)dr

u(r) —u(re)

and that the limiting operator is bounded on L2, as desired.
In order to prove (B.67) we note that for any ¢ > 0 we have

g V1@ O e o), w7 @) _
mm =

e |’ (=1 ()l

1

which allows us to rewrite

u(0)
MDY 1) = Mo (c), u_l(C))/
0 lu'(u=1(c))|

y Yy —c) J

(T ) xe™ ), ")) 1)

-0 +e?
_ ~ 4Oy (y)(y — )
1 1
. —
+ Mo(u™" (), u (c))pvfo L
= M%) + MED[y1e). (B.70)

The convergence in L?(d¢) of the second part in (B.70), namely

MED[Y(e) = MEP[Y1e) = Mo (@), u™ () (Louon¥) (¢)

where H is the Hilbert transform is classical. Moreover, since H is unitary on L?, and
since by (B.54b) and (B.55) we have

190 (™" (), u™ ()] S Mre, 7o) S 1,
we have that

M 21

<
LS vz,
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which is consistent with (B.69). The convergence in L2(dc) of the first part in (B.70)
follows since this term is not a principle value anymore, and we have that for any test
function ¢ € L%(dc),

(MEDIE) ~ MEP©, )

. (U0 pu©) 3 5
587/ / mlniu_l(c)T,u_l(c)_T]
o Jo

W @ ) Ixe @™ ), u™ () JE®lle©!
lu'(u="(c))| |y_dw2
u(0) ,u(0)
5mK/ /‘ wommw
ly — |75

¢
< eIkl 2 llellz — 0 as & — 0,

where
VI @ )@ et e@)
. _ & _3¢ "(u!
K= sup min {u Loz, u ) 2 } Vit (C));E
y.c€(0,u(0)] ly —cl#
30 AW Olxelrr)
e (re
= sup |-Z o) <K (B.71)

3 %
rreel0.00) | (re) lu(r) —ure)|

To see that (B.71) holds, first note that

1
[r=rel=15

1
lu(r) —u(re)l ™ |u'(re)l

min{re, .1} < (re)%

and
e PR NS SR

u(r) —u@ro)l ™ ' Gl r —rel ~ relr —rel”

from which it follows that

L= xelrore) x5 ()™

3~ 3
lu(r) —u(re)|# rZ
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This proves (B.71) for the region x.(r, r.) = 0. Second, due to the regularity of u’,
we have that

lu’(r)]

"(re (ryre)|u’ (r) —u'(re
xe(rs re) |u(re) < X, r)lu'(r) (re)l

() — utr)| % " ) 12T (V] + VI
3¢
i
rorelzg"e | _ {re)®

1

1 1
|r_rc|§m

3¢ Lf ~ IS
|r —rel@ (re)2 r.2

which proves (B.71) for the region x.(r, r.) # 0.
To conclude, the same argument as above shows that

MVl o) S K1Y el ,

which establishes the boundedness of M(()4’1) on L%, and thus (B.69) holds. This
finishes the proof of the lemma. O

To conclude this section, we show that the conditions of Lemma B.13 hold for the
specific weights we need to considering. First, the next Corollary concludes the proof
of Theorem B.2.

CorollaryB.14 Let0 < j <k —1,and 0 < £, 401, ¥ be such that £ + {1 + £, < j.
Let0 < ¢ < %. Consider the weights

r) min 2 )
Be1(r,re,re) =X1(r,rc)ﬁ( ; ( (1)(r TesTe)
u' (re)wp s(r)
BUro)wg s.,5,(5)
%8,2("6’ s, re) = #‘FN (2)(r07 s, re)

u'(s)

where B( ) is a suitable (201,21 4+ n/2) kernel of type I or 11, and B( ) is a suitable
(245, €7 + n/2) kernel of type I or 11. Then, letting

NSFs

Te

m(rC) = ) . ’
(re)*wp g (re)(max{rg, re “h/=01=n/2

(B.72)

the conditions (B.57)~(B.58) of Lemma B.13, with 9 replaced by k**12290, and
where the limiting weights are obtained by passing ¢ — 0 in Bé}s) and ng . Also, the

operator norm of Lo on L*>(dr) is bounded as k¢ 2611262,

Proof of Corollary B.14 In view of the established pointwise (and in a Holder class near
the diagonal) convergence properties of type I and type II kernels B (r Fe,Te) —
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Bl% (r,re,re) and Bﬁ) (re,s,re) — Bé%(rc, s,rc) as &€ = 0 (cf. Definition 6.7 and
Definition 6.8), it is clear that checking conditions (B.57b) and (B.58b) is sufficient.
Indeed, checking conditions (B.57a) and (B.57¢c), respectively (B.58a) and (B.58c),
follows mutatis mutandis. For simplicity we only treat the case = 0. The case

0 < n <« 1 is treated similarly. First, we verify (B.57b). We recall that

1
1B e, )| S 1/ ) 1B r)K(r, re, 1) Lagy oy (7 o)

k-1 1

/ Ie : rk+7 4

= |u (rc)] lrc<r_k 1+1r<rc_k T (re)
k=2 rc+§

2
r
2
X <1rc>l + lrsrcgl + r_czlrc<r<l +r. 1rC<1<r)

1 1 b
x k20 [ max —2,r2,—2,r3 ,
r ré

from which it follows, using the definition of wr s in (1.10c), that

4
T 1 re )]
T4~ N s fes e
<rc>4m(rc)r
3
rl_%(r Vw5 (re) k=% k+4
<a DT YA et i fe 41—
S A >1 . e
(o B T B
C

2
1 1 feq 21 K2
X re>1+ Lr<r.<1 + r_2 re<r<1 + 1l <1<r

[| j*el
1 2 1 2 1 2
(max{—rz,r ,—rg,rc}> (max{rg,rcD

x j
(max {rz,rlz])
3
2 r% p2k=2j+3-8
<k _ZC 11, .
~ <rc>3; I:l%<r<r(,<l + 1%‘<r<1<rc +1licrar U—2j+i+a-3 3¢
Te
r2k—2j+%+5—§—3; ezisdas i3
c 1§ 2k=2j+3+5-5-3¢
+1 +1 r2"°r
re<r<I r2k—2j+%+5—6 re<l<r c
18
r
+11<rc<r %_'_4_%_3{]
re
3¢ 1-¢ 1+¢
> 4t
20y _Te re {r)— 20
S >s;[ resr g +lrene g | = KRG )
¢ rC2 (re) 2

in view of our assumption on ¢. Here we have used that j < k. Thus, (B.57b) holds

with the above definition of B, | (r, r¢, r.), upon multiplying 9t by k%!, Next, we
verify (B.58b). We recall that
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IBE) (e, 5.1 S 1/ (9)IB (e, $)K(re, 5,70 Loy 15 (e 5)

_1 k+1

1 Sk 2 e : 4

= [u'(s)] 1s<r(_k 1+1rf<s ot L (s)
S Gkl

2
r
g 2
X <1rc>1 + 155%51 + S_421r6<s<1 +rclrc<]<s>

1 1 b
x k2¢ ( max - sz, = rf
S I"C

from which it follows, that upon using the definition of wf s in (1.10c) we arrive at

m(re)[Boa(re, s, 7l

3¢
1 4.7
sk=1 r5+2 wF,§+2£(S)(S) re’
5 1S<rg 1 + er<S 1 6+3§
k=73 sk+7 (re) wr s (re)
re i)

2
r
2
X (1r0>1 + ISSrcsl + s_czlrc<x<1 +rclrc<1<s>

%)
(max {552, .72])
x k2 ’ e

3 16
2 §2k—20-200+1 -4
< kzezc—[lsq “(—
~ (re)3¢ S0 2k-2j+201+4-3
I'e
15 1
1 5726+771 1 s2k72€+3*§73 max{s7262’ rZZZ}
1 ) 1 X
Te<s< —2J+2£2+2€1+%—% s<l<re 2_]—2@1-‘1—%-}—%
re c
max{r, 22, 5262} 1

+ lrc<l<s +11<s<rc

2420+ =3 o oyl
re J 2 2s2k 2+5+1-5
2k—2j+26—%-3

re

2j—201—20+1+5 _Hp 38
rcl Zg 2l+5—73

+1 ————
L<re<s (2k—20-26+3 -4
r% SFT{ (s)l%{
20 c 20
5 k 2W lrcfsl_;[ + 1s<rc o | T k2N (s, re).
¢ rC2 (re) 2

Here we used that £+£1+¥€> < j < k—1. Therefore, (B.58b) holds with 9t multiplied
by k%2, O

Similarly, the next corollary concludes the proof of Theorem B.3.

CorollaryB.15 Let 0 < j <k —1,and 0 < £, 01, ¥ be such that £ + {1 + £y < j.
Let0 < ¢ < %. Consider the weights

@ Springer



Vortex Axisymmetrization, Inviscid Damping, and... Page 155 of 192 4

B(r) min(r?, r~=2)/ 1
%e,l(rsrc‘vrc):1r§112r§rc 1 B( )(I" TeyTe)

r2wyg s(ru' (ro)reu’ (re)
BUo)wg s.,5,(5)
SBS,Z(’"C»S,”C):#W (2)(7675 re)

u'(s)

where Bé E) is a suitable (201, £1 + n/2) kernel of type I or 11, and Bé 8) is a suitable
(242,82 +1/2) kernel of type I or I1. Then, letting

b4

rT (re)?
m(re) = — (B.73)
(re)¥wp 5 (re) (max{r2, re 2)i=0

the conditions (B.57)—(B.58) of Lemma B.13 are satisfied, with 9 replaced by
k2042090 and where the limiting weights are obtained by passing ¢ — 0 in Blgl) and

Blg g) In particular, the norm on L*(dr) of the operator Lo defined in (B.2) is bounded
as KE+20+20,

Proof of Corollary B.15 The proofis essentially the same as the proof of Corollary B.14,
hence, we only emphasize the requisite modifications. We notice that the choice of
m(r.) in (B.73) is different from the one in (B.72), as we have multiplied by a factor of
(r¢)2. Thus, when checking conditions (B.58a)—(B.58c) for the weight B, 2 (r¢, s, r¢)
we need to obtain bounds which are better by an (r¢)2. This however is automatic from
the decay of B(r.) present in the definition of B, 2(r¢, s, r¢). In turn, when checking
conditions (B.57a)-(B.57¢c) for B, 1(r, r¢, r.), we can afford estimates which are
worse than those in Corollary B.14 by a factor of (r.)2. This is natural, since recall
that the %5 1(r r¢, ) in this corollary, differs from the one in Corollary B.14 by a
factor of & — ,forr <1 and 2r < r.. The worsening of the estimate by a factor of
(re)? is thus compensating this extra factor when r. > 1. On the other hand, in the
case r. < 1, we have ("r)# < :—i < Alf, and thus there is nothing additional to prove.
With these changes in hacnd, we ;nay now follow line by the proof of Corollary B.14,
and conclude the proof. O

B.1.4 A Useful Product Formula for Weights

LemmaB.16 With the notation of (B.24), define

1r< 1 1 )
W(r, s, so) = |: Ly Lok %] [1S<1sk+§ T i] B(r, so) B(so, s)
2

rk+§ ski <S0)4 <S)4
1< 1 15>
- |: 71 +1r>lr 2 1\‘<]sk+2 + 71
rk+7 Sk77
k=% 1 1 k1
sy rkta sz sy
X lso<r 1 + 150>r_] ls<so_1 +1s>s0_1 . (B74)
rk k+5 k—5 k+5
o o s
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Then we have that

2k 1
W(r, s, 50)1r<s<s0 = 11<V<S<SOTk + 1r<1<S<SOTk
S S
0 0
s2k S2k
+ 1r<x<l<sgﬂ + 1r<s<s0<lﬁ
S S
0 0
r2k r2ks2k
W, s, 50)1s<r<x0 = 11<s<r<soﬂ + 1s<l<r<soT
Y S
0 0
S2k S2k
+ 1s<r<1<307 + 1s<r<x0<l K
S S
0 0
er
W, s, S0)1r<so<s = 11<r<sg<s_ + 1r<1<s0<s_ + 1r<so<1<s_ + 1r<s0<s<1
T T T
2 2
W, s, S0)1s0<r<s = 11<so<r<ssﬁ + 1so<1<r<ssﬁ
2 2
+ 1s0<r<1<sm + 1s0<r<s<l ok
r<ts r
2k 2k 2*
W(r, s, 50)1s<so<r = 11<s<s0<r + 1s<1<so<rs + 1s<s0<l<rs + 1s<s0<r<1 rﬁ
2 2
W, s, S0)150<s<r = 11<s0<s<rsﬁ + lso<l<s<rﬁ
2

2k
+ 1s0<s<1<rs() + 15y <s<r<1 ’E
holds. In particular, note that
W(r, s, so) <1.

Proof of Lemma B.16 The proof follows by inspection of each of the 24 possible per-
mutations of {r, s, s, 1}. O

LemmaB.17 Let0 < j <k, and { + ¢1 + £>» < j. Define

o Lesr | [ 1<t
L(r, s, so) := [1,<1r2f + rrzz] } [;Tz + 1s>152E] Log,,0,(r, 50)L2e,,0, (50, 5).

Then, we have that
W(r, s, so)L(r, s, s0) < 1.

Proof of Lemma B.17 Notice that for j = 0, we must have £ = £| = ¢, = 0, and thus
L = 1. In this case the proof directly follows from Lemma B.16.
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For j > 1, we use the precise formula for W in Lemma B.16, and use the definition
of IL, which is also a function of r, s, and sg, to obtain that

rk=igt
\/W(r’ s, so)L(r, s, 50)1r<s<s0 = 11<r<x<som
S
0

Cpj
s°r 1 )
+ 1r<1<s<som <r71 + SOI>
S,
0

j k4L
rls 1 ¢ 1 ¢
T lrcsctan se (r‘fl % ) (sfz + 5

rj—ﬁlsk—l—fz

+ 1r<s<s0<1 -
50
rk—ist
\/W(rs s, so)L(r, s, 50)13<r<50 = 11<S<r<50m
S
0

k—j k—¢
r* /s 1 )
+ 15<1<r<soTZ1 (sTZ + 502)
s,
0

Jjok—t 1 1
r’s Vi Y
+ Lo ci<s —sg (r71 + SOI) (st + soz>

rigk=t
+ ls<r<s0<l—k
S0
—i L
rk= sy
\/W(rs s, so)L(r, s, 50)1r<so<s = 11<r<SO<SSk—TZZ

1 rj 1 2
+ — | — +5
r<1<50<ssk—4i—£2 r[] 0

rj_gl A
+ 1r<so<1<ssk__g o +s
S
0
ri=h

153

+ 1r<so<s<1
sts,

k

S
0
VW, s, s0)L(r, s, $0)lgg<r<s = 11<s0<r<sm

+1 (e (g
so<l<r<s 7 . _ r s
risk—t \ §0 2

So

1%

k—0,
+1s0<r<l<s kso- —e \ oo +S£2
riT k=t \ ¢t2
0
k—C1—Lo
S0

+1 P
So<r<s< GCrk—j
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2]
578

r]'_ll
k—¢
N 1 ¢
o 2
+ 13<1<s0<rrj_[l <S£2 +SO )

Sk—l—ﬁz 1 '
1 | — 4+
+ s<so<l<r Py 2 +

So

\/W(I", s, s0)L(r, s, 50)15<x0<r = 11<x<so<r

Sk—[—(éz

+ ls<so<r<l 0
rk=isg!
0

k

S,
0
\/W(’Z s, so)L(r, s, So)lso<s<r = 11<S°<S<’m

Sé 1 ¢ 1 14

+150<1<s<r ) 7 +r! 7 + 572
rls sd s
0 0

k—1>
S0 1 0
+ 1.v0<s<1<r-_z v +r
rls sl
0

k—11
o

so<s<r<lI m

+1

Inspecting each of these 24 terms, by using the constraint 0 < £+£1 44y < j <k—1
the proof of the lemma follows. O

B.2 The Remaining Combinations of Iterated Operators

Similar to the results in the previous section, namely Theorems B.1, B.2, and B.3,
one can prove a number of results for passing ¢ — 0 in other combinations of three
integral operators. The aforementioned theorems deal with the most difficult case, of
an approximate delta function combined with two approximate singular integrals. The
remaining operators all have at least one approximate delta function, and at most one
approximate singular integral, which are hence easier to treat.

TheoremB.18 Let 0 < j <k —1,and 0 < €, {1, £y be such that £ + £1 + £> < j.
Let Bé}g be a suitable (201, 1 + n/2) kernel of type I or 11, and Bé‘zg) is a suitable

(202,87 4+ n/2) kernel of type I or I1. Let 0 < ¢ < g, and consider the pairs of
weights given in (B.3)—(B.4) or (B.5)—~(B.6). That is, either consider the pair

B(r)min(r?, r2)J

Be1(r, 50, 7c) = x1(r, re) ; Blgg)(raso’r(,‘)
wr,s(r)u’(so) ’

Bso)wp 2 9,(s) 5O

u/(s) le

%8,2(s01s9r6‘) = (S0$S7rc‘)7
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or consider the pair

(r) min(r2, r=2)J
Be. 1 () 50, 7e) = x2(r, 1) 1’3 By (r.s0.70)
riwg s(ru' (so)reu’ (re)
BGo)wr s 5,(8)
B, 2050, 8, 7c) = L) b (2)(S0 S,7¢) .

u'(s)

For each such pair of weights, we have that the following limits hold, in the sense of
bounded operators on L2(dr):

/'0700/00 (W) —u(r)u'(re) eu'(s) eu’(s0)
0 Jo Jo () —ure))? +e? (uls) —u(re))? + &2 (u(so) — u(re))? + &

X B 1(r, 50, 7c)Be2(50, 5, re) f(s) dsdsodr,

2 o u'(re)
S f _MUD  (r res re)Boa(res e 1) f () dre
b u) —uro)

fw/w/w eu' (re) (u(s) —u(re))u'(s) eu’ (s0)
o Jo Jo (r) —u@re)?+ 62 (u(s) —u(re))? + €2 (ulso) — u(re))? + €2

x Bo,1(r, S0, re)Bo,2(50, 5, 7¢) f(5) dsdsodre

— nzp.v./ u—(s)‘Boyl(r,r,r)%o,z(r,s,r)f(s)ds
o u(s)—u(r)

/ / /‘ eu'(re) eu'(s) eu'(sg)
o Jo Jo w(r) —u@re)? + &2 (uls) —ure))? + €% (ulso) — u(re))?* + €2
X B 1(r, 50, 7¢)Be,2(50, 8, 7¢) f(s) dsdsodr,
— 7t3i801(r r,r)Boa(r,r,r)f(r)
/“’/ /'°° (u(r) —u(re))u'(re) W (s) eu'(so)
o Jo (u(r) —u(re))? + &2 (u(so) — u(re))? + &2

X B 1(r, 50, 7)Be 2(50, 5, 7¢) f(5) dsdsodr,

— —7po. / / D )P0 1 1o ) Boa(res s, 1) £(5) dsdre
u(r) — u(re)

eu (re) eu’(s0)
f / f @) — w12 O wtn w1 2

X %8,1(77 50, rc)%sl(soy s, re) f(s)dsdsodr,

g2 / W) B0 (s ) Boa(r 5. £(5) ds

f /oo (u(r) —u(ro)u'(re) su'(s)
(u(r) —u(re))? + €2 (u(s) — u(re))? + &2

o0
e apw. f WO o e r) £ () dre
0

B 1(r,s,re) f(s)dsdr,

u(r) —u(re)
oo oo eu'(re) su’(s)
/ / @) —u ) T & () —utro))? o2 Dol 5 re) () dsdre
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— 2B 1 (r, 7, ) f(r)dre

o0 [0 eu'(re) w(s) — u(re)u'(s)
/0 /0 W) — ()2 + 2 ) —utro))? &2 Dot 8 7e)f () dsdsodre

. —irp.v./oo ) g (s ) f(5) ds
o u(s)—u(r)

o0 o0 5“/("0) ,
/0 /0 W) —ur )P+ 8214 ($)Be.1(r, s, re) f(s)dsdsodr,

— -7 /OO u'(s)%o,l(r,s, r)f(s)ds.
0

Moreover; in each case the limiting operators are bounded on L*(dr) with norm
< gEH2+26,

Proving each statement in Theorem B.18 amounts to following step-by-step the
proof of Theorems B.1, B.2, and B.3. For every approximate delta function, first
show that the contribution away from the diagonal vanishes, leaving one with the
contribution close to the diagonal, in which one may pass to the limit because we have
Holder regularity of our weights in all variables not called .. Checking that the weights
we consider are suitable for this procedure, i.e. that they give a bounded operator in
the correctly weighted L? spaces, was already done in the proof of Theorems B.2
and B.3. This leaves us with the contribution from the joint diagonal, in which the
remaining operators are either approximate singular integrals (note however that at
most one singular integral may be present), or simple Hilbert—Schmidt kernels. For
the approximate singular integral we again employ Lemma B.13 and Corollaries B.14
and B.15, depending on which weight we choose. For passing to the limit in the
operators with Hilbert—Schmidt kernels, we simply subtract the limiting kernel, so
that the difference is again Hilbert—-Schmidt but of size ¢ for some ¢ > 0. Here we
lose lose a power of k¢ /rf , but since ¢ > 0 is arbitrary, we may absorb this loss
into the weights. This procedure again essentially uses the regularity of our weights
in all variables not called r.. The only non-trivial case left to discuss is the case in
which we have an apparent approximate delta function in the r. variable. We treat
this operator by duality, so that the approximate delta function in r., becomes an
approximate delta function in the r variable, acting on the L? test function. We pass
to the limit in the dual pairing and thus obtain the formula and the boundedness of
the limiting operator. Having available the estimates in the previous section, which
were used to Theorems B.1, B.2, and B.3, implementing the above described program
is tedious, but routine. In order to avoid this unnecessary redundancy, we omit these
details.

C Properties of Hp and H,
The next lemma concerns the asymptotic analysis of Rp ,(z) and R, o (z), which both

arise in the Green’s function.
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LemmaC.1 Forz = ¢ +ie € I, with ¢ sufficiently small, for |r — rc| < re/k there
holds

r—r
|RS ()| L —roy<resk S Lro<i max(ri 2, 72) (k + ‘logk' d ) (C.1a)
c
2k—2 1
RS, | Vp—refzre sk S Klpe<i <1r<rcT+1 + 1rc<rr—3> (C.1b)
rC c
2k—2 2k+4
r kr
+ lrL.zl (1r<lw + 11§r<r(.w + 1r>rckrcs> ,
r'c I'c
(C.1¢0)
and similarly
e < -3 5 lr —rel
|Rr,00(z)|1‘r_rc|5ry/k ~ 1}’(51 max(rc ?rc) k+ logk , (C2a)
c

k k7‘1+2k V2k+1
|Rf,oo(z)| l\rfrclfjc/k N 1.1 (1r<rcr_3 + lrg<r§1r4€W + 1,51 ﬁ) (C.2b)

&

5 r2k+3
+ klrﬂzl <1r<r(,l"c + 1r>r5r02k_2> . (CZC)

Moreover, for all n sufficiently small and 7 € I, we have that 8_’7(R8)r(c +ie)
- Royr(c)) also satisfies (C.1) and ¢ ™" (Rf‘oo(c +ieg)— Rr,w(c)) also satisfies (C.2).

Proof of Lemma C.1 The proof is a straightforward variant of arguments applied in the
proof of Lemma 5.2 and is hence omitted for the sake of brevity. O

Proof of Lemma 5.4 Recall (5.25), which will be of use in the critical layer region
|r —re| < rc/k. From Theorem 4.3, followed by Lemma A.l, there holds for
[r —re|l <re/k:

1 N O e N
~ min | ——=, ———= | * max(r. ', r)).
WP cEie) Wi\ R e ole

Consider next (5.26). From Lemmas C.1 and A.1 we have for |r — r;| < r./k (for
z € Iy and ¢ sufficiently small),

lp(r,c xie) (R, (c £ie) FiE], (c*ie))

r—re

logk

S 1e<arelr —rl r;S (k +

)
)

which is the desired estimate of Hy; the treatment of H is the same.

re

r —re

1
+ lnzlg |r —rclrc5 <k+

logk‘

re
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Turn next to the estimates (5.28a) and (5.28b). Consider just the estimates in (5.28a);
the estimate (5.28b) is analogous. For r < r¢ (1 — 1), (from (2.31)),

k—1/2

[Ho(r, 2)| < |o( )|/ 45 < lrc /' 1 s2k—1d
o(r,z r,z s Slu—c| —— —ds.
|¢2 2| P2 o (= e 2

Consider the case r. < 1. Then from (A.1),

rk 1/2 2k—1 1 rk+1/2

1 /2|H (I' )|< c / 1s ~
r<r 0 » 2 ~ — — ?
¢ l’czl’k 1/2 gk 1 k 54—3/2

pk=1/2 2k r 1 g2k—1
1 1 IHo(r,z)I,Srclr—%ICi(iJr/ PPre— d)
re/2<r<re(1=1) el k=172 kr3k+3 /2 |M(S)_C|2 2k—1
< Vk+]/2 1)"7/2<r<rc(17%) 1 rk+l/2
~ kri<+3/2 e |r _ rc| k r§71/2
k+1/2
S rk 3/2°
rL.+ /

Once the integral crosses the critical layer, one cannot do better than the analogous
upper bound on M (z):

rk+1/2 ) 72 pkt1/2
1rc<r<1 |Ho(r, z)| 5 1rf<r<1 lu — c] ’mg 5 E#—I/T
c C

pk+1/2
Le<iliz1 [Hor, D1 S Lre<ilrz1 3 —4777
rc ¥e
Analogous estimates are made for . > 1 and for Hyo; these are omitted for the sake
of brevity. This completes the boundedness estimates (5.28a) and (5.28b).
Next, we consider the estimation of Hy(r, c £i¢) — Ho(r, ¢). Forr < r.(1 —1/k),
we write

Ho(r,c+ig) — Ho(r, ¢) = (¢p(r, c £ ig) — p(r, ¢)) /0’ ¢2(;Z)ds

r ¢2(S,C) _¢2(S,Cﬂ:i8)
o [ e

In this region, we apply a proof analogous to those used in Lemma 5.2. For the region
|r — r¢| < re/k we again use the complex integral expansion (5.25):

1 1
W(r)P(r,cxie) W ()P(r,c)
+¢(r,ctie) (Rg‘r(c tie) FiE),(c* is))
—¢(r.0) (RS, (o) FiE] ().

Hy(r,ctie) — Ho(r,c) =
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The desired estimates then follow from the convergence of Rar and Eé,r' Convergence
for r 2 r. follows as in Lemma 5.2. The estimates of "7 (Hxo (r, ¢ £ ig) — Hoo(r, €))
follows similarly as well. O

Proof of Lemma 5.5 The identities (5.29) follow by direct calculation from (5.25).
Next, observe that 79,¢p = ru’P + (u — ¢)rd, P. The estimate (5.31a) then follows
fromm Lemma C.1 and Theorem 4.3.

By direct calculation,

9, Ho )——a¢/r;d—l—<“/ +5)H—1- ©3)
PO =0l ) 662 e \u—z  P)OT g '

and analogously for Hy,. Therefore,

rlu
|70 Hoo (7, 2)| 1|r—r6|2rc/k S, <|u }_ C}‘| + k) |Hoo(r, c ig)]
k12 r5+1/2
+ r min —rk—l/Z’ prny;) (C4)
c
rlu
70 Ho(r, )| Vjr—rozre ke S <|u }_ L + k) |Ho(r,c Lie)l
k12 rf+1/2
4+ r min rk——l/Z’ m . (CS)
C

ru' (r)

lu—c]

Then, note from (A.1), Ly roysre/k < k and moreover that

_ k+1/2
k12 rc+/
rmin | ——, ——
k—1/2" ,k+1/2
I ]
sy S22 A2
S1< 1r<rcm + lrc<r<lkm + 1r>lkm
rC rC rC

rk—H/Z rk+5/2 }"k+1/2
+1,. 21 1r<1m + 11<r<rcm + 1r>rckk_—5/2
I'e I'e re

— 1/2
k12 rf+ /
r min —rkfl/Z’ syl
c
k=372 K172 12
< c c c
~ lrz‘fl 1r<rckrk_1/2 + 1r6<r<] rk+3/2 + 1r>l rk—1/2

k+5-1/2 k+5-1/2 k+5/2
Te Te Te
+17(>1 1}’<1k rk—l/2 +11§r<rck }“k+3/2 +1}’C<rrk_1/2 )
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which completes the estimates of the 9, derivatives. Moreover, convergence follows
from (C.3) and convergence estimates already proved.

Next, turn to studying derivatives involving 9,.. Away from the critical layer there
holds

—0r Ho(r, ) Vjr—r ook = B, ((u = Z)P)/ ¢,2 ¢/ = : (zr;3P2
u (rL)M (S) XC
+ ¢ / _ z)2 ( /PZ) ds
+6 s,

—8
0 (w—2)2" P2

By adapting the arguments in Lemmas 5.2, 5.3 and 5.4 the desired boundedness and
convergence estimates follow (note that appropriate estimates on 9,, P follow from
Theorem 4.3). Further, from Theorem 4.3, we may even take an additional r 9, deriva-
tive and obtain similar estimates (note crucially |r — r¢| > r./k).

Computing dg derivatives near the critical layer from Lemma 5.1:

1
dgHy = 9
RIS r(u/P(r,c:l:is)

1 1 1 & ol
_arc <—> — /—Brc¢> (R(),r(z) + lEO,r(Z))

1 Cl a2} .
) ~ oy (R, @ FIE,) = PE(r.cEie)

u'(re) u' P u'(re)
+ PxE(r,2) —¢>/ T . S0 (kB ds
u (S)u ( c) u'(s)
_ e )¢/ ————E(s,2) — =2 X£0r E(s, 2)ds.

The cancellation which ultimately removes the logarithmic singularity is the fact that
dg¢ = (u — z)d¢ P. Taking this into account gives the identity (5.30a). The corre-
sponding calculation on Hy, is analogous.

Next, we prove (5.31b) and (5.31c). Consider one of the singular appearing terms
in (5.30a):

o [ L os eEryds=o [ L 30( Ly (L))ds.

o —2) o w—2 "\ X \wp2

Note that 3¢ and (u'(s))~'d; commute. Hence, this term is essentially the same as
that treated in Lemma 5.3 (combining also with arguments in Lemma 5.4). Similarly,
the remaining terms in (5.30a) are all easy variants of terms we have treated before in
Lemmas 5.3, 5.4, and C.1. Hence, the details are omitted for brevity. The calculations
involving H, are analogous and are also omitted. This proves (5.31b). Similarly,
convergence as ¢ — 0 asserted in part (c) is deduced as in previous arguments.
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Next, turn to (5.31c¢). Taking a 9, dg derivative of (5.30a) gives:

/ .
096 Hy = 9,96 (m) —u'(86 P) (R, (2) FiEp,)

— (2336 P) (R, (2) FiE],) — (96 P)u (NE(r, 2)

+(3,9) / - “ ) L6 (1eE)ds + Pul (106 G )

’( Ju '( c) u'(s)
— /(r ) r¢)f ———E(s,z) — =2 . (x2E(s,2))ds

By Theorem 4.3 and the arguments used previously, we can again deduce the desired
logarithmically singular upper bounds; the details are omitted as they are repetitive. O

D Vanishing for k > 2 Outside /,

We start by performing energy estimates on the solution to the inhomogeneous
Rayleigh problem

2
A=K ) }YS(,’C)=M+F*,S(M), (D.1)

0
|:rr+ 2 u(r) —cFie u(r) —cFie

r

with boundary conditions
Y:(0,¢) =0, lim Y.(r,c) =0. (D.2)
r—0o0

Problem (D.1) is a slight generalization of (2.13). Notice that, for every ¢ > 0, (D.1)
is just a regular perturbation of Laplace’s equation, and therefore

Ye(r,o) = O %) asr =0, Y.(r,o)=OGY?*) asr — co. (D.3)
For this reason, we define the weight
wy (r) = min{rKTL 7Ry () = minfr ALY Ry (D.4)

and, using the notation as in (1.10a), prove the following theorem.

Theorem D.1 Let Y, be the solution to (D.1)~(D.3), and fix any y € (0, 2k). Then Y,
satisfies the following bounds.

e Ifc e (u(0),u(0) + 1], then

Ye(o, O o Ye(-, o)) 3y.,2<H2
Ve ( C)||LW+|| o ( C)”L?y—l_”r P Ye ( C)HL%,J, Sy ()

+ 12 e, 0l (D.5)
iy
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If c € (0,u(0)) is such that r. < eﬁ, then

||Ys(-,c)||ioo 1Y Ol + 178, Yo, 0%,
Ly_y Lyy

Sy e [n()”“r“Fgc,oHLY +r2 Fee Ol ] (D.6)
sV g

Ifc > u(0) + 1, then
1Ye( 3o +INYeC 20 + 178, Ye(, 0%,
Ld/,y LY‘y LYy
1 2 2 2 2
Sy 2P RGOl + 1 FueC ol (D.7)

1
Ifc <0,0rc e (0,u(0)) is such that ro > 28 "2t , then for every 0 < @ < y we

have

Ye (., 2 Ye (-, Z 4 rdY, . 2
[1Ye( C)”L«/z,y+ Ve ( C)||sz 79, Ye( C)||L2”

2
< |Peerco|

~

Sl Lo OO PR (D.8)

Y.y—a Yoy-a

There exists R, > 1 such that if c < —R,,, then
1YeCo Oz + 1YeC, Ol +1r8 Yol Ol
WY Y

Sy 2||r FeG,0l3, +||r2F*,g<-,c>||§2Y.y. (D.9)

The proof of Theorem D.1 is based mostly on energy estimates, along with the
Sobolev inequality

o o
1
||Ys<.,c>||ims/ |arYs(r,c>|2rdr+/ Yo, 0)Prdr. (D.10)
0 0

We take the real and imaginary parts of (D.1), to obtain the system

1/4 k2 B(u —c)Re Y, efIm Y, (u —c)Re F,
0r + ——— |Re Y, =
|:r :| +(M—C)2+82 :F(u—c)2+e92 (u —c)? + &2
elm F;

—— 4+ Re F, D.11
:F(M—C)Z"r‘é‘2+ © Fos @11
1/4 — k2 u—c)lmY, eBRe Y, u —c)Im F,
by + LB Ty, g BT | efReY, @ olmF

(u—c)-+e¢ (u—c)y*+e (u—c)-+e
eRe F;

————— +Im F, ;. D.12
:F(M—C)2+82+m *,6 ( )
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Let
Y« € (=k+1/2,k+1/2).

We multiply (D.11) by Re Y,r!=2* and (D.12) by Im Y,r'~%"+, integrate by parts
using (D.3), and add the result to obtain

oo 2 o0 2
1 |Ye(r, o)l
2 3

/‘ Wﬂ@—u@»lYUcW
0 W(r)—c)?+e2 rin
| Fe(r, )] |Ye(r, o) 1

0 Jur) —orterrd

Y.(r,c)

7V

X

<

1
d+/|amenmmﬁww.
(D.13)

Since for any small ¢ > 0 there holds

o , 1  |Ye(r, o) 1 [ | Fee(r 02
/0 ‘F*,S(r, c)| |Ye(r, c)| mrdr < K/O i rdr + /0 3 dr,
(D.14)

&nmoz

1 | Ye(r, o)
rdr+|:k2—1—‘}/*()/*—1):|/(; %}Trdr

we obtain
/ B(r)(c —u(r)) |Ye(r, C)I
0

/
W) —c)2+¢e2  rn
< N Fe(r, o) 1Ye(r,o)| 1 dr+/°° |Fye(r, 0)]?

“loo V) —or e r2—3

Cross multiplying (D.11) and (D.12) and subtracting gives

dr. (D.15)

8/00 B(r) |Ye(r.o))* 1 dr < FFe(r, o)l |Ye(r, o) 1 rdr
o W)=+ o Ju@r) — )2 +e2 r
+/ |Fee(r,o)| 1Ye(r, C)|
0

e (D.16)

We use (D.15) and (D.16) in different ways, depending on the various regimes con-
sidered.

D.1 Estimates Near ¢ = u(0)

We start by proving estimates (D.5)—(D.7).
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D.1.1 Proof of (D.5)

When ¢ € (u(0), u(0) + 1], then
c—u(r)>c—u(0) >0, Vr € [0, 00).

From (D.15) and using standard arguments, we obtain

CNFe(r, o) |Ye(r, o) 1 /O" Yo (r, o)
rdr <« _—
0

0 V@) - 2 ravet?

7 u(r))zrdr, D.17)

1 /°° |Fe(r, o)
0

K

for any « € (0, 1). Moreover, since u(0) — u(r) ~ r2 near r = 0, we can write

X R 0P ' RGP
| mresir < |, s 2 e

> |Fe(r, 0)]?
* /1 2w 0) — a2

1 2 00 2
<[ |Fe(r, o)l rdr+/ [Fe(r, )l rdr
0 1

~ 72vst2 72«2
o [, sl Fer o
S|t

0 F2Vst

Hence, from the above estimates and (D.15), we obtain by taking « € (0, 1) small

enough, that
Y.(r,c)
/°° B(r)(c —u(r)) |Ye(r,c)?
rdr
0

2 2
1  |Ye(r, ¢l
2 & k]
7 rdr + |:k 1 Ve (Vs — 1)i| /0 Az rdr

o,

o0
/
w(r) —c)®>+e2  r2r
00 2 o0 2
4|F5(r,c)| |F>k,6(rvc)|
S /0 () g dr + Al e dr. (D.18)

An application of (D.10) gives the estimate

Y.(r,c)

X

? < |Ye(r, o
& ’
7"(1}"-{-\/0 Wrdr

o0
1777 Ye (-, )3 +[
0

oo 2 00 2
< / <r>4IFg(f’,C)| dr+/ [Fye(r, 0l dr
0 0

~Vx r2V*+1 rZV*73
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By considering the left-hand side above restricted to (0, 1) and choosing y, = k +
1/2 — y, with y € (0, k], we obtain

L Ol R AT PP L A QDI A
Fo(r, o /“ |Fae(r, o)
< 4|—d Prev 2/l g
NV/O (r) 72yst1 + 0 72v«—3 "
S o IR oI, (D.19)
LY,y Y,y

Similarly, on (1, co) we choose y, = —k+1/2 4y, with y € (0, k], and deduce that

Taens A c>||Loo<1 w0y TNV Oz oy T IO Os )

9 (C% L IR F GO, (D.20)
LYJ’ Y,y

Adding the above two estimates together and recalling the shape of the weight (D.4),
we deduce (D.5). Note that we can extend the range of y to the interval (0, 2k), as the
weight wy , is symmetric about y = k.

D.1.2 Proof of (D.6)

When ¢ € (0, u(0)) complying with r. < SH%, from (D.13) and using a similar
argument to that in (D.17), we have
YS (r7 C)

00 2 1y 2
2 er, C
fo - rdr + [k — = —yu(ys — 1) /0 Trdr

/ B(r)(c —u(r)) |Ye(r, c)|2

e () —c)2+e2

</ Br)(u(r) —c) |Ye(r, c>|2 +/°° Fe(r OlYetr 0l 1
0 )=o) +er rin 0 V) — )2 +e2 1

| Fre(r. )] 1Ye(r, C)I
+‘/0 2)/*—1

o,

For r < r. <1 there holds |c — u(r)| < rf and hence by (D.16) and therefore

/" Br)u(r) — o) |Ye(r, o) rdr < 1 C|Fe(r, o) [Ye(r, o) 1
r<s — rdr
0 0 [(u(r) — 6)2 g2 727«

W) —c)2+e2  r2r ~ ora
I |F*8(V )| 1Ye(r, C)|
0 r2y*—1 ’

c
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and since . < 1, we obtain

°° , 1 1Y, (r, o)
0 rdr+ k —Z—)/*()/*—l) 0 Wrdr

+/ Br)(c —ur)) [Ye(r, C)I

Ye(r, o) |*

)
r 7V«

@) —c)24+e2  rn

1 [ | Fu(r, )| |Ye(r, c)| 1
0

1
< — d F. ) Y, ) ., d .
S oo f e, )| Ye(r, o) o rj|

Now, for any « € (0, 1) we have

X |Fe(r, o)l [Ye(r, o) 1 > |Ye(r. o)
— 5-rdr <« 2—+2rdr
réJo o J(u(r) —c)? g2 r o
1 [ |F.(r,0)? 1
1 e\r,
— dr.
TRy w—or e

The contribution from F; is controlled using that r>t% < ()27 /(u — ¢)2 4 €2,
which implies that

rdr

f°° |Fe(r. o)) L _/00 rH2F ol ]
0 W) =2 +e2r=200 T Jo (u(r) —¢)? g2 r2nt2iia
</~oo( )4+2a|Fa(V C)' dr.

0

~ 2y*+ 1+2a

On F, we use again (D.14). Therefore, choosing ¥ < 1 and arguing as in (D.19)-
(D.20) yields the desired result.

D.1.3 Proof of (D.7)

The starting point here is again (D.15), together with (D.17), which allows us to write
Ye(r,o

o 1 ® Y, (r, ) ?
2 3
[) -~ rdr + |:k s Vie (Vi — 1)i| /(; Wrdr

/ B(r)(c —u(r) |Ye(r, c)|2
0
e’} 2 e’} 2 e’} 2
5/ |Fe(r, )] rdr+/ |Fie(r, )l drng/ Fe(r 0l
0 0 c 0

o,

(u(r) —c)? + 2 r2ve
r2y*—2(c _ u(,.))z 72r«=3 72r«=3
00 2
IF*,S(r’ C)|

and (D.7) follows from similar arguments as in (D.19)—-(D.20).
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D.2 Estimates Nearc = 0

The core of this section lies in the proof of (D.8). As we shall see below, (D.9) follows
by the argument already used for (D.7).

D.2.1 Proof of (D.8)

In this case, the argument to prove uniform estimates is completely different. We aim
to prove the following.

LemmaD.2 Let Y, be the solution to (D.1)~(D.3), and fix 0 < & < y < 2k. Then, for
every ¢ <0, orany c € (0, u(0)) such that

¢~ Ta, (D.22)

| =

re =
we have that

1Yol + o Yot ol Sy [P R0z 4 I FeeGoolls,
(D.23)
Above, a can be take zero when ¢ < 0. In particular, using (D.10), then (D.8) holds.

The proof of this fact is split into different lemmas. To begin with, we need an
estimate with sharper weights on Y, in terms of slightly weaker weights.

LemmaD.3 Let Y, be the solution to (D.1)—(D.3). Then, for every ¢ < 0, and 0 <
a <y < 2k we have that

1Yol S |2

—|—||I’ Fye (-, C)||L2 B +”Y£(',c)||[‘§,’2y
(D.24)

and

l70, Ye (-, C)”L;V

et o)|

Y.,y—

~

2 .
ARl IOl
(D.25)

When ¢ € (0, u(0)) is such that

N =

then

1Yol S|P

2
+ 7% Fye (- C)”L%,y_& + || Ye(, C)HL%,JV
(D.26)
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and

27,02 2
Irar Yool S [r 7 Fetollp 4N FeeCiolly  +I¥Collg
(D.27)

Proof of Lemma D.3 By using the Green’s function (4.91), we can deduce from (D.1)

that
o Fé‘ )
Ye(r, o) =/ L(r, p) [(m(;w.-i-ﬂ,g(l),c)} dp

/ £er, ’3 ©)__y.(p, ydp. (D.28)
—cFie

Considering the weights in (D.4) and (1.10c), we need to prove an L? bound for

Ye(r, ) ® wy ,—a(p)p~? 1 p2F.(p, )
= —————L(r, p) .
wy,y (r) 0 wy,y (r) (w(p) —cFie) wy,_g(p)
sz*,s(pa C)] d
wY,y—&(p)
_/°° wY,ZV(P)E(r’p) B(p) Ye(p.0) |
0o wyryr) u(p) —c Fiewy 2)/()0)

If we consider the case ¢ < 0 first, we observe that since u(p) ~ (p)~2 for the first
term we need to prove that

s

which follows from a straightforward calculation. Similarly, we also have

2
wy 2 (P)
/ / ‘ L p)
wy y (1) u(p)
where we need to exploit the fast decay of 8 at infinity. The derivative estimate follows

from applying 79, to (D.28), and arguing in the same way as above.
When ¢ € (0, u(0)) is such that

2

Wy, y— zx(p)p E(r, 0)

dpdr < oo, (D.29)
Wy, y( r)

dpdr, < o0, (D.30)

the proof is similar. In this case, the key observation is that if » > r./2,

( )2+a

<r>2+0t (u(r) _ C)2 + 82 > <r>2+0t8 z r2+a z 1’ (D31)
re
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while if 7 < r./2, then |u(r) — ¢| > (r)~2, and thus again

(M2 () — 2 + 62 = () u@r) —cl 2 1. (D.32)

In view of this, the weight on F has an extra power of (r)“. The proof is concluded. O
We also need a result on the homogeneous Rayleigh problem.

LemmaD.4 Fix0 <y < 1, andlet ¢ € L Y.y with ro,¢ € L Y.y be a solution to the
homogeneous Rayleigh problem (4.1), for z = ¢ < 0. Then ¢ = 0.

Proof of Lemma D.4 1f ¢ = 0 in a neighborhood of the origin, then, by unique con-
tinuation, ¢ = 0 everywhere. Hence, we may assume that ¢ (r,c) > 0 for every
0 < r <« 1. Recall, the function g(r) = r32u(r) (Lemma 2.4) satisfies

Brg + (—i + ﬁ(r)> —0.

(r)
Hence,
1— k2 1 1
80rr®d — POrrg + o8+ Br) <— - —) ¢$g =0. (D.33)
(ry—c u(r)

Let
F=sup{r € (0,00): ¢(r',c) >0, Vr' <r}e(0,o0].

We integrate (D.33) on (0, 7). Notice that the functions involved are integrable due to
the assumptions on ¢, even if 7 = oco. Using that

garr¢ - ¢8rrg = 8r (gar¢ - ¢3rg)a
and the fact that since ¢ < O there holds

1 1

u(ry—c  u(r)

<0,
we obtain

Frk2—1
g(r)o,p(r,c) — ¢ (r,c)o ge(r) =/0 [r—zqﬁ(rw)g(r)

—B(r) (u(r)l— (1))¢(r c)g(r)j| dr > 0.

Note that ¢ (7, ¢) =0, 9,¢ (¥, c) < 0and g > 0, so that the above implies (also in the
case r = 00) that

"Tk? -1 1 1
/O [ p o(r,o)glr) — B(r) (u(r)——c — W) o(r, c)g(r)} dr =
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and therefore ¢ = 0, concluding the proof of the lemma. O
We can now complete the proof of Lemma D.2.

Proof of Lemma D.2 Assume for contradiction that (D.23) does not hold, and let

MF,s =

rAn*EC )|

Y. y—a

P2 Fie G, 02
Y., y—

Then there exists a sequence ¢; — 0 such that

1Ye,CoOllgz > iMr.e,. (D.34)
By replacing
Ye, (0) Fe;(r.0)
Ye;r.0) = vcar, — Fe O g,
J Y.y J LYsV
F*s (r,c)
F*,sj(r, ) W7
Yy
we may assume that || Y, (-, c)||Lz = land || F¢; (-, c)||Lz +||F* e; (s c)||Lz =

0. Hence, thanks to standard compactness arguments, Lemma D.3 provides the exis-
tence of a subsequence (not relabeled) such that Y, ; weakly in LY V2 and strongly in
L2 Y.y while r o, Y,; converges weakly in L »- Note that in that case ¢ € (0, u(0)),

we have that r, — 0o as ¢ — 0 thanks to (D 22), which is equivalent to say that
¢ — 0. Hence, the limit Y € H v /2 is a weak solution to the homogeneous Rayleigh

problem (due to Fy; — 0), for some ¢ < 0, and satisfies ||Y|| L = 1. However,
Y.y

Lemma D.4 1mp11es that ¥ = 0, which is a contradiction. With (D.23) at our disposal,

the derivative estimate follows from (D.25). O

D.2.2 Proof of (D.9)

Assume ¢ < —R,, , where R, > 0 is fixed below. Using the same ideas as in (D.21),
we have

> 1 * |Ye(r, )
/0 rdr + |:k2 —1 Vi (Vs — 1)] / ijTrdr

5/“ Br)(u(r) —c) |Ye(r,c)? rdr 4+ L / |Fe(r, 0)]? W
0 C 0

w@r) —c)2+e2  r2r r2re=3

e’} F 2
+ / [Fer OI7 (D.35)
0

Ye(r,o) |

Vs

o,

FZV*_3
Now, since
B(rr? < Cg
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by standard estimates,

X O =0 et 0P (% B0 Vet o
0o W) —c)?+e2  rin “Jo u@)—c rit?
Cp [ Ye(r. 0
=< R_y*/o o rdr
Thus, by taking
Cp

R*>> L)
PR -

estimate (D.9) follows from (D.35).
D.3 Vanishing of f

The function fg from (2.26), can be rewritten using the notation introduced in (2.20)
as

e _ BW) ik(u(r)—c)t u(r) —c
Te@n =i 7 J© @) —cfr e ed
M] (1 — xo(c))de (D.36)
w(r) —c)? + &2 7 ' .
where
RAYLX — 1 2ie[F(r) — B(r)Y(r,c —ie)] (D.37)
T UGy —c—ie u(r) —c+ie ’ '
and
RAY, A — 1 . 2w(r)y —c)F(r) + 2i8,3(.r)Y(r, c—1i¢g) LR,
u(ry—c—ie u(ry—c+ie

(D.38)

According to (D.7) and (D.9), if ¢ > u(0) + 1/2 or ¢ < R, we use Lemma 2.1 and
the fact that 1 < |u(r) — c|?* to obtain that

2

+IXC e ol +1rdXC e, ol
Yy Yy

X(', c, 8)
min{rk+1/2=y p—k+1/2+y)}

LOO
2 2
e €
<, SIFPFI?, + SIF2BY (e —io)|?
S SIPFIR, + 51 —iol;
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e 2 e? 2
<y —Ir°F + 1Y (., c—ie)
Sy Sl + 5l %

2

&
<, —= [ IFPF)? 2F? D.39
N |:||” ”L%/_y + I *”Lzy,y ) ( )

and, similarly

2

<y ||”2F||i%/,y + ||r2F*||§;V. (D.40)

A(" c, S)
min{rk"'l/z_y, r—k+1/2+y}

LOO

Proposition D.5 For § sufficiently small, there holds
li c(t, - =0,
tim IfE )z

foreveryt > 0.

Proof of Proposition D.5 Recalling the shape of the weight (1.10b), we split into dif-
ferent cases. If r < 1, we use (D.39) and (D.40) to obtain

lfE@ Nl B(r) |X(r, c )l

KA1/2-5 ~ 7kF1=5 (I = X0 (c))dc

R lc
B(r) |A(r, c, &)|
T T e (1 = Xo (c))dc
B(r)

< -
LR iy v A
If r > 1, we get in a similar manner that

[fE@ Ol BO) |X(r, c, )l

(I = Xo(c))de

Pk HI2=448 ™ k=34 ic|
B(r) |A(r, c, &)|
1-— d
+8r—k—3+5 AP (I = X0 (c))dc
B(r)

S, F,Fy ;»—7/T5/28 >
Upon squaring and integrating over r € (0, co) and using Lemma 2.1, we deduce that
I fe(, -, (‘S)IIL?,5 S6,FF, &
concluding the proof. O
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D.4 Vanishing of f
We next treat fg in (2.25), which we rewrite here
FE(tr) = B(r) u(0)+1 ik -0 Y(r,c+is) _ Y(r,c—ie)
s 2wiNT u(r) —c—ie ulr)—cH+ie
Xo (©)(1 = x1(re))de. (D.41)
Recall that
. 1 I _ 1
1—xi(re) 20 if 1. < g2te or r.> 58 Zta (D.42)

We prove the following result.

Proposition D.6 For § sufficiently small, there holds
li $(t, - =0,
tim /5l 2

foreveryt > 0.

Proof of Proposition D.6 Since the cut-off functions in (D.41) isolate different subsets
of R, we proceed case by case, using the estimates provided by Theorem D.1. We first

note that
&
(t,r)
EL—JSA+b+h+A
wys(r)
where
0 . .
JEr) = le f”( " ko [ Y(rictie)  Y(.c—ie) ]d 7
we s(rrt/2 | Jr <e7ia u(ry—c—ie u@r) —c+ie
(D.43)
B(r)
JE = —20
S(t,1) w7 5172
0 .
/ O ko [% Xe.o) 4 M} al
u(0) (u(r) —c)? 4 &2 w(r) —c)? + &2
(D.44)
B(r)
JE oy = —20
3 (t,r) wr. 5(r)r1/2
tk(u(r) o)t u(r) — X i—a‘A i| d
‘/ Rs |:(M(V) — c)2 +&2 (re.e)+ W) —c)? + &2 (r,c.€) fde|,
(D.45)
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ey = PO
14([, r) = U)f,(S(r)rl/z
1
Sl i i
/r(zza + eik(u(r)—C)t[ Y(hC-i—lE? 3 Y(r,c—l&? }dcl’ (D.46)
b u(r) —c—ie u(r)—c+ie

and X and A satisfy (D.37) and (D.38), respectively. Let us first consider Jj. The key
observation is that on the support of the integrands in r, there holds for r < 1,

s
S () = uten? +62)
whereas for » > 1 and r, < 1/4, there holds
1S @) —u(re)® + 2.

Moreover, u'(r.) ~ r.. Hence, by (D.6) if r < 1 we have

1

©) /
/” eik(u(r)—c)tM(l — Xo (c))dc
re<e2t« u(r) —c—i

1

s 2ta .
5/ ()| e T,
0 V@) — u(re)? + &2

1
< /Sm r Y e el
~Jo

e 1
(@) = u(r))? + £2) 7507
1

dr.

1 e TFa

< —/ rer Y (r, ¢ +ie)|dr,

lmaera Jo

1

pk+1/2-8/2 pe7+a s/
< —/ relr KTVERRY (et i)l Lo,y dre

et Jo

§—8

<r.F.s rk+1/2_5/284(27$),

while if » > 1 there holds

u(0) , Y(r,c+ie
/ N ezk(u(r)—c)l(’—?(l — Xo(c))dc
re<eZta ury—c—is

1

& 2+a
g/ relY(r,c +ieg)|dr,
0
1

£2+a
< piHRR / rellrTIATRY (e ie) e 1,00 dre
0

~
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_ 2—a
Skops r AR e

and the same holds for Y (r, ¢ — i¢). Hence we have

§—8a
B(ryr~!2702g3ma e (0, 1],

I (8. 0| SFFs —a
! ,3(r)r7/2_5/28%W, r>1.

Since o < /8, thanks to Lemma 2.1 we obtain

§—8a
IOz SF.F.5 830,
Now, J4 is very similar. Onits support, we use (D.31), (D.32), the fact thatu’(r.) ~ r; 3
and (D.8), to obtain for r < 1 that

1
1.~ 7a .
/‘VCZZg o+ k)~ Y(r,c+ie)
0

iy e =i (L xe(ede

e , [Y(r,c+ie)|
< c c
f;szla o )l\/(u(r) T,

< (r>2+0l /Oi |Y(rs C+i8)|drc
&

1
P r

o 1
k+1/2-8/2 1.\2 —k—1/245/2 ;
< P27y +a/ o SlIrTERRY (e el oo, dre
le™2a I
KH1/2-8/2 1y 2a g 5ty

SFF.sT

while for r > 1, a similar argument implies

_k+l/2+6/2(r)2+a82+%

(I = xo(c))dc

1
I
rezge e Y(r,c+ie)
/ elk(u(r)—c)l SF,F*,S r
0

u(r) —c—ie

Similar estimates hold for Y (r, ¢ — i¢), and thus in view of Lemma 2.1 we have

2
15 Ol SFoFs €74

We now deal with J, and J3. For J, in analogy with (D.39) and (D.40) and using
(D.5), for ¢ € (u(0), u(0) 4+ 1) we obtain that

XC.c:€) L IXGeall X ol
min{ A2y, R |, I 5 T,
2
&2 (r)°F 2| (r2BYCc—ie)
~Y

W(r) =)+ w(r) =) +¢2

2 2
LY,)/ LY-V
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8/4
S Ty o [H (r)2F|

2 ) 2
VG e—iol,
LY,)/ Y,y

LA H (r)zF‘z +|2F ’ (D.47)
~Y |u(0) _ C|5/4 L%/,y * L%/,y s .
and, similarly
A, ¢, €) L2 2
< F‘ F . (D48
H min{rk+1/2=y p=k+1/247} | ) L3, Rl L3, ( )

If r < 1, taking into account that u(r) — u(0) ~ r2 whenr — 0, we appeal to (D.47)
and (D.48) to obtain

ng(t,r)gr;i(—lrlg o — |X(8r/,4c,8)|_ 1—5/4
woy  lu(r) —u(0))*4u(0) — c|
By [rOF! |A(r, c,e) de
rH1=0 oy () — u(0) /4 [u(0) — c|1-%/8
B(r) /““”“ =122 X (e, )l oo 0,1) e

P

de

+ &9/8

~ 1284 f o, u(0) — c[1=4/4
LG O ERRAG ¢ O)llx o 4
rl/2=6/4 1(0) |u(()) _ c|1—5/8
B(r) §/8
S&F’F* mé‘ . (D49)

If r > 1, we use an even simpler version of (D.47) to get

B(r) B(r)
,,—k——3+6/R|X(r’c’8)|dc+€r—kT+5/RM(F’C’S)ldc

< B(r) .
~8F e s o

J5(t,r) S

AS a consequence,
5/8
15Ol 2 S 5.

The treatment of J3 is similar. In this case, using (D.8) with @ = 0, we obtain that

@ Springer

X(c8) ? 2 2
H min{rk'H/z_V, r—k+l/2+y} Lo + ”X(v c, 8)”1‘%’7/ + ”raI’X(" c, 8)”L%/,y
2 2
Sy &’ S E 2 rPypYC. e —ie) (D.50)
V= e V=P +e |
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From u(r) ~ r~2 when r — oo and the fact that ¢ < 0, we have

2

2 r(r)’F <2 /1 rHF@)?
W)y —c2+e2|,, 7 Jo rFAEWAE((u(r) — o) + &)
Y., y—
8] 8 2
2 r|F(r)]
te _/1 P2k 21228 (u(r) — )2 + £2)

1

< o [N PHFOP

~y € a2y 125
0o r y+2a

N 5/8 00 r8+5/4|F(r)|2
€ | k222

2
Sy 85/8 r2<r>2+3/8F(r) ,

Y.y—a

Analogously, using Lemma 2.1, we have

2 -
2 N2RV (. i 1 ,4-2& a2
re{r)"pY (. c —ie) <, 85/3/ r Ilsz(:é_cz e
V) —o)? +e2 | 0 r Y

Y.y

4 /8 *© ﬂ(r)2V8+8/4Z&|Y(V, c— iS)lzdr
I 7 —2k+242y

/8 a2
Sy eIV Coe—ielg;

5/8 2 2 2
Sy | PP Ee)|

+ P2 )12, } :
& Y.y—a

Y,y—

implying that, with the choice @ = y /2 = §/4, we have the control

2

X(', c, 8)
min{rk+1/2—3/2’ r—k+1/2+3/2}

LOO

~

2
<, 85/8|:Hr2(r)2+8/8F(r)‘ ,  FIPEOI, ] (D.51)
LY.8/4 Y.8/4

Regarding A, we argue in the same way and arrive at

2

H A(-,c,€)

2 2
min{rAH1/2=0/2_—k+1/2+5]2) +r F*(r)”L;M'

(D.52)

2
2
Ly s/4

S |20 Fo)]

LOO
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In order to control J3, we again consider two cases. If » < 1,

B [° By [°
J5(t,r) S e |X(r c,&)|dc + e—— maE |A(r,c,8)|dc
B(r) ke
S | T TEX G e elliede

—Rs

B(r)y [0 4
Te 1232 _Rs lr 2R A, e o)l ede

B(r) 8/16

< €
~8.F. B 12572 ’

while if » > 1, since u(r) ~ r—2 as r — oo, we use (D.51) and (D.52) to deduce that

B(r) _5/32/0 X e, ol

y—k+1+56—4 — R |C|175/32

56 B /O |A(r, c, €)]

C
rR R [ Tu(r) P8 1/16

1O L S L ) 17
< dc
R

J5(t,r) S

+e&

~ T T7245)2 1—8/32
r Ic]
BUIe®® [0 I TIPTRAG ¢ o)l
124074 | |c|T=0/16 ¢
BU) 53
SRR A 7T
Hence,
IOl 2 Sror,s e,
which concludes the proof. O

D.5 Vanishing of Higher Derivatives

The aim of this section is to prove analogous results to those of Propositions D.5-D.6.

Proposition D.7 Let § be fixed sufficiently small, and let j € {1, ..., k}. Then
i JFE(t . ; Jfect . —
;grb[n(rar) @z + lim 160 £, )||L3FJ =0,

foreveryt > 0.

The proof is based on the iteration scheme laid out in Lemma 2.8, and appropriately
choosing y € (0, 2k) in Theorem D.1, depending on the derivative index j and the
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small parameter §. We illustrate the proof only in one case to handle higher derivatives
of fg,fork =2and j = 1, 2. Asin (2.28), we have

J re 1 #(0)+1 ik(u(ry—co)t / J
(roy)’ fs(t,r) Z%/R € [m(ru (r)dcG)
— Iy
<%Y(V, c+ig)xe(c)(l— Xl(rc))>
- m(’u (r)dg)’
<'B(F)Y(r c—ie)xe(c)(1 — xi(r )))]dc (D.53)
NG , o - . .

D.5.1 Prooffor j € {1,...,k — 1}

Arguing as in the proof of Proposition D.6 and taking j = 1, an important term to
bound (somewhat analogous to (D.44)) reads as

e Bryru’(r)
R =y o

0)+1 .
/u( )+ ik -0 |: u(r) —2c 96X(rc.6)+ zsagA(r,zc, 8)21| de
u(0) (w(r) —co)+e (u(r) —c)*+e

(D.54)
According to Lemma 2.8, we have
B 2ie 1 B .
RAY 0 X S — ot e (u’(r) 0 F(r)y—B(r)dgY(r,c—ie) ) Y(r,c—ie)
(D.55)
u”(r)
Wy '
—B)Y(r,c— iS)]) (D.56)
b <2u”(r)ﬁ(r) 3 ﬂ’(r)> ¥ D.57)
u—c—ie W' (r))? u'(r)
1 1/4—k* .
and
RAY_0gY = ((2” nNpr) B (r)) Y 3, F(r)
u—c+ie (' (r))? u'(r) u'(r)
u” (r)
—2(’/0))2 F(r)) (D.59)
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1 1/4 —k* y
. (—> 0¥ + 2= () +ru" () ¥
u'(r)

P (r)?
M// (r)
Next, we show that the terms in (D.58) and (D.60) are bounded in the norm ||r2 -l L2
sV

as they correspond to the term F . in Theorem D.1. The terms containing F, are
harmless, since they are compactly supported away from r = 0. As for the other
terms, notice that from Lemma 6.2, we have

(' () +ru") {r_4, r—0, ( 1 ) N ir‘3, r—0,

r3u(r))? 1, r— 00, u'(r) r, r — 00.

Thus, we can choose y =2 + y’ € (0, 2k), deduce that

2
1 1/4 — k?
2 / "
a — )Y +2——— Y
’ [(u()) Y+ 2 Sy WO ) } B,
Sslrd Yl 1Yl (D.61)
Y sV
and
2
1 1/4 — k?
2 / "
) — ) X +2—— X
r |: rr (L/(r)) P X+ B )2 (u (r)+ru (r)) ] ; »
S lrde X112, +1X13, (D.62)
Y.y Y.y

To control the terms in (D.57) and (D.59), we note Lemma 6.2,

WEN: W) |rt rs oo, @) |2

re,  r — 0o,
1 {r_l, r— 0,

W"(NBr) B {r‘z, r—0, ') {r—2, r— 0,

u'(r) 3, r— .
The point is that these coefficient are less singular at the origin by a power of r~2,
and therefore all the norms appearing in Theorem D.1 for F; are finite even without

a gain of r? at the origin, upon choosing again y = 2 + y’. In the specific case when
c € (u(0), u(0) + 1), we use (D.5) to have

2 (B ﬂ’(r)> 1 u'(r) ) g
2 - Y + 8F(r)—2——=F
| (e~ o)t + i 0 =2 ) Loy
<s ||rarY||§2Y f+”Y”i§ ,+||<r>2rarF||i§ ,+||<r>2F||i§ . (D.63)
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and

2

H r)? <2u”(r)ﬂ(r) ﬁ’(r)> X
@@? W)

S lrd X137, +1X15, . (D.64)
Yy Y.y

L2
Y. 24y’

Lastly, the terms in (D.56) are treated as in (D.47). Accordingly, using (D.62) we
obtain the bounds

2

+106Y (e —io)l3,

Lo Y. 2+y/

0cY (-, c—ie)
min{rkt1/2-2=y" p—k+1/242+y")

+ Ird, 0 Y (. c —ie)|17,

Y, 2+y’

SUea YR, +1Y15, + 1o T, + 1) FIE,
Y,y/ Y,y/ Y,y’ Y,y’

and

2
+ 196X ¢ e, )7,

Lo° Y24y’

0cX(-,c,€)
min{rk+1/2-2y" p—k+1/24+2+"}

+ 3,06 X (- ¢, )17,

Y. 2+y/
<ot 2 FIE 4+ 1), FIZ L+ 1Y 13+ 196 Y 113
~ |u(0)_c|8/4 r Y,}// r) roy Y,)// Y,}// G Y,}//
o X012, + X3, (D.65)
Y.y Yy!

which, using (D.47) and (D.48), they imply that

IGY (. c—ie) ? 2
H min{rAH2=2=y k1720247 | o +196Y (e = ’8)”L§,2+V,
+ 3,06 (- c —ie)l3,
Y. 2+y/
SIroFliz,  +1r)?FlT,
Y.y Y.y
and
dGX (. c.e) L aex )
min{rA+1/2=2=" —k+1/242+7"} L°°+” ¢ ("C’S)”Lzyym,
+ 1rd:06 X (. c. )17,
Y. 2+y/
el 202 2 2
<
S ) o (1021, + 1o, FIR, ] (D.66)
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Similarly, by essentially arguing that A(-, ¢, ¢) = X (-, ¢, &) +2Y (-, c —i¢), we obtain

aGA('y c, 8) ? 2
Al
H min{rkt1/2=2=y" p—k+1/2+24y"} ||| At S)HL;HV/
+ Iror 9 A(, c, 8)||iz
Y. 2+y!
SN ra FIRs + 1) FI2
8% Y.y

Now, going back to (D.54) and noticing that ru’(r) ~ r*>asr — Oand ru’(r) ~ r~>as

r — 00, and collecting all the estimates above, we complete the proof of Proposition
D.7 in the case j = 1 by choosing y' = §/4.

It is worth mentioning that the proof for k > j > 1 is analogous: the main idea is
to use Lemma 6.2, combined with the choice y = 2j + § < 2k. Clearly this imposes
the constraint j < k — 1, which is why the case j = k is treated differently below.

D.5.2 Proof for j = k

We now deal with the case j = k. For the sake of simplicity, we consider the case
k = 2; the others are analogous. We begin from (D.53) with j = 1 and take an
additional 9, derivative, but in this case we do not exploit the dg derivative. Let us
only deal with the term containing X, namely

1 .
9. f£ t, — ik(u(ry—c)t
o fsxt) =50 /Re U(r) — o) + &2

X 0G (%X(r, c, 8)> (1 — xo(c))dc.

Then

(u(r) — c)?

2.7
wn—or+e

kt ;
9 2 re t — elk(u(r)fc)t
(roy) fS,X( r) ZJT/R

X dg (wX(V c 8)) Xo ()1 = x1(re))de
ﬁ L] log c

1 ik(u(r)—o)t 2 —(ury—c? 5, ,
" o /Re () P Fe2p D

e (@X(r c 8)) Xo (©)(1 — x1(re))de
\/; s Ly o C
L ko u0) —c¢ , p
+ 27i /Re (u(r)—c)z—f—ezr(u (r) +ru”(r))

Jr o es) ke ‘
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1 ik(u(r)—c)t ulr) —c 2
— S — E)
+2m’/Re ) —orr 2w %da

X (MXO’ c 8)))( ()X = xy(re))de
N o

We show how to deal with the four terms above, when all the derivatives land on X,
in the case when ¢ € (1(0), u(0) 4+ 1) and r < 1, when using the appropriate weight
(1.10b). For the first term, we bound it using (D.66) and

k u(0)+1 1
—t/ P20 (R —|0G X (r. ¢, £)|dc
A2 [ Jr

kt “OFL 196X (r, ¢, 0)|
~ 1282 4 (0) Uy -y

kt /““’)*1 10X (r, ¢, &)
~ 1/2-8/2 4(0) rk+1/2-2-8/2

Skt (102 FI 0 + 100270, I 512

dc

dc

The second term is similar, only slightly more delicate. It suffices to bound the
following, using (D.66) once more:

1 u(0)+1 1 S , 1
o —ldgX(r,c,¢e)|d
PRI /u«» Wiy~ pez O e X e olde
- 1 /M(O)+1 r4 1 1 |a X( )|d
r’ ’8
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1
——————0g X (r, c, &)|d
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~ L 1/2-8/7 4(0) [u(0) — c|1-28/7 pk+1/2-2-28/7

S & (102 F I 237 + 10270 FI 2y |

_ u(0)+1 248/
~ kT2 |

The next term is treated similarly, using that

1 u(0)+1 1 1
/ r(' (r) +ru”(r)—|9c X (r, c, &)|dc
" e
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dc
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Lastly, we have

1 u(0)+1 1 2,1
m/u«» mr u (r)ﬁlaracX(r,c, e)|dc
< 1/u(0)+1 ! ! rzu’(r)iw g X (r,c, )|dc
~ pk+1/2-6 4(0) lu(r) — u(0)|2‘3/7 lu(0) — C|1—26/7 \/; r9G T
o 1 /”<°>+1 1 96X (r, ¢, )] | (D.67)
~ =T fuoy () — 17287 pkH1/2-2-28/7 T :

Hence, to bound this last term we need a proper estimate L°° on r 3,3 X. By Sobolev
embeddings and the fact that (rar)2 = r23,, + rd,, this follows from a proper L2
bound on r23,,. Referring to (D.56)—(D.58), we have that

2
120, 06X = — (1 - k2> X — L’,agx + 2 [(D.56) + (D.57) + (D.58)].
4 u(ry—c—ie
(D.68)

Since for ¢ € (u(0), u(0) 4+ 1) we have r> < /(u(r) —c)2 + &2 if r < 1, we use

Lemma 2.1 to deduce that

2
(rr?
P8, 96 X175, Sl9GXI7, + i 96X
Y24y Y24y u(r) —c)? 4+ ¢ 2
Y.2+y!
2
" Hﬂ [(D.56) + (D.57) + (D.58)]’ i
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2
SI06XI12  + |2 1056 + @5+ s,
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Now, in view of (D.62), (D.64) and (D.66), we end up with the higher order estimate

2

H ro0cX (-, c, &)

2
min(rEr 1227 iz |t lrd, 06X (., ¢, )lI 2

Le Y24y
2 2
+ ||(rdy) BGX(.yc,g)‘ ,
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< £0/4 22 P 9 F ) b6o
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Going back to (D.67) we now set ' = 28/7 as in the other terms. Arguing in a similar
manner for r > 1, we deduce that
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2 5/4
1002 53t Pz | S /4,

which is what we wanted. The treatment of all the other cases is similar, following the
ideas of Propositions D.5 and D.6. The proof of Proposition D.7 is therefore concluded.
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