
To Ship or Not to (Function) Ship

Feilong Liu, Niranjan Kamat, Spyros Blanas, Arnab Nandi

The Ohio State University

{liu.3222, kamat.14, blanas.2, nandi.9}@osu.edu

Abstract—Sampling is often used to reduce query latency for
interactive big data analytics. The established parallel data pro-
cessing paradigm relies on function shipping, where a coordinator
dispatches queries to worker nodes and then collects the results.
The commoditization of high-performance networking makes
data shipping possible, where the coordinator directly reads data
in the workers’ memory using RDMA while workers process
other queries. In this work, we explore when to use function
shipping or data shipping for interactive query processing with
sampling. Whether function shipping or data shipping should be
preferred depends on the amount of data transferred, the current
CPU utilization and the sampling method. The results show that
data shipping is up to 6.5× faster when performing clustered
sampling with heavily-utilized workers.

I. INTRODUCTION

In big data analysis, sampling is often used to reduce

query latency for interactive query execution [6]. Current

database systems use function shipping in query execution,

where the coordinator distributes query plans to the workers

for execution then collect results from the workers. The cost of

function shipping includes the computation cost of executing

queries in workers and the communication cost of transferring

results from workers to the coordinator. In function shipping,

sampling methods do not affect the communication cost, but

affect the computation cost. For example, random sampling

accesses the whole data set while cluster sampling only

accesses part of the data set during query execution.

Commodity clusters are now commonly equipped with

fast networks with Remote Direct Memory Access (RDMA)

support [1]. RDMA enables user applications to directly access

memory in remote machines without involving the operating

kernel and offers higher throughput than TCP/IP sockets [2].

Data shipping is possible with one-sided memory access

provided by RDMA. In data shipping, the coordinator uses

RDMA Read to read data from workers and executes query

locally while the workers remain passive. The cost of data

shipping includes the computation cost of executing queries

in the coordinator and the communication cost of transfer-

ring data from workers to the coordinator. In data shipping,

sampling methods not only affect the computation cost, but

also affect the communication cost. In cluster sampling only

the sample of the data set is transferred to the coordinator,

however, the whole data set is transferred to the coordinator

in random sampling.

This research was partially supported by the National Science Founda-
tion under grants IIS-1422977, IIS-1527779, CAREER IIS-1453582, CCF-
1816577 and CNS-1513120.

We discuss the trade-offs between function shipping and

data shipping that are afforded by the advent of RDMA and

look at how sampling influences this decision. Whether func-

tion shipping or data shipping should be preferred depends on

the amount of data transferred, the current CPU utilization and

the sampling method. The result shows that data shipping has

better performance when the computing resources are limited

in workers for both sampling methods and data shipping

improves performance by up to 6.5×.

II. SYSTEM DESIGN

We use the single coordinator multiple workers design,

where queries are sent to the coordinator, which directs the

query to the workers. In data shipping, the worker returns the

raw data to the coordinator and the coordinator executes the

query on the received data. In function shipping, the worker

executes the query on its data and returns the result back to the

coordinator. A final aggregation to combine the results from

workers is performed at the coordinator.

A. Function Shipping vs Data Shipping

In function shipping, the worker executes the query and

performs RDMA Write to send the result to the coordinator.

In data shipping, the coordinator uses RDMA Read to read

the data and executes the query on received data. The worker

is passive in data shipping. The costs are as follows:

COST(DS) = CRead + CSample + CCExec (1)

COST(FS) = CSample + CWExec + CWrite + CCAgg (2)

where COST(DS) is the cost of data shipping, CRead is

the cost of reading data from workers, CSample is the cost

of sampling, CCExec is the cost of executing queries at

the coordinator, COST(FS) is the cost of function shipping,

CWExec is the cost of executing queries at the worker, CWrite

is the cost of writing the result to the coordinator, and CCAgg

is the cost of aggregating results. Increasing the number of

workers reduces the data to be processed in each worker, which

decreases the sampling cost CSample and the execution cost at

the workers CWExec in Equation 2, and hence favors function

shipping. Data shipping is preferred when the size of the result

is large or the computation load on the worker is high.

B. Sampling

Our system uses online sampling which supports two

sampling modes, simple random sampling and cluster sam-

pling [5]. In simple random sampling, every tuple has an equal

probability of being included in the sample. In the absence of

indexes, this involves accessing every tuple of the data set. We

978-1-5386-5989-2/18/$31.00 ©2018 IEEE

16KB 4MB 1GB256KB 64MB 16GB

Aggregation result size

0
4
0

8
0

1
2
0

4
0

8
0

1
2
0

R
e
s
p
o
n
s
e
 t
im

e
 (

s
e
c
o
n
d
s
)

No sample/Data ship

No sample/Function ship

0.7x

1.7x

Fig. 1. As distinct cardinality in-
creases, function shipping becomes
expensive due to result size increase.

0 5 10 15 20 25

Number of cores available in worker

0
.5

2
.0

1
0
.0

5
0
.0

R
e
s
p
o
n
s
e
 t
im

e
 (

s
e
c
o
n
d
s
)

Cluster/Data

Cluster/Function

Random/Data

Random/Function

6.5x

1.4x

0.5x

0.3x

Fig. 2. As the computation resources
available at worker increases, func-
tion shipping gets cheaper.

use Bernoulli sampling semantics for simple random sampling.

In cluster sampling, different clusters are chosen randomly and

all tuples within a cluster are included in the sample. This

avoids accessing every tuple in the data set. The pros and

cons of both sampling strategies are as follows.

1) Execution Speed: In function shipping, performing sim-

ple random sampling involves adding Bernoulli sampling-

based scan operator and accessing the whole data set, while

in cluster sampling, only a fraction of tuples are accessed.

In data shipping, to perform simple random sampling, the

entire data set needs to be transferred to the coordinator as

the worker lacks computing resources required to perform

sampling. The coordinator then samples the received data. For

cluster sampling, the coordinator only accesses a sample of the

data, resulting in less network traffic. Thus, cluster sampling

is cheaper than simple random sampling.

2) Result Quality: Simple random sampling usually results

in better sample quality than cluster sampling if the tuples

are stored in non-random order. A clustered index stores the

data in a sorted order. If the GROUP BY or WHERE clause

contains any of the clustered index columns in order, cluster

sampling can result in tuples and groups being respectively

missed, causing sampling error to be large.

III. EXPERIMENTS

We extended our open-source RDMA-aware query engine

Pythia [4] with sampling support. We currently use a single

coordinator and a single worker setup. They each have 512 GB

of memory across two NUMA nodes, with each NUMA node

having one Intel Xeon E5-2680v4 14-core processor. They are

connected by an EDR (100 Gb/s) InfiniBand network.

Our data set has one table R with 10 billion tuples, with each

tuple having two long integers R.a and R.b as attributes. We

evaluate the SQL query SELECT R.b, COUNT(*) FROM

R GROUP BY R.b, in which records with the same value

in R.b are aggregated to a single record. Hence the number

of records in the result is the same as the number of distinct

values of R.b in the data.

A. Changing Cardinality of Results

This section evaluates how the size of the result affects the

response time (Section II-A).

As the result size is non-deterministic with sampling, we

turn off sampling in this experiment. We vary the distinct

cardinality of R.b from 1 thousand to 1 billion. At the

coordinator, we use all 28 cores for query execution, while the

worker only uses 14 cores to simulate the additional workload

in the worker node. Figure 1 shows that when the result size

is less than or equal to 4 MB, function shipping has lower

response time than data shipping. This is because the size

of the result which is transferred in function shipping is not

large. When the result size is equal to or larger than 8 MB, the

saving in network traffic decreases and function shipping has

higher response time than data shipping. Hence, data shipping

is preferred when the result size is large.

B. Changing Load on the Workers

How does the load on the worker and the choice of sampling

method affect the choice of shipping method?

We simulate different loads on the worker by varying the

number of available cores from 1 to all 28 cores, and keeping

the number of cores at the coordinator fixed at 28. We set the

distinct cardinality of R.b to be 2, and the query timeouts at

60 seconds. The sampling rate is 10% and we compare both

cluster sampling and random sampling. The result is shown in

Figure 2. The number of available worker cores has no impact

on data shipping due to our use of RDMA. The response time

for function shipping decreases when the number of worker

cores increases. When the number of cores in the worker is

8 and 9, data shipping has higher performance for random

sampling but has lower performance for cluster sampling. This

is because random sampling is more computation intensive and

favors data shipping when the worker has limited computing

resources. For the same sampling method, we can see that

data shipping has lower response time when the number of

cores is small and is up to 6.5× faster than function shipping,

as the saving in network traffic is offset by the slow workers

in query execution. Data shipping will be preferred when the

result size increases.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we compare how RDMA and fast networks

affect query execution strategies for interactive queries with

sampling. While function shipping was the norm, interactive

big data analytics should take the amount of data transferred,

the CPU utilization and the sampling methods into account

when choosing query execution strategies. Looking ahead, one

possible direction is to build a cost model which takes these

factors into account to predict the cost of different execution

strategies and to pick the optimal execution strategy. One can

find detailed discussion, related work and the evaluation of

executing multiple queries in the extended version [3].

REFERENCES

[1] C. Barthels et al. Rack-Scale In-Memory Join Processing Using RDMA.
SIGMOD, 2015.

[2] P. W. Frey et al. Minimizing the Hidden Cost of RDMA. ICDCS, 2009.
[3] F. Liu, N. Kamat, S. Blanas, and A. Nandi. To ship or not to (function)

ship (extended version). arXiv:1807.11149.
[4] F. Liu, L. Yin, and S. Blanas. Design and Evaluation of an RDMA-aware

Data Shuffling Operator for Parallel Database Systems. Eurosys, 2017.
[5] S. Lohr. Sampling: Design and Analysis. 2009.
[6] F. Olken. Random Sampling from Databases. 1993.

978-1-5386-5989-2/18/$31.00 ©2018 IEEE

