To Ship or Not to (Function) Ship

Feilong Liu, Niranjan Kamat, Spyros Blanas, Arnab Nandi
The Ohio State University

{1iu.3222, kamat.14, blanas.2, nandi.9}@osu.edu

Abstract—Sampling is often used to reduce query latency for
interactive big data analytics. The established parallel data pro-
cessing paradigm relies on function shipping, where a coordinator
dispatches queries to worker nodes and then collects the results.
The commoditization of high-performance networking makes
data shipping possible, where the coordinator directly reads data
in the workers’ memory using RDMA while workers process
other queries. In this work, we explore when to use function
shipping or data shipping for interactive query processing with
sampling. Whether function shipping or data shipping should be
preferred depends on the amount of data transferred, the current
CPU utilization and the sampling method. The results show that
data shipping is up to 6.5x faster when performing clustered
sampling with heavily-utilized workers.

I. INTRODUCTION

In big data analysis, sampling is often used to reduce
query latency for interactive query execution [6]. Current
database systems use function shipping in query execution,
where the coordinator distributes query plans to the workers
for execution then collect results from the workers. The cost of
function shipping includes the computation cost of executing
queries in workers and the communication cost of transferring
results from workers to the coordinator. In function shipping,
sampling methods do not affect the communication cost, but
affect the computation cost. For example, random sampling
accesses the whole data set while cluster sampling only
accesses part of the data set during query execution.

Commodity clusters are now commonly equipped with
fast networks with Remote Direct Memory Access (RDMA)
support [1]. RDMA enables user applications to directly access
memory in remote machines without involving the operating
kernel and offers higher throughput than TCP/IP sockets [2].
Data shipping is possible with one-sided memory access
provided by RDMA. In data shipping, the coordinator uses
RDMA Read to read data from workers and executes query
locally while the workers remain passive. The cost of data
shipping includes the computation cost of executing queries
in the coordinator and the communication cost of transfer-
ring data from workers to the coordinator. In data shipping,
sampling methods not only affect the computation cost, but
also affect the communication cost. In cluster sampling only
the sample of the data set is transferred to the coordinator,
however, the whole data set is transferred to the coordinator
in random sampling.

This research was partially supported by the National Science Founda-
tion under grants IIS-1422977, 1IS-1527779, CAREER IIS-1453582, CCF-
1816577 and CNS-1513120.

978-1-5386-5989-2/18/$31.00 ©2018 IEEE

We discuss the trade-offs between function shipping and
data shipping that are afforded by the advent of RDMA and
look at how sampling influences this decision. Whether func-
tion shipping or data shipping should be preferred depends on
the amount of data transferred, the current CPU utilization and
the sampling method. The result shows that data shipping has
better performance when the computing resources are limited
in workers for both sampling methods and data shipping
improves performance by up to 6.5x.

II. SYSTEM DESIGN

We use the single coordinator multiple workers design,
where queries are sent to the coordinator, which directs the
query to the workers. In data shipping, the worker returns the
raw data to the coordinator and the coordinator executes the
query on the received data. In function shipping, the worker
executes the query on its data and returns the result back to the
coordinator. A final aggregation to combine the results from
workers is performed at the coordinator.

A. Function Shipping vs Data Shipping

In function shipping, the worker executes the query and
performs RDMA Write to send the result to the coordinator.
In data shipping, the coordinator uses RDMA Read to read
the data and executes the query on received data. The worker
is passive in data shipping. The costs are as follows:

COST(DS) = CRead + CSample + CCE;Eec (1)
COST(FS) - OSample + CWEmec + OWrite + CCAgg (2)

where COST(DS) is the cost of data shipping, Cread is
the cost of reading data from workers, C'sqmpie is the cost
of sampling, Ccogge. is the cost of executing queries at
the coordinator, COST(F'S) is the cost of function shipping,
Cw Ezec 18 the cost of executing queries at the worker, Cyyite
is the cost of writing the result to the coordinator, and Cc 444
is the cost of aggregating results. Increasing the number of
workers reduces the data to be processed in each worker, which
decreases the sampling cost C'sqmpie and the execution cost at
the workers C'yy grec in Equation 2, and hence favors function
shipping. Data shipping is preferred when the size of the result
is large or the computation load on the worker is high.

B. Sampling

Our system uses online sampling which supports two
sampling modes, simple random sampling and cluster sam-
pling [5]. In simple random sampling, every tuple has an equal
probability of being included in the sample. In the absence of
indexes, this involves accessing every tuple of the data set. We

m)) m)
kel —|—e— No sample/Data ship A s 2] 000,
S o [[-&— Nosample/Function ship AAAA S 8 F-"#- e - - - - - - - -
g ¥ 0.7 ? 000000 o
8 O I 00000
[o] i l— ¢
g g 0000 gsa o Gumerroneion
= = 1 A - ~ Random/Data
] eg - i
8 866666 8 AAAA |—0- Random/Function
5 < W O/ & 8 N
re 00 [o] o y 0.3x
2 o0 AXXAA g - 6.5
T 5 o v
T T T T T T o T T T T T
16KB 256KB 4MB 64MB 1GB 16GB 0 5 10 15 20 25

Aggregation result size Number of cores available in worker

Fig. 1. As distinct cardinality in-
creases, function shipping becomes
expensive due to result size increase.

Fig. 2. As the computation resources
available at worker increases, func-
tion shipping gets cheaper.

use Bernoulli sampling semantics for simple random sampling.
In cluster sampling, different clusters are chosen randomly and
all tuples within a cluster are included in the sample. This
avoids accessing every tuple in the data set. The pros and
cons of both sampling strategies are as follows.

1) Execution Speed: In function shipping, performing sim-
ple random sampling involves adding Bernoulli sampling-
based scan operator and accessing the whole data set, while
in cluster sampling, only a fraction of tuples are accessed.
In data shipping, to perform simple random sampling, the
entire data set needs to be transferred to the coordinator as
the worker lacks computing resources required to perform
sampling. The coordinator then samples the received data. For
cluster sampling, the coordinator only accesses a sample of the
data, resulting in less network traffic. Thus, cluster sampling
is cheaper than simple random sampling.

2) Result Quality: Simple random sampling usually results
in better sample quality than cluster sampling if the tuples
are stored in non-random order. A clustered index stores the
data in a sorted order. If the GROUP BY or WHERE clause
contains any of the clustered index columns in order, cluster
sampling can result in tuples and groups being respectively
missed, causing sampling error to be large.

III. EXPERIMENTS

We extended our open-source RDMA-aware query engine
Pythia [4] with sampling support. We currently use a single
coordinator and a single worker setup. They each have 512 GB
of memory across two NUMA nodes, with each NUMA node
having one Intel Xeon E5-2680v4 14-core processor. They are
connected by an EDR (100 Gb/s) InfiniBand network.

Our data set has one table R with 10 billion tuples, with each
tuple having two long integers R. a and R.b as attributes. We
evaluate the SQL query SELECT R.b, COUNT (%) FROM
R GROUP BY R.Db, in which records with the same value
in R.Db are aggregated to a single record. Hence the number
of records in the result is the same as the number of distinct
values of R.Db in the data.

A. Changing Cardinality of Results

This section evaluates how the size of the result affects the
response time (Section II-A).

As the result size is non-deterministic with sampling, we
turn off sampling in this experiment. We vary the distinct

978-1-5386-5989-2/18/$31.00 ©2018 IEEE

cardinality of R.b from 1 thousand to 1 billion. At the
coordinator, we use all 28 cores for query execution, while the
worker only uses 14 cores to simulate the additional workload
in the worker node. Figure 1 shows that when the result size
is less than or equal to 4 MB, function shipping has lower
response time than data shipping. This is because the size
of the result which is transferred in function shipping is not
large. When the result size is equal to or larger than 8 MB, the
saving in network traffic decreases and function shipping has
higher response time than data shipping. Hence, data shipping
is preferred when the result size is large.

B. Changing Load on the Workers

How does the load on the worker and the choice of sampling
method affect the choice of shipping method?

We simulate different loads on the worker by varying the
number of available cores from 1 to all 28 cores, and keeping
the number of cores at the coordinator fixed at 28. We set the
distinct cardinality of R.Db to be 2, and the query timeouts at
60 seconds. The sampling rate is 10% and we compare both
cluster sampling and random sampling. The result is shown in
Figure 2. The number of available worker cores has no impact
on data shipping due to our use of RDMA. The response time
for function shipping decreases when the number of worker
cores increases. When the number of cores in the worker is
8 and 9, data shipping has higher performance for random
sampling but has lower performance for cluster sampling. This
is because random sampling is more computation intensive and
favors data shipping when the worker has limited computing
resources. For the same sampling method, we can see that
data shipping has lower response time when the number of
cores is small and is up to 6.5x faster than function shipping,
as the saving in network traffic is offset by the slow workers
in query execution. Data shipping will be preferred when the
result size increases.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we compare how RDMA and fast networks
affect query execution strategies for interactive queries with
sampling. While function shipping was the norm, interactive
big data analytics should take the amount of data transferred,
the CPU utilization and the sampling methods into account
when choosing query execution strategies. Looking ahead, one
possible direction is to build a cost model which takes these
factors into account to predict the cost of different execution
strategies and to pick the optimal execution strategy. One can
find detailed discussion, related work and the evaluation of
executing multiple queries in the extended version [3].

REFERENCES

[1] C. Barthels et al. Rack-Scale In-Memory Join Processing Using RDMA.
SIGMOD, 2015.

[2] P. W. Frey et al. Minimizing the Hidden Cost of RDMA. ICDCS, 2009.

[3] F. Liu, N. Kamat, S. Blanas, and A. Nandi. To ship or not to (function)
ship (extended version). arXiv:1807.11149.

[4] F. Liu, L. Yin, and S. Blanas. Design and Evaluation of an RDMA-aware
Data Shuffling Operator for Parallel Database Systems. Eurosys, 2017.

[5]1 S. Lohr. Sampling: Design and Analysis. 2009.

[6] F. Olken. Random Sampling from Databases. 1993.

