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Abstract

We investigate sparse representations for control in reinforce-
ment learning. While these representations are widely used in
computer vision, their prevalence in reinforcement learning
is limited to sparse coding where extracting representations
for new data can be computationally intensive. Here, we begin
by demonstrating that learning a control policy incrementally
with a representation from a standard neural network fails
in classic control domains, whereas learning with a repre-
sentation obtained from a neural network that has sparsity
properties enforced is effective. We provide evidence that the
reason for this is that the sparse representation provides local-
ity, and so avoids catastrophic interference, and particularly
keeps consistent, stable values for bootstrapping. We then dis-
cuss how to learn such sparse representations. We explore the
idea of Distributional Regularizers, where the activation of
hidden nodes is encouraged to match a particular distribution
that results in sparse activation across time. We identify a
simple but effective way to obtain sparse representations, not
afforded by previously proposed strategies, making it more
practical for further investigation into sparse representations
for reinforcement learning.

Introduction
Learning performance in artificial intelligence systems is
highly dependent on the data representation—the features.
An effective representation captures important attributes of
the state (or instance), as well as simplifies the estimation
of predictors. Consider a reinforcement learning agent. A
local representation enables the agent to more feasibly make
accurate predictions for that local region, because the local dy-
namics are likely to be a simpler function than learning global
dynamics. Additionally, such a representation can help pre-
vent forgetting or interference (McCloskey and Cohen 1989;
French 1991), by only updating local weights, as opposed
to dense representations where any update would modify
many weights. At the same time, it is important to have a
distributed representation (Bengio 2009; Bengio, Courville,
and Vincent 2013), where the representation for an input is
distributed across multiple features or attributes, promoting
generalization and a more compact representation.

Such properties can be well captured by sparse represen-
tations: those for which only a few features are active for a
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Figure 1: A neural network with dense connections produc-
ing a sparse representation: Sparse Representation Neural
Network (SR-NN). The green squares indicate active (non-
zero) units, making a sparse last hidden layer where only a
small percentage of units are active. This contrasts a network
with sparse connections—which is often also called sparse.
Sparse connections remove connections between nodes, but
are likely to still produce a dense representation.

given input (Figure 1). Enforcing sparsity promotes identi-
fying key attributes, because it encourages the input to be
well-described by a small subset of attributes. Sparsity, then,
promotes locality, because local inputs are likely to share sim-
ilar attributes (similar activation patterns) with less overlap
to non-local inputs. In fact, many hand-crafted features are
sparse representations, including tile coding (Sutton 1996;
Sutton and Barto 1998), radial basis functions and sparse dis-
tributed memory (Kanerva 1988; Ratitch and Precup 2004).
Other useful properties of sparse representations—which
can be seen as projecting data into a higher-dimensional
space—include invariance (Goodfellow et al. 2009; Rifai et
al. 2011); decorrelated features per instance (Földiák 1990);
improved computational efficiency for updating weights in
the predictor, as only weights corresponding to active features
need to be updates; and enabling linear separability in the
high-dimensional space (Cover 1965), which facilitates the
learning of a simple linear predictor. Further, such sparse, dis-
tributed representations have been observed in the brain (Ol-
shausen and Field 1997; Quian Quiroga and Kreiman 2010;
Ahmad and Hawkins 2015).

Traditionally, sparse representations have been common
for control in reinforcement learning, such as tile coding
and radial basis functions (Sutton and Barto 1998). They
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are effective for incremental learning, but can be difficult to
scale to high-dimensional inputs because they grow expo-
nentially with input dimension. Neural networks much more
feasibly enable scaling to high-dimensional inputs, such as
images, but can be problematic when used with incremental
training. Instead, techniques like target networks, inspired by
batch methods such as fitted Q-iteration (Riedmiller 2005),
have been necessary for many of the successes of control
with neural networks. We provide some evidence in this pa-
per that this modification is necessary with dense, but not
sparse, networks because the reinforcement learning agent
bootstraps off its own estimates. If the value in other states
are overwritten, the agent will bootstrap off inaccurate esti-
mate. Local representations, however, are much less likely
to suffer from interference and these issues with bootstrap-
ping. Learned sparse representations, then, are a promising
strategy to obtain the benefits of previously common, fixed
sparse representations with the scaling of neural networks.

Learning sparse representations, however, does remain
a challenge. There have been some approaches developed
to learning sparse representations incrementally, particu-
larly through factorization approaches for dictionary learning
(Mairal et al. 2009; Mairal et al. 2010; Le, Kumaraswamy,
and White 2017) or for general sparse distributions (Ol-
shausen and Field 1997; Olshausen 2002; Teh et al. 2003;
Ranzato et al. 2006; Ranzato, Boureau, and LeCun 2007;
Lee et al. 2008), like Boltzmann machines. In sparse coding,
for example, the sparse representation learning problem is for-
mulated as a matrix factorization, where input instances are
reconstructed using a sparse, or small subset, of a large dic-
tionary. Many of the methods for general sparse distribution,
however, are expensive or complex to train and those based on
sparse coding have been found to have serious out-of-sample
issues (Mairal et al. 2009; Lemme, Reinhart, and Steil 2012;
Le, Kumaraswamy, and White 2017).

There are fewer methods using feedforward neural net-
work architectures. Certain activation functions—such as
linear threshold units (LTU) (McCulloch and Pitts 1943)
and rectified linear units (ReLU) (Glorot, Bordes, and Ben-
gio 2011)—naturally provide some level of sparsity, but of
course provide no such guarantees. Early work on catas-
trophic interference investigated some simple heuristics
for encouraging sparsity, such as node sharpening (French
1991). Though catastrophic interference was reduced, the
resulting networks were still quite dense.1 k-sparse auto-
encoders (Makhzani and Frey 2013) use a top-k constraint
per instance: only the top k nodes with largest activations
are kept, and the rest are zeroed. Winnner-Take-All auto-
encoders (Makhzani and Frey 2015) use a k% response con-
straint per node across instances, during training, to pro-

1There have been strategies developed for catastrophic interfer-
ence that rely on rehearsal or dedicating subparts of the network
to particular tasks. This work is a complementary direction for un-
derstanding catastrophic interference for a sequential multi-task
setting. We explore specifically the utility of sparse representations
for alleviating interference for RL agents learning incrementally on
one task, but do not necessarily imply that it is the only strategy to
alleviate such interference. The comparisons in this work, therefore,
focus on other strategies to learn sparse representations.

mote sparse activations of the node over time. These ap-
proaches, however, can be problematic—as we reaffirm in
this work—because they tend to truncate non-negligible
values or produce insufficiently sparse representations. An-
other line of work has investigated learning or specifying
sparse activation functions for neural networks (Triesch 2005;
Ranzato et al. 2006; Lemme, Reinhart, and Steil 2012;
Arpit et al. 2015), but used a sigmoid activation which is
unlikely to result in sparse representations. They define spar-
sity based on norms of the vector, rather than activation level.

In this work, we first highlight that learned sparse represen-
tations can significantly improve control performance, under
an incremental learning setting, compared to dense neural
networks. We visualize the activation of the hidden nodes
for the sparse representation as well as the action-values for
particular states. These provide evidence that locality helps
avoid catastrophic interference and improves accuracy of
action-values for bootstrapping. We then investigate a simple
strategy for encouraging sparsity in neural networks: Dis-
tributional Regularizers. This approach flexibly enables any
desired architecture, simply with the addition of a KL diver-
gence on the activation level for a node. We show that direct
use of such a regularizer can cause dead filters or collapse—
activation concentrating on a few nodes—potentially explain-
ing why this simple strategy has not yet found wide-spread
use. We show that a simple clipping is sufficient to obtain
effective sparse representations, and conclude with a compar-
ison to several other strategies for obtaining a sparse repre-
sentation on the same benchmark domains.

Background
In reinforcement learning (RL), an agent interacts with its
environment, receiving observations and selecting actions to
maximize a reward signal. The environment is formalized
by a Markov decision process (MDP), with states S , actions
A, transition probabilities Pr : S ×A× S → [0, 1], rewards
R : S×A×S → R and discount function γ : S×A×S →
[0, 1] (White 2017).

One algorithm for on-policy control is Sarsa, where the
agent updates its action-values for its current policy and acts
near-greedily according to these action-values. The action-
values for a policy π : S×A → [0, 1] are the expected return
for that policy, starting from state s and action a:

Qπ(s, a) = E[Gt|St = s,At = a] (1)

where, Gt = Rt+1 + γt+1Gt+1

These action-values can be estimated with function approx-
imation, such as with neural network. Because the expected
return is a real-value target, such a neural network typically
uses a linear activation on the last layer:

Qπ(s, a) ≈ Q̂w,θ(s, a) := φθ(s, a)
>
w (2)

where w ∈ R
d is the weights in the last layer and φθ : S ×

A → R
d is the representation learned by the network with

weights θ, composed of all the hidden layers in the network.
The function φθ(s, a) corresponds to the last layer in the
network, with θ the weights of the network. The efficacy
of the action-value approximation, therefore, relies on this
representation φθ(s, a).







SR-NN `2-NN `1-NN Dropout-NN NN

8.8 111.5 142.5 31.2 54.0

Table 1: Activation overlap in Puddle World. The numbers
are the average overlap over all pairs of selected states. For
example, SR-NN has an average of 8.8 shared activation over
all pais of 5 selected states defined in Figure 4 (a).

tion. Interestingly, `1-NN and `2-NN actually produced less
instance sparsity.

Activation overlap, introduced by French(1991), reflects
the amount of shared activation between any two inputs. We
consider a variant of activation overlap that measures the
number of shared activation between two representations,
φ(x1) and φ(x2), for two samples, x1, and x2:

overlap(φ(x1),φ(x2))

=
∑
j

1[(φj(x1) > 0) ∧ (φj(x2) > 0)].

We measure the activation overlap of the five chosen states,
distributed across Puddle World. If the overlap between two
representations is zero, the interference would be zero. Up-
dating the value function with respect to one state, therefore,
would not affect the other state’s value. Table 1 shows the
average overlap, and once again, a similar trend emerges
where, SR-NN has significantly less overlap (about 8), with
Dropout-NN showing the next least overlap (with about 30).

Overall, these results provide some evidence that (a) sparse
representations can improve control performance in an in-
cremental learning setting, (b) these sparse representations
appear to provide locality and (c) this locality reduces interfer-
ence and improves accuracy of bootstrap values in Sarsa(0).
These results are a first step, and warrant further investi-
gation. They do nonetheless motivate that learning sparse
representations could be a promising direction for control in
reinforcement learning. In the next section, we discuss how
we actually obtain such sparse representations (SR-NN).

Distributional Regularizers for Sparsity

In this section, we describe how to use Distributional Regu-
larizers to learn sparse representations with neural networks.2

We introduce a Set Distributional Regularizer, which when
paired with ReLU activations enables sparse representations
to be learned, as we demonstrate in the next section. We first
describe how to define Distributional Regularizers on neural
networks, and then discuss the extension to a Set Distribu-
tional Regularizer, and motivation for doing so.

The goal of using Distributional Regularizers is to encour-
age the distribution of each hidden node—across samples—to
match a desired target distribution. In a neural network, we
can view the hidden nodes, Y1, . . . , Yd, as random variables,
with randomness due to random inputs. Each of these random

2The idea was originally introduced for neural networks with
Sigmoid activations in an unpublished set of notes (Ng 2011), and
as yet has not been systematically explored. When used out-of-the-
box, we found important limitations in the learned representations,
including from using Sigmoid activations instead of ReLU and from
using the KL to a specific distribution. We explore the idea in-depth
here, to make it a practical option for learning sparse representations.

variables Yj has a distribution p
β̂j(θ)

, where the parameters

β̂j(θ) of this distribution are induced by the weights θ of the
neural network:

p
β̂j(θ)

(y) =

∫
s∈S

p(s)p(φj,θ(s) = y)ds.

This provides a distribution over the values for the feature
φj,θ(s), across inputs s. A Distributional Regularizer is a KL

divergence KL(pβ ||pβ̂j(θ)
) that encourages this distribution

to match a desired target distribution pβ with parameter β.
Such a regularizer can be used to encourage sparsity, by se-

lecting a target distribution that has high mass or density
at zero. Consider a Bernoulli distribution for activations,
with Yj ∈ {0, 1}. Using a Bernoulli target distribution with
β = 0.1, giving pβ(Y = 1) = 0.1, encodes a desired activa-
tion of 10%. As another example, for continuous nonnegative
Yj , the target distribution can be set to an exponential distribu-
tion pβ(y) = β−1 exp(−y/β), which has highest density at
zero with expected value β. Setting β = 0.1 encourages the
average activation to be 0.1 and increases density on y = 0.

The efficacy of this regularizer, however, is tied to the pa-
rameterization of the network, which should match the target
distribution. For a ReLU activation, for example, which has
a range [0,∞), a Bernoulli target distribution is not appropri-
ate. Rather, for the range [0,∞), an exponential distribution
is more suitable. For a Sigmoid activation, giving values
between [0, 1], a Bernoulli is reasonably appropriate. Addi-
tionally, the parametrization should be able to set activations
to zero. The ReLU activation naturally enables zero values
(Glorot, Bordes, and Bengio 2011), by pushing activations to
negative values. The addition of a Distributional Regularizer
simply encourages this natural tendency, and is more likely
to provide sparse representations. Activations under Sigmoid
and tanh, on the other hand, are more difficult to encourage
to zero, because they require highly negative input values or
input values exactly equal to 0.5, respectively, to set the hid-
den node to zero. For these reasons, we advocate for ReLU
for the sparse layer, with an exponential target distribution.

Finally, we modify this regularizer to provide a Set Distri-
butional Regularizer, which does not require an exact level of
sparsity to be achieved. It can be difficult to choose a precise
level of sparsity, making the Distributional Regularizer prone
to misspecification. Rather, the actual goal is typically to ob-
tain at least some level of sparsity, where some nodes can be
even more sparse. For this modification, we specify that the
distribution should match any of a set of target distributions
Qβ , giving a Set KL: minp∈Qβ

KL(p||p
β̂j(θ)

). Generally,

this Set KL can be hard to evaluate. However, as we show
below, it corresponds to a simple clipped KL-divergence for
certain choices of Qβ , importantly including for exponential

distributions where Qβ = {pβ̃ |β̃ ≤ β}.

Theorem 1 (Set KL as a Clipped-KL). Let pη be a one-
dimensional exponential family distribution with the natural
parameter η, B = [η1, η2] be a convex set in the natural
parameter space and QB = {pη : η ∈ B}. Then the Set KL
divergence

SKL(QB ||pη) := min
p∈QB

KL(p||pη) (3)
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Additional algorithmic details

Algorithm 1 Optimizing the regularized objective

1: Initialize neural networks weights based on He initializa-
tion (He et al. 2015): for each layer l and each element

ij of the weight matrix W
(l)
ij ∼ N (0, 2

nl
) and b

(l) = 0

where nl the number of input nodes for layer l.
2: while not converge to a minimum do
3: Draw m i.i.d. samples {y1, ..., ym} from the true data

distribution
4: For j = 1, ..., k, compute β̂j =

∑m
i=1 yij/m and the

gradient:

∂KL(pβ ||pβ̂j
)

∂β̂j

= (
1

β̂j

−
β

β̂2
j

)1[β̂j > β]

5: Update each weight θ ∈ {∀l,W(l),b(l)} with the
gradient:

∂J(θ)

∂θ
+ λKL

k∑
j=1

∂KL(pβ ||pβ̂j
)

∂β̂j

∂β̂j

∂θ

In general, we advocate for learning the representation in-
crementally, for the task faced by the agent. However, for our
experiments, we learned the representations first to remove
confounding factors. We detail that learning regime here.

The problem of learning a good representation φθ(s, a)
in the case of finite actions can be transformed to learning
a good representation of the form φθ(s), and using that to
represent the action-value function from Equation (2) as:

Q̂w,θ(s, a) := φθ(s)
>
wa (6)

Here, φθ(s) is the linear representation of the state s, which is
used in conjunction with the linear predictor wa to estimate
action-values for action a across the state space. Under a
given policy, like the action-values Qπ(s, a), corresponding
state-values, V π(s), are defined as:

V π(s) := E[Gt|St = s]

where, Gt = Rt+1 + γt+1Gt+1

An easy objective to train connectionist networks with sim-
ple backpropagation is the Mean Squared Temporal Differ-
ence Error (MSTDE) (Sutton 1988). For a given policy, the
MSTDE is defined as:∑

s∈S

d(s)E[δ2t |St = s] (7)

where, δt := Rt+1 + γt+1φθ(St+1)
>
wv − φθ(St)

>
wv

Here, d denotes the stationary distribution over the states in-
duced by the given policy, and θ and wv are parameters that
can be estimated with stochastic gradient descent. Therefore,
given experience generated by a policy that explores suffi-
ciently in an environment, a strong function approximator (a
dense neural network) can be trained to estimate useful fea-
tures, φθ(s). These features can then be used for estimating
action-values in on-policy control for learning the (close-to)
optimal behaviour policy in the environment.









Mountain Car Puddle World

SR-NN 16.8 8.8

`2-NN 112.3 111.5

`1-NN 109.5 142.5

Dropout-NN 72.5 31.2

NN 106.5 54.0

ReLU+KL 36.8 71.4

SIG+SKL 256.0 256.0

SIG+KL 256.0 256.0

k-sparse-NN 36.6 61.8

WTA-NN 24.8 6.5

`2R-NN 30.0 3.8

`1R-NN 10.5 0.4

Table 2: Activation overlap in Mountain Car and Puddle
World. For Mountain Car, the numbers are the average over-
lap over all pairs of selected states defined in Figure 19.

Bootstrap values

The bootstrap values comparing SR-NN to different regular-
ization strategies, and NN are shown in Figure 19. Since it is
not easy to visualize 4-dimensional space, we only include
the bootstrap value result of Mountain Car here.

Activation overlap

We show the overlap of representations learned by different
networks in Table 2 for Mountain Car and Puddle World.
`2R-NN and `1R-NN have low overlap values. However, the
regularizers tend to push many neurons to be activated for
a really small region to reduce penalty as shown in Figure
18. SR-NN, on the other hand, learns a more distributed
representation.


