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Abstract

We investigate sparse representations for control in reinforce-
ment learning. While these representations are widely used in
computer vision, their prevalence in reinforcement learning
is limited to sparse coding where extracting representations
for new data can be computationally intensive. Here, we begin
by demonstrating that learning a control policy incrementally
with a representation from a standard neural network fails
in classic control domains, whereas learning with a repre-
sentation obtained from a neural network that has sparsity
properties enforced is effective. We provide evidence that the
reason for this is that the sparse representation provides local-
ity, and so avoids catastrophic interference, and particularly
keeps consistent, stable values for bootstrapping. We then dis-
cuss how to learn such sparse representations. We explore the
idea of Distributional Regularizers, where the activation of
hidden nodes is encouraged to match a particular distribution
that results in sparse activation across time. We identify a
simple but effective way to obtain sparse representations, not
afforded by previously proposed strategies, making it more
practical for further investigation into sparse representations
for reinforcement learning.

Introduction

Learning performance in artificial intelligence systems is
highly dependent on the data representation—the features.
An effective representation captures important attributes of
the state (or instance), as well as simplifies the estimation
of predictors. Consider a reinforcement learning agent. A
local representation enables the agent to more feasibly make
accurate predictions for that local region, because the local dy-
namics are likely to be a simpler function than learning global
dynamics. Additionally, such a representation can help pre-
vent forgetting or interference (McCloskey and Cohen 1989;
French 1991), by only updating local weights, as opposed
to dense representations where any update would modify
many weights. At the same time, it is important to have a
distributed representation (Bengio 2009; Bengio, Courville,
and Vincent 2013), where the representation for an input is
distributed across multiple features or attributes, promoting
generalization and a more compact representation.

Such properties can be well captured by sparse represen-
tations: those for which only a few features are active for a
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Figure 1: A neural network with dense connections produc-
ing a sparse representation: Sparse Representation Neural
Network (SR-NN). The green squares indicate active (non-
zero) units, making a sparse last hidden layer where only a
small percentage of units are active. This contrasts a network
with sparse connections—which is often also called sparse.
Sparse connections remove connections between nodes, but
are likely to still produce a dense representation.

given input (Figure 1). Enforcing sparsity promotes identi-
fying key attributes, because it encourages the input to be
well-described by a small subset of attributes. Sparsity, then,
promotes locality, because local inputs are likely to share sim-
ilar attributes (similar activation patterns) with less overlap
to non-local inputs. In fact, many hand-crafted features are
sparse representations, including tile coding (Sutton 1996;
Sutton and Barto 1998), radial basis functions and sparse dis-
tributed memory (Kanerva 1988; Ratitch and Precup 2004).
Other useful properties of sparse representations—which
can be seen as projecting data into a higher-dimensional
space—include invariance (Goodfellow et al. 2009; Rifai et
al. 2011); decorrelated features per instance (Foldidk 1990);
improved computational efficiency for updating weights in
the predictor, as only weights corresponding to active features
need to be updates; and enabling linear separability in the
high-dimensional space (Cover 1965), which facilitates the
learning of a simple linear predictor. Further, such sparse, dis-
tributed representations have been observed in the brain (Ol-
shausen and Field 1997; Quian Quiroga and Kreiman 2010;
Ahmad and Hawkins 2015).

Traditionally, sparse representations have been common
for control in reinforcement learning, such as tile coding
and radial basis functions (Sutton and Barto 1998). They



are effective for incremental learning, but can be difficult to
scale to high-dimensional inputs because they grow expo-
nentially with input dimension. Neural networks much more
feasibly enable scaling to high-dimensional inputs, such as
images, but can be problematic when used with incremental
training. Instead, techniques like target networks, inspired by
batch methods such as fitted Q-iteration (Riedmiller 2005),
have been necessary for many of the successes of control
with neural networks. We provide some evidence in this pa-
per that this modification is necessary with dense, but not
sparse, networks because the reinforcement learning agent
bootstraps off its own estimates. If the value in other states
are overwritten, the agent will bootstrap off inaccurate esti-
mate. Local representations, however, are much less likely
to suffer from interference and these issues with bootstrap-
ping. Learned sparse representations, then, are a promising
strategy to obtain the benefits of previously common, fixed
sparse representations with the scaling of neural networks.

Learning sparse representations, however, does remain
a challenge. There have been some approaches developed
to learning sparse representations incrementally, particu-
larly through factorization approaches for dictionary learning
(Mairal et al. 2009; Mairal et al. 2010; Le, Kumaraswamy,
and White 2017) or for general sparse distributions (Ol-
shausen and Field 1997; Olshausen 2002; Teh et al. 2003;
Ranzato et al. 2006; Ranzato, Boureau, and LeCun 2007;
Lee et al. 2008), like Boltzmann machines. In sparse coding,
for example, the sparse representation learning problem is for-
mulated as a matrix factorization, where input instances are
reconstructed using a sparse, or small subset, of a large dic-
tionary. Many of the methods for general sparse distribution,
however, are expensive or complex to train and those based on
sparse coding have been found to have serious out-of-sample
issues (Mairal et al. 2009; Lemme, Reinhart, and Steil 2012;
Le, Kumaraswamy, and White 2017).

There are fewer methods using feedforward neural net-
work architectures. Certain activation functions—such as
linear threshold units (LTU) (McCulloch and Pitts 1943)
and rectified linear units (ReLU) (Glorot, Bordes, and Ben-
gio 2011)—naturally provide some level of sparsity, but of
course provide no such guarantees. Early work on catas-
trophic interference investigated some simple heuristics
for encouraging sparsity, such as node sharpening (French
1991). Though catastrophic interference was reduced, the
resulting networks were still quite dense.! k-sparse auto-
encoders (Makhzani and Frey 2013) use a top-k constraint
per instance: only the top k£ nodes with largest activations
are kept, and the rest are zeroed. Winnner-Take-All auto-
encoders (Makhzani and Frey 2015) use a k% response con-
straint per node across instances, during training, to pro-

!There have been strategies developed for catastrophic interfer-
ence that rely on rehearsal or dedicating subparts of the network
to particular tasks. This work is a complementary direction for un-
derstanding catastrophic interference for a sequential multi-task
setting. We explore specifically the utility of sparse representations
for alleviating interference for RL agents learning incrementally on
one task, but do not necessarily imply that it is the only strategy to
alleviate such interference. The comparisons in this work, therefore,
focus on other strategies to learn sparse representations.

mote sparse activations of the node over time. These ap-
proaches, however, can be problematic—as we reaffirm in
this work—because they tend to truncate non-negligible
values or produce insufficiently sparse representations. An-
other line of work has investigated learning or specifying
sparse activation functions for neural networks (Triesch 2005;
Ranzato et al. 2006; Lemme, Reinhart, and Steil 2012;
Arpit et al. 2015), but used a sigmoid activation which is
unlikely to result in sparse representations. They define spar-
sity based on norms of the vector, rather than activation level.

In this work, we first highlight that learned sparse represen-
tations can significantly improve control performance, under
an incremental learning setting, compared to dense neural
networks. We visualize the activation of the hidden nodes
for the sparse representation as well as the action-values for
particular states. These provide evidence that locality helps
avoid catastrophic interference and improves accuracy of
action-values for bootstrapping. We then investigate a simple
strategy for encouraging sparsity in neural networks: Dis-
tributional Regularizers. This approach flexibly enables any
desired architecture, simply with the addition of a KL diver-
gence on the activation level for a node. We show that direct
use of such a regularizer can cause dead filters or collapse—
activation concentrating on a few nodes—potentially explain-
ing why this simple strategy has not yet found wide-spread
use. We show that a simple clipping is sufficient to obtain
effective sparse representations, and conclude with a compar-
ison to several other strategies for obtaining a sparse repre-
sentation on the same benchmark domains.

Background

In reinforcement learning (RL), an agent interacts with its
environment, receiving observations and selecting actions to
maximize a reward signal. The environment is formalized
by a Markov decision process (MDP), with states S, actions
A, transition probabilities Pr : & x A x & — [0, 1], rewards
R: S8 x AxS — Rand discount functiony : S x A xS —
[0, 1] (White 2017).

One algorithm for on-policy control is Sarsa, where the
agent updates its action-values for its current policy and acts
near-greedily according to these action-values. The action-
values for a policy 7 : S x A — [0, 1] are the expected return
for that policy, starting from state s and action a:

Q“(s,a) = E[Gt|St =54 = a} (D
where, Gy = Riq1 + Ve41Gepn

These action-values can be estimated with function approx-
imation, such as with neural network. Because the expected
return is a real-value target, such a neural network typically
uses a linear activation on the last layer:

Q" (s,0) = Qw.o(s,a) = dg(s,a)'w )
where w € R? is the weights in the last layer and ¢, : S x
A — R? is the representation learned by the network with
weights 8, composed of all the hidden layers in the network.
The function ¢g(s,a) corresponds to the last layer in the
network, with 0 the weights of the network. The efficacy
of the action-value approximation, therefore, relies on this
representation ¢y (s, a).



The Utility of Sparsity for Control

We begin by highlighting the utility of sparsity for control
before discussing how to learn sparse representations. We
show that two sparse representations—tile coding and sparse
representation learned by a neural network (referred to as
SR-NN from hereon)—both significantly improve stability
in control. We choose tile coding, a static representation, as
a baseline to compare to, as it known to perform very well
in the benchmark RL domains we experiment with (Sutton
and Barto 1998). We hypothesize that the main reason is due
to catastrophic interference, which is much less problematic
for the local representations typically provided by a sparse
representations. We show both that SR-NN does appear to
have more stable action-values for bootstrapping, and that
the learned sparse representation is local, providing some
evidence for this hypothesis.

We evaluate control performance on four benchmark do-
mains: Mountain Car, Puddle World, Acrobot and Catcher.
All domains are episodic, with discount set to 1 until ter-
mination. We choose these domains because they are well-
understood, and typically considered relatively simple. A pri-
ori, it would be expected that a standard action-value method,
like Sarsa, with a two-layer neural network, should be capable
of learning a near-optimal policy in all four of these domains.
We provide details about the domains in the Appendix.

The experimental set-up is as follows. To extract a repre-
sentation with a neural network, to be used for control, we
pre-train the neural network on a batch of data with a mean-
squared temporal difference error (MSTDE) objective and
the applicable regularization strategies. The training data con-
sists of trajectories generated by a fixed policy that explores
much of the space in the various domains. For the SR-NN,
we use our distributional regularization strategy, described
in a later section. This learned representation is then fixed,
and used by a (fully incremental) Sarsa(0) agent for learn-
ing a control policy, where only the weights w on the last
layer are updated. The meta-parameters for the batch-trained
neural network producing the representation and the Sarsa
agent were swept in a wide range, and chosen based on con-
trol performance. The aim is to provide the best opportunity
for a regular feed-forward network (NN) to learn on these
problems, as it is more sensitive to its meta-parameters than
the SR-NN. Additional details on ranges and objectives are
provided in the Appendix.

We choose this two-stage training regime to remove con-
founding factors in difficulties of training neural networks
incrementally. Our goal here is to identify if a sparse represen-
tation can improve control performance, and if so, why. The
networks are trained with an objective for learning values, on
a large batch of data generated by a policy that covers the
space; the learned representations are capable of represent-
ing the optimal policy. We investigate their utility for fully
incremental learning. Outside of this carefully controlled
experiment, we advocate for learning the representation in-
crementally, for the task faced by the agent.

The learning curves for the four domains, with Tile-Coding
(TC), SR-NN and NN, are shown in Figure 2. Both SR-NN
and NN used two-layers, of size [32, 256], with ReLU activa-
tions. The NNs performs surprisingly poorly, in some case
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Figure 2: Learning curves for Sarsa(0) comparing SR-NN,
Tile Coding and vanilla NN in the four domains.
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Figure 3: Learning curves for Sarsa(0) comparing SR-NN
to the regularized representations. All representations except
£1-NN in Puddle World could reach goals more than 70 times
out of 100. ¢; does poorly in Puddle World, and is not visible.

increasing and then decreasing in performance (Mountain
Car), and in others failing altogether (Catcher). In all the
benchmark RL domains, the baseline sparse representation,
TC, performs well, as expected. Specifically in Catcher, TC
learns a close-to-optimal policy as the representation is pow-
erful. The learned SR-NN performs as well in all domains,
and is effective for learning in Catcher, whereas NN performs
really poorly in all domains, and does not learn anything in
Catcher. Both SR-NN and NN representations were trained
in the same regime, with similar representational capabilities.
Yet, the sparsity of SR-NN enables the Sarsa(0) agent to learn,
where the regular feed-forward NN does not. We investigate
this effect further in the next sets of experiments, to better
understand the phenomenon.

To determine if the main impact of the sparse representa-
tion is simply from regularization, preventing overfitting, we
tested several regularization strategies for the neural network.
These include /5 and ¢; on the weights of the network ({2-
NN and ¢;-NN respectively) and Dropout on the activation
(Srivastava et al. 2014) (Dropout-NN). The ¢; regularizer
actually encourages weights to go to zero, reducing the num-
ber of connections, but does not necessarily provide a sparse
representation. In Figure 3, we can see that regularization
is unlikely to account for the improvements in control. SR-
NN performs well across all domains, whereas none of the
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Figure 4: A study in Puddle World to investigate the effect of locality during on-policy control. (a) The activation maps for 20
randomly chosen neurons for different representations - each cell in the heatmap corresponds to the complete Puddle World
state-space. The activation maps, and magnitude of activation of SR-NN are visibly sparser, and lower, when compared to Dropout
and NN. /; and /5 are quite dense in terms of activation area, whereas the magnitudes are really low - due to regularization of
the network weights. (b) A visualization of the domain, denoting the selected state-action pairs used in the analysis. (¢) The
estimated state-action values for the selected configurations during on-policy control with Sarsa(0) (¢ = 0.1), while utilizing the
specific representation of interest. (Sarsa(0) budget - 100 episodes with 1k episode cut-off for all representations). (d) The true
state-action values for the selected configurations with an € = 0.1-optimal policy, estimated from 100k Monte Carlo rollouts.

regularization strategies consistently perform well. /1-NN
and ¢5-NN perform well in Mountain Car during early learn-
ing, but fail in other domains. Dropout-NN performs poorly
in all domains except Puddle World. Interestingly, in this
one domain, Dropout-NN appears to have learned a sparse
representation, based on the heatmap shown in Figure 4. Tt
has been observed that Dropout can at times learn sparse
representations (Banino et al. 2018), but not consistently, as
corroborated by our experiments.

We next investigate the hypothesis that locality is prevent-
ing catastrophic interference. We first investigate the locality
of the representations, as well as examining the bootstrap
values over time. We show results for Puddle World here, as
it is an interpretable two-dimensional domain; similar experi-
ments for other domains are in the Appendix.

Figure 4(a) shows the activation map of randomly selected
hidden neurons with the different networks. We can see that
each hidden neuron in SR-NN only responds to a local region
of the input space, while some hidden neurons in NN respond
to a large part of the space. Consequently, when one state is
updated in a part of the space with the NN representation, it
is more likely to significantly shift the values in other parts of
the space, as compared to the more local SR-NN. The /5-NN,
and /1-NN representations do not exhibit any discernible
locality properties. Dropout-NN does achieve some degree
of locality in this domain, as mentioned earlier.

To show the stability (or lack of stability) of bootstrap
targets used during control, we select five states and evaluate
their action-values for the optimal action over the course of
learning. These states are distributed across the observation
space, depicted in Figure 4(b). The bootstrap estimates, that
correspond to the algorithm settings for the learning curves,
are plotted in Figure 4(c). We can see that the relative or-
dering of the value estimates is maintained with SR-NN and
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Figure 5: Instance sparsity comparing SR-NN to the regu-
larized variants and vanilla NN. The percentage evaluation
is designed to disregard units that are never active across all
samples in the batch (dead units).

Dropout-NN, which were the two NNs effective for on-policy
control, and that their values converge to near the true values
(given in Figure 4(d)). The other representations, on the other
hand, have very poor estimates. Moreover, these estimates
seem to decrease together, suggesting interference is causing
overgeneralization to reduce values in other states.

Finally, we report additional measures of locality, to de-
termine if the successful methods are indeed sparse. The
heatmaps provide some evidence of locality, but are more
qualitative than quantitative. We report two qualitative mea-
sures: instance sparsity and activation overlap. Instance spar-
sity corresponds to the percentage of active units for each in-
put. A sparse representation should be instance sparse, where
most inputs produce relatively low percentage activation. As
shown in Figure 5, SR-NN has consistently low instance
sparsity across all four domains, with slightly higher level in
Catcher, potentially explaining the noisy behaviour in that do-
main. Once again, Dropout-NN is noticeably more instance
sparse on Puddle World, but less so on other domains. The
NN representation, which has no regularization, has some
instance sparsity, likely due to simply using ReLU activa-



SR-NN | £,-NN | £,-NN | Dropout-NN | NN
88 | 1115 | 1425 | 312 | 540

Table 1: Activation overlap in Puddle World. The numbers
are the average overlap over all pairs of selected states. For
example, SR-NN has an average of 8.8 shared activation over
all pais of 5 selected states defined in Figure 4 (a).

tion. Interestingly, 1-NN and /5-NN actually produced less
instance sparsity.

Activation overlap, introduced by French(1991), reflects
the amount of shared activation between any two inputs. We
consider a variant of activation overlap that measures the
number of shared activation between two representations,
¢(x1) and ¢(x2), for two samples, X1, and Xo:

overlap(¢(x1),¢(x2))
:Zu(qu(m) > 0) A (;(x2) > 0)].

‘We measure the activation overlap of the five chosen states,
distributed across Puddle World. If the overlap between two
representations is zero, the interference would be zero. Up-
dating the value function with respect to one state, therefore,
would not affect the other state’s value. Table 1 shows the
average overlap, and once again, a similar trend emerges
where, SR-NN has significantly less overlap (about 8), with
Dropout-NN showing the next least overlap (with about 30).

Overall, these results provide some evidence that (a) sparse
representations can improve control performance in an in-
cremental learning setting, (b) these sparse representations
appear to provide locality and (c) this locality reduces interfer-
ence and improves accuracy of bootstrap values in Sarsa(0).
These results are a first step, and warrant further investi-
gation. They do nonetheless motivate that learning sparse
representations could be a promising direction for control in
reinforcement learning. In the next section, we discuss how
we actually obtain such sparse representations (SR-NN).

Distributional Regularizers for Sparsity

In this section, we describe how to use Distributional Regu-
larizers to learn sparse representations with neural networks.?
We introduce a Set Distributional Regularizer, which when
paired with ReLU activations enables sparse representations
to be learned, as we demonstrate in the next section. We first
describe how to define Distributional Regularizers on neural
networks, and then discuss the extension to a Set Distribu-
tional Regularizer, and motivation for doing so.

The goal of using Distributional Regularizers is to encour-
age the distribution of each hidden node—across samples—to
match a desired target distribution. In a neural network, we
can view the hidden nodes, Y7, ..., Yy, as random variables,
with randomness due to random inputs. Each of these random

The idea was originally introduced for neural networks with
Sigmoid activations in an unpublished set of notes (Ng 2011), and
as yet has not been systematically explored. When used out-of-the-
box, we found important limitations in the learned representations,
including from using Sigmoid activations instead of ReLU and from
using the KL to a specific distribution. We explore the idea in-depth
here, to make it a practical option for learning sparse representations.

variables Y; has a distribution p 4,(0)° where the parameters
J

B;(6) of this distribution are induced by the weights 6 of the
neural network:

i, ®) = |__ (@00 = v)ds.

This provides a distribution over the values for the feature
@, 6(s), across inputs s. A Distributional Regularizer is a KL
divergence K L(pg||p 5 (9)) that encourages this distribution

to match a desired target distribution pg with parameter /3.
Such a regularizer can be used to encourage sparsity, by se-
lecting a target distribution that has high mass or density
at zero. Consider a Bernoulli distribution for activations,
with Y; € {0,1}. Using a Bernoulli target distribution with
B = 0.1, giving pg(Y = 1) = 0.1, encodes a desired activa-
tion of 10%. As another example, for continuous nonnegative
Y, the target distribution can be set to an exponential distribu-
tion ps(y) = B~ ' exp(—y/B), which has highest density at
zero with expected value /3. Setting 5 = 0.1 encourages the
average activation to be 0.1 and increases density on y = 0.
The efficacy of this regularizer, however, is tied to the pa-
rameterization of the network, which should match the target
distribution. For a ReLLU activation, for example, which has
arange [0, 00), a Bernoulli target distribution is not appropri-
ate. Rather, for the range [0, 00), an exponential distribution
is more suitable. For a Sigmoid activation, giving values
between [0, 1], a Bernoulli is reasonably appropriate. Addi-
tionally, the parametrization should be able to set activations
to zero. The ReLLU activation naturally enables zero values
(Glorot, Bordes, and Bengio 2011), by pushing activations to
negative values. The addition of a Distributional Regularizer
simply encourages this natural tendency, and is more likely
to provide sparse representations. Activations under Sigmoid
and tanh, on the other hand, are more difficult to encourage
to zero, because they require highly negative input values or
input values exactly equal to 0.5, respectively, to set the hid-
den node to zero. For these reasons, we advocate for ReLU
for the sparse layer, with an exponential target distribution.
Finally, we modify this regularizer to provide a Set Distri-
butional Regularizer, which does not require an exact level of
sparsity to be achieved. It can be difficult to choose a precise
level of sparsity, making the Distributional Regularizer prone
to misspecification. Rather, the actual goal is typically to ob-
tain at least some level of sparsity, where some nodes can be
even more sparse. For this modification, we specify that the
distribution should match any of a set of target distributions
Qp, giving a Set KL: minycq, KL(pHpﬁj(e)). Generally,
this Set KL can be hard to evaluate. However, as we show
below, it corresponds to a simple clipped KL-divergence for
certain choices of ()3, importantly including for exponential
distributions where Qg = {pB |8 < 5}
Theorem 1 (Set KL as a Clipped-KL). Let p, be a one-
dimensional exponential family distribution with the natural
parameter 1, B = [n1,12] be a convex set in the natural

parameter space and Qp = {p,, : 1 € B}. Then the Set KL
divergence

SKL(Qg|lpy) == min KL(p|[p,) (3)
PERB



is (a) non-negative (b) convex in m and (c) corresponds to a
simple clipped form

KL(pn,[lpn) if 1> n2
KL(py,|lpy) ifn<m “)
0 else

SKL(@p|lpy) =

Proof. For exponential families, the KL divergence corre-
spond to a Bregman divergence (Banerjee et al. 2005):

KL(py,|lpy) = Dr(nllm)

for a convex potential function F' that depends on the expo-
nential family. Hence, we have

SKL(Qg||py) = argmin Dg(n]|7)
neB

If n € B, this minimum over Bregman divergences is clearly
zero. If n < m and > 79, we have to consider the mini-
mization. The Bregman divergence is not necessarily convex
in the second argument. Instead, we can rely on convexity of
the set B. Taking the derivative of D (n||77) wrt 7, we get

4 D) = di, F(n) — F(7) — (n— i) F(7)

dij di
d . d _. . A2
——d—ﬁF(n)er—ﬁF(n)—(n—n)d—ﬁzF(n)
d2

= _d_ﬁQF(ﬁ)(T] — 1)

Now because F'is convex, — dfi—;F (77) is always negative. The
derivative, then, is negative when 7; < 7, indicating 7 should
be increased to decrease D (n]||7). Similarly, when 77 > 7,
the derivative is positive, indicating 7) should be decreased
to decrease D (n||7). This derivative, then, points 7] to the
boundaries when 1 ¢ B, respectively to the boundary points
closest to 7.

Corollary 1 (SKL for Exponential Distributions). For pg an
exponential distribution, with natural parameter n = —3~",
and B = (0, B, then

log f+ 5 —log f — 1 ifB>B(5)
0 else

SKL(QB|I)B){

We use the SKL in Corollary 1, to encode a sparsity level of
at least S—rather than exactly S—for the last layer in a two-
layer neural network with ReLU activations. This regularizer
was used to encourage sparse activations for SR-NN in the
preceding section. We include pseudocode for optimizing the
regularized objective with the SKL, in Algorithm 1 in the
Appendix.

Evaluation of Distributional Regularizers

In this section, we investigate the efficacy of Distributional
Regularizers for obtaining sparsity. There are a variety of
possible choices with Distributional Regularizers, including
activation function and corresponding target distribution and
using a KL versus a Set KL. In this section, we investigate
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Figure 6: Instance sparsity as evaluated on a batch of test
data comparing ReLU+KL and ReLU+SKL to NN. While
ReLU+KL can make representations denser than just NN,
ReLU+SKL always results in sparser representations.

some of these combinations, particularly focusing on the
difference in sparsity and performance when using (a) KL
versus SKL; (b) Sigmoid (with a Bernoulli target distribution)
versus ReLU (with an Exponential target distribution); and
(c) previous strategies to obtain sparse representations versus
the proposed variant of the Distributional Regularizer.

In the first set of experiments, we compare the instance
sparsity of KL to Set KL, with ReLLU activations and Expo-
nential Distributions (ReLU+KL and ReLU+SKL). Figure 6
shows the instance sparsity for these, and for the NN with-
out regularization. Interestingly, ReLU+KL actually reduces
sparsity in several domains, because the optimization encour-
aging an exact level of sparsity is quite finicky. ReLU+SKL,
on the other hand, significantly improves instance sparsity
over the NN. This instance sparsity again translates into con-
trol performance, where ReLU+KL does noticeably worse
than ReLU+SKL across the four domains in Figure 7. Despite
the poor instance sparsity, ReLU+KL does actually seem to
provide some useful regularity, that does allow some learning
across all four domains. This contrasts the previous regular-
ization strategies, 2, ¢1 and Dropout, which all failed to learn
on at least one domain, particularly Catcher.

In the next set of experiments, we compare Sigmoid (with
a Bernoulli target distribution) versus ReLU (with an Expo-
nential target distribution). We included both KL and Set KL,
giving the combinations ReLU+KL, ReLU+SKL, SIG+KL,
and SIG+SKL. We expect Sigmoid with Bernoulli to perform
significantly worse—in terms of sparsity levels, locality and
performance—because the Sigmoid activation makes it dif-
ficult to truly get sparse representations. This hypothesis is
validated in the learning curves in Figure 7 and the heatmaps
for Puddle World in Figure 8. SIG+KL and SIG+SKL per-
form poorly across domains, even in Puddle World, where
they achieved their best performance. Unlike ReL.U with Ex-
ponential, here the Set KL seems to provide little benefit.
The heatmaps in Figure 8 show that both versions, SIG+KL
and SIG+SKL, cover large porions of the space, and do not
have local activations for hidden nodes. In fact, SIG+KL and
SIG+SKL use all the hidden nodes for all the samples across
domains, resulting in no instance sparsity.

Next, we compare to previously proposed strategies for
learning sparse representations with neural networks. These
include using ¢; and ¢, regularization on the activation (de-
noted by /;R-NN and ¢5R-NN respectively); k-sparse NNs,
where all but the top k activations are zeroed (Makhzani and
Frey 2013) (k-sparse-NN); and Winner-Take-All NNs that
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Figure 8: Heatmaps of activations with different Distribu-
tional Regularizers in Puddle World.

keep the top k% of the activations per node across instances,
to promote sparse activations of nodes over time (Makhzani
and Frey 2015) (WTA-NN).?

We include learning curves and instance sparsity for these
methods, for a ReLLU activation, in Figures 9 and 10. Results
for the Sigmoid activation are included in the Appendix. Nei-
ther WTA-NN nor k-sparse-NN are effective. We found the
k-sparse-NN was prone to dead units, and often truncates
non-negligible value. Surprisingly, 2R-NN performs compa-
rably to SR-NN in all domains but Catcher, whereas ¢;R-NN
is effective only during early learning in Mountain Car. From
the instance sparsity plots in Catcher, we see that /1 R-NN and
£5R-NN produce highly sparse (2%-3% instance sparsity),
potentially explaining its poor performance. While similar in-
stance sparsity was effective in Puddle World, this is unlikely
to be true in general. This was with considerable parameter
optimization for the regularization parameter.

Conclusion

In this work, we investigate using and learning sparse repre-
sentations with neural networks for control in reinforcement
learning. We show that sparse representations can signifi-
cantly improve control performance when used in an incre-
mental learning setting, and provide some evidence that this

*Both k-sparse-NNs and WTA-NNs were introduced for auto-
encoders, though the idea can be applied more generally to NNs.
‘We additionally tested these methods with autoencoders, but perfor-
mance was significantly worse.
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is because the locality of the representation reduces catas-
trophic interference which would otherwise overwrite boot-
strap values. We formalize Distributional Regularizers, with
a practically important extension to a Set KL, for learning a
Sparse Representation Neural Network (SR-NN). We provide
an empirical investigation into the sparsity properties and con-
trol performance under different Distributional Regularizers,
as well as compared to other algorithms to obtain sparse rep-
resentations with neural networks. We conclude that SR-NN
performs consistently well across domains, with the next best
method—which only fails in one domain—being a simple
methods that uses an /5 regularizer on activations.

This work highlights an important phenomenon that arises
in control, beyond the typical issues with catastrophic inter-
ference. Interference is typically considered for sequential
multi-task learning, where previous functions are forgotten
by training on a new task. Interference could occur even in a
single-task setting, if an agent remains in a particular area of
the space for a long time. In reinforcement learning, however,
this problem is magnified by the fact that the agent uses its
own estimates as targets. If estimates change incorrectly due
to interference, there could be a cascading effect. This work
provides some first empirical steps, in a carefully controlled
set of experiments, to identify that this could be an issue, and
that sparse representations could be a promising direction
to alleviate the problem. We hope for this work to spur fur-
ther empirical investigation into how widespread this issue
is, and further algorithmic development into learning sparse
representations for reinforcement learning.
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Additional algorithmic details

Algorithm 1 Optimizing the regularized objective

1: Initialize neural networks weights based on He initializa-
tion (He et al. 2015): for each layer [ and each element
ij of the weight matrix Wl(é) ~ N(0, %) andb® =0
where n; the number of input nodes for layer [.

2: while not converge to a minimum do

3: Draw m i.i.d. samples {y1, ..., Y., } from the true data
distribution .
4:  Forj=1,..,k compute 3; = .~ y;;/m and the

gradient:

OK L(pgllps,) 1 B

= (5 — 2)1[5; > 6]

0B; B; ﬁQ
5: Update each weight 8 € {vi, W(®) b(")} with the
gradient:
a z’“:aKL pﬁHpB ) 9B,
= 00

In general, we advocate for learning the representation in-
crementally, for the task faced by the agent. However, for our
experiments, we learned the representations first to remove
confounding factors. We detail that learning regime here.

The problem of learning a good representation ¢g(s, a)
in the case of finite actions can be transformed to learning
a good representation of the form ¢y (s), and using that to
represent the action-value function from Equation (2) as:

Quw.0(5,0) == P(s) ' Wa (©6)
Here, ¢ (s) is the linear representation of the state s, which is
used in conjunction with the linear predictor w, to estimate
action-values for action a across the state space. Under a
given policy, like the action-values Q™ (s, a), corresponding
state-values, V7 (s), are defined as:

V7™ (s) := E[Gt|S: = §]

where, Gy = Ry11 + Y41Gt41
An easy objective to train connectionist networks with sim-
ple backpropagation is the Mean Squared Temporal Differ-
ence Error (MSTDE) (Sutton 1988). For a given policy, the
MSTDE is defined as:

> d(s)E[67]S; = 5] (7)

sES

where, ; 1= Rt+1 + fyt+1¢9(St+1)Tw1, — ¢0 (St)TWv

Here, d denotes the stationary distribution over the states in-
duced by the given policy, and 8 and w,, are parameters that
can be estimated with stochastic gradient descent. Therefore,
given experience generated by a policy that explores suffi-
ciently in an environment, a strong function approximator (a
dense neural network) can be trained to estimate useful fea-
tures, ¢g(s). These features can then be used for estimating
action-values in on-policy control for learning the (close-to)
optimal behaviour policy in the environment.
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Figure 11: Learning curve during the training of neural net-
works with different regularization methods.

Experimental Details
Policies to generate training and testing data

In Mountain Car, we use the standard energy pumping policy
with 10% randomness. In Puddle World, by a policy that
chooses to go North with 50% probability, and East with 50%
probability on each step. The data in Acrobot is generated by
a near-optimal policy. In Catcher, the agent chooses to move
toward the apple with 50% probability, and selects a random
action with 50% probability on each step; and gets only 1 life
in the environment.

Tile Coding

We compare to Tile Coding (TC) representation, a well-
known sparse representation, as the baseline. TC uses over-
lapping grids on the observation space, to convert a contin-
uous space to a discrete dimensional space. The representa-
tions generated by it are sparse and distributed based on a
static hashing technique. We experiment with several config-
urations for the fixed representation, particularly with grid-
sizes(N) in {4, 8, 16} and number of tilings (D) in {8, 16, 32}.
We use a hash size of 8192, which is significantly larger than
the largest feature size of 256, as used in the other learned
representation models we compare to. The results shown in
Figure 3 are for the best configuration of the static tile-coder
after a sweep.

Training neural networks

Architecture and optimizer: We used neural networks with
two hidden layers. The first layer 32 hidden units. The second
layer, which is the representation layer used for prediction,
has 256 units. We optimized the neural network weights using
Adam optimization (Kingma and Ba 2014) with a batch size
of 64. The neural network weights are initialized based on
He initialization (He et al. 2015). That is, the neural networks
weights are initialized with zero-mean Gaussian distribution
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Figure 12: Learning curve during the training of neural net-
works with different distributional regularizers.

with variance equals to 2/n;, where n; is the number of input
nodes for layer [.

Representation hyperparameters: The range of grid
search for the representation hyperparameters are as follows:

A1 € {0.1,0.01,0.001}
B € {0.05,0.1,0.2}
Ann for ¢7 and £5 € {0.1,0.01,0.001,0.0001}
dropout probability p € {0.1,0.2,0.3,0.4,0.5}
k for k-sparse € {16, 32,64, 128}
k for WTA € {6.25%, 12.5%, 25%, 50%}

Algorithmic choices: For k-sparse networks, only the top-
k hidden units in the representation layer are activated. We
also use scheduling of sparsity level described in the original
paper (Makhzani and Frey 2013). If used in conjunction with
a distributional regularizer, the top-k nodes are chosen be-
fore application of the distributional regularizer. For dropout,
given the form of the supervision goal (MSTDE), the same
dropout mask is chosen to generate the representation for
both states Sy ;1 and S;* — this preserves dropouts role as reg-
ularizer w.r.t. the target, and promotes diversity in learning.

Grid-search evaluation metric: The learned representa-
tions are then used for on-policy control in Sarsa(0) with
fixed ¢ = 0.1. The value function for Sarsa is initialized
with zero-mean Gaussian distribution with small variance.
For sparse representations, we use semi-gradient Sarsa with
step decay learnining rate. For dense representatinos, we use
adaptive learnining rate method RMSprop (Hinton, Srivas-
tava, and Swersky 2012). The initial learning rate for Sarsa(0)

*We have experimented with different dropout masks for Sy 1
and S, and the result suggests that it is not able to learn good
representations even for prediction across all domains.
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is swept in the set:
ap € {0.1,0.04,0.01,0.004, 0.001,0.0004, 0.0001 }

All the sweeps for selecting the representation learning hy-
perparameters across domains use 50 epochs and 10 runs.

Learning curves: The chosen hyperparameters are used
to train a good representation (saturated testing loss — 100
epochs for Acrobot, and 50 epochs for other domains), fol-
lowing which it is used for on-policy control with Sarsa(0).
While the control performance is focused on in the main
paper, the learning curve during the representation training
phase is shown in Figures 11, 12 and 13. The metric on the
y-axis is the Root Mean Squared Error (RMSE), which is
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Figure 15: Learning curves for Sarsa(0) comparing various
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evaluated as follows:

RMSE = \/erxtest(V(X) — V*(x))2

XtcsL

where X4, is the set of test states for which the represen-
tations have been extracted, V(x) is the estimated value of
state x and V*(x) is the true value of state x computed using
Monte Carlo rollouts. The number of test states are 5000 for
benchmark domains and 1000 for Catcher. Most algorithms
converge to a good solution within 50 epochs in Mountain
Car, Puddle World and Catcher, and 100 epochs in Acrobot
as shown in the curves. The curves are for representation
purposes and only averaged over 5 runs. All learning curves
for Sarsa(0) are averaged over 30 runs, and are plotted with
exponential moving average (8 = 0.1).

More results
Control curves

We perform the evaluation of sparsity inducing networks
with Sigmoid activation. Figure 14 shows the performance of
Sarsa(0) with representations learned by different networks.
k-sparse and WTA performs well in Puddle World, however,
none of these representations are effective across all domains.

The learning curves for various k-sparse networks with
distributional regularizers are in Figure 15. It suggests that
k-sparse (ReLU+k+SKL) provides no improvement over just
using distributional regularizer for ReLU activation (SR-NN).

Activation heatmaps

The activation heatmaps for randomly selected neurons (ex-
cluding dead neurons) in Mountain Car with different regular-
ization stratergies are shown in Figure 16, and with differnt
Distributional Regularization designs are shown in Figure 17.
Heatmaps for sparsity inducing networks with ReLLU activa-
tions and Sigmoid activation, for Mountain Car and Puddle
World are shown in Figure 18.
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we see that the relative ordering of bootstrap values is maintained with SR-NN, and it tends towards the true values of the
(e = 0.1)-optimal policy. The optimal policy estimates (currently) use 10k Monte Carlo rollouts with a powerful close-to-optimal
tile-coder policy.



Mountain Car Puddle World
SR-NN 16.8 8.8
f5-NN 112.3 111.5
/1-NN 109.5 142.5
Dropout-NN 72.5 31.2
NN 106.5 54.0
ReLU+KL 36.8 71.4
SIG+SKL 256.0 256.0
SIG+KL 256.0 256.0
k-sparse-NN 36.6 61.8
WTA-NN 24.8 6.5
/5R-NN 30.0 3.8
/1R-NN 10.5 0.4

Table 2: Activation overlap in Mountain Car and Puddle
World. For Mountain Car, the numbers are the average over-
lap over all pairs of selected states defined in Figure 19.

Bootstrap values

The bootstrap values comparing SR-NN to different regular-
ization strategies, and NN are shown in Figure 19. Since it is
not easy to visualize 4-dimensional space, we only include
the bootstrap value result of Mountain Car here.

Activation overlap

We show the overlap of representations learned by different
networks in Table 2 for Mountain Car and Puddle World.
£5R-NN and /1 R-NN have low overlap values. However, the
regularizers tend to push many neurons to be activated for
a really small region to reduce penalty as shown in Figure
18. SR-NN, on the other hand, learns a more distributed
representation.



