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Abstract

Finding minimum distortion of adversarial examples and thus certifying robustness
in neural network classifiers is known to be a challenging problem. Nevertheless,
recently it has been shown to be possible to give a non-trivial certified lower bound
of minimum adversarial distortion, and some recent progress has been made to-
wards this direction by exploiting the piece-wise linear nature of ReLU activations.
However, a generic robustness certification for general activation functions still
remains largely unexplored. To address this issue, in this paper we introduce
CROWN, a general framework to certify robustness of neural networks with general
activation functions. The novelty in our algorithm consists of bounding a given
activation function with linear and quadratic functions, hence allowing it to tackle
general activation functions including but not limited to the four popular choices:
ReLU, tanh, sigmoid and arctan. In addition, we facilitate the search for a tighter
certified lower bound by adaptively selecting appropriate surrogates for each neu-
ron activation. Experimental results show that CROWN on ReLU networks can
notably improve the certified lower bounds compared to the current state-of-the-art
algorithm Fast-Lin, while having comparable computational efficiency. Further-
more, CROWN also demonstrates its effectiveness and flexibility on networks with
general activation functions, including tanh, sigmoid and arctan. To the best of our
knowledge, CROWN is the first framework that can efficiently certify non-trivial
robustness for general activation functions in neural networks.

1 Introduction

While neural networks (NNs) have achieved remarkable performance and accomplished unprece-
dented breakthroughs in many machine learning tasks, recent studies have highlighted their lack of
robustness against adversarial perturbations [1, 2]. For example, in image learning tasks such as object
classification [3, 4, 5, 6] or content captioning [7], visually indistinguishable adversarial examples can
be easily crafted from natural images to alter a NN’s prediction result. Beyond the white-box attack
setting where the target model is entirely transparent, visually imperceptible adversarial perturbations
can also be generated in the black-box setting by only using the prediction results of the target model
[8, 9, 10, 11]. In addition, real-life adversarial examples have been made possible through the lens
of realizing physical perturbations [12, 13, 14]. As NNs are becoming a core technique deployed
in a wide range of applications, including safety-critical tasks, certifying a NN’s robustness against
adversarial perturbations has become an important research topic in machine learning.

∗Work done during internship at IBM Research †Equal contribution
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Given a NN (possibly with a deep and complicated network architecture), we are interested in certify-
ing the (local) robustness of an arbitrary natural example x0 by ensuring all its nearby examples will
have the same inference outcome (e.g., consistent top-1 prediction). In this paper, the neighborhood
of x0 is characterized by an `p ball centered at x0, for any p ≥ 1. Geometrically speaking, the
minimum distance/distortion of a misclassified nearby example to x0 is the least adversary strength
required to alter the target model’s prediction, which is also the largest possible robustness certificate
for x0. Unfortunately, finding the minimum distortion of adversarial examples in NNs with Rectified
Linear Unit (ReLU) activations (one of the most widely used activation functions) is known to be an
NP-complete problem [15, 16], which makes formal verification techniques such as Reluplex [15]
suffer from scalability issues and become computationally demanding even for small-sized NNs.

Although certifying the largest possible robustness is challenging for ReLU networks, the piece-
wise linear nature of ReLUs can be exploited to efficiently compute a non-trivial certified lower
bound of the minimum distortion [17, 18, 19, 20]. Beyond ReLU, one fundamental problem that
remains largely unexplored is how to generalize the robustness certification technique to other popular
activation functions that are not piece-wise linear, such as tanh and sigmoid, and how to motivate and
certify the design of other activation functions towards improved robustness. In this paper, we tackle
the preceding problem by proposing an efficient robustness certification framework for NNs with
general activation functions. Our main contributions in this paper are summarized as follows:

• We propose a generic analysis framework CROWN for certifying NNs using linear or quadratic
upper and lower bounds for general activation functions that are not necessarily piece-wise linear.
• Unlike previous works [18, 20], CROWN allows flexible selections of upper and lower bounds for

activation functions, enabling us to design an adaptive scheme to choose bounds that reduce the
approximation error. Our experiments show up to 26% improvements in certified lower bounds.
• Our algorithm is efficient and can scale to large NNs with various activation functions. For a NN

with over 10,000 neurons, we can give a certified lower bound in about 1 minute on 1 CPU core.

2 Background and Related Work

For ReLU networks, finding the minimum adversarial distortion can be cast as a mixed integer linear
programming (MILP) problem [21, 22, 23]. Reluplex [15, 24] uses a satisfiable modulo theory (SMT)
to encode ReLU activations into linear constraints. Similarly, Planet [25] uses satisfiability (SAT)
solvers. However, due to the NP-completeness for solving such a problem [15], these methods can
only find minimum distortion for very small networks. It can take Reluplex several hours to find the
minimum distortion of an example for a ReLU network with 5 inputs, 5 outputs and 300 neurons[15].

Instead of finding the minimum adversarial distortion, a computationally feasible alternative of
robustness certificate is to providing a non-trivial and certified lower bound of minimum distortion.
Some analytical lower bounds can be derived from the product of operator norms on the weight
matrices [3] or the Jacobian matrix in NNs [17]. But these bounds do not take into account the special
property of ReLU and can lead to loose bounds [20]. The bounds in [26, 27] are based on the local
Lipschitz constant. [26] assumes a continuous differentiable NN and hence excludes ReLU networks;
a closed form lower-bound is also hard to derive for networks beyond 2 layers. [27] applies to ReLU
networks and uses Extreme Value Theory to provide an estimated lower bound (CLEVER score).
Although the CLEVER score is capable of reflecting the level of robustness in different NNs and is
scalable to large networks, it is not a certified lower bound. On the other hand, Kolter and Wong [18]
use the idea of a convex outer adversarial polytope in ReLU networks to compute a certified lower
bound by relaxing the MILP certification problem to linear programing (LP). Raghunathan et al. [19]
apply semidefinite programming for robustness certification in ReLU networks but their approach
is limited to NNs with one hidden layer. Weng et al. [20] exploit the ReLU property to bound the
activation function (or the local Lipschitz constant) and provide efficient algorithms (Fast-Lin and
Fast-Lip) for computing a certified lower bound, achieving state-of-the-art performance. A recent
framework, AI2 [28], uses abstract transformations to zonotopes for proving robustness property for
ReLU networks. Nonetheless, there are still some application demands using non-ReLU activations,
e.g. RNN and LSTM, thus a profound framework towards efficient computation of non-trivial and
certified lower bounds for NNs with general activation functions is of great importance. Our proposed
method CROWN aims to fill in this gap by generalizing efficient robustness certification to NNs with
different activation functions. Additionally, on ReLU networks the flexibility in our framework can
achieve a tighter lower bound. Table 1 summarizes the differences of other approaches and CROWN.
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Table 1: Comparison of methods for providing adversarial robustness certification in NNs.
Method Non-trivial bound Multi-layer Scalability Beyond ReLU
Szegedy et. al. [3] × X X X
Reluplex [15], Planet [25] X X × ×
Hein & Andriushchenko [26] X × X differentiable*

Raghunathan et al. [19] X × × ×
Kolter and Wong [18] X X X ×
Fast-lin / Fast-lip [20] X X X ×
CROWN (ours) X X X X (general)
* Continuously differentiable activation function required (soft-plus is demonstrated in [26])

Some recent works (such as robust optimization based adversarial training [29] or region-based
classification [30]) empirically exhibit strong robustness against several adversarial attacks, which
is beyond the scope of provable robustness certification. In addition, Sinha et al. [16] provide
distributional robustness certification based on Wasserstein distance between data distributions, which
is different from the local `p ball robustness model considered in this paper.

3 CROWN: A general framework for certifying neural networks

Overview of our results. In this section, we present a general framework CROWN for computing
certified lower bound of minimum adversarial distortion with general activation functions in NNs.
CROWN enables fast computation of certified lower bounds of large NNs. We provide principles to
derive output bounds of NNs when the inputs are perturbed within an `p ball and each neuron has
different linear approximation bounds on its activation function. As shown in our experiments in
Sec. 4, the adaptive selection of CROWN on the approximation bounds can achieve a tighter (larger)
certified lower bound. In Section 3.2, we demonstrate how to provide robustness certification for four
widely-used activation functions (ReLU, tanh, sigmoid and arctan) using CROWN. In particular, we
show that the state-of-the-art Fast-Lin algorithm is a special case under the CROWN framework. In
Section 3.3, we further highlight the flexibility of CROWN to incorporate quadratic approximations
on the activation functions in addition to the linear approximations described in Section 3.1.

3.1 General framework

Notations. For an m-layer neural network with an input vector x ∈ Rn0 , let the number of
neurons in each layer be nk,∀k ∈ [m], where [i] denotes set {1, 2, · · · , i}. Let the k-th layer weight
matrix be W(k) ∈ Rnk×nk−1 and bias vector be b(k) ∈ Rnk , and let Φk : Rn0 → Rnk be the
operator mapping from input to layer k. We have Φk(x) = σ(W(k)Φk−1(x) + b(k)),∀k ∈ [m− 1],
where σ(·) is the coordinate-wise activation function. While our methodology is applicable to any
activation function of interest, we emphasize on four most widely-used activation functions, namely
ReLU: σ(y) = max(y, 0), hyperbolic tangent: σ(y) = tanh(y), sigmoid: σ(y) = 1/(1 + e−y)
and σ(y) = arctan(y). Note that the input Φ0(x) = x, and the vector output of the NN is
f(x) = Φm(x) = W(m)Φm−1(x)+b(m). The j-th output element is denoted as fj(x) = [Φm(x)]j .

Input perturbation and pre-activation bounds. Let x0 ∈ Rn0 be a given data point, and let the
perturbed input vector x be within an ε-bounded `p-ball centered at x0, i.e., x ∈ Bp(x0, ε), where
Bp(x0, ε) := {x | ‖x− x0‖p ≤ ε}. For the r-th neuron in k-th layer, let its pre-activation input be
y
(k)
r , where y

(k)
r = W

(k)
r,: Φk−1(x) + b

(k)
r and W

(k)
r,: denotes the r-th row of matrix W(k). When

x0 is perturbed within a ε-bounded `p-ball, let l
(k)
r ,u

(k)
r ∈ R be the pre-activation lower bound and

upper bound of y
(k)
r , i.e. l

(k)
r ≤ y

(k)
r ≤ u

(k)
r .

Below, we first define the linear upper bounds and lower bounds of activation functions in Defini-
tion 3.1, which are the key to derive explicit output bounds for a m-layer neural network with general
activation functions. The formal statement of the explicit output bounds is shown in Theorem 3.2.
Definition 3.1 (Linear bounds on activation function). For the r-th neuron in k-th layer with pre-
activation bounds l

(k)
r ,u(k)

r and the activation function σ(y), define two linear functions h(k)U,r, h
(k)
L,r :

R → R, h(k)U,r(y) = α
(k)
U,r(y + β

(k)
U,r), h

(k)
L,r(y) = α

(k)
L,r(y + β

(k)
L,r), such that h(k)L,r(y) ≤ σ(y) ≤

h
(k)
U,r(y), y ∈ [l

(k)
r ,u

(k)
r ], ∀k ∈ [m− 1], r ∈ [nk] and α(k)

U,r, α
(k)
L,r ∈ R+, β

(k)
U,r, β

(k)
L,r ∈ R.
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Note that the parameters α(k)
U,r, α

(k)
L,r, β

(k)
U,r, β

(k)
L,r depend on l

(k)
r and u

(k)
r , i.e. for different l

(k)
r and

u
(k)
r we may choose different parameters. Also, for ease of exposition, in this paper we restrict
α
(k)
U,r, α

(k)
L,r ≥ 0. However, Theorem 3.2 can be easily generalized to the case of negative α(k)

U,r, α
(k)
L,r.

Theorem 3.2 (Explicit output bounds of neural network f ). Given an m-layer neural network
function f : Rn0 → Rnm , there exists two explicit functions fLj : Rn0 → R and fUj : Rn0 → R such
that ∀j ∈ [nm], ∀x ∈ Bp(x0, ε), the inequality fLj (x) ≤ fj(x) ≤ fUj (x) holds true, where

fUj (x) = Λ
(0)
j,: x +

m∑
k=1

Λ
(k)
j,: (b(k) + ∆

(k)
:,j ), fLj (x) = Ω

(0)
j,: x +

m∑
k=1

Ω
(k)
j,: (b(k) + Θ

(k)
:,j ), (1)

Λ
(k−1)
j,: =

{
e>j if k = m+ 1;

(Λ
(k)
j,: W(k))� λ(k−1)

j,: if k ∈ [m].
Ω

(k−1)
j,: =

{
e>j if k = m+ 1;

(Ω
(k)
j,: W(k))� ω(k−1)

j,: if k ∈ [m].

and ∀i ∈ [nk], we define four matrices λ(k), ω(k),∆(k),Θ(k) ∈ Rnm×nk :

λ
(k)
j,i =


α
(k)
U,i if k 6= 0, Λ

(k+1)
j,: W

(k+1)
:,i ≥ 0;

α
(k)
L,i if k 6= 0, Λ

(k+1)
j,: W

(k+1)
:,i < 0;

1 if k = 0.

ω
(k)
j,i =


α
(k)
L,i if k 6= 0, Ω

(k+1)
j,: W

(k+1)
:,i ≥ 0;

α
(k)
U,i if k 6= 0, Ω

(k+1)
j,: W

(k+1)
:,i < 0;

1 if k = 0.

∆
(k)
i,j =


β
(k)
U,i if k 6= m, Λ

(k+1)
j,: W

(k+1)
:,i ≥ 0;

β
(k)
L,i if k 6= m, Λ

(k+1)
j,: W

(k+1)
:,i < 0;

0 if k = m.

Θ
(k)
i,j =


β
(k)
L,i if k 6= m, Ω

(k+1)
j,: W

(k+1)
:,i ≥ 0;

β
(k)
U,i if k 6= m, Ω

(k+1)
j,: W

(k+1)
:,i < 0;

0 if k = m.

and � is the Hadamard product and ej ∈ Rnm−1 is a vector where all elements are 1.

Theorem 3.2 illustrates how a NN function fj(x) can be bounded by two linear functions fUj (x) and

fLj (x) when the activation function of each neuron is bounded by two linear functions h(k)U,r and h(k)L,r

in Definition 3.1. The central idea is to unwrap the activation functions layer by layer by considering
the signs of the associated weights of each neuron and apply the two linear bounds h(k)U,r and h(k)L,r.
As we demonstrate in the proof, when we replace the activation functions with the corresponding
linear upper bounds and lower bounds at the layer m− 1, we can then define equivalent weights and
biases based on the parameters of h(m−1)U,r and h(m−1)L,r (e.g. Λ(k),∆(k),Ω(k),Θ(k) are related to the

terms α(k)
U,r, β

(k)
U,r, α

(k)
L,r, β

(k)
L,r, respectively) and then repeat the procedure to “back-propagate” to the

input layer. This allows us to obtain fUj (x) and fLj (x) in (1). The formal proof of Theorem 3.2 is
in Appendix A. Note that for a neuron r in layer k the slopes of its linear upper and lower bounds
α
(k)
U,r, α

(k)
L,r of h(k)U,r and h(k)L,r can be different. This implies:

1. Fast-Lin [20] is a special case of our framework as they require the slopes α(k)
U,r, α

(k)
L,r to be the

same; and it only applies to ReLU networks (cf. Sec. 3.2). In Fast-Lin, Λ(0) and Ω(0) are identical.
2. Our CROWN framework allows adaptive selections on the linear approximation when computing

certified lower bounds of minimum adversarial distortion, which is the main contributor to improve
the certified lower bound as demonstrated in the experiments in section 4.

Uniform bounds. More importantly, since the input x ∈ Bp(x0, ε), we can take the maximum, i.e.
maxx∈Bp(x0,ε) f

U
j (x), and minimum, i.e. minx∈Bp(x0,ε) f

L
j (x), as a pair of uniform upper and lower

bound of fj(x) – which in fact has closed-form solutions because fUj (x) and fLj (x) are two linear
functions and x ∈ Bp(x0, ε) is a convex norm constraint. This result is formally presented below:
Corollary 3.3 (Closed-form uniform bounds). Given a data point x0 ∈ Rn0 , `p ball parameters
p ≥ 1 and ε > 0. For an m-layer neural network function f : Rn0 → Rnm , there exists two
fixed values γLj and γUj such that ∀x ∈ Bp(x0, ε) and ∀j ∈ [nm], 1/q = 1 − 1/p, the inequality
γLj ≤ fj(x) ≤ γUj holds true, where

γUj = ε‖Λ(0)
j,: ‖q+Λ

(0)
j,: x0+

m∑
k=1

Λ
(k)
j,: (b

(k)+∆
(k)
:,j ), γ

L
j = −ε‖Ω(0)

j,: ‖q+Ω
(0)
j,: x0+

m∑
k=1

Ω
(k)
j,: (b

(k)+Θ
(k)
:,j ).

(2)

It can be proved observing that x is only in term Λ
(0)
j,: x or Ω

(0)
j,: x in (1) and apply Cauchy-Schwartz.
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Table 2: Linear upper bound parameters of various activation functions: h(k)U,r(y) = α
(k)
U,r(y + β

(k)
U,r)

Upper bound h(k)U,r r ∈ S+k r ∈ S−k r ∈ S±k
for activation function α

(k)
U,r β

(k)
U,r α

(k)
U,r β

(k)
U,r α

(k)
U,r β

(k)
U,r

ReLU 1 0 0 0 a −l
(k)
r

(a ≥ u
(k)
r

u
(k)
r −l

(k)
r

, e.g. a = u
(k)
r

u
(k)
r −l

(k)
r

)

Sigmoid, tanh σ′(d) σ(d)

α
(k)
U,r

− d * σ(u(k)
r )−σ(l(k)

r )

u
(k)
r −l(k)

r

σ(l(k)
r )

α
(k)
U,r

− l
(k)
r σ′(d)

σ(l(k)
r )

α
(k)
U,r

− l
(k)
r

(denoted as σ(y)) (l(k)r ≤ d ≤ u
(k)
r ) (σ(d)−σ(l

(k)
r )

d−l
(k)
r

− σ′(d) = 0, d ≥ 0 ) �

* If α(k)
U,r is close to 0, we suggest to calculate the intercept directly α(k)

U,r · β
(k)
U,r = σ(d)− α(k)

U,rd to avoid numerical
issues in implementation. Same for other similar cases.
� Alternatively, if d ≥ u

(k)
r , then we can set α(k)

U,r =
σ(u(k)

r )−σ(l(k)
r )

u
(k)
r −l(k)

r

Table 3: Linear lower bound parameters of various activation functions: h(k)L,r(y) = α
(k)
L,r(y + β

(k)
L,r)

Lower bound h(k)L,r r ∈ S+k r ∈ S−k r ∈ S±k
for activation function α

(k)
L,r β

(k)
L,r α

(k)
L,r β

(k)
L,r α

(k)
L,r β

(k)
L,r

ReLU 1 0 0 0 a 0

(0 ≤ a ≤ 1, e.g. a = u
(k)
r

u
(k)
r −l

(k)
r

, 0, 1)

Sigmoid, tanh σ(u(k)
r )−σ(l(k)

r )

u
(k)
r −l(k)

r

σ(l(k)
r )

α
(k)
L,r

− l
(k)
r σ′(d) σ(d)

α
(k)
L,r

− d σ′(d)
σ(u(k)

r )

α
(k)
L,r

− u
(k)
r

(denoted as σ(y)) (l(k)r ≤ d ≤ u
(k)
r ) (σ(d)−σ(u

(k)
r )

d−u
(k)
r

− σ′(d) = 0, d ≤ 0 ) †

† Alternatively, if d ≤ l
(k)
r , then we can set α(k)

L,r =
σ(u(k)

r )−σ(l(k)
r )

u
(k)
r −l(k)

r

Certified lower bound of minimum distortion. Given an input example x0 and an m-layer NN,
let c be the predicted class of x0 and t 6= c be the targeted attack class. We aim to use the uniform
bounds established in Corollary 3.3 to obtain the largest possible lower bound ε̃t and ε̃ of targeted
and untargeted attacks respectively, which can be formulated as follows:

ε̃t = max
ε

ε s.t. γLc (ε)− γUt (ε) > 0 and ε̃ = min
t6=c

ε̃t.

We note that although there is a linear ε term in (2), other terms such as Λ(k),∆(k) and Ω(k),Θ(k)

also implicitly depend on ε. This is because the parameters α(k)
U,i, β

(k)
U,i , α

(k)
L,i, β

(k)
L,i depends on l

(k)
i ,u

(k)
i ,

which may vary with ε; thus the values in Λ(k),∆(k),Ω(k),Θ(k) depend on ε. It is therefore difficult
to obtain an explicit expression of γLc (ε) − γUt (ε) in terms of ε. Fortunately, we can still perform
a binary search to obtain ε̃t with Corollary 3.3. More precisely, we first initialize ε at some fixed
positive value and apply Corollary 3.3 repeatedly to obtain l

(k)
r and u

(k)
r from k = 1 to m and

r ∈ [nk]. We then check if the condition γLc − γUt > 0 is satisfied. If so, we increase ε; otherwise,
we decrease ε; and we repeat the procedure until a given tolerance level is met.2

Time Complexity. With Corollary 3.3, we can compute analytic output bounds efficiently without
resorting to any optimization solvers for general `p distortion, and the time complexity for an m-layer
ReLU network is polynomial time in contrast to Reluplex or Mixed-Integer Optimization-based
approach [22, 23] where SMT and MIO solvers are exponential-time. For a m layer network with n
neurons per layer and n outputs, time complexity of CROWN is O(m2n3). Forming Λ(0) and Ω(0)

for the m-th layer involves multiplications of layer weights in a similar cost of forward propagation in
O(mn3) time. Also, the bounds for all previous k ∈ [m− 1] layers need to be computed beforehand
in O(kn3) time; thus the total time complexity is O(m2n3).

3.2 Case studies: CROWN for ReLU, tanh, sigmoid and arctan activations

In Section 3.1 we showed that as long as one can identify two linear functions hU (y), hL(y) to bound
a general activation function σ(y) for each neuron, we can use Corollary 3.3 with a binary search

2The bound can be further improved by considering g(x) := fc(x)− ft(x) and replacing the last layer’s
weights by W

(m)
c,: −W

(m)
t,: . This is also used by [20].
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(a) r ∈ S+
k (b) r ∈ S−

k (c) r ∈ S±
k

Figure 1: σ(y) = tanh. Green lines are the upper bounds h
(k)
H,r; red lines are the lower bounds h

(k)
H,r

to obtain certified lower bounds of minimum distortion. In this section, we illustrate how to find

parameters α
(k)
U,r, α

(k)
L,r and β

(k)
U,r, β

(k)
L,r of hU (y), hL(y) for four most widely used activation functions:

ReLU, tanh, sigmoid and arctan. Other activations, including but not limited to leaky ReLU, ELU
and softplus, can be easily incorporated into our CROWN framework following a similar procedure.

Segmenting activation functions. Based on the signs of l
(k)
r and u

(k)
r , we define a partition

{S+
k ,S±

k ,S−
k } of set [nk] such that every neuron in k-th layer belongs to exactly one of the three

sets. The formal definition of S+
k , S±

k and S−
k is S+

k = {r ∈ [nk] | 0 ≤ l
(k)
r ≤ u

(k)
r }, S±

k = {r ∈
[nk] | l(k)r < 0 < u

(k)
r }, and S−

k = {r ∈ [nk] | l(k)r ≤ u
(k)
r ≤ 0}. For neurons in each partitioned

set, we define corresponding upper bound h
(k)
U,r and lower bound h

(k)
L,r in terms of l

(k)
r and u

(k)
r . As

we will see shortly, segmenting the activation functions based on l
(k)
r and u

(k)
r is useful to bound a

given activation function. We note there are multiple ways of segmenting the activation functions and

defining the partitioned sets (e.g. based on the values of l
(k)
r ,u

(k)
r rather than their signs), and we can

easily incorporate this into our framework to provide the corresponding explicit output bounds for
the new partition sets. In the case study, we consider S+

k , S±
k and S−

k for the four activations, as this
partition reflects the curvature of tanh, sigmoid and arctan functions and activation states of ReLU.

Bounding tanh/sigmoid/arctan. For tanh activation, σ(y) = 1−e−2y

1+e−2y ; for sigmoid activation,

σ(y) = 1
1+e−y ; for arctan activation, σ(y) = arctan(y). All functions are convex on one side

(y < 0) and concave on the other side (y > 0), thus the same rules can be used to find h
(k)
U,r and h

(k)
L,r.

Below we call (l
(k)
r , σ(l

(k)
r )) as left end-point and (u

(k)
r , σ(u

(k)
r )) as right end-point. For r ∈ S+

k ,

since σ(y) is concave, we can let h
(k)
U,r be any tangent line of σ(y) at point d ∈ [l

(k)
r ,u

(k)
r ], and let

h
(k)
L,r pass the two end-points. Similarly, σ(y) is concave for r ∈ S+

k , thus we can let h
(k)
L,r be any

tangent line of σ(y) at point d ∈ [l
(k)
r ,u

(k)
r ] and let h

(k)
U,r pass the two end-points. Lastly, for r ∈ S±

k ,

we can let h
(k)
U,r be the tangent line that passes the left end-point and (d, σ(d)) where d ≥ 0 and h

(k)
U,r

be the tangent line that passes the right end-point and (d, σ(d)) where d ≤ 0. The value of d for
transcendental functions can be found using a binary search. The plots of upper and lower bounds for
tanh and sigmoid are in Figure 1 and 3 (in Appendix). Plots for arctan are similar and so omitted.

Bounding ReLU. For ReLU activation, σ(y) = max(0, y). If r ∈ S+
k , we have σ(y) = y and so

we can set h
(k)
U,r = h

(k)
L,r = y; if r ∈ S−

k , we have σ(y) = 0, and thus we can set h
(k)
U,r = h

(k)
L,r = 0;

if r ∈ S±
k , we can set h

(k)
U,r =

u(k)
r

u
(k)
r −l

(k)
r

(y − l
(k)
r ) and h

(k)
L,r = ay, 0 ≤ a ≤ 1. Setting a =

u(k)
r

u
(k)
r −l

(k)
r

leads to the linear lower bound used in Fast-Lin [20]. Thus, Fast-Lin is a special case under our

framework. We propose to adaptively choose a, where we set a = 1 when u
(k)
r ≥ |l(k)r | and a = 0

when u
(k)
r < |l(k)r |. In this way, the area between the lower bound h

(k)
L,r = ay and σ(y) (which

reflects the gap between the lower bound and the ReLU function) is always minimized. As shown in

our experiments, the adaptive selection of h
(k)
L,r based on the value of u

(k)
r and l

(k)
r helps to achieve a

tighter certified lower bound. Figure 4 (in Appendix) illustrates the idea discussed here.
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Summary. We summarized the above analysis on choosing valid linear functions h(k)U,r and h(k)U,r in

Table 2 and 3. In general, as long as h(k)U,r and h(k)U,r are identified for the activation functions, we can
use Corollary 3.3 to compute certified lower bound for general activation functions. Note that there
remain many other choices of h(k)U,r and h(k)L,r as valid upper/lower bounds of σ(y), but ideally, we
would like them to be close to σ(y) in order to achieve a tighter lower bound of minimum distortion.

3.3 Extension to quadratic bounds

In addition to the linear bounds on activation functions, the proposed CROWN framework can
also incorporate quadratic bounds by adding a quadratic term to h(k)U,r and h(k)L,r: h

(k)
U,r(y) = η

(k)
U,ry

2 +

α
(k)
U,r(y+β

(k)
U,r), h

(k)
L,r(y) = η

(k)
L,ry

2 +α
(k)
L,r(y+β

(k)
L,r), where η(k)U,r, η

(k)
L,r ∈ R. Following the procedure

of unwrapping the activation functions at the layer m− 1, we show in Appendix D that the output
upper bound and lower bound with quadratic approximations are:

fUj (x) = Φm−2(x)>Q
(m−1)
U Φm−2(x) + 2p

(m−1)
U Φm−2(x) + s

(m−1)
U , (3)

fLj (x) = Φm−2(x)>Q
(m−1)
L Φm−2(x) + 2p

(m−1)
L Φm−2(x) + s

(m−1)
L , (4)

where Q
(m−1)
U = W(m−1)>D

(m−1)
U W(m−1), Q

(m−1)
L = W(m−1)>D

(m−1)
L W(m−1), p

(m−1)
U ,

p
(m−1)
L , s(m−1)U , and s(m−1)L are defined in Appendix D due to page limit. Whenm = 2, Φm−2(x) =

x and we can directly optimize over x ∈ Bp(x0, ε); otherwise, we can use the post activation
bounds of layer m− 2 as the constraints. D

(m−1)
U in (3) is a diagonal matrix with i-th entry being

W
(m)
j,i η

(m−1)
U,i , if W

(m)
j,i ≥ 0 or W

(m)
j,i η

(m−1)
L,i , if W

(m)
j,i < 0. Thus, in general Q

(m−1)
U is indefinite,

resulting in a non-convex optimization when finding the global bounds as in Corollary 3.3. Fortunately,
by properly choosing the quadratic bounds, we can make the problem maxx∈Bp(x0,ε) f

U
j (x) into a

convex Quadratic Programming problem; for example, we can let η(m−1)U,i = 0 for all W
(m)
j,i > 0

and let η(m−1)L,i > 0 to make D
(m−1)
U have only negative and zero diagonals for the maximization

problem – this is equivalent to applying a linear upper bound and a quadratic lower bound to bound the
activation function. Similarly, for D

(m−1)
L , we let η(m−1)U,i = 0 for all W

(m)
j,i < 0 and let η(m−1)L,i > 0

to make D
(m−1)
L have non-negative diagonals and hence the problem minx∈Bp(x0,ε) f

L
j (x) is convex.

We can solve this convex program with projected gradient descent (PGD) for x ∈ Bp(x0, ε) and
Armijo line search. Empirically we find that PGD usually converges within a few iterations.

4 Experiments

Methods. For ReLU networks, CROWN-Ada is CROWN with adaptive linear bounds (Sec. 3.2),
CROWN-Quad is CROWN with quadratic bounds (Sec. 3.3). Fast-Lin and Fast-Lip are state-of-the-art
fast certified lower bound proposed in [20]. Reluplex can solve the exact minimum adversarial
distortion but is only computationally feasible for very small networks. LP-Full is based on the LP
formulation in [18] and we solve LPs for each neuron exactly to achieve the best possible bound.
For networks with other activation functions, CROWN-general is our proposed method.

Model and Dataset. We evaluate CROWN and other baselines on multi-layer perceptron (MLP)
models trained for MNIST and CIFAR-10 datasets. We denote a feed-forward network with m layers
and n neurons per layer as m × [n]. For models with ReLU activation, we use pretrained models
provided by [20] and also evaluate the same set of 100 random test images and random attack targets
as in [20] (according to their released code) to make our results comparable. For training NN models
with other activation functions, we search for best learning rate and weight decay parameters to
achieve a similar level of accuracy as ReLU models.

Implementation and Setup. We implement our algorithm using Python (numpy with numba). Most
computations in our method are matrix operations that can be automatically parallelized by the BLAS
library; however, we set the number of BLAS threads to 1 for a fair comparison to other methods.
Experiments were conducted on a Intel Skylake server CPU running at 2.0 GHz on Google Cloud.

Results on Small Networks. Figure 2 shows the certified lower bound for `2 and `∞ distortions
found by different algorithms on small networks, where Reluplex is feasible and we can observe the
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(a) MNIST 2× [20], `2 (b) MNIST 2× [20], `∞ (c) MNIST 3× [20], `2 (d) MNIST 3× [20], `∞

Figure 2: Certified lower bounds and min distortion comparisons for `2 and `∞ distortions. Left
y-axis is distortion and right y-axis (black line) is computation time (seconds, logarithmic scale). On
the top of figures are the avg. CLEVER score and the upper bound found by C&W attack [6]. From
left to right in (a)-(d): CROWN-Ada, (CROWN-Quad), Fast-Lin, Fast-Lip, LP-Full and (Reluplex).

Table 4: Comparison of certified lower bounds on large ReLU networks. Bounds are the average over
100 images (skipped misclassified images) with random attack targets. Percentage improvements are
calculated against Fast-Lin as Fast-Lip is worse than Fast-Lin.

Network Certified Bounds Improvement (%) Average Computation Time (sec)
`p norm Fast-Lin Fast-Lip CROWN-Ada CROWN-Ada vs Fast-Lin Fast-Lin Fast-Lip CROWN-Ada

MNIST
4× [1024]

`1 1.57649 0.72800 1.88217 +19% 1.80 2.04 3.54
`2 0.18891 0.06487 0.22811 +21% 1.78 1.96 3.79
`∞ 0.00823 0.00264 0.00997 +21% 1.53 2.17 3.57

CIFAR-10
7× [1024]

`1 0.86468 0.09239 1.09067 +26% 13.21 19.76 22.43
`2 0.05937 0.00407 0.07496 +26% 12.57 18.71 21.82
`∞ 0.00134 0.00008 0.00169 +26% 8.98 20.34 16.66

Table 5: Comparison of certified lower bounds by CROWN-Ada on ReLU networks and CROWN-
general on networks with tanh, sigmoid and arctan activations. CIFAR models with sigmoid activa-
tions achieve much worse accuracy than other networks and are thus excluded.

Network Certified Bounds by CROWN-Ada and CROWN-general Average Computation Time (sec)
`p norm ReLU tanh sigmoid arctan ReLU tanh sigmoid arctan

MNIST
3× [1024]

`1 3.00231 2.48407 2.94239 2.33246 1.25 1.61 1.68 1.70
`2 0.50841 0.27287 0.44471 0.30345 1.26 1.76 1.61 1.75
`∞ 0.02576 0.01182 0.02122 0.01363 1.37 1.78 1.76 1.77

CIFAR-10
6× [2048]

`1 0.91201 0.44059 - 0.46198 71.62 89.77 - 83.80
`2 0.05245 0.02538 - 0.02515 71.51 84.22 - 83.12
`∞ 0.00114 0.00055 - 0.00055 49.28 59.72 - 58.04

gap between different certified lower bounds and the true minimum adversarial distortion. Reluplex
and LP-Full are orders of magnitudes slower than other methods (note the logarithmic scale on
right y-axis), and CROWN-Quad (for 2-layer) and CROWN-Ada achieve the largest lower bounds.
Improvements of CROWN-Ada over Fast-Lin are more significant in larger NNs, as we show below.

Results on Large ReLU Networks. Table 4 demonstrates the lower bounds found by different
algorithms for all common `p norms. CROWN-Ada significantly outperforms Fast-Lin and Fast-Lip,
while the computation time increased by less than 2X over Fast-Lin, and is comparable with Fast-Lip.
See Appendix for results on more networks.

Results on Different Activations. Table 7 compares the certified lower bound computed by CROWN-
general for four activation functions and different `p norm on large networks. CROWN-general is
able to certify non-trivial lower bounds for all four activation functions efficiently. Comparing to
CROWN-Ada on ReLU networks, certifying general activations that are not piece-wise linear only
incurs a about 20% computational overhead.

5 Conclusion

We propose a general framework CROWN to efficiently compute a certified lower bound of minimum
distortion in neural networks. CROWN features adaptive bounds for improved robustness certification
and applies to general activation functions. Moreover, experiments show that (1) CROWN outperforms
state-of-the-art baselines on ReLU networks; and (2) CROWN can efficiently certify non-trivial lower
bounds for large networks with over 10K neurons and with different activation functions.
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A Proof of Theorem 3.2

Given an m-layer neural network function f : Rn0 → Rnm with pre-activation bounds l(k) and u(k)

for x ∈ Bp(x0, ε) and ∀k ∈ [m− 1], let the pre-activation inputs for the i-th neuron at layer m− 1

be y
(m−1)
i := W

(m−1)
i,: Φm−2(x) + b

(m−1)
i . The j-th output of the neural network is the following:

fj(x) =

nm−1∑
i=1

W
(m)
j,i [Φm−1(x)]i + b

(m)
j , (5)

=

nm−1∑
i=1

W
(m)
j,i σ(y

(m−1)
i ) + b

(m)
j ,

=
∑

W
(m)
j,i ≥0

W
(m)
j,i σ(y

(m−1)
i )

︸ ︷︷ ︸
S1

+
∑

W
(m)
j,i <0

W
(m)
j,i σ(y

(m−1)
i )

︸ ︷︷ ︸
S2

+b
(m)
j . (6)

Assume the activation function σ(y) is bounded by two linear functions h(m−1)U,i , h
(m−1)
L,i in Defini-

tion 3.1, we have
h
(m−1)
L,i (y

(m−1)
i ) ≤ σ(y

(m−1)
i ) ≤ h(m−1)U,i (y

(m−1)
i ).

Thus, if the associated weight W
(m)
j,i to the i-th neuron is non-negative (terms in S1), we have

W
(m)
j,i · h

(m−1)
L,i (y

(m−1)
i ) ≤W

(m)
j,i σ(y

(m−1)
i ) ≤W

(m)
j,i · h

(m−1)
U,i (y

(m−1)
i ); (7)

otherwise for terms in S2, we have

W
(m)
j,i · h

(m−1)
U,i (y

(m−1)
i ) ≤W

(m)
j,i σ(y

(m−1)
i ) ≤W

(m)
j,i · h

(m−1)
L,i (y

(m−1)
i ). (8)

Upper bound. Let fU,m−1j (x) be an upper bound of fj(x). To compute fU,m−1j (x), (6), (7) and

(8) are the key equations. Precisely, for the W
(m)
j,i ≥ 0 terms in (6), the upper bound is the right-

hand-side (RHS) in (7); and for the W
(m)
j,i < 0 terms in (6), the upper bound is the RHS in (8). Thus,

we obtain:

fU,m−1j (x)

=
∑

W
(m)
j,i ≥0

W
(m)
j,i · h

(m−1)
U,i (y

(m−1)
i ) +

∑
W

(m)
j,i <0

W
(m)
j,i · h

(m−1)
L,i (y

(m−1)
i ) + b

(m)
j , (9)

=
∑

W
(m)
j,i ≥0

W
(m)
j,i α

(m−1)
U,i (y

(m−1)
i + β

(m−1)
U,i ) +

∑
W

(m)
j,i <0

W
(m)
j,i α

(m−1)
L,i (y

(m−1)
i + β

(m−1)
L,i ) + b

(m)
j ,

(10)

=

nm−1∑
i=1

W
(m)
j,i λ

(m−1)
j,i (y

(m−1)
i + ∆

(m−1)
i,j ) + b

(m)
j , (11)

=

nm−1∑
i=1

Λ
(m−1)
j,i (

nm−2∑
r=1

W
(m−1)
i,r [Φm−2(x)]r + b

(m−1)
i + ∆

(m−1)
i,j ) + b

(m)
j , (12)

=

nm−1∑
i=1

Λ
(m−1)
j,i (

nm−2∑
r=1

W
(m−1)
i,r [Φm−2(x)]r) +

nm−1∑
i=1

Λ
(m−1)
j,i (b

(m−1)
i + ∆

(m−1)
i,j ) + b

(m)
j , (13)

=

nm−2∑
r=1

(
nm−1∑
i=1

Λ
(m−1)
j,i W

(m−1)
i,r

)
[Φm−2(x)]r +

(
nm−1∑
i=1

Λ
(m−1)
j,i (b

(m−1)
i + ∆

(m−1)
i,j ) + b

(m)
j

)
,

(14)

=

nm−2∑
r=1

W̃
(m−1)
j,r [Φm−2(x)]r + b̃

(m−1)
j . (15)
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From (9) to (10), we replace h(m−1)U,i (y
(m−1)
i ) and h(m−1)L,i (y

(m−1)
i ) by their definitions; from (10) to

(11), we use variables λ(m−1)j,i and ∆
(m−1)
j,i to denote the slopes in front of y

(m−1)
i and the intercepts

in the parentheses:

λ
(m−1)
j,i =

{
α
(m−1)
U,i if W

(m)
j,i ≥ 0 (⇐⇒ Λ

(m)
j,: W

(m)
:,i ≥ 0);

α
(m−1)
L,i if W

(m)
j,i < 0 (⇐⇒ Λ

(m)
j,: W

(m)
:,i < 0);

(16)

∆
(m−1)
i,j =

{
β
(m−1)
U,i if W

(m)
j,i ≥ 0 (⇐⇒ Λ

(m)
j,: W

(m)
:,i ≥ 0);

β
(m−1)
L,i if W

(m)
j,i < 0 (⇐⇒ Λ

(m)
j,: W

(m)
:,i < 0).

(17)

From (11) to (12), we replace y
(m−1)
i with its definition and let Λ

(m)
j,i := 1. From (12) to (13), we

collect the constant terms that are not related to x. From (13) to (14), we swap the summation order
of i and r, and the coefficients in front of [Φm−2(x)]r can be combined into a new equivalent weight
W̃

(m−1)
j,r and the constant term can combined into a new equivalent bias b̃

(m−1)
j in (15):

W̃
(m−1)
j,r =

nm−1∑
i=1

Λ
(m−1)
j,i W

(m−1)
i,r = Λ

(m−1)
j,: W(m−1)

:,r ,

b̃
(m−1)
j =

nm−1∑
i=1

Λ
(m−1)
j,i (b

(m−1)
i + ∆

(m−1)
i,j ) + b

(m)
j = Λ

(m−1)
j,: (b(m−1) + ∆

(m−1)
:,j ) + b

(m)
j .

Notice that after defining the new equivalent weight W̃
(m−1)
j,r and equivalent bias b̃

(m−1)
j , fU,m−1j (x)

in (15) and fj(x) in (5) are in the same form. Thus, we can repeat the above procedure again to
obtain an upper bound of fU,m−1j (x), i.e. fU,m−2j (x):

Λ
(m−2)
j,i = W̃

(m−1)
j,i λ

(m−2)
j,i

= Λ
(m−1)
j,: W

(m−1)
:,i λ

(m−2)
j,i

W̃
(m−2)
j,r = Λ

(m−2)
j,: W(m−2)

:,r

b̃
(m−2)
j = Λ

(m−2)
j,: (b(m−2) + ∆

(m−2)
:,j ) + b̃

(m−1)
j

λ
(m−2)
j,i =

{
α
(m−2)
U,i if W̃

(m−1)
j,i ≥ 0 (⇐⇒ Λ

(m−1)
j,: W

(m−1)
:,i ≥ 0);

α
(m−2)
L,i if W̃

(m−1)
j,i < 0 (⇐⇒ Λ

(m−1)
j,: W

(m−1)
:,i < 0);

∆
(m−2)
i,j =

{
β
(m−2)
U,i if W̃

(m−1)
j,i ≥ 0 (⇐⇒ Λ

(m−1)
j,: W

(m−1)
:,i ≥ 0);

β
(m−2)
L,i if W̃

(m−1)
j,i < 0 (⇐⇒ Λ

(m−1)
j,: W

(m−1)
:,i < 0).

and repeat again iteratively until obtain the final upper bound fU,1j (x), where fj(x) ≤ fU,m−1j (x) ≤
fU,m−2j (x) ≤ . . . ≤ fU,1j (x). We let fj(x) denote the final upper bound fU,1j (x), and we have

fUj (x) = Λ
(0)
j,: x +

m∑
k=1

Λ
(k)
j,: (b(k) + ∆

(k)
:,j )

and (� is the Hadamard product)

Λ
(k−1)
j,: =

{
e>j if k = m+ 1;

(Λ
(k)
j,: W(k))� λ(k−1)j,: if k ∈ [m].

and ∀i ∈ [nk],

λ
(k)
j,i =


α
(k)
U,i if k ∈ [m− 1], Λ

(k+1)
j,: W

(k+1)
:,i ≥ 0;

α
(k)
L,i if k ∈ [m− 1], Λ

(k+1)
j,: W

(k+1)
:,i < 0;

1 if k = 0.

∆
(k)
i,j =


β
(k)
U,i if k ∈ [m− 1], Λ

(k+1)
j,: W

(k+1)
:,i ≥ 0;

β
(k)
L,i if k ∈ [m− 1], Λ

(k+1)
j,: W

(k+1)
:,i < 0;

0 if k = m.
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Lower bound. The above derivations of upper bound can be applied similarly to deriving lower
bounds of fj(x), and the only difference is now we need to use the LHS of (7) and (8) (rather
than RHS when deriving upper bound) to bound the two terms in (6). Thus, following the same
procedure in deriving the upper bounds, we can iteratively unwrap the activation functions and obtain
a final lower bound fL,1j (x), where fj(x) ≥ fL,m−1j (x) ≥ fL,m−2j (x) ≥ . . . ≥ fL,1j (x). Let
fLj (x) = fL,1j (x), we have:

fLj (x) = Ω
(0)
j,: x +

m∑
k=1

Ω
(k)
j,: (b(k) + Θ

(k)
:,j )

Ω
(k−1)
j,: =

{
e>j if k = m+ 1;

(Ω
(k)
j,: W(k))� ω(k−1)

j,: if k ∈ [m].

and ∀i ∈ [nk],

ω
(k)
j,i =


α
(k)
L,i if k ∈ [m− 1], Ω

(k+1)
j,: W

(k+1)
:,i ≥ 0;

α
(k)
U,i if k ∈ [m− 1], Ω

(k+1)
j,: W

(k+1)
:,i < 0;

1 if k = 0.

Θ
(k)
i,j =


β
(k)
L,i if k ∈ [m− 1], Ω

(k+1)
j,: W

(k+1)
:,i ≥ 0;

β
(k)
U,i if k ∈ [m− 1], Ω

(k+1)
j,: W

(k+1)
:,i < 0;

0 if k = m.

Indeed, λ(k)j,i and ω(k)
j,i only differs in the conditions of selecting α(k)

U,i or α(k)
L,i; similarly for ∆

(k)
i,j and

Θ
(k)
i,j .

B Proof of Corollary 3.3

Definition B.1 (Dual norm). Let ‖ · ‖ be a norm on Rn. The associated dual norm, denoted as ‖ · ‖∗,
is defined as

‖a‖∗ = {sup
y

a>y | ‖y‖ ≤ 1}.

Global upper bound. Our goal is to find a global upper and lower bound for them-th layer network
output fj(x),∀x ∈ Bp(x0, ε). By Theorem 3.2, for x ∈ Bp(x0, ε), we have fLj (x) ≤ fj(x) ≤
fUj (x) and fUj (x) = Λ

(0)
j,: x +

∑m
k=1 Λ

(k)
j,: (b(k) + ∆

(k)
:,j ). Thus define γUj := maxx∈Bp(x0,ε) f

U
j (x),

and we have
fj(x) ≤ fUj (x) ≤ max

x∈Bp(x0,ε)
fUj (x) = γUj ,

since ∀x ∈ Bp(x0, ε). In particular,

max
x∈Bp(x0,ε)

fUj (x) = max
x∈Bp(x0,ε)

[
Λ

(0)
j,: x +

m∑
k=1

Λ
(k)
j,: (b(k) + ∆

(k)
:,j )

]

=

[
max

x∈Bp(x0,ε)
Λ

(0)
j,: x

]
+

m∑
k=1

Λ
(k)
j,: (b(k) + ∆

(k)
:,j ) (18)

= ε

[
max

y∈Bp(0,1)
Λ

(0)
j,: y

]
+ Λ

(0)
j,: x0 +

m∑
k=1

Λ
(k)
j,: (b(k) + ∆

(k)
:,j ) (19)

= ε‖Λ(0)
j,: ‖q + Λ

(0)
j,: x0 +

m∑
k=1

Λ
(k)
j,: (b(k) + ∆

(k)
:,j ). (20)

From (18) to (19), let y := x−x0

ε , and thus y ∈ Bp(0, 1). From (19) to (20), apply Definition B.1
and use the fact that `q norm is dual of `p norm for p, q ∈ [1,∞].
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Global lower bound. Similarly, let γL
j := minx∈Bp(x0,ε) f

L
j (x), we have

fj(x) ≥ fL
j (x) ≥ min

x∈Bp(x0,ε)
fL
j (x) = γL

j .

Since fL
j (x) = Ω

(0)
j,: x+

∑m
k=1 Ω

(k)
j,: (b

(k) +Θ
(k)
:,j ), we can derive γL

j (similar to the derivation of

γU
j ) below:

min
x∈Bp(x0,ε)

fL
j (x) = min

x∈Bp(x0,ε)

[
Ω

(0)
j,: x+

m∑
k=1

Ω
(k)
j,: (b

(k) +Θ
(k)
:,j )

]

=

[
min

x∈Bp(x0,ε)
Ω

(0)
j,: x

]
+

m∑
k=1

Ω
(k)
j,: (b

(k) +Θ
(k)
:,j )

= −ε

[
max

y∈Bp(0,1)
−Ω

(0)
j,: y

]
+Ω

(0)
j,: x0 +

m∑
k=1

Ω
(k)
j,: (b

(k) +Θ
(k)
:,j )

= −ε‖Ω(0)
j,: ‖q +Ω

(0)
j,: x0 +

m∑
k=1

Ω
(k)
j,: (b

(k) +Θ
(k)
:,j ).

Thus, we have

(global upper bound) γU
j = ε‖Λ(0)

j,: ‖q +Λ
(0)
j,: x0 +

m∑
k=1

Λ
(k)
j,: (b

(k) +Δ
(k)
:,j ),

(global lower bound) γL
j = −ε‖Ω(0)

j,: ‖q +Ω
(0)
j,: x0 +

m∑
k=1

Ω
(k)
j,: (b

(k) +Θ
(k)
:,j ),

C Illustration of linear upper and lower bounds Sigmoid activation function.

(a) r ∈ S+
k (b) r ∈ S−

k (c) r ∈ S±
k

Figure 3: The linear upper and lower bounds for σ(y) = sigmoid

D fU
j (x) and fL

j (x) using Quadratic approximation

Upper bound. Let fU
j (x) be an upper bound of fj(x). To compute fU

j (x) with quadratic approxi-

mations, we can still apply (7) and (8) except that h
(k)
U,r(y) and h

(k)
L,r(y) are replaced by the following

quadratic functions:

h
(k)
U,r(y) = η

(k)
U,ry

2 + α
(k)
U,r(y + β

(k)
U,r), h

(k)
L,r(y) = η

(k)
L,ry

2 + α
(k)
L,r(y + β

(k)
L,r).

14



(a) r ∈ S+
k (b) r ∈ S−

k (c) r ∈ S±
k

Figure 4: The linear upper and lower bounds for σ(y) = ReLU. For the cases (a) and (b), the
linear upper bound and lower bound are exactly the function σ(y) in the region (grey-shaded). For

(c), we plot three out of many choices of lower bound, and they are h
(k)
L,r(y) = 0 (dashed-dotted),

h
(k)
L,r(y) = y (dashed), and h

(k)
L,r(y) =

u(k)
r

u
(k)
r −l

(k)
r

y (dotted).

Therefore,

fU
j (x) =

∑
W

(m)
j,i ≥0

W
(m)
j,i · h(m−1)

U,i (y
(m−1)
i ) +

∑
W

(m)
j,i <0

W
(m)
j,i · h(m−1)

L,i (y
(m−1)
i ) + b

(m)
j , (21)

=

nm−1∑
i=1

W
(m)
j,i

(
τ
(m−1)
j,i y

(m−1)2
i + λ

(m−1)
j,i (y

(m−1)
i +Δ

(m−1)
i,j )

)
+ b

(m)
j , (22)

= y(m−1)�diag(q(m−1)
U,j )y(m−1) +Λ

(m−1)
j,: y(m−1) +W

(m)
j,: Δ

(m−1)
:,j , (23)

= Φm−2(x)
�Q(m−1)

U Φm−2(x) + 2p
(m−1)
U Φm−2(x) + s

(m−1)
U . (24)

From (21) to (22), we replace h
(m−1)
U,i (y

(m−1)
i ) and h

(m−1)
L,i (y

(m−1)
i ) by their definitions and let

(τ
(m−1)
j,i , λ

(m−1)
j,i ,Δ

(m−1)
i,j ) =

{
(η

(m−1)
U,i , α

(m−1)
U,i , β

(m−1)
U,i ) if W

(m)
j,i ≥ 0;

(η
(m−1)
L,i , α

(m−1)
L,i , β

(m−1)
L,i ) if W

(m)
j,i < 0.

From (22) to (23), we let q
(m−1)
U,j = W

(m)
j,: 	 τ

(m−1)
j,i , and write in the matrix form. From (23)

to (24), we substitute y(m−1) by its definition: y(m−1) = W(m−1)Φ(m−2)(x) + b(m−1) and then

collect the quadratic terms, linear terms and constant terms of Φ(m−2)(x), where

Q
(m−1)
U = W(m−1)�diag(q(m−1)

U,j )W(m−1),

p
(m−1)
U = b(m−1)� 	 q

(m−1)
U,j +Λ

(m−1)
j,: ,

s
(m−1)
U = p

(m−1)
U b(m−1) +W

(m)
j,: Δ

(m−1)
:,j .

Lower bound. Similar to the above derivation, we can simply swap h
(k)
U,r and h

(k)
L,r and obtain lower

bound fL
j (x):

fL
j (x) =

∑
W

(m)
j,i <0

W
(m)
j,i · h(m−1)

U,i (y
(m−1)
i ) +

∑
W

(m)
j,i ≥0

W
(m)
j,i · h(m−1)

L,i (y
(m−1)
i ) + b

(m)
j ,

= Φm−2(x)
�Q(m−1)

L Φm−2(x) + 2p
(m−1)
L Φm−2(x) + s

(m−1)
L ,

where

Q
(m−1)
L = W(m−1)�diag(q(m−1)

L,j )W(m−1), q
(m−1)
L,j = W

(m)
j,: 	 ν

(m−1)
j,i ; (25)

p
(m−1)
U = b(m−1)� 	 q

(m−1)
U,j +Λ

(m−1)
j,: , p

(m−1)
L = b(m−1)� 	 q

(m−1)
L,j +Ω

(m−1)
j,: ; (26)

s
(m−1)
U = p

(m−1)
U b(m−1) +W

(m)
j,: Δ

(m−1)
:,j , s

(m−1)
L = p

(m−1)
L b(m−1) +W

(m)
j,: Θ

(m−1)
:,j , (27)

and

(ν
(m−1)
j,i , ω

(m−1)
j,i ,Θ

(m−1)
i,j ) =

{
(η

(m−1)
L,i , α

(m−1)
L,i , β

(m−1)
L,i ) if W

(m)
j,i ≥ 0;

(η
(m−1)
U,i , α

(m−1)
U,i , β

(m−1)
U,i ) if W

(m)
j,i < 0.

(28)
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E Additional Experimental Results

E.1 Results on CROWN-Ada

Table 6: Comparison of our proposed certified lower bounds for ReLU with adaptive lower bounds
(CROWN-Ada), Fast-Lin and Fast-Lip and Op-nrom. LP-full and Reluplex cannot finish within a
reasonable amount of time for all the networks reported here. We also include Op-norm, where we
directly compute the operator norm (for example, for p = 2 it is the spectral norm) for each layer
and use their products as a global Lipschitz constant and then compute the robustness lower bound.
CLEVER is an estimated robustness lower bound, and attacking algorithms (including CW [6] and
EAD [31]) provide upper bounds of the minimum adversarial distortion. For each norm, we consider
the robustness against three targeted attack classes: the runner-up class (with the second largest
probability), a random class and the least likely class. It is clear that CROWN-Ada notably improves
the lower bound comparing to Fast-Lin, especially for larger and deeper networks, the improvements
can be up to 28%.

Networks Lower bounds and upper bounds (Avg.) Time per Image (Avg.)

Config p Target
Lower Bounds (certified) improvements Uncertified Lower Bounds

[20] [3] Our algorithm over [27] Attacks [20] Our bound
Fast-Lin Fast-Lip Op norm CROWN-Ada Fast-Lin CLEVER CW/EAD Fast-Lin Fast-Lip CROWN-Ada

MNIST
2× [1024]

∞
runner-up 0.02256 0.01802 0.00159 0.02467 +9.4% 0.0447 0.0856 163 ms 179 ms 128 ms

rand 0.03083 0.02512 0.00263 0.03353 +8.8% 0.0708 0.1291 176 ms 213 ms 166 ms
least 0.03854 0.03128 0.00369 0.04221 +9.5% 0.0925 0.1731 176 ms 251 ms 143 ms

2
runner-up 0.46034 0.42027 0.24327 0.50110 +8.9% 0.8104 1.1874 154 ms 184 ms 110 ms

rand 0.63299 0.59033 0.40201 0.68506 +8.2% 1.2841 1.8779 141 ms 212 ms 133 ms
least 0.79263 0.73133 0.56509 0.86377 +9.0% 1.6716 2.4556 152 ms 291 ms 116 ms

1
runner-up 2.78786 3.46500 0.20601 3.01633 +8.2% 4.5970 9.5295 159 ms 989 ms 136 ms

rand 3.88241 5.10000 0.35957 4.17760 +7.6% 7.4186 17.259 168 ms 1.15 s 157 ms
least 4.90809 6.36600 0.48774 5.33261 +8.6% 9.9847 23.933 179 ms 1.37 s 144 ms

MNIST
3× [1024]

∞
runner-up 0.01830 0.01021 0.00004 0.02114 +15.5% 0.0509 0.1037 805 ms 1.28 s 1.33 s

rand 0.02216 0.01236 0.00007 0.02576 +16.2% 0.0717 0.1484 782 ms 859 ms 1.37 s
least 0.02432 0.01384 0.00009 0.02835 +16.6% 0.0825 0.1777 792 ms 684 ms 1.37 s

2
runner-up 0.35867 0.22120 0.06626 0.41295 +15.1% 0.8402 1.3513 732 ms 1.06 s 1.26 s

rand 0.43892 0.26980 0.10233 0.50841 +15.8% 1.2441 2.0387 711 ms 696 ms 1.26 s
least 0.48361 0.30147 0.13256 0.56167 +16.1% 1.4401 2.4916 723 ms 655 ms 1.25 s

1
runner-up 2.08887 1.80150 0.00734 2.39443 +14.6% 4.8370 10.159 685 ms 2.36 s 1.15 s

rand 2.59898 2.25950 0.01133 3.00231 +15.5% 7.2177 17.796 743 ms 2.69 s 1.25 s
least 2.87560 2.50000 0.01499 3.33231 +15.9% 8.3523 22.395 729 ms 3.08 s 1.31 s

MNIST
4× [1024]

∞
runner-up 0.00715 0.00219 0.00001 0.00861 +20.4% 0.0485 0.08635 1.54 s 3.42 s 3.23 s

rand 0.00823 0.00264 0.00001 0.00997 +21.1% 0.0793 0.1303 1.53 s 2.17 s 3.57 s
least 0.00899 0.00304 0.00001 0.01096 +21.9% 0.1028 0.1680 1.74 s 2.00 s 3.87 s

2
runner-up 0.16338 0.05244 0.11015 0.19594 +19.9% 0.8689 1.2422 1.79 s 2.58 s 3.52 s

rand 0.18891 0.06487 0.17734 0.22811 +20.8% 1.4231 1.8921 1.78 s 1.96 s 3.79 s
least 0.20671 0.07440 0.23710 0.25119 +21.5% 1.8864 2.4451 1.98 s 2.01 s 4.01 s

1
runner-up 1.33794 0.58480 0.00114 1.58151 +18.2% 5.2685 10.079 1.87 s 1.93 s 3.34 s

rand 1.57649 0.72800 0.00183 1.88217 +19.4% 8.9764 17.200 1.80 s 2.04 s 3.54 s
least 1.73874 0.82800 0.00244 2.09157 +20.3% 11.867 23.910 1.94 s 2.40 s 3.72 s

CIFAR
5× [2048]

∞
runner-up 0.00137 0.00020 0.00000 0.00167 +21.9% 0.0062 0.00950 18.2 s 38.2 s 33.1 s

rand 0.00170 0.00030 0.00000 0.00212 +24.7% 0.0147 0.02351 19.6 s 48.2 s 36.7 s
least 0.00188 0.00036 0.00000 0.00236 +25.5% 0.0208 0.03416 20.4 s 50.5 s 38.6 s

2
runner-up 0.06122 0.00948 0.00156 0.07466 +22.0% 0.2712 0.3778 24.2 s 39.4 s 41.0 s

rand 0.07654 0.01417 0.00333 0.09527 +24.5% 0.6399 0.9497 26.0 s 31.2 s 42.5 s
least 0.08456 0.01778 0.00489 0.10588 +25.2% 0.9169 1.4379 25.0 s 33.2 s 44.4 s

1
runner-up 0.93836 0.22632 0.00000 1.13799 +21.3% 4.0755 7.6529 24.7 s 45.1 s 40.5 s

rand 1.18928 0.31984 0.00000 1.47393 +23.9% 9.7145 21.643 25.7 s 36.2 s 44.0 s
least 1.31904 0.38887 0.00001 1.64452 +24.7% 12.793 34.497 26.0 s 31.7 s 44.9 s

CIFAR
6× [2048]

∞
runner-up 0.00075 0.00005 0.00000 0.00094 +25.3% 0.0054 0.00770 27.6 s 64.7 s 47.3 s

rand 0.00090 0.00007 0.00000 0.00114 +26.7% 0.0131 0.01866 28.1 s 72.3 s 49.3 s
least 0.00095 0.00008 0.00000 0.00122 +28.4% 0.0199 0.02868 28.1 s 76.3 s 49.4 s

2
runner-up 0.03462 0.00228 0.00476 0.04314 +24.6% 0.2394 0.2979 37.0 s 60.7 s 65.8 s

rand 0.04129 0.00331 0.01079 0.05245 +27.0% 0.5860 0.7635 40.0 s 56.8 s 71.5 s
least 0.04387 0.00385 0.01574 0.05615 +28.0% 0.8756 1.2111 40.0 s 56.3 s 72.5 s

1
runner-up 0.59636 0.05647 0.00000 0.73727 +23.6% 3.3569 6.0112 37.2 s 65.6 s 66.8 s

rand 0.72178 0.08212 0.00000 0.91201 +26.4% 8.2507 17.160 39.5 s 53.5 s 71.6 s
least 0.77179 0.09397 0.00000 0.98331 +27.4% 12.603 28.958 40.7 s 42.1 s 72.5 s

CIFAR
7× [1024]

∞
runner-up 0.00119 0.00006 0.00000 0.00148 +24.4% 0.0062 0.0102 8.98 s 20.1 s 16.2 s

rand 0.00134 0.00008 0.00000 0.00169 +26.1% 0.0112 0.0218 8.98 s 20.3 s 16.7 s
least 0.00141 0.00010 0.00000 0.00179 +27.0% 0.0148 0.0333 8.81 s 22.1 s 17.4 s

2
runner-up 0.05279 0.00308 0.00020 0.06569 +24.4% 0.2661 0.3943 12.7 s 20.9 s 20.7 s

rand 0.05937 0.00407 0.00029 0.07496 +26.3% 0.5145 0.9730 12.6 s 18.7 s 21.8 s
least 0.06249 0.00474 0.00038 0.07943 +27.1% 0.6253 1.3709 12.9 s 20.7 s 22.2 s

1
runner-up 0.76648 0.07028 0.00000 0.95204 +24.2% 4.815 7.9987 12.8 s 21.0 s 21.9 s

rand 0.86468 0.09239 0.00000 1.09067 +26.1% 8.630 22.180 13.2 s 19.8 s 22.4 s
least 0.91127 0.10639 0.00000 1.15687 +27.0% 11.44 31.529 13.3 s 17.6 s 22.9 s

E.2 Results on CROWN-general
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Table 7: Comparison of certified lower bounds by CROWN-Ada on ReLU networks and CROWN-
general on networks with tanh, sigmoid and arctan activations. CIFAR models with sigmoid activa-
tions achieve much worse accuracy than other networks and are thus excluded. For each norm, we
consider the robustness against three targeted attack classes: the runner-up class (with the second
largest probability), a random class and the least likely class.

Network Certified Bounds by CROWN-general Average Computation Time (sec)
`p norm target tanh sigmoid arctan tanh sigmoid arctan

MNIST
3× [1024]

`∞
runner-up 0.0164 0.0225 0.0169 0.3374 0.3213 0.3148
random 0.0230 0.0325 0.0240 0.3185 0.3388 0.3128

least 0.0306 0.0424 0.0314 0.3129 0.3586 0.3156

`2
runner-up 0.3546 0.4515 0.3616 0.3139 0.3110 0.3005
random 0.5023 0.6552 0.5178 0.3044 0.3183 0.2931

least 0.6696 0.8576 0.6769 0.3869 0.3495 0.2676

`1
runner-up 2.4600 2.7953 2.4299 0.2940 0.3339 0.3053
random 3.5550 4.0854 3.5995 0.3277 0.3306 0.3109

least 4.8215 5.4528 4.7548 0.3201 0.3915 0.3254

MNIST
4× [1024]

`∞
runner-up 0.0091 0.0162 0.0107 1.6794 1.7902 1.7099
random 0.0118 0.0212 0.0136 1.7783 1.7597 1.7667

least 0.0147 0.0243 0.0165 1.8908 1.8483 1.7930

`2
runner-up 0.2086 0.3389 0.2348 1.6416 1.7606 1.8267
random 0.2729 0.4447 0.3034 1.7589 1.7518 1.6945

least 0.3399 0.5064 0.3690 1.8206 1.7929 1.8264

`1
runner-up 1.8296 2.2397 1.7481 1.5506 1.6052 1.6704
random 2.4841 2.9424 2.3325 1.6149 1.7015 1.6847

least 3.1261 3.3486 2.8881 1.7762 1.7902 1.8345

MNIST
5× [1024]

`∞
runner-up 0.0060 0.0150 0.0062 3.9916 4.4614 3.7635
random 0.0073 0.0202 0.0077 3.5068 4.4069 3.7387

least 0.0084 0.0230 0.0091 3.9076 4.6283 3.9730

`2
runner-up 0.1369 0.3153 0.1426 4.1634 4.3311 4.1039
random 0.1660 0.4254 0.1774 4.1468 4.1797 4.0898

least 0.1909 0.4849 0.2096 4.5045 4.4773 4.5497

`1
runner-up 1.1242 2.0616 1.2388 4.4911 3.9944 4.4436
random 1.3952 2.8082 1.5842 4.4543 4.0839 4.2609

least 1.6231 3.2201 1.9026 4.4674 4.5508 4.5154

CIFAR-10
5× [2048]

`∞
runner-up 0.0005 - 0.0006 37.3918 - 37.1383
random 0.0008 - 0.0009 38.0841 - 37.9199

least 0.0010 - 0.0011 39.1638 - 39.4041

`2
runner-up 0.0219 - 0.0256 47.4896 - 48.3390
random 0.0368 - 0.0406 54.0104 - 52.7471

least 0.0460 - 0.0497 55.8924 - 56.3877

`1
runner-up 0.3744 - 0.4491 46.4041 - 47.1640
random 0.6384 - 0.7264 54.2138 - 51.6295

least 0.8051 - 0.8955 56.2512 - 55.6069

CIFAR-10
6× [2048]

`∞
runner-up 0.0004 - 0.0003 59.5020 - 58.2473
random 0.0006 - 0.0006 59.7220 - 58.0388

least 0.0006 - 0.0007 60.8031 - 60.9790

`2
runner-up 0.0177 - 0.0163 78.8801 - 72.1884
random 0.0254 - 0.0251 84.2228 - 83.1202

least 0.0294 - 0.0306 86.2997 - 86.9320

`1
runner-up 0.3043 - 0.2925 78.7486 - 70.2496
random 0.4406 - 0.4620 89.7717 - 83.7972

least 0.5129 - 0.5665 87.2094 - 86.6502

CIFAR-10
7× [1024]

`∞
runner-up 0.0006 - 0.0005 20.8612 - 20.5169
random 0.0008 - 0.0007 21.4550 - 21.2134

least 0.0008 - 0.0008 21.3406 - 21.1804

`2
runner-up 0.0260 - 0.0225 27.9442 - 27.0240
random 0.0344 - 0.0317 30.3782 - 29.8086

least 0.0376 - 0.0371 30.7492 - 30.7321

`1
runner-up 0.3826 - 0.3648 28.1898 - 27.1238
random 0.5087 - 0.5244 29.6373 - 30.5106

least 0.5595 - 0.6171 31.3457 - 30.6481
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