Efficient Neural Network Robustness Certification
with General Activation Functions

Huan Zhang">"* Tsui-Wei Weng>' Pin-Yu Chen® Cho-Jui Hsieh! Luca Daniel?
"'University of California, Los Angeles, Los Angeles CA 90095
2Massachusetts Institute of Technology, Cambridge, MA 02139

3MIT-IBM Watson Al Lab, IBM Research
huan@huan-zhang.com, twweng@mit.edu
Pin-Yu.Chen@ibm.com, chohsieh@cs.ucla.edu, dluca@mit.edu

Abstract

Finding minimum distortion of adversarial examples and thus certifying robustness
in neural network classifiers is known to be a challenging problem. Nevertheless,
recently it has been shown to be possible to give a non-trivial certified lower bound
of minimum adversarial distortion, and some recent progress has been made to-
wards this direction by exploiting the piece-wise linear nature of ReLU activations.
However, a generic robustness certification for general activation functions still
remains largely unexplored. To address this issue, in this paper we introduce
CROWN, a general framework to certify robustness of neural networks with general
activation functions. The novelty in our algorithm consists of bounding a given
activation function with linear and quadratic functions, hence allowing it to tackle
general activation functions including but not limited to the four popular choices:
ReLU, tanh, sigmoid and arctan. In addition, we facilitate the search for a tighter
certified lower bound by adaptively selecting appropriate surrogates for each neu-
ron activation. Experimental results show that CROWN on ReLU networks can
notably improve the certified lower bounds compared to the current state-of-the-art
algorithm Fast-Lin, while having comparable computational efficiency. Further-
more, CROWN also demonstrates its effectiveness and flexibility on networks with
general activation functions, including tanh, sigmoid and arctan. To the best of our
knowledge, CROWN is the first framework that can efficiently certify non-trivial
robustness for general activation functions in neural networks.

1 Introduction

While neural networks (NNs) have achieved remarkable performance and accomplished unprece-
dented breakthroughs in many machine learning tasks, recent studies have highlighted their lack of
robustness against adversarial perturbations [1, 2]. For example, in image learning tasks such as object
classification [3, 4, 5, 6] or content captioning [7], visually indistinguishable adversarial examples can
be easily crafted from natural images to alter a NN’s prediction result. Beyond the white-box attack
setting where the target model is entirely transparent, visually imperceptible adversarial perturbations
can also be generated in the black-box setting by only using the prediction results of the target model
[8,9, 10, 11]. In addition, real-life adversarial examples have been made possible through the lens
of realizing physical perturbations [12, 13, 14]. As NNs are becoming a core technique deployed
in a wide range of applications, including safety-critical tasks, certifying a NN’s robustness against
adversarial perturbations has become an important research topic in machine learning.

*Work done during internship at IBM Research "Equal contribution

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

Given a NN (possibly with a deep and complicated network architecture), we are interested in certify-
ing the (local) robustness of an arbitrary natural example x by ensuring all its nearby examples will
have the same inference outcome (e.g., consistent top-1 prediction). In this paper, the neighborhood
of xg is characterized by an /,, ball centered at xg, for any p > 1. Geometrically speaking, the
minimum distance/distortion of a misclassified nearby example to x is the least adversary strength
required to alter the target model’s prediction, which is also the largest possible robustness certificate
for xg. Unfortunately, finding the minimum distortion of adversarial examples in NNs with Rectified
Linear Unit (ReLU) activations (one of the most widely used activation functions) is known to be an
NP-complete problem [15, 16], which makes formal verification techniques such as Reluplex [15]
suffer from scalability issues and become computationally demanding even for small-sized NNs.

Although certifying the largest possible robustness is challenging for ReLU networks, the piece-
wise linear nature of ReLUs can be exploited to efficiently compute a non-trivial certified lower
bound of the minimum distortion [17, 18, 19, 20]. Beyond ReLU, one fundamental problem that
remains largely unexplored is how to generalize the robustness certification technique to other popular
activation functions that are not piece-wise linear, such as tanh and sigmoid, and how to motivate and
certify the design of other activation functions towards improved robustness. In this paper, we tackle
the preceding problem by proposing an efficient robustness certification framework for NNs with
general activation functions. Our main contributions in this paper are summarized as follows:

e We propose a generic analysis framework CROWN for certifying NNs using linear or quadratic
upper and lower bounds for general activation functions that are not necessarily piece-wise linear.

e Unlike previous works [18, 20], CROWN allows flexible selections of upper and lower bounds for
activation functions, enabling us to design an adaptive scheme to choose bounds that reduce the
approximation error. Our experiments show up to 26% improvements in certified lower bounds.

e Our algorithm is efficient and can scale to large NNs with various activation functions. For a NN
with over 10,000 neurons, we can give a certified lower bound in about 1 minute on 1 CPU core.

2 Background and Related Work

For ReLU networks, finding the minimum adversarial distortion can be cast as a mixed integer linear
programming (MILP) problem [21, 22, 23]. Reluplex [15, 24] uses a satisfiable modulo theory (SMT)
to encode ReL.U activations into linear constraints. Similarly, Planet [25] uses satisfiability (SAT)
solvers. However, due to the NP-completeness for solving such a problem [15], these methods can
only find minimum distortion for very small networks. It can take Reluplex several hours to find the
minimum distortion of an example for a ReLU network with 5 inputs, 5 outputs and 300 neurons[15].

Instead of finding the minimum adversarial distortion, a computationally feasible alternative of
robustness certificate is to providing a non-trivial and certified lower bound of minimum distortion.
Some analytical lower bounds can be derived from the product of operator norms on the weight
matrices [3] or the Jacobian matrix in NNs [17]. But these bounds do not take into account the special
property of ReLU and can lead to loose bounds [20]. The bounds in [26, 27] are based on the local
Lipschitz constant. [26] assumes a continuous differentiable NN and hence excludes ReLU networks;
a closed form lower-bound is also hard to derive for networks beyond 2 layers. [27] applies to ReLU
networks and uses Extreme Value Theory to provide an estimated lower bound (CLEVER score).
Although the CLEVER score is capable of reflecting the level of robustness in different NNs and is
scalable to large networks, it is not a certified lower bound. On the other hand, Kolter and Wong [18]
use the idea of a convex outer adversarial polytope in ReLU networks to compute a certified lower
bound by relaxing the MILP certification problem to linear programing (LP). Raghunathan et al. [19]
apply semidefinite programming for robustness certification in ReL.U networks but their approach
is limited to NNs with one hidden layer. Weng et al. [20] exploit the ReLU property to bound the
activation function (or the local Lipschitz constant) and provide efficient algorithms (Fast-Lin and
Fast-Lip) for computing a certified lower bound, achieving state-of-the-art performance. A recent
framework, AI2 [28], uses abstract transformations to zonotopes for proving robustness property for
ReLU networks. Nonetheless, there are still some application demands using non-ReL.U activations,
e.g. RNN and LSTM, thus a profound framework towards efficient computation of non-trivial and
certified lower bounds for NNs with general activation functions is of great importance. Our proposed
method CROWN aims to fill in this gap by generalizing efficient robustness certification to NNs with
different activation functions. Additionally, on ReLU networks the flexibility in our framework can
achieve a tighter lower bound. Table 1 summarizes the differences of other approaches and CROWN.

Table 1: Comparison of methods for providing adversarial robustness certification in NNs.

Method Non-trivial bound ~ Multi-layer ~ Scalability Beyond ReLU
Szegedy et. al. [3] X v v v

Reluplex [15], Planet [25] v v X X

Hein & Andriushchenko [26] | Vv X v differentiable”
Raghunathan et al. [19] v X X X

Kolter and Wong [18] v v v X

Fast-lin / Fast-lip [20] v v v X

CROWN (ours) v v v v’ (general)

* Continuously differentiable activation function required (soft-plus is demonstrated in [26])

Some recent works (such as robust optimization based adversarial training [29] or region-based
classification [30]) empirically exhibit strong robustness against several adversarial attacks, which
is beyond the scope of provable robustness certification. In addition, Sinha et al. [16] provide
distributional robustness certification based on Wasserstein distance between data distributions, which
is different from the local ¢, ball robustness model considered in this paper.

3 CROWN: A general framework for certifying neural networks

Overview of our results. In this section, we present a general framework CROWN for computing
certified lower bound of minimum adversarial distortion with general activation functions in NNs.
CROWN enables fast computation of certified lower bounds of large NNs. We provide principles to
derive output bounds of NNs when the inputs are perturbed within an ¢, ball and each neuron has
different linear approximation bounds on its activation function. As shown in our experiments in
Sec. 4, the adaptive selection of CROWN on the approximation bounds can achieve a tighter (larger)
certified lower bound. In Section 3.2, we demonstrate how to provide robustness certification for four
widely-used activation functions (ReLU, tanh, sigmoid and arctan) using CROWN. In particular, we
show that the state-of-the-art Fast-Lin algorithm is a special case under the CROWN framework. In
Section 3.3, we further highlight the flexibility of CROWN to incorporate quadratic approximations
on the activation functions in addition to the linear approximations described in Section 3.1.

3.1 General framework

Notations. For an m-layer neural network with an input vector x € R"™0, let the number of
neurons in each layer be ny, Vk € [m], where [i] denotes set {1,2,--- ,i}. Let the k-th layer weight
matrix be W) € R7*7k-1 and bias vector be b(*) € R and let ®;, : R™ — R™ be the
operator mapping from input to layer k. We have ®,(x) = c(W® &, _; (x) + b®), Yk € [m — 1],
where o(+) is the coordinate-wise activation function. While our methodology is applicable to any
activation function of interest, we emphasize on four most widely-used activation functions, namely
ReLU: o(y) = max(y,0), hyperbolic tangent: o(y) = tanh(y), sigmoid: o(y) = 1/(1 +e7¥)
and o(y) = arctan(y). Note that the input ®(x) = x, and the vector output of the NN is
f(x) = @, (x) = WD, (x)+b™). The j-th output element is denoted as f;(x) = [®,,(x)];.

Input perturbation and pre-activation bounds. Let xo € R™ be a given data point, and let the
perturbed input vector x be within an e-bounded /,,-ball centered at X, i.e., x € B, (%o, €), where
B,(x0,€) := {x | ||x — xol|, < €}. For the r-th neuron in k-th layer, let its pre-activation input be
v, where y™ = WS{“P@k,l (x) + b and ng) denotes the r-th row of matrix W(*), When

Xo is perturbed within a e-bounded ,,-ball, let 1&’“), ug-k) € R be the pre-activation lower bound and

upper bound of ygk), i.e. l&k) < y,(«k) < ugk).
Below, we first define the linear upper bounds and lower bounds of activation functions in Defini-

tion 3.1, which are the key to derive explicit output bounds for a m-layer neural network with general

activation functions. The formal statement of the explicit output bounds is shown in Theorem 3.2.

Definition 3.1 (Linear bounds on activation function). For the r-th neuron in k-th layer with pre-

activation bounds lgk),ugk) and the activation function o(y), define two linear functions hgf)w h(Lk)T :
k k k k E k E

R = R, hif)(y) = o)y + B). hif(y) = o (y + BE). such that hi)(y) < o(y) <

hgiz(y), Y€ [15’“), ugk)]7 Vk € [m —1],r € [ng] and ozgizn, a(LIi)T € Rﬂﬂgﬁl,ﬁgﬁ eR.

Note that the parameters ozék Lol L), BUN L) depend on 1) and ul®), i.e. for different 1! and

u&k) we may choose different parameters. Also, for ease of exposition, in this paper we restrict

agjkz , a(LkZ > 0. However, Theorem 3.2 can be easily generalized to the case of negative agjkz a(Lkz

Theorem 3.2 (Explicit output bounds of neural network f). Given an m-layer neural network
function f : R™ — R™m, there exists two explicit functions fJL :R™ — R and fJU : R™ — R such
thatVj € [ny,], Vx € B,(xo, €), the inequality fJL(x) < fi(x) < fU() holds true, where

1700 = AD%+ STAPB® 1 AW, fE(x) = <°>x+Zﬂ<’” b® re*),

k=1 k=1
A(k 1) _ {eT fh=m+1 §@k-1) _ {e-T ifk=m+1,
APW®Yy @ EY ik € [m). & @PW®) 0w ik € [m].
and Vi € [ny), we define four matrices \®) | w®) AF) @*) ¢ Rrm ¥k .
o) ifk #0, AYTIWEFY > o o) ifk #0, QY WETD > g
A = o) irn o, AlIWED co Wl = ol 0 alwike <o
1 ifk=0. 1 ifk=0.
o itk #m, ASTYWETD > g F itk £ m, QT WETD >
Al(‘,kj) - (Lkz ifk # m, A(k+1)w(k+1) <0; @Efcj) - B(Ukz if k £ m, Q(k+1)w.(7l:+1) <0
0 ifk= 0 ifk=m.

and © is the Hadamard praduct and ej; € R"™~1 is a vector where all elements are 1.

Theorem 3.2 illustrates how a NN function f;(x) can be bounded by two linear functions f{(x) and

ij (x) when the activation function of each neuron is bounded by two linear functions hgci and h(Lkzﬂ
in Definition 3.1. The central idea is to unwrap the activation functions layer by layer by considering
the signs of the associated weights of each neuron and apply the two linear bounds hék)r and h(Lk)T
As we demonstrate in the proof, when we replace the activation functions with the corresponding
linear upper bounds and lower bounds at the layer m — 1, we can then define equivalent weights and
biases based on the parameters of hgﬁfl) and hgflfl) (e.g. AW AF) k) @k are related to the

terms ozgkzﬂ, g ;, oy 1, (Lkl respectively) and then repeat the procedure to “back-propagate” to the

input layer. This allows us to obtain f]U(x) and f¥(x) in (1). The formal proof of Theorem 3.2 is
in Appendix A. Note that for a neuron r in layer 12 the slopes of its linear upper and lower bounds

agﬂ)w a(Lkzﬂ of hgf)T and h(Lkzﬂ can be different. This implies:

1. Fast-Lin [20] is a special case of our framework as they require the slopes a,(}f)r, a(Lk)T to be the
same; and it only applies to ReLU networks (cf. Sec. 3.2). In Fast-Lin, A(?) and (%) are identical.

2. Our CROWN framework allows adaptive selections on the linear approximation when computing
certified lower bounds of minimum adversarial distortion, which is the main contributor to improve
the certified lower bound as demonstrated in the experiments in section 4.

Uniform bounds. More importantly, since the input x € B, (xg, €), we can take the maximum, i.e.
MAXyeB, (xo.¢) [(X), and minimum, i.e. Minkep, (xo,¢) f; (X), as a pair of uniform upper and lower
bound of f;(x) — which in fact has closed-form solutions because f’ (x) and f(x) are two linear
functions and x € B, (xg, €) is a convex norm constraint. This result is formally presented below:
Corollary 3.3 (Closed-form uniform bounds). Given a data point xo € R"°, ¢, ball parameters
p > 1and € > 0. For an m-layer neural network function f : R™ — R"m, there exists two
fixed values 'ij and 'ij such that Vx € B,(xo,€) and Vj € [ny], 1/q¢ = 1 — 1/p, the inequality
’ij < fi(x) < VJU holds true, where

m

= A+ A% + 3B £ AR o = 00, 000+ 0B 1 0h)
k=1 k=1
(@)

) (0)

It can be proved observing that x is only in term A(0 X or Q x in (1) and apply Cauchy-Schwartz.

Table 2: Linear upper bound parameters of various activation functions: hgjkz(y) = agjkz,(y + ,3[(]’”7))
Upper bound h%fi e S,j resS,; re Slf
for activation function ag]k)r B((]k 3 agf 2 ﬁl(f 2 a;]kz [(]k 3
ReLU 1 0 0 0 a -1
NO) ul®
(@= a8 0= u(.k)1—l(.k))
* Ry _ (k) k) (k)

Sigmoid, tanh o/(d) 2l _gqr| ool oD 4B o(q) AU SR (L

ay . u, =1y Ur gy

k

(denoted as o (y)) A < d < u®)y (%w —0o'(d)=0,d>0) °
tIf a(;)r is close to 0, we suggest to calculate the intercept directly agﬂ)r . é}ki =o(d) — agf)Td to avoid numerical

issues in implementation. Same for other similar cases.

¢ Alternatively, if d > u(Tk), then we can set «

Table 3: Linear lower bound parameters of various activation functions:

(k) _ o(ui)—o®)

U,r

u® 1)

k k k
hP () = oy + 88

Lower bound h(L”T res;’ res, reSiE
for activation function a(Lk)T éki a(Lk)T (Lkl a(Lk)r (Lki
ReLU 1 0 0 0 a 0
(*
O<a<lega= 37501

.) (108 1 ") (k

Sigmoid, tanh ”(“‘;'(,Cfif(i;‘) U‘i{,;) L 1| o'(d) Z((f)) —d | o/(d) % —ul®
=1y , . b " .

(denoted as o (y)) a® <d<ul®) (% —o'(d)=0,d<0) |

 Alternatively, if d < 1%, then we can set a{*

)

.=

o(uF) -1k

MOENO)

Certified lower bound of minimum distortion. Given an input example x¢ and an m-layer NN,
let ¢ be the predicted class of x¢ and ¢ # ¢ be the targeted attack class. We aim to use the uniform
bounds established in Corollary 3.3 to obtain the largest possible lower bound €; and € of targeted
and untargeted attacks respectively, which can be formulated as follows:

& =max es.t. y¥(e) —yY(e) >0 and é = Igin €.
€ LFC

We note that although there is a linear e term in (2), other terms such as A*), A(¥) and Q(*) @ (%)

also implicitly depend on e. This is because the parameters agﬁ, [(Jkg, a(Lkz, gg? depends on lgk), ugk),

which may vary with ; thus the values in A®), A®) Q¥ @*) depend on e. It is therefore difficult
to obtain an explicit expression of y%(¢) — 7Y (¢) in terms of e. Fortunately, we can still perform
a binary search to obtain €; with Corollary 3.3. More precisely, we first initialize € at some fixed
positive value and apply Corollary 3.3 repeatedly to obtain 15’” and ug-k) from £ = 1 to m and
r € [ng]. We then check if the condition 'ycL — 'th > 0 is satisfied. If so, we increase ¢; otherwise,

we decrease ¢; and we repeat the procedure until a given tolerance level is met.”

Time Complexity. With Corollary 3.3, we can compute analytic output bounds efficiently without
resorting to any optimization solvers for general ¢,, distortion, and the time complexity for an m-layer
ReLU network is polynomial time in contrast to Reluplex or Mixed-Integer Optimization-based
approach [22, 23] where SMT and MIO solvers are exponential-time. For a m layer network with n
neurons per layer and 7 outputs, time complexity of CROWN is O(m?n?). Forming A(®) and (%)
for the m-th layer involves multiplications of layer weights in a similar cost of forward propagation in
O(mn3) time. Also, the bounds for all previous k € [m — 1] layers need to be computed beforehand
in O(kn?) time; thus the total time complexity is O(m?n?).

3.2 Case studies: CROWN for ReLU, tanh, sigmoid and arctan activations

In Section 3.1 we showed that as long as one can identify two linear functions h (y), b (y) to bound
a general activation function o(y) for each neuron, we can use Corollary 3.3 with a binary search

>The bound can be further improved by considering g(x) :=
weights by W — W§m> This is also used by [20].

fe(x) — fe(x) and replacing the last layer’s

.= o) .9 — a(y) =)
=+ LinearUB = g*5.«**" == Linear UB == Linear UB
== Linear LB = Linear LB =+ Linear LB

0

X
0
.
0
.
.
.
X
O

-1 1 -1 -1 =
15 d 15 > d 15 g d _d
"4 2 0 2 3 0s RGN 2 4 4 e 0 29,0 4
@res byreS, (c)reSE

Figure 1: o(y) = tanh. Green lines are the upper bounds hELI)T, red lines are the lower bounds h()

to obtain certified lower bounds of minimum distortion. In this section, we illustrate how to find
parameters ozg] 2,, ! L . and Bgf l, L o of hy(y), hr(y) for four most widely used activation functions:
ReLU, tanh, srgm01d and arctan. Other activations, including but not limited to leaky ReL.U, ELU

and softplus, can be easily incorporated into our CROWN framework following a similar procedure.

Segmentlng activation functions. Based on the signs of l(k) and uq(n), we define a partition

{87, St & »Sy } of set [ny] such that every neuron in k-th layer belongs to exactly one of the three
sets. The formal definition of S;f, Si and S; is S = {r € [ny] |0 < 1M < (k)} S ={re
(] | 1M <0< urk)} and S;” = {r € [nk] | 10 < < 0}. For neurons in each partitioned

set, we define corresponding upper bound hU .. and lower bound hi)7, in terms of 15) and uﬁk). As

we will see shortly, segmenting the activation functions based on 1&’” and ugk) is useful to bound a

given activation function. We note there are multiple ways of segmenting the activation functions and

defining the partitioned sets (e.g. based on the values of lfnk), u£) rather than their signs), and we can

easily incorporate this into our framework to provide the correspondrng explicit output bounds for
the new partition sets. In the case study, we consider S;ih PN S and S, for the four activations, as this
partition reflects the curvature of tanh, sigmoid and arctan functlons and activation states of ReLLU.

Bounding tanh/sigmoid/arctan. For tanh activation, o(y) = hzfgz, for sigmoid activation,
oly) = 14-%; for arctan activation, o(y) = arctan(y). All functions are convex on one side

(y < 0) and concave on the other side (y > 0), thus the same rules can be used to find hék) and h(Lk)T.

Below we call (15’“), U(lgk))) as left end-point and (ugk)7 (u (k))) as right end-point. For r € S,
since o (y) is concave, we can let hgf l be any tangent line of o(y) at point d € [15), ugk)] and let
h(Lk)T pass the two end-points. Similarly, o(y) is concave for r € S;‘ , thus we can let h() be any
tangent line of o(y) at point d € [lﬁk) (k)] and let h() . pass the two end-points. Lastly, for re Sk ,

we can let hgkl be the tangent line that passes the left end-pornt and (d,o(d)) where d > 0 and hgjzﬂ

be the tangent line that passes the right end-point and (d, o(d)) where d < 0. The value of d for
transcendental functions can be found using a binary search. The plots of upper and lower bounds for
tanh and sigmoid are in Figure 1 and 3 (in Appendix). Plots for arctan are similar and so omitted.

Bounding ReLLU. For ReLU activation, o(y) = max(0,y). If r € S;", we have ¢(y) = y and so
= h(Lk)T =y;if r € S, we have o(y) = 0, and thus we can set hg?, = h(Lki =0;
ifr € ST (L 1) and h*) = ay, 0 < a < 1. Setting a = — 2
itre » We can set fyg; o = W(y—) an Lr=0ay,0<a=xl Setinga = MO

(k)
we can set hur

leads to the linear lower bound used in Fast-Lin [20]. Thus, Fast-Lin is a special case under our
framework We propose to adaptively choose a, where we set a = 1 when u&k) > |17(~k)| anda =0
when ul® |1(]C |. In this way, the area between the lower bound h(Lk)T = ay and o(y) (which
reflects the gap between the lower bound and the ReLLU function) is always minimized. As shown in

our experiments, the adaptive selection of h() . based on the value of u(k) and l(k) helps to achieve a
tighter certified lower bound. Figure 4 (in Appendrx) illustrates the idea discussed here.

Summary. We summarized the above analysis on choosing valid linear functions hgc) and h(k) i

Table 2 and 3. In general, as long as hg) and hgj) are identified for the activation functions, we can
use Corollary 3.3 to compute certified lower bound for general activation functions. Note that there
remain many other choices of hgj)r and h(L)T as valid upper/lower bounds of o (y), but ideally, we

would like them to be close to o (y) in order to achieve a tighter lower bound of minimum distortion.

3.3 Extension to quadratic bounds

In addition to the linear bounds on activation functions, the proposed CROWN framework can

also incorporate quadratic bounds by adding a quadratic term to hgjkz, and h(Lk)T: hggl()= ngjk ZyQ +

agjk)r(y + 6[(}2), hgc)r() = nchyQ + a(Wy +BL T) where 77[(] 1, n(k) € R. Following the procedure
of unwrapping the activation functlons at the layer m — 1, we show in Appendix D that the output
upper bound and lower bound with quadratic approximations are:

1) = ®n2(x) T QY@ a(x) + 2P B (x) + s, 3)
FF3) = ()T Q)" VB 5(x) + 20" VB () + 577,)
where Q m—1) W(mfl)TDgn—l)W(mfl), Q(Lm 1) _ W(mfl)TD(Lm 1)w(m71)’ pgn_l),
p(L D sgn D and s(mel) are defined in Appendix D due to page limit. When m = 2, ®,,,_»(x) =

x and we can dlrectly optimize over x € B,(xo,¢€); otherwise, we can use the post activation
bounds of layer m — 2 as the constraints. ngmfl in (3) is a diagonal matrix with ¢-th entry being
W(m)n(m b, W(m) >0or W(m) (L"i D fW(m) < 0. Thus, in general Q(™=1) is indefinite,

7,2 UG
resulting in a non- convex OptlleathIl when ﬁndmg the global bounds as in Corollary 3.3. Fortunately,

by properly choosing the quadratic bounds, we can make the problem maxyep,, (xo,e¢) f (x) into a

convex Quadratic Programming problem; for example, we can let 77[(}271) = 0 for all WJ(T) >0

and let n(m Y > 0 to make Dgn_l) have only negative and zero diagonals for the maximization

problem — this is equivalent to applying a linear upper bound and a quadratic lower bound to bound the

activation function. Similarly, for D™ ™" we let 77((}271) = 0 for all Wy?) < 0 and let n(L s

to make D(Lm_l) have non-negative diagonals and hence the problem minyep, (x,¢) fj (x) is convex.

We can solve this convex program with projected gradient descent (PGD) for x € B, (xo, €) and
Armijo line search. Empirically we find that PGD usually converges within a few iterations.

4 Experiments

Methods. For ReLLU networks, CROWN-Ada is CROWN with adaptive linear bounds (Sec. 3.2),
CROWN-Quad is CROWN with quadratic bounds (Sec. 3.3). Fast-Lin and Fast-Lip are state-of-the-art
fast certified lower bound proposed in [20]. Reluplex can solve the exact minimum adversarial
distortion but is only computationally feasible for very small networks. LP-Full is based on the LP
formulation in [18] and we solve LPs for each neuron exactly to achieve the best possible bound.
For networks with other activation functions, CROWN-general is our proposed method.

Model and Dataset. We evaluate CROWN and other baselines on multi-layer perceptron (MLP)
models trained for MNIST and CIFAR-10 datasets. We denote a feed-forward network with m layers
and n neurons per layer as m X [n]. For models with ReLU activation, we use pretrained models
provided by [20] and also evaluate the same set of 100 random test images and random attack targets
as in [20] (according to their released code) to make our results comparable. For training NN models
with other activation functions, we search for best learning rate and weight decay parameters to
achieve a similar level of accuracy as ReLU models.

Implementation and Setup. We implement our algorithm using Python (numpy with numba). Most
computations in our method are matrix operations that can be automatically parallelized by the BLAS
library; however, we set the number of BLAS threads to 1 for a fair comparison to other methods.
Experiments were conducted on a Intel Skylake server CPU running at 2.0 GHz on Google Cloud.

Results on Small Networks. Figure 2 shows the certified lower bound for ¢5 and ¢, distortions
found by different algorithms on small networks, where Reluplex is feasible and we can observe the

CLEVER=08426, CW=1.1963 CLEVER=0.0428, CW=0.0806 CLEVER=0.7331, CW=1.2257 CLEVER=0.0385, CW=0.08114
——— 8 — 5 15

°

5

°
®

0.04
0

distortion
distortion

time (log sec)
time (log sec)
time (log sec)

0.02 5

0 CR-AIBR.QUAGE RN g astLiP | p-Full ° 0cR,AﬂgRAouaéas‘.L\aasww,;u\e(gwex6 0 CRAGE fosthin postli® ppul 0 CR-ACPEastLiNE4stLIP | p-Fullgoupler o
(2) MNIST 2 x [20], 2 (b) MNIST 2 x [20], £oo (c) MNIST 3 x [20], 2 (d) MNIST 3 x [20], £0s

Figure 2: Certified lower bounds and min distortion comparisons for /5 and /., distortions. Left
y-axis is distortion and right y-axis (black line) is computation time (seconds, logarithmic scale). On
the top of figures are the avg. CLEVER score and the upper bound found by C&W attack [6]. From
left to right in (a)-(d): CROWN-Ada, (CROWN-Quad), Fast-Lin, Fast-Lip, LP-Full and (Reluplex).

Table 4: Comparison of certified lower bounds on large ReLU networks. Bounds are the average over
100 images (skipped misclassified images) with random attack targets. Percentage improvements are
calculated against Fast-Lin as Fast-Lip is worse than Fast-Lin.

Network Certified Bounds Improvement (%) Average Computation Time (sec)
l,norm Fast-Lin Fast-Lip CROWN-Ada | CROWN-Ada vs Fast-Lin | Fast-Lin Fast-Lip CROWN-Ada

MNIST 0y 1.57649 0.72800 1.88217 +19% 1.80 2.04 3.54
4 x [1024] 123 0.18891 0.06487 0.22811 +21% 1.78 1.96 3.79
loo 0.00823 0.00264 0.00997 +21% 1.53 2.17 3.57
CIFAR-10 I 0.86468 0.09239 1.09067 +26% 13.21 19.76 2243
7 x [1024] Ly 0.05937 0.00407 0.07496 +26% 12.57 18.71 21.82
loo 0.00134 0.00008 0.00169 +26% 8.98 20.34 16.66

Table 5: Comparison of certified lower bounds by CROWN-Ada on ReLU networks and CROWN-
general on networks with tanh, sigmoid and arctan activations. CIFAR models with sigmoid activa-
tions achieve much worse accuracy than other networks and are thus excluded.

Network Certified Bounds by CROWN-Ada and CROWN-general | Average Computation Time (sec)
{,norm ReLU tanh sigmoid arctan ReLU tanh sigmoid arctan
MNIST 0y 3.00231 2.48407 2.94239 2.33246 1.25 1.61 1.68 1.70
3 x [1024] ly 0.50841 0.27287 0.44471 0.30345 1.26 1.76 1.61 1.75
loo 0.02576 0.01182 0.02122 0.01363 1.37 1.78 1.76 1.77
CIFAR-10 A 0.91201 0.44059 - 0.46198 71.62 89.77 - 83.80
6 x [2048] 123 0.05245 0.02538 - 0.02515 71.51 84.22 - 83.12
loo 0.00114 0.00055 - 0.00055 49.28 59.72 - 58.04

gap between different certified lower bounds and the true minimum adversarial distortion. Reluplex
and LP-Full are orders of magnitudes slower than other methods (note the logarithmic scale on
right y-axis), and CROWN-Quad (for 2-layer) and CROWN-Ada achieve the largest lower bounds.
Improvements of CROWN-Ada over Fast-Lin are more significant in larger NNs, as we show below.

Results on Large ReLU Networks. Table 4 demonstrates the lower bounds found by different
algorithms for all common £,, norms. CROWN-Ada significantly outperforms Fast-Lin and Fast-Lip,
while the computation time increased by less than 2X over Fast-Lin, and is comparable with Fast-Lip.
See Appendix for results on more networks.

Results on Different Activations. Table 7 compares the certified lower bound computed by CROWN-
general for four activation functions and different /,, norm on large networks. CROWN-general is
able to certify non-trivial lower bounds for all four activation functions efficiently. Comparing to
CROWN-Ada on ReLU networks, certifying general activations that are not piece-wise linear only
incurs a about 20% computational overhead.

5 Conclusion

We propose a general framework CROWN to efficiently compute a certified lower bound of minimum
distortion in neural networks. CROWN features adaptive bounds for improved robustness certification
and applies to general activation functions. Moreover, experiments show that (1) CROWN outperforms
state-of-the-art baselines on ReLU networks; and (2) CROWN can efficiently certify non-trivial lower
bounds for large networks with over 10K neurons and with different activation functions.

Acknowledgement

This work was supported in part by NSF IIS-1719097, Intel faculty award, Google Cloud Credits for
Research Program and GPUs donated by NVIDIA.

References

[1] A. Fawzi, S.-M. Moosavi-Dezfooli, and P. Frossard, “The robustness of deep networks: A
geometrical perspective,” IEEE Signal Processing Magazine, vol. 34, no. 6, pp. 50-62, 2017.

[2] B. Biggio and F. Roli, “Wild patterns: Ten years after the rise of adversarial machine learning,”
arXiv preprint arXiv:1712.03141, 2017.

[3] C. Szegedy, W. Zaremba, 1. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus,
“Intriguing properties of neural networks,” arXiv preprint arXiv:1312.6199, 2013.

[4] 1. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial examples,”
ICLR, arXiv preprint arXiv:1412.6572, 2015.

[5] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple and accurate method
to fool deep neural networks,” in IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 2574-2582.

[6] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural networks,” in IEEE
Symposium on Security and Privacy (SP), 2017, pp. 39-57.

[7] H. Chen, H. Zhang, P.-Y. Chen, J. Yi, and C.-J. Hsieh, “Show-and-fool: Crafting adversarial
examples for neural image captioning,” arXiv preprint arXiv:1712.02051, 2017.

[8] N.Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami, “Practical black-box
attacks against machine learning,” in ACM Asia Conference on Computer and Communications
Security, 2017, pp. 506-519.

[9] Y. Liu, X. Chen, C. Liu, and D. Song, “Delving into transferable adversarial examples and
black-box attacks,” ICLR, arXiv preprint arXiv:1611.02770, 2017.

[10] P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh, “ZOO: Zeroth order optimization
based black-box attacks to deep neural networks without training substitute models,” in ACM
Workshop on Artificial Intelligence and Security, 2017, pp. 15-26.

[11] W. Brendel, J. Rauber, and M. Bethge, “Decision-based adversarial attacks: Reliable attacks
against black-box machine learning models,” ICLR, arXiv preprint arXiv:1712.04248, 2018.

[12] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the physical world,” arXiv
preprint arXiv:1607.02533, 2016.

[13] I. Evtimov, K. Eykholt, E. Fernandes, T. Kohno, B. Li, A. Prakash, A. Rahmati, and D. Song,
“Robust physical-world attacks on machine learning models,” arXiv preprint arXiv:1707.08945,
2017.

[14] A. Athalye and I. Sutskever, “Synthesizing robust adversarial examples,” arXiv preprint
arXiv:1707.07397, 2017.

[15] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer, “Reluplex: An efficient smt
solver for verifying deep neural networks,” in International Conference on Computer Aided
Verification. ~ Springer, 2017, pp. 97-117.

[16] A. Sinha, H. Namkoong, and J. Duchi, “Certifiable distributional robustness with principled
adversarial training,” ICLR, arXiv preprint arXiv:1710.10571, 2018.

[17] J. Peck, J. Roels, B. Goossens, and Y. Saeys, “Lower bounds on the robustness to adversarial
perturbations,” in Advances in Neural Information Processing Systems, 2017, pp. 804—-813.

[18] J. Z. Kolter and E. Wong, “Provable defenses against adversarial examples via the convex outer
adversarial polytope,” arXiv preprint arXiv:1711.00851, 2017.

bl

[19] A.Raghunathan, J. Steinhardt, and P. Liang, “Certified defenses against adversarial examples,
ICLR, arXiv preprint arXiv:1801.09344, 2018.

[20] T.-W. Weng, H. Zhang, H. Chen, Z. Song, C.-J. Hsieh, D. Boning, I. S. Dhillon, and L. Daniel,
“Towards fast computation of certified robustness for relu networks,” ICML, arXiv preprint
arXiv:1804.09699, 2018.

[21] A.Lomuscio and L. Maganti, “An approach to reachability analysis for feed-forward relu neural
networks,” arXiv preprint arXiv:1706.07351, 2017.

[22] C.-H. Cheng, G. Niihrenberg, and H. Ruess, “Maximum resilience of artificial neural networks,
in International Symposium on Automated Technology for Verification and Analysis. ~ Springer,
2017, pp. 251-268.

[23] M. Fischetti and J. Jo, “Deep neural networks as 0-1 mixed integer linear programs: A feasibility
study,” arXiv preprint arXiv:1712.06174, 2017.

[24] N. Carlini, G. Katz, C. Barrett, and D. L. Dill, “Provably minimally-distorted adversarial
examples,” arXiv preprint arXiv:1709.10207, 2017.

[25] R. Ehlers, “Formal verification of piece-wise linear feed-forward neural networks,” in Interna-
tional Symposium on Automated Technology for Verification and Analysis. Springer, 2017, pp.
269-286.

[26] M. Hein and M. Andriushchenko, “Formal guarantees on the robustness of a classifier against
adversarial manipulation,” in Advances in Neural Information Processing Systems, 2017, pp.
2263-2273.

[27] T.-W. Weng, H. Zhang, P.-Y. Chen, J. Yi, D. Su, Y. Gao, C.-J. Hsieh, and L. Daniel, “Evaluating
the robustness of neural networks: An extreme value theory approach,” ICLR, arXiv preprint
arXiv:1801.10578, 2018.

[28] T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, and M. Vechev, “Ai2:
Safety and robustness certification of neural networks with abstract interpretation,” in /[EEE
Symposium on Security and Privacy (SP), vol. 00, 2018, pp. 948-963.

[29] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep learning models
resistant to adversarial attacks,” ICLR, arXiv preprint arXiv:1706.06083, 2018.

2

[30] X. Cao and N. Z. Gong, “Mitigating evasion attacks to deep neural networks via region-based
classification,” in ACM Annual Computer Security Applications Conference, 2017, pp. 278-287.

[31] P-Y. Chen, Y. Sharma, H. Zhang, J. Yi, and C.-J. Hsieh, “Ead: elastic-net attacks to deep neural
networks via adversarial examples,” arXiv preprint arXiv:1709.04114, 2017.

10

A Proof of Theorem 3.2

Given an m-layer neural network function f : R — R™m with pre-activation bounds 1*) and u(*)
for x € B, (x0,€) and Yk € [m — 1], let the pre-activation inputs for the -th neuron at layer m — 1

be y(m 1) W(m Vg, 2(x) + bgmfl). The j-th output of the neural network is the following:

Nm —1
Z Wit ()i + b, 5)
ES YDy 4
m—1 m
= Z w)+ b5,
_ Z W(m) (m 1) Z W(m) Em—l))+b§m). (6)
wim >0 W§f7)<o

S1 Sa

(m 1) h(m 1) .

Assume the activation function o (y) is bounded by two linear functions A ; in Defini-

tion 3.1, we have
R) <oy) < hg Py).

Thus, if the associated weight WET) to the ¢-th neuron is non-negative (terms in S7), we have

?

W(T) h(m 1)((m—l)) < W§?)U(y5m_l)) < Wy?) .hgjli—l)(y(m—l)); 7)
otherwise for terms in S,, we have

Upper bound. Let f;” U1 (x) be an upper bound of f;(x). To compute fi U:m=1(x), (6), (7) and

5’7) > 0 terms in (6), the upper bound is the right-

hand-side (RHS) in (7); and for the WET) < 0 terms in (6), the upper bound is the RHS in (8). Thus,
we obtain:

(8) are the key equations. Precisely, for the W

£
m 1 m 1 m m—1 mfl m
W_gf”;)zo w("?)<o
= > Wagy Ve Vg Y Wial V™ 48 + b,
wim>0 wim <o
(10)
Mm—1
= Z WAy 4+ AlTY) +)™, (11)
N —1 Nm —2
=Y Al Z W[, 5(x)], + b+ ATV 4™, (12)
=1
Mo —1 Mo, —2 MNm—1
= >0 AT WP Rn (o)) + 30 ATV MY+ Al bl (13)
=1 r=1 =1
S e me) kS) (m=1) | A(m—1)y 1 (m)
m—1 m—1 m—1 m—1 m 1 m
:Z<ZA]’,i W,)[<ZA (b; +A;;)+bj >>
r=1 i=1
(14)
Nm—2
= Z W13, 5 (x)], + b, (15)

11

From (9) to (10), we replace h()(yl(m 1)) and h(L’le) (yfm 1) by their definitions; from (10) to

(11), we use variables)\;71 2 and AET Y to denote the slopes in front of yz(»m_l) and the intercepts
in the parentheses:

A1) _ a ™ W >0 (= AW >0); (6)
I (Lml 1 1fW(m) <0 (= AW <o)

Al _ W >0 (= AW > 0); an
o Y W <0 (= A(’”)W“”) <0).

From (11) to (12), we replace yz(=Y with its definition and let A(™) .— 1. From (12) to (13), we
collect the constant terms that are not related to x. From (13) to (14) we swap the summation order
of 7 and r, and the coefficients in front of [®,,,_2(x)], can be combined into a new equivalent weight

W§":_1) and the constant term can combined into a new equivalent bias B;m_l) in (15):

(m=1) _ X~ A (m=D)xxr(m=1) _ » (m—=1)xxr(m—1
W], Z Aj,i Wi,r - Aj,: W:(,r)?
=1
MNm—1
(m—1) _ (m=1) (p (m—1) (m-1) (m) _ A (m=1) (m—1 (m-1) (m)
b; = Z A (b; +A4A;;)+ b, = A (b()+ A)+ b;™.
i=1
Notice that after defining the new equivalent weight W;T?_l) and equivalent bias Bgm_l), f bym—1 (%)
in (15) and f;(x) in (5) are in the same form. Thus, we can repeat the above procedure again to
obtain an upper bound of fUm Y(x), ie. fU’m_Q(x):
A(m 2) W('m 1))\(7n 2)
J,t 75t
AW
W(.mf2) _ A(_m72)W(m_2)
2,7 Jse LT

B(m*2) _ A(_m*Q)(b(m—Z) +A(m72)) +B(m71)

J
\(m=2) _ agt™? WYV >0 (= AW > o),
o o= lfW(m D0 (e AT 1)W(m Y <o);

WY <0 (= AW <o),

and repeat again iteratively until obtain the final upper bound ij’l(x), where f;(x) < f;f’m_l(x) <
f]U’mfz(x) <...< fJU’l(x). We let f;(x) denote the final upper bound ij’l(x), and we have

A ={ L 1fw5v7 V20 (= AE—T DWiTY > 0);

17) = Ax+ 30 A (B + AT
k=1
and (© is the Hadamard product)
A(k 1) T 1fk:m+1,
(A(k)W(NN ik e [m].
and Vi € [ng],

ay) ifk e [m— 1), AFTYWERD > o
A =3al) itk e m—1), A(k+1)W(k+1) <0;
1 ifk=0.
((sz if k € [m—1], A§k+l)W(k+1) > 0;
Al =980 ke [—1], AW ED < g;
0 ifk=

12

Lower bound. The above derivations of upper bound can be applied similarly to deriving lower
bounds of f;(x), and the only difference is now we need to use the LHS of (7) and (8) (rather
than RHS when deriving upper bound) to bound the two terms in (6). Thus, following the same
procedure in deriving the upper bounds, we can iteratively unwrap the activation functions and obtain

a final lower bound ij’l(x), where f;(x) > ij’mfl(x) > ij’mfz(x) > ... > ij’l(x). Let
FF(x) = f]"! (). we have:

fL() X+Zﬂ(k) b(k) +®(k))
k=1
Q(,k_l) _ ejT ifk=m+1;
i @PW®) 0w if k e [m].

and Vi € [ny],

O itk e fm -1, @I wETD > g
Wit =3 itk e pm— 1), @D WED < g,

1 ifk=0.

B itk € [m—1), @YW > o,
o) =8 itk e [m—1), QWD <o,

0 if k=m.

Indeed,)\() and w() only differs in the conditions of selecting ag) or a(L 2 similarly for AE? and

el

,J
B Proof of Corollary 3.3

Definition B.1 (Dual norm). Let || - || be a norm on R™. The associated dual norm, denoted as || - ||+,
is defined as

.
lall« = {supa 'y | [yl| < 1}.
y

Global upper bound. Our goal is to find a global upper and lower bound for the m-th layer network
output f;(x),Vx € B, (xo,€). By Theorem 3.2, for x € B,(xo,€), we have f(x) < fj(x) <

f}il(x) 2Eld ij(x) = A§2)x +>r, A;ﬁ) (b(*) 4 A(];)) Thus define fij I= MAXxeB, (xo,¢) fJU(x),
and we have
fix) < ff(x) £ max f(x) =17,
XEB, (x0,€)

since Vx € B, (%o, €). In particular,

o 0= e A SAR0 4 al)
- Leéﬂ?ﬁi,e) A } " ; SHLEE (18)
- Le%l;% 1) A(V') } A;?:)XO + Ié A;ﬁ)(b(k) + A(l;)) (19)
= Ay + ADxg + 3 AP BE 4 A®) 0

From (18) to (19), let y := *-*2, and thus y € B,(0,1). From (19) to (20), apply Definition B.1
and use the fact that ¢, norm is dual of £, norm for p, ¢ € [1, oc].

13

Global lower bound. ~ Similarly, let 7/ := minyep, (xo,¢) f; (X), We have

L L _ L
fj(X) 2 fj (X) = xe]én(l)rclo €) f] (X) B ’Yj .

Since f](x) = Qg-?:)x + >y Q;ﬁ)(b(k) + (9()) we can derive ~/ (similar to the derivation of
,ij) below:

L _ . - b*) (k)
L(x) = ot)
B T = i | D + ﬂ
_ 0O L\ L 4 oM
= min Q + Q + 0.
Lo o } 21 “)
- -0] + V% + Y ¥ p® e
‘ Le%ﬁg,l) Y o Z)

0 0 k k
= |2V, + 2% x0 + 3 QP (b® + ™).
k=1

Thus, we have

m
(global upper bound) VjU = e||A§.’0:) llg + A;?:)xo + Z Ag.ﬁ)(b(k) + A:(?),
k=1

(global lower bound) 7F = —¢| V]|, + Vxq + 3 o ® + o),
k=1

C Illustration of linear upper and lower bounds Sigmoid activation function.

1

1

- oo P
08 ==+ LinearUB O/
=+ Linear LB

— a(y)
0.8 === Linear UB
== Linear LB

— a(y)
0.8- === Linear UB S
== Linear LB .;‘

06 06 06
04 0.4 04
02 02 02
4 4
d d
0 oo : 0" 0. : ’
i K 3
-4 2 [INCIENCR 4 W2 2 4 4 o2 0 2,00 4

(@reSH bres, (©)reSs

Figure 3: The linear upper and lower bounds for o(y) = sigmoid

D fY(x)and [} (x) using Quadratic approximation

Upper bound. Let ij(x) be an upper bound of f;(x). To compute fJU(x) with quadratic approxi-

mations, we can still apply (7) and (8) except that hgjk)r(y) and h(Lk)T(y) are replaced by the following
quadratic functions:

k k k k k k k k
W) = gy + o)+ B0, B) = iy + el + B11).

14

L= a(y) — a(y) — o(y)
3" «+- Linear UB 3] «es Linear UB 3" .us Linear UB
5. *== Linear LB 5| === Linear LB 5. ==* LinearLB .

.
.
o
K

ot
.
0
.
.
4

e
o
.

0 0 0 =

1 1 1 o/ slope=a

2 G @ 2,) 2w @

4 2 o 2 4 W4 4 W2 Mo 2 4 4 2 0 2 4 4
@resS;t bres, ()re St

Figure 4: The linear upper and lower bounds for o(y) = ReLU. For the cases (a) and (b), the
linear upper bound and lower bound are exactly the function o (y) in the region (grey-shaded). For

(c), we plot three out of many choices of lower bound, and they are h(Lkl(y) = 0 (dashed-dotted),
o)
R (y) = y (dashed), and k(") (y) = —3—7y (dotted),

Therefore
Z W(m) h(m 1) (m 1) Z W(m) h(m 1)(Em—l))+b§m)’ 1)

Wj.f?)zo wim <o
Nm—1
m— 1 m—1)2 m—1) m—1 m—1 m
- wi) (g mD2 g 3D (D) AD))), 22)
_y(m 1)Td1ag(m— 1))y(m—1)+A(_m*1) (m—l)_|_VV(_771)A(Z}*1)7 (23)
=, o(x)TQ"" 1)<1>m_2()+ 2p VD, o(x) + s, (24)

From (21) to (22), we replace h e 1)(y(m V) and h(m Y (y™ 1)) by their definitions and let
1 1 —1 . m
((m 1) /\(m 1) A(m 1)) (77[?2 1; O‘%}iri 1;7 ?z 1;) if W_g‘,;; > 05
Ty 7t (s yapy B) WS <0
From (22) to (23), we let q(m - W(-T."') ® T(m_l) and write in the matrix form. From (23)
to (24), we substitute y("~1) by its definition: y(m D = W=D, 5 (x) +b(™~Y and then
collect the quadratic terms, linear terms and constant terms of ®(,,, _o(x), where
an—l) _ W(mfl)Tdiag(qgjﬂ;—l))W(mfl)’

m—1 m— m—1 m—1
p{D = T g gD 4 AUnD),

sgjm D pg"'_l)b(mfl) + W;T)A:(?_l)‘

Lower bound. Similar to the above derivation, we can simply swap hgcz, and h(Lk) and obtain lower

bound [/ (x): ’
fFeg= 30 Wi g Py)+ 3 W R)+ by,
wim <o wim >0

= By 2(3)TQY VD, 5(x) + 20" VD, o (x) + 85,

where
Q(Lm,l) Wmn— 1)Td1ag((m 1)>W(m 1) q(Lr)r;fl) W(m)® (m 1)’ (25)

p" Y = bm-DT ¢ g 1>+A§T—1>’ p{ b = plm= 1>T@q<£3*1>+g§.j7*1>; (26)

Sgn_l) — pgjm_l)b(mfl) + Wyn)A(;n_l), S(Lm_l) — p(Lm_l)b(mfl) + WS:’”)@(T_l)y (27)
and

(28)

(D D) gm=1)y _ (el gy Wi > o
Vii et N} i,j (7782 1)70[;}2—1)7 [(J"i 1)) ifWé,n;) < 0.

15

E Additional Experimental Results

E.1 Results on CROWN-Ada

Table 6: Comparison of our proposed certified lower bounds for ReLU with adaptive lower bounds
(CROWN-Ada), Fast-Lin and Fast-Lip and Op-nrom. LP-full and Reluplex cannot finish within a
reasonable amount of time for all the networks reported here. We also include Op-norm, where we
directly compute the operator norm (for example, for p = 2 it is the spectral norm) for each layer
and use their products as a global Lipschitz constant and then compute the robustness lower bound.
CLEVER is an estimated robustness lower bound, and attacking algorithms (including CW [6] and
EAD [31]) provide upper bounds of the minimum adversarial distortion. For each norm, we consider
the robustness against three targeted attack classes: the runner-up class (with the second largest
probability), a random class and the least likely class. It is clear that CROWN-Ada notably improves
the lower bound comparing to Fast-Lin, especially for larger and deeper networks, the improvements

can be up to 28%.
Networks Lower bounds and upper bounds (Avg.) Time per Image (Avg.)
Lower Bounds (certified) improvements Uncertified Lower Bounds
Config p Target 120] 3] Our algorithm over 1271 Attacks [20] Our bound
Fast-Lin Fast-Lip | Opnorm CROWN-Ada Fast-Lin CLEVER CW/EAD || Fast-Lin Fast-Lip | CROWN-Ada
runner-up | 0.02256 0.01802 | 0.00159 0.02467 +9.4% 0.0447 0.0856 163 ms 179 ms 128 ms
0 rand 0.03083 0.02512 | 0.00263 0.03353 +8.8% 0.0708 0.1291 176 ms 213 ms 166 ms
least 0.03854 0.03128 | 0.00369 0.04221 +9.5% 0.0925 0.1731 176 ms 251 ms 143 ms
MNIST runner-up | 0.46034 0.42027 | 0.24327 0.50110 +8.9% 0.8104 1.1874 154ms 184 ms 110 ms
2 x [1024] 2 rand 0.63299 0.59033 | 0.40201 0.68506 +8.2% 1.2841 1.8779 141 ms 212 ms 133 ms
least 0.79263 0.73133 | 0.56509 0.86377 +9.0% 1.6716 2.4556 152ms 291 ms 116 ms
runner-up | 2.78786 3.46500 | 0.20601 3.01633 +82% 45970 9.5295 159 ms 989 ms 136 ms
1 rand 3.88241 5.10000 | 0.35957 4.17760 +7.6% 7.4186 17.259 168 ms 1.15s 157 ms
least 4.90809 6.36600 | 0.48774 5.33261 +8.6% 9.9847 23.933 179 ms 1.37s 144 ms
runner-up | 0.01830 0.01021 | 0.00004 0.02114 +15.5% 0.0509 0.1037 805 ms 1.28s 1.33s
0 rand 0.02216 0.01236 | 0.00007 0.02576 +16.2% 0.0717 0.1484 782ms 859 ms 1.37s
least 0.02432 0.01384 | 0.00009 0.02835 +16.6% 0.0825 0.1777 792ms 684 ms 1.37s
MNIST runner-up | 0.35867 0.22120 | 0.06626 0.41295 +15.1% 0.8402 1.3513 732 ms 1.06s 1265
3 x [1024] 2 rand 0.43892 0.26980 | 0.10233 0.50841 +15.8% 1.2441 2.0387 711ms 696 ms 1.26's
least 0.48361 0.30147 | 0.13256 0.56167 +16.1% 1.4401 2.4916 723 ms 655 ms 1.25s
runner-up | 2.08887 1.80150 | 0.00734 2.39443 +14.6% 4.8370 10.159 685ms 236s I.15s
1 rand 2.59898 2.25950 | 0.01133 3.00231 +15.5% 7.2177 17.796 743ms 2.69s 1255
least 2.87560 2.50000 | 0.01499 3.33231 +15.9% 8.3523 22.395 729ms 3.08s 1.31s
runner-up | 0.00715 0.00219 | 0.00001 0.00861 +20.4% 0.0485 0.08635 1.54s 342s 323s
0 rand 0.00823 0.00264 | 0.00001 0.00997 +21.1% 0.0793 0.1303 1.53s 2.17s 3.57s
least 0.00899 0.00304 | 0.00001 0.01096 +21.9% 0.1028 0.1680 1.74 s 2.00 s 3.87s
MNIST runner-up | 0.16338 0.05244 | 0.11015 0.19594 +19.9% 0.8689 1.2422 1.79s 238 3352
4 [1024] 2 rand 0.18891 0.06487 | 0.17734 0.22811 +20.8% 1.4231 1.8921 1.78 s 1.96s 3.79s
least 0.20671 0.07440 | 0.23710 0.25119 +21.5% 1.8864 2.4451 1.98 s 2.01s 4.01s
runner-up | 1.33794 0.58480 | 0.00114 1.58151 +182% 5.2685 10.079 1.87s 1.93s 3345
1 rand 1.57649 0.72800 | 0.00183 1.88217 +19.4% 8.9764 17.200 1.80s 2.04s 3545
least 1.73874 0.82800 | 0.00244 2.09157 +20.3% 11.867 23.910 1.94s 240 3.72s
runner-up | 0.00137 0.00020 | 0.00000 0.00167 +21.9% 0.0062 0.00950 182 382s 33.1s
0 rand 0.00170 0.00030 | 0.00000 0.00212 +24.7% 0.0147 0.02351 19.6 s 48.2s 36.7s
least 0.00188 0.00036 | 0.00000 0.00236 +25.5% 0.0208 0.03416 204 s 50.5s 38.6s
CIFAR runner-up | 0.06122° 0.00948 | 0.00156 0.07466 +22.0% 0.2712 0.3778 242 394 41.0s
5 x [2048] 2 rand 0.07654 0.01417 | 0.00333 0.09527 +24.5% 0.6399 0.9497 26.0s 312 425
least 0.08456 0.01778 | 0.00489 0.10588 +25.2% 0.9169 1.4379 250 332s 444 s
runner-up | 0.93836 0.22632 | 0.00000 1.13799 +21.3% 4.0755 7.6529 247s 45.1s 405s
1 rand 1.18928 0.31984 | 0.00000 1.47393 +23.9% 9.7145 21.643 25.7s 36.2s 44.0s
least 1.31904 0.38887 | 0.00001 1.64452 +24.7% 12.793 34.497 26.0s 31.7s 449s
runner-up | 0.00075 0.00005 | 0.00000 0.00094 +253% 0.0054 0.00770 276 64.7 s 473
3] rand 0.00090 0.00007 | 0.00000 0.00114 +26.7% 0.0131 0.01866 28.1s 723s 493
least 0.00095 0.00008 | 0.00000 0.00122 +28.4% 0.0199 0.02868 28.1s 763 s 494 s
CIFAR runner-up | 0.03462 0.00228 | 0.00476 0.04314 +24.6% 0.2394 0.2979 3705 60.7s 65.8's
6 x [2048] 2 rand 0.04129 0.00331 | 0.01079 0.05245 +27.0% 0.5860 0.7635 40.0s 56.8's 7155
least 0.04387 0.00385 | 0.01574 0.05615 +28.0% 0.8756 1.2111 40.0s 56.3s 725
runner-up | 0.59636 0.05647 | 0.00000 0.73727 +23.6% 3.3569 6.0112 372s 6565 66.8 s
1 rand 0.72178 0.08212 | 0.00000 0.91201 +26.4% 8.2507 17.160 395s 535s 716
least 0.77179 0.09397 | 0.00000 0.98331 +27.4% 12.603 28.958 40.7 s 42.1s 7255
runner-up | 0.00119 0.00006 | 0.00000 0.00148 +24.4% 0.0062 0.0102 898s 20.1s 16.2's
0 rand 0.00134 0.00008 | 0.00000 0.00169 +26.1% 0.0112 0.0218 8.98s 203 s 16.7 s
least 0.00141 0.00010 | 0.00000 0.00179 +27.0% 0.0148 0.0333 8.81s 22.1s 174 s
CIFAR runner-up | 0.05279 0.00308 | 0.00020 0.06569 +24.4% 0.2661 0.3943 12.7s 209s 20.7s
7 x [1024] 2 rand 0.05937 0.00407 | 0.00029 0.07496 +26.3% 0.5145 0.9730 1265 18.7s 21.8s
least 0.06249 0.00474 | 0.00038 0.07943 +27.1% 0.6253 1.3709 1295 20.7 s 2225
runner-up | 0.76648 0.07028 | 0.00000 0.95204 +242% 43815 7.9987 12.8s 21.0s 219
1 rand 0.86468 0.09239 | 0.00000 1.09067 +26.1% 8.630 22.180 132 19.8s 2245
least 091127 0.10639 | 0.00000 1.15687 +27.0% 11.44 31.529 1335 17.6 s 2295

E.2 Results on CROWN-general

16

Table 7: Comparison of certified lower bounds by CROWN-Ada on ReL.U networks and CROWN-
general on networks with tanh, sigmoid and arctan activations. CIFAR models with sigmoid activa-
tions achieve much worse accuracy than other networks and are thus excluded. For each norm, we
consider the robustness against three targeted attack classes: the runner-up class (with the second
largest probability), a random class and the least likely class.

Network Certified Bounds by CROWN-general | Average Computation Time (sec)
{;, norm target tanh sigmoid arctan tanh sigmoid arctan
runner-up 0.0164 0.0225 0.0169 03374 0.3213 0.3148
loo random 0.0230 0.0325 0.0240 0.3185 0.3388 0.3128
least 0.0306 0.0424 0.0314 03129 0.3586 0.3156
MNIST runner-up 0.3546 0.4515 0.3616 03139 0.3110 0.3005
3 x [1024] Uy random 0.5023 0.6552 0.5178 0.3044 0.3183 0.2931
least 0.6696 0.8576 0.6769 0.3869 0.3495 0.2676
runner-up 2.4600 2.7953 2.4299 0.2940 0.3339 0.3053
0 random 3.5550 4.0854 3.5995 0.3277 0.3306 0.3109
least 4.8215 54528 4.7548 0.3201 0.3915 0.3254
runner-up 0.0091 0.0162 0.0107 1.6794 1.7902 1.7099
loo random 0.0118 0.0212 0.0136 1.7783 1.7597 1.7667
least 0.0147 0.0243 0.0165 1.8908 1.8483 1.7930
MNIST runner-up 0.2086 0.3389 0.2348 1.6416 1.7606 1.8267
4 x [1024] 123 random 0.2729 0.4447 0.3034 1.7589 1.7518 1.6945
least 0.3399 0.5064 0.3690 1.8206 1.7929 1.8264
runner-up 1.8296 2.2397 1.7481 1.5506 1.6052 1.6704
0 random 2.4841 29424 2.3325 1.6149 1.7015 1.6847
least 3.1261 3.3486 2.8881 1.7762 1.7902 1.8345
runner-up 0.0060 0.0150 0.0062 39916 44614 3.7635
loo random 0.0073 0.0202 0.0077 3.5068 4.4069 3.7387
least 0.0084 0.0230 0.0091 39076 4.6283 3.9730
MNIST runner-up 0.1369 0.3153 0.1426 4.1634 43311 4.1039
5 x [1024] Uy random 0.1660 0.4254 0.1774 4.1468 4.1797 4.0898
least 0.1909 0.4849 0.2096 4.5045 4.4773 4.5497
runner-up 1.1242 2.0616 1.2388 44911 3.9944 4.4436
2 random 1.3952 2.8082 1.5842 44543 4.0839 4.2609
least 1.6231 3.2201 1.9026 44674 4.5508 4.5154
runner-up 0.0005 - 0.0006 37.3918 - 37.1383
loo random 0.0008 - 0.0009 38.0841 - 37.9199
least 0.0010 - 0.0011 39.1638 - 39.4041
CIFAR-10 runner-up 0.0219 - 0.0256 47.4896 - 48.3390
5 x [2048)] 12 random 0.0368 - 0.0406 54.0104 - 52.7471
least 0.0460 - 0.0497 55.8924 - 56.3877
runner-up 0.3744 - 0.4491 46.4041 - 47.1640
0 random 0.6384 - 0.7264 54.2138 - 51.6295
least 0.8051 - 0.8955 56.2512 - 55.6069
runner-up 0.0004 - 0.0003 59.5020 - 58.2473
loo random 0.0006 - 0.0006 59.7220 - 58.0388
least 0.0006 - 0.0007 60.8031 - 60.9790
runner-up 0.0177 - 0.0163 78.8801 - 72.1884
glf‘?;&lg ;| random 00254 - 0.0251 842228 - 83.1202
least 0.0294 - 0.0306 86.2997 - 86.9320
runner-up 0.3043 - 0.2925 78.7486 - 70.2496
2 random 0.4406 - 0.4620 89.7717 - 83.7972
least 0.5129 - 0.5665 87.2094 - 86.6502
runner-up 0.0006 - 0.0005 20.8612 - 20.5169
loo random 0.0008 - 0.0007 21.4550 - 21.2134
least 0.0008 - 0.0008 21.3406 - 21.1804
CIFAR-10 runner-up ~ 0.0260 - 0.0225 27.9442 - 27.0240
7 x [1024] Uy random 0.0344 - 0.0317 30.3782 - 29.8086
least 0.0376 - 0.0371 30.7492 - 30.7321
runner-up 0.3826 - 0.3648 28.1898 - 27.1238
I3 random 0.5087 - 0.5244 29.6373 - 30.5106
least 0.5595 - 0.6171 31.3457 - 30.6481

17

	Introduction
	Background and Related Work
	CROWN: A general framework for certifying neural networks
	General framework
	Case studies: CROWN for ReLU, tanh, sigmoid and arctan activations
	Extension to quadratic bounds

	Experiments
	Conclusion
	Proof of Theorem 3.2
	Proof of Corollary 3.3
	Illustration of linear upper and lower bounds Sigmoid activation function.
	fUj(x) and fLj(x) using Quadratic approximation
	Additional Experimental Results
	Results on CROWN-Ada
	Results on CROWN-general

