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Abstract

In this work, we address the lack of 3D understanding
of generative neural networks by introducing a persistent
3D feature embedding for view synthesis. To this end, we
propose DeepVoxels, a learned representation that encodes
the view-dependent appearance of a 3D scene without hav-
ing to explicitly model its geometry. At its core, our ap-
proach is based on a Cartesian 3D grid of persistent em-
bedded features that learn to make use of the underlying 3D
scene structure. Our approach combines insights from 3D
geometric computer vision with recent advances in learning
image-to-image mappings based on adversarial loss func-
tions. DeepVoxels is supervised, without requiring a 3D re-
construction of the scene, using a 2D re-rendering loss and
enforces perspective and multi-view geometry in a princi-
pled manner. We apply our persistent 3D scene represen-
tation to the problem of novel view synthesis demonstrating
high-quality results for a variety of challenging scenes.

1. Introduction

Recent years have seen significant progress in apply-
ing generative machine learning methods to the creation
of synthetic imagery. Many deep neural networks, for ex-
ample based on (variational) autoencoders, are able to in-
paint, refine, or even generate complete images from scratch
[19, 30]. A very prominent direction is generative adver-
sarial networks [13] which achieve impressive results for
image generation, even at high resolutions [26] or condi-
tional generative tasks [20]. These developments allow us
to perform highly-realistic image synthesis in a variety of
settings; e.g., purely generative, conditional, etc.

However, while each generated image is of high qual-
ity, a major challenge is to generate a series of coherent
views of the same scene. Such consistent view generation
would require the network to have a latent space represen-
tation that fundamentally understands the 3D layout of the
scene; e.g., how would the same chair look from a differ-
ent viewpoint? Unfortunately, this is challenging to learn
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Figure 1: During training, we learn a persistent Deep Voxels rep-
resentation that encodes the view-dependent appearance of a 3D
scene from a dataset of posed multi-view images (top). At test
time, DeepVoxels enable novel view synthesis (bottom).

for existing generative neural network architectures that are
based on a series of 2D convolution kernels. Here, spatial
layout and transformations of a real, 3D environment would
require a tedious learning process which maps 3D opera-
tions into 2D convolution kernels [22]. In addition, the gen-
erator network in these approaches is commonly based on
a U-Net architecture with skip connections [47]. Although
skip connections enable efficient propagation of low-level
features, the learned 2D-to-2D mappings typically struggle
to generalize to large 3D transformations, due to the fact
that the skip connections bypass higher-level reasoning.

To tackle similar challenges in the context of learning-
based 3D reconstruction and semantic scene understand-
ing, the field of 3D deep learning has seen large and rapid
progress over the last few years. Existing approaches are
able to predict surface geometry with high accuracy. Many
of these techniques are based on explicit 3D representa-
tions in the form of occupancy grids [35, 43], signed dis-
tance fields [46], point clouds [42, 32], or meshes [21].
While these approaches handle the geometric reconstruc-
tion task well, they are not directly applicable to the syn-
thesis of realistic imagery, since it is unclear how to rep-



resent color information at a sufficiently high resolution.
There also exists a large body of work on learning low-
dimensional embeddings of images that can be decoded to
novel views [54, 61,7, 9, 60, 45]. Some of these techniques
make use of the object’s 3D rotation by explicitly rotating
the latent space feature vector [60, 45]. While such 3D tech-
niques are promising, they have thus far not been successful
in achieving sufficiently high fidelity for the task of photo-
realistic image synthesis.

In our work, we aim at overcoming the fundamental
limitations of existing 2D generative models by introduc-
ing native 3D operations in the neural network architecture.
Rather than learning intuitive concepts from 3D vision, such
as perspective, we explicitly encode these operations in the
network architecture and perform reasoning directly in 3D
space. The goal of the DeepVoxels approach is to condense
posed input images of a scene into a persistent latent rep-
resentation without explicitly having to model its geometry
(see Fig. 1). This representation can then be applied to the
task of novel view synthesis to generate unseen perspec-
tives of a 3D scene without requiring access to the initial
set of input images. Our approach is a hybrid 2D/3D one
in that it learns to represent a scene in a Cartesian 3D grid
of persistent feature embeddings that is projected to the tar-
get view’s canonical view volume and processed by a 2D
rendering network. This persistent feature volume, which
exists in 3D world-space, in combination with a structured,
differentiable image formation model, enforces perspective
and multi-view geometry in a principled and interpretable
manner during training. The proposed approach learns to
exploit the underlying 3D scene structure, without requiring
supervision in the 3D domain. We demonstrate novel view
synthesis with high quality for a variety of scenes based on
this new representation. In summary, our approach makes
the following technical contributions:

e A novel persistent 3D feature representation for image
synthesis that makes use of the underlying 3D scene
information.

e Explicit occlusion reasoning based on learned soft vis-
ibility that leads to higher-quality results and better
generalization to novel viewpoints.

e Differentiable image formation to enforce perspective
and multi-view geometry in a principled and inter-
pretable manner during training.

e Training without requiring 3D supervision.

Scope In this paper, we present first steps towards 3D-
structured neural scene representations. To this end, we
limit the scope of our investigation to allow an in-depth
discussion of the challenges fundamental to this approach.
We assume Lambertian scenes, without specular highlights

or other view-dependent effects. While the proposed ap-
proach can deal with light specularities, these are not mod-
eled explicitly. Classical approaches will achieve impres-
sive results on the presented scenes. However, these ap-
proaches rely on the explicit reconstruction of geometry.
Neural scene representations will be essential to develop
generative models that can generalize across scenes to solve
reconstruction problems where only few observations are
available. We thus compare to such baselines exclusively.

2. Related Work

Our approach lies at the intersection of multiple active
research areas, namely generative neural networks, 3D deep
learning, deep learning-based view synthesis, and model- as
well as image-based rendering.

Neural Image Synthesis Deep models for 2D image and
video synthesis have recently shown very promising results.
Some of these approaches are based on (variational) auto-
encoders (VAEs) [19, 30] or autoregressive models (AMs),
such as PixelCNN [38]. The most promising results so far
are based on conditional generative adversarial networks
(cGANgs) [13, 44, 36, 20]. In most cases, the generator net-
work has an encoder-decoder architecture [19], often with
skip connections (U-Net) [47], which enable efficient prop-
agation of low-level features from the encoder to the de-
coder. Approaches that convert synthetic images into photo-
realistic imagery have been proposed for the special case of
human bodies [64, 2] and faces [28]. In theory, similar ar-
chitectures could be used to regress the real-world image
corresponding to a given viewpoint, i.e., image-based ren-
dering could be learned from scratch. Unfortunately, these
2D-to-2D translation approaches struggle to generalize to
transformations in 3D space, such as rotation and perspec-
tive projection, since the underlying 3D scene structure can-
not be exploited. We compare to this baseline in Sec. 4 and
show that DeepVoxels drastically outperforms it.

3D Deep Learning Recently, deep learning has been suc-
cessfully applied to many 3D geometric reasoning tasks.
Current approaches are able to predict an accurate 3D rep-
resentation of an object from just a single or multiple views.
Many of these techniques make use of classical 3D repre-
sentations, e.g., occupancy grids [35, 43], signed distance
fields [46], 3D point clouds [42, 32], or meshes [21]. While
these approaches handle the geometric reconstruction task
well, they are not directly applicable to view synthesis,
since it is unclear how to represent color information at a
sufficiently high resolution. View consistency can be ex-
plicitly handled using differentiable ray casting [57]. Ren-
derNet [37] learns to render in different styles from 3D
voxel grid input. Kulkarni et al. [31] learn a disentangled
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representation of images with respect to various scene prop-
erties, such as rotation and illumination. Spatial Trans-
former Networks [22] can learn spatial transformations of
feature maps in the network. Even weakly-supervised [62]
and unsupervised [23] learning of 3D transformations has
been proposed. Our work is also related to CNNs for 3D
reconstruction [25, 5] and monocular depth estimation [8].
A “multi-view stereo machine” [25] can learn 3D recon-
struction based on 3D or 2.5D supervision. MapNet [18]
performs SLAM based on a scene-specific 2D feature grid
representation. In contrast to these approaches, which are
focused on geometric reasoning, our goal is to learn an
embedding for novel view synthesis. To synthesize multi-
view consistent images, we optimize for a persistent, scene-
specific 3D embedding over all available 2D observations
and enable the network to perform explicit occlusion rea-
soning. We do not require any 3D ground truth but mini-
mize a 2D photometric reprojection loss exclusively.

Deep Learning for View Synthesis Recently, a class
of deep neural networks has been proposed that directly
aim to solve the problem of novel view synthesis. Some
techniques predict lookup tables into a set of reference
views [39, 63] or predict weights to blend multi-view im-
ages into novel views [11]. A layered scene representa-
tion [56] can be learned based on a re-rendering loss. A
large corpus of work focuses on embedding 2D views of
scenes into a learned low-dimensional latent space that is
then decoded into a novel view [54, 61, 7, 9, 60, 45, 6].
Some of these approaches rely on embedding views into
a latent space that does not enforce any geometrical con-
straints [54, 7, 9], others enforce geometric constraints in
varying degrees [60, 45, 6, 10], such as learning rotation-
equivariant features by explicitly rotating the latent space
feature vectors. We focus on optimizing a scene-specific
embedding over a training corpus of 2D observations and
explicitly account for concepts from 3D vision such as per-
spective projection and occlusion to constrain the latent
space. We demonstrate advantages over weakly structured
embeddings in generating high-quality novel views.

Model-Based Rendering Classic reconstruction ap-
proaches such as structure-from-motion exploit multi-view
geometry [15, 53] to build a dense 3D point cloud of the
imaged scene [49, 50, 52, 1, 12]. A triangular surface
representation can be obtained using for example the
Poisson Surface [27] reconstruction technique. However,
the reconstructed geometry is often imperfect, coarse,
contains holes, and the resulting renderings thus suffer
from visible artifacts and are not fully realistic. In contrast,
our goal is to learn a representation that efficiently encodes
the view-dependent appearance of a 3D scene without
having to explicitly reconstruct a geometric model.

Image-Based Rendering Traditional image-based ren-
dering techniques blend warped versions of the input im-
ages to generate new views [51]. This idea was first pro-
posed as a computationally efficient alternative to classical
rendering [33, 14, 3]. Multiple-view geometry can be used
to obtain the geometry for warping [17]. In other cases, no
3D reconstruction is necessary [1 1, 41]. Some approaches
rely on light fields [24]. Recently, deep-learning has been
used to aid image-based rendering via learning a small sub-
task, i.e., the computation of the blending weights [16, 11].
While this can achieve photorealism, it depends on a dense
set of high-resolution photographs to be available at render-
ing time and requires an error prone reconstruction step to
obtain the geometric proxy. Our approach has orthogonal
goals: (1) we want to learn an embedding for view syn-
thesis and (2) we want to tackle the problem in a holistic
fashion by learning raw pixel output. Thus, our approach
is more related to embedding techniques that try to learn a
latent space that can be decoded into novel views.

3. Method

The core of our approach is a novel 3D-structured
scene representation called DeepVoxels. DeepVoxels is a
viewpoint-invariant, persistent and uniform 3D voxel grid
of features. The underlying 3D grid enforces spatial struc-
ture on the learned per-voxel code vectors. The final output
image is formed based on a 2D network that receives the
perspective re-sampled version of this 3D volume, i.e., the
canonical view volume of the target view, as input. The
3D part of our approach takes care of spatial reasoning,
while the 2D part enables fine-scale feature synthesis. In
the following, we first introduce the training corpus and
then present our end-to-end approach for finding the scene-
specific DeepVoxels representation from a set of multi-view
images without explicit 3D supervision.

3.1. Training Corpus

Our scene-specific training corpus C = {S;, 7.0, T;' 1M,
of M samples is based on a source view S; (image and cam-
era pose) and two target views 7.°, 7.}, which are randomly
selected from a set of N registered multi-view images; see
Fig. 1 for an example. We assume that the intrinsic and ex-
trinsic camera parameters are available. These can for ex-
ample be obtained using sparse bundle adjustment [55]. For
each pair of target views 7,2, 7;! we then randomly select
a single source view S; from the top-5 nearest neighbors
in terms of view direction angle to target view 7. This
sampling heuristic makes it highly likely that points in the
source view are visible in the target view 7. While not
essential to training, this ensures meaningful gradient flow
for every optimization step, while encouraging multi-view
consistency to the random target view 7;!. We sample the
training corpus C dynamically during training.
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Figure 2: Overview of all model components. At the heart of our encoder-decoder based architecture is a novel viewpoint-invariant and
persistent 3D volumetric scene representation called DeepVoxels that enforces spatial structure on the learned per-voxel code vectors.

3.2. Architecture Overview

Our network architecture is summarized in Fig. 2. On
a high level, it can be seen as an encoder-decoder based
architecture with the persistent 3D DeepVoxels representa-
tion as its latent space. During training, we feed a source
view S; to the encoder and try to predict the target view 7;.
We first extract a set of 2D feature maps from the source
view using a 2D feature extraction network. To learn a
view-independent 3D feature representation, we explicitly
lift image features to 3D based on a differentiable lifting
layer. The lifted 3D feature volume is fused with our per-
sistent DeepVoxels scene representation using a gated re-
current network architecture. Specifically, the persistent 3D
feature volume is the hidden state of a gated recurrent unit
(GRU) [4]. After feature fusion, the volume is processed
by a 3D fully convolutional network. The volume is then
mapped to the camera coordinate systems of the two target
views via a differentiable reprojection layer, resulting in the
canonical view volume. A dedicated, structured occlusion
network operates on the canonical view volume to reason
about voxel visibility and flattens the view volume to a 2D
view feature map (see Fig. 3). Finally, a learned 2D render-
ing network forms the two final output images. Our network
is trained end-to-end, without the need of supervision in the
3D domain, by a 2D re-rendering loss that enforces that the
predictions match the target views. In the following, we
provide more details.

Camera Model We follow a perspective pinhole camera
model that is fully specified by its extrinsic E = [RJt] €
R3*4 and intrinsic K € R3*3 camera matrices [15]. Here,
R € R3*3 is the global camera rotation and t € R? its
translation. Assume we are given a position x € R? in

3D coordinates, then the mapping from world space to the
canonical camera volume is given as:

u
u = v

d

=KRx+t) . (1

Here, v and v specify the position of the voxel center on
the screen and d is its depth from the camera. Given a pixel
and its depth, we can invert this mapping to compute the
corresponding 3D point x = RT (K~tu — t).

Feature Extraction We extract 2D feature maps from the
source view based on a fully convolutional feature extrac-
tion network. The image is first downsampled by a series of
stride-2 convolutions until a resolution of 64 x 64 is reached.
A 2D U-Net architecture [48] then extracts a 64 x 64 feature
map that is the input to the subsequent volume lifting.

Lifting 2D Features to 3D Observations The lifting
layer lifts 2D features into a temporary 3D volume, rep-
resenting a single 3D observation, which is then integrated
into the persistent DeepVoxels representation. We position
the 3D feature volume in world space such that its center
roughly aligns with the scene’s center of gravity, which can
be obtained cheaply from the keypoint point cloud obtained
from sparse bundle adjustment. The spatial extent is set
such that the complete scene is inside the volume. We try
to bound the scene as tightly as possible to not lose spatial
resolution. Lifting is implemented by a gathering operation.
For each voxel, the world space position of its center is pro-
jected to the source view’s image space following Eq. 1. We
extract a feature vector from the feature map using bilinear
sampling and store the result in the code vector associated
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Figure 3: Illustration of the occlusion-aware projection operation. The feature volume (represented by feature grid) is first resampled
into the canonical view volume via a projection transformation and trilinear interpolation. The occlusion network then predicts per-pixel
softmax weights along each depth ray. The canonical view volume is then collapsed along the depth dimension via a softmax-weighted
sum of voxels to yield the final, occlusion-aware feature map. The per-voxel visibility weights can be used to compute a depth map.

with the voxel. Note, our approach is based only on a set
of registered multi-view images and we do not have access
to the scene geometry or depth maps, rather our approach
learns automatically to resolve the depth ambiguity based
on a gated recurrent network in 3D.

Integrating Lifted Features into DeepVoxels Lifted ob-
servations are integrated into the DeepVoxels representation
via an integration network that is based on gated recurrent
units (GRUs) [4]. In contrast to the standard application of
GRUs, the integration network operates on the same vol-
ume across the full training procedure, i.e., the hidden state
is persistent across all training steps and never reset, lead-
ing to a geometrically consistent representation of the whole
training corpus. We use a uniform volumetric grid of size
w X h X d voxels, where each voxel has f feature channels,
i.e., the stored code vector has size f. We employ one gated
recurrent unit for each voxel, such that at each time step, all
the features in a voxel have to be updated jointly. The goal
of the gated recurrent units is to incrementally fuse the lifted
features and the hidden state during training, such that the
best persistent 3D volumetric feature representation is dis-
covered. The gated recurrent units implement the mapping

Zi = o(W.X, +U,H, , +B.) , )
R;=0(W,X;+U,H; ; +B,) |, 3)
S, = ReLUW,X, + U,(R; o H; 1) + B.) , (&
H, = (1—Z,)oH, 1 +Z;0S; . )

Here, X; is the lifted 3D feature volume of the current
timestep ¢, the W, and U, are trainable 3D convolution
weights, and the B, are trainable tensors of biases. We fol-
low Cho et al. [4] and employ a sigmoid activation ¢ to
compute the response of the tensor of update gates Z, and
reset gates R;. Based on the previous hidden state H;_,
the per-voxel reset values R, and the lifted 3D feature vol-
ume X, the tensor of new feature proposals S; for the cur-
rent time step ¢ is computed. U, and W are single 3D
convolutional layers. The new hidden state H;, the Deep-
Voxels representation for the current time step, is computed

as a per-voxel linear combination of the old state H;_; and
the new DeepVoxel proposal S;. The GRU performs one
update step per lifted observation. Afterwards, we apply a
3D inpainting U-Net that learns to fill holes in this feature
representation. At test time, only the optimally learned per-
sistent 3D volumetric features, the DeepVoxels, are used to
form the image corresponding to a novel target view. The
2D feature extraction, lifting layer and GRU gates are dis-
carded and are not required for inference, see Fig. 2.

Projection Layer The projection layer implements the
inverse of the lifting layer, i.e., it maps the 3D code vec-
tors to the canonical coordinate system of the target view,
see Fig. 3 (left). Projection is also implemented based on a
gathering operation. For each voxel of the canonical view
volume, its corresponding position in the persistent world
space voxel grid is computed. An interpolated code vector
is then extracted via a trilinear interpolation and stored in
the feature channels of the canonical view volume.

Occlusion Module Occlusion reasoning is essential for
correct image formation and generalization to novel view-
points. To this end, we propose a dedicated occlusion net-
work that computes soft visibility for each voxel. Each pixel
in the target view is represented by one column of voxels
in the canonical view volume, see Fig. 3 (left). First, this
column is concatenated with a feature column encoding the
distance of each voxel to the camera, similar as in [34].
This allows the occlusion network to reason about voxel or-
der. The feature vector of each voxel in this canonical view
volume is then compressed to a low-dimensional feature
vector of dimension 4 by a single 3D convolutional layer.
This compressed volume is input to a 3D U-Net for occlu-
sion reasoning. For each ray, represented by a single-pixel
column, this network predicts a scalar per-voxel visibility
weight based on a softmax activation, see Fig. 3 (middle).
The canonical view volume is then flattened along the depth
dimension with a weighted average, using the predicted vis-
ibility values. The softmax weights can further be used to
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compute a depth map, which provides insight into the oc-
clusion reasoning of the network, see Fig. 3 (right).

Rendering and Loss The rendering network is a mirrored
version of the feature extraction network with higher capac-
ity. A 2D U-Net architecture takes as input the flattened
canonical view volume from the occlusion network and pro-
vides reasoning across the full image, before a number of
transposed convolutions directly regress the pixel values of
the novel view. We train our persistent DeepVoxels repre-
sentation based on a combined /1 -loss and adversarial cross
entropy loss [13]. We found that an adversarial loss accel-
erates the generation of high-frequency detail earlier on in
training. Our adversarial discriminator is a fully convolu-
tional patch-based discriminator [58]. We solve the result-
ing minimax optimization problem using ADAM [29].

4. Analysis

In this section, we demonstrate that DeepVoxels is a rich
and semantically meaningful 3D scene representation that
allows high-quality re-rendering from novel views. First,
we present qualitative and quantitative results on synthetic
renderings of high-quality 3D scans of real-world objects,
and compare the performance to strong machine-learning
baselines with increasing reliance on geometrically struc-
tured latent spaces. Next, we demonstrate that DeepVoxels
can also be used to generate novel views on a variety of real
captures, even if these scenes may violate the Lambertian
assumption. Finally, we demonstrate quantitative and qual-
itative benefits of explicitly reasoning about voxel visibility
via the occlusion module, as well as improved model inter-
pretability. Please see the supplement for further studies on
the sensitivity to the number of training images, the size of
the voxel volume, as well as noisy camera poses.

Dataset and Metrics We evaluate model performance
on synthetic data obtained from rendering 4 high-quality
3D scans (see Fig. 4). We center each scan at the origin
and scale it to lie within the unit cube. For the training
set, we render the object from 479 poses uniformly dis-
tributed on the northern hemisphere. For the test set, we
render 1000 views on an Archimedean spiral on the north-
ern hemisphere. All images are rendered in a resolution
of 1024 x 1024 and then resized using area averaging to
512 x 512 to minimize aliasing. We evaluate reconstruction
error in terms of PSNR and SSIM [59].

Implementation All models are implemented in PyTorch
[40]. Unless specified otherwise, we use a cube volume
with 323 voxels. We average the ¢; loss over all pixels in
the image. The ¢, and adversarial loss are weighted 200 : 1.
Models are trained until convergence using ADAM with a

learning rate of 4 - 10”4, One model is trained per scene.
The proposed architecture has 170 million parameters. At
test time, rendering a single frame takes 71ms.

Baselines We compare to three strong baselines with in-
creasing reliance on geometry-aware latent spaces. The first
baseline is a Pix2Pix architecture [20] that receives as in-
put the per-pixel view direction, i.e., the normalized, world-
space vector from camera origin to each pixel, and is trained
to translate these images into the corresponding color im-
age. This baseline is representative of recent achievements
in 2D image-to-image translation. The second baseline is
a deep autoencoder that receives as input one of the top-5
nearest neighbors of the target view, and the pose of both the
target and the input view are concatenated in the deep latent
space, as proposed by Tatarchenko et al. [54]. The inputs of
this model at training time are thus identical to those of our
model. The third baseline learns an interpretable, rotation-
equivariant latent space via the method proposed in [60, 6]
and used previously in [45], by being fed one of the top-5
nearest neighbor views and then rotating the latent embed-
ding with the rotation matrix that transforms the input to
the output pose. At test time, the previous two baselines re-
ceive the top-1 nearest neighbor to supply the model with
the most relevant information. We approximately match the
number of parameters of each network, with all baselines
having equally or slightly more parameters than our model.
We train all baselines to convergence with the same loss
function. For the exact baseline architectures and number
of parameters, please see the supplement.

Object-specific Novel View Synthesis We train our net-
work and all baselines on synthetic renders of four high-
quality 3D scans. Table 1 compares PSNR and SSIM
of the proposed architecture and the baselines. The best-
performing baseline is Pix2Pix [20]. This is surprising,
since no geometrical constraints are enforced, as opposed
to the approach by Worrall et al. [60]. The proposed archi-
tecture with strongly structured latent space outperforms all
baselines by a wide margin of an average 7dB. Fig. 4 shows
a qualitative comparison as well as further novel views sam-
pled from the proposed model. The proposed model dis-
plays robust 3D reasoning that does not break down even in
challenging cases. Notably, other models have a tendency
to “snap” onto views seen in the training set, while the pro-
posed model smoothly follows the test trajectory. Please
see the supplemental video for a demonstration of this be-
havior. We hypothesize that this improved generalization to
unseen views is due to the explicit multi-view constraints
enforced by the proposed latent space. The baseline models
are not explicitly enforcing projective and epipolar geom-
etry, which may allow them to parameterize latent spaces
that are not properly representing the low-dimensional man-
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Figure 4: Left: Comparison of the best three performing models to ground truth. From Left to right: Ground truth, Worrall et al. [60], Isola
et al. [20] (Pix2Pix), and ours. Our outputs are closest to the ground truth, performing well even in challenging cases such as the strongly
foreshortened letters on the cube or the high-frequency detail of the vase. Right: Other samples of novel views generated by our model.

Vase Pedestal Chair Cube Mean
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM
Nearest Neighbor 23.26/0.92 21.49/0.87 20.69/0.94 18.32/0.83 20.94/0.89
Tatarchenko et al. [54] 22.28/0.91 23.25/0.89 20.22/0.95 19.12/0.84 21.22/0.90
Worrall et al. [60] 23.41/0.92 22.70/0.89 19.52/0.94 19.23/0.85 21.22/70.90
Pix2Pix (Isola et al.) [20]  26.36/0.95 25.41/0.91 23.04/0.96 19.69 / 0.86 23.63/0.92
Ours 27.99/0.96 32.35/0.97 33.45/0.99 28.42/097 30.55/0.97

Table 1: Quantitative comparison to four baselines. Our approach obtains the best results in terms of PSNR and SSIM on all objects.

ifold of rotations. Although the resolution of the proposed
voxel grid is 16 times smaller than the image resolution, our
model succeeds in capturing fine detail much smaller than
the size of a single voxel, such as the letters on the sides
of the cube or the detail on the vase. This may be due to
the use of trilinear interpolation in the lifting and projec-
tion steps, which allow for a fine-grained representation to
be learned. Please see the video for full sequences, and the
supplemental material for two additional synthetic scenes.

Voxel Embedding vs. Rotation-Equivariant Embedding
As reflected in Tab. 1, we outperform [60] by a wide margin
both qualitatively and quantitatively. The proposed model
is constrained through multi-view geometry, while [60] has
more degrees of freedom. Lacking occlusion reasoning,
depth maps are not made explicit. The model may thus
parameterize latent spaces that do not respect multi-view
geometry. This increases the risk of overfitting, which we
observe empirically, as the baseline snaps to nearest neigh-
bors seen during training. While the proposed voxel embed-

ding is memory hungry, it is very parameter efficient. The
use of 3D convolutions means that the parameter count is
independent of the voxel grid size. Giving up spatial struc-
ture means Worrell et al. [60] abandon convolutions and use
fully connected layers. However, to achieve the same latent
space size of 323 x 64 features would necessitate more than
4.4 - 10'2 parameters between just the fully connected lay-
ers before and after the feature transformation layer, which
is infeasible. In contrast, the proposed 3D inpainting net-
work only has 1.7-107 parameters, five orders of magnitude
less. To address memory inefficiency, the dense grid may be
replaced by a sparse alternative in the future.

Occlusion Reasoning and Interpretability An essential
part of the rendering pipeline is the depth test. Similarly,
the rendering network ought to be able to reason about oc-
clusions when regressing the output view. A naive approach
might flatten the depth dimension of the canonical camera
volume and subsequently reduce the number of features us-
ing a series of 2D convolutions. This leads to a drastic in-
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Ground Truth With Occlusion Net.

No Occlusion Net.
— 3

v
Figure 5: The occlusion module is critical to model performance.
It boosts performance from 23.26dB to 28.42dB (cube), and from
30.02dB to 32.35dB (pedestal). Left: ground truth view and depth
map. Center: view generated with the occlusion module and
learned depth map (64 x 64 pixels). Note that the object back-
ground is unconstrained in the depth map and may differ from
ground truth. Right: without the occlusion module, the occluded,
blue side of the cube (see Fig. 4) “shines through”, and severe arti-
facts appear (see inset). In addition to decreasing parameter count

and boosting performance, the occlusion module generates depth
maps fully unsupervised, demonstrating 3D reasoning.

crease in the number of network parameters. At training
time, this further allows the network to combine features
from several depths equally to regress on pixel colors in
the target view. At inference time, this results in severe ar-
tifacts and occluded parts of the object “shining through”
(see Fig. 5). Our occlusion network forces learning to use
a softmax-weighted sum of voxels along each ray, which
penalizes combining voxels from several depths. As a re-
sult, novel views generated by the network with the occlu-
sion module perform much more favorably at test time, as
demonstrated in Fig. 5, than networks without the occlusion
module. The depth map generated by the occlusion model
further demonstrates that the proposed model indeed learns
the 3D structure of the scene. We note that the depth map is
learned in a fully unsupervised manner and arises out of the
pure necessity of picking the most relevant voxel. Please see
the supplement for more examples of learned depth maps.

Novel View Synthesis for Real Captures We train our
network on real captures obtained with a DSLR camera.
Camera poses, intrinsic camera parameters and keypoint
point clouds are obtained via sparse bundle adjustment. The
voxel grid origin is set to the respective point cloud’s center
of gravity. Voxel grid resolution is set to 64. Each voxel
stores 8 feature channels. Test trajectories are obtained by
linearly interpolating two randomly chosen training poses.
Scenes depict a drinking fountain, two busts, a globe, and a
bag of coffee. See Fig. 6 for example model outputs. The
drinking fountain and the globe have noticeable speculari-
ties, which are handled gracefully. While the coffee bag is

P

Figure 6: Novel views of real captures. Please refer to the video
for full sequences with nearest neighbor comparisons.

i

generally represented faithfully, inconsistencies appear on
its highly specular surface. Generally, results are of high
quality, and only details that are significantly smaller than
a single voxel, such as the tiles in the sink of the fountain,
show artifacts. Please refer to the supplemental video for
detailed results as well as a nearest-neighbor baseline.

5. Limitations

Although we have demonstrated high-quality view syn-
thesis results for a variety of challenging scenes, the pro-
posed approach still has limitations that can be tackled in
the future. By construction, the employed 3D volume is
memory inefficient, thus we have to trade local resolution
for spatial extent. The proposed model can be trained with
a voxel resolution of 643 with 8 feature channels, filling
a GPU with 12GB of memory. Future work on sparse
neural networks may replace the dense representation at
the core. Please note, compelling results can already be
achieved with quite small volume resolutions. Synthesiz-
ing images from viewpoints that are significantly different
from the training set, i.e., generalization, is challenging for
all learning-based approaches. While this is also true for
DeepVoxels and detail is lost when viewing scenes from
poses far away from training poses, DeepVoxels generally
deteriorates gracefully and the 3D structure of the scene is
preserved. Please refer to the supplemental material for fail-
ure cases as well as examples of pose extrapolation.

6. Conclusion

We have proposed a novel 3D-structured scene represen-
tation, called DeepVoxels, that encodes the view-dependent
appearance of a 3D scene using only 2D supervision. Our
approach is a first step towards 3D-structured neural scene
representations and the goal of overcoming the fundamental
limitations of existing 2D generative models by introducing
native 3D operations into the network.
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