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Abstract

Recent advances in the field of multiscale representations have spurred the emer-
gence of a new generation of powerful techniques for the efficient analysis of
images and other multidimensional data. These novel techniques enable the
quantification of essential geometric characteristics in complex imaging data
resulting in improved algorithms for image restoration, feature extraction and
classification. We discuss the application of these ideas in neuroscience imaging
and describe a novel method for the accurate and efficient identification of cel-
lular bodies of neurons in multicellular images. This method is instrumental to
the design of a novel algorithm for neuronal tracing.
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1. Introduction

Remarkable advances in fluorescent microscopy during the last decade have
created great opportunities for scientific investigation and discovery in neuro-
science by enabling fast acquisition of large volumes of high-resolution images.

However, to process such data efficiently and take advantage of the wealth of
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information made available by new technologies, there is not only a need of
improved and highly specialized image processing algorithms but also of more
targeted and conceptually innovative strategies to interrogate the data.

To address such challenges, a major interdisciplinary effort is being under-
taken by the scientific community that brings together ideas from mathematics,
statistics and computer science. As a result of this effort, several remarkable ini-
tiatives were launched in recent years aimed at tackling specific image processing
tasks in the field of neuroscience, including neuron segmentation, cell counting
and most prominently digital neuron reconstruction [1, 2, 3, 4, 5]. Digital neu-
ron reconstruction or neuronal tracing requires to automatically reconstruct
neuronal morphology in an image by recovering the graph connectivity of the
neuronal processes and other shape characteristics (e.g., neurite length, neurite
diameter). By tracing neurons and extracting their fundamental morphometric
characteristics, researchers can understand neuronal structure and investigate
fundamental relationships between shape properties and neuronal function. Be-
cause of the complexity of neuron morphology and the low signal-to-noise ratio
found in many images, digital neuron reconstruction is among the most difficult
tasks in computational neuroscience [6]. Despite the progress made in recent
years, significant challenges remain to be solved.

Due to their ability to capture structural information in images, directional
multiscale methods emerged in recent years can be very effective in extracting
and quantifying critical information from images containing complex structures.
The competitive performance of these methods in problems of image denoising
and enhancement has been already demonstrated in the literature. The empha-
sis of this paper is the application of these ideas to quantify morphological prop-
erties of neurons through a geometric descriptor called Directional Ratio. We
provide a novel theoretical analysis to show that this method precisely quantifies
the degree of local anisotropy of indicator functions of planar regions and that
this property can be applied to reliably separate neuronal sub-compartments in
microscopy images. We next discuss how this method for neuronal segmentation

is instrumental to design an innovative algorithm of neuronal tracing. The code
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developed by the authors is released open source and freely available.

The rest of the paper is organized as follows. In Sec. 2, we briefly review the
application of advanced multiscale representations to process fluorescent images
of neurons. In Sec. 3, we analyze the properties of the Directional Ratio and
illustrate its application for the separation of somas and dendrites in fluorescent
images of neurons. We briefly discuss how our method for the separation of
somas and dendrites is applied to designed an improved algorithm for neuron

sorting and tracing.

2. Fluorescent image processing

Fluorescent microscopy plays a fundamental role in neuroscience imaging.
Spectacular advances in microscopy techniques and fluorescent probes during
the last decade have opened remarkable possibilities to monitor neuronal activ-
ity even at single-synapse resolution. Thanks to fluorochromes with separable
spectral properties and infocus image acquisition from selected depths (e.g., via
confocal microscopy) fluorescence imaging enables the simultaneous, multichan-
nel visualization of specific macromolecular constituents of neurons at single cell
level and within brain circuits.

However, processing fluorescent images poses particular challenges due to
low signal-to-noise ratio, unequal staining as well as the complexity of struc-
tures that need to be identified. Such challenges are particularly evident in
the problem of neuronal reconstruction where it is required to recover complex
structures occurring at various scales, including blob-like and tubular structures.

A variety of ideas of have been applied to the task of neuronal reconstruction
as illustrated in recent reviews [4, 6]. Traditional signal processing approaches,
e.g., median filters and morphological operators, often perform poorly in pro-
cessing fluorescent images due to their limitations in recovering edges and deal-
ing with features occurring over multiple scales. To illustrate such challenges,
consider a typical confocal image of cultured neurons in Fig. 1. The image shows

that the application of intensity thresholding (i.e., the separation of points based
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on their pixel intensity) is unable to effectively separate neurons from the back-
ground. In addition, it is not effective at separating cell bodies from neurites
since high intensity values may occur in both locations. We recall that neurons
are the main processing units of the central nervous system. Each neuron con-
sists of a cell body or soma, several processes called dendrites and one long and
thin process called azon. The term neurite is used to refer to either a dendrite

Oor an axoim.

Figure 1: (a) Confocal image of cultured neurons. Each neuron consists of a soma, several
processes called dendrites and one long process called axon. (b) Corresponding intensity

thresholded image and (c) segmented image using an SVM approach with shearlet features.

In Fig. 1(c), we show the segmentation result using a method based on Sup-
port Vector Machines (SVM) [7]. This supervised classification method maps
data by an embedding to a high dimensional Euclidean space R™ and through
this embedding non-linear separation can be achieved using a linear classifier.
Although the implementation of an SVM algorithm is rather simple, very accu-
rate classification can be achieved by building appropriate feature vectors. In
the application shown in Fig. 1(c), feature vectors are based on the shearlet
tranform of the image (using the frequency-based shearlet filters from [8]) and
this choice of feature vectors enables state-of-the-art segmentation performance
for segmentation of fluorescent images of neurons. We refer to [9, 10] for details
about this approach, its performance and the link to the numerical code.

Below, we briefly recall the main properties of the shearlet framework.
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2.1. Sparse image representations by shearlets

Shearlets and curvelets were introduced during the last decade to overcome
limitations of traditional multiscale systems in dealing with multidimensional
data [11, 12, 13]. Both methods consist of systems of well-localized waveforms
defined not only over a range of scales and locations, like wavelets, but also
over multiple orientations and with highly anisotropic shapes. Due to their
high directional sensitivity, they are especially efficient to approximate edges
and other elongated features in images.

In dimension n = 2, shearlets are generated by the action of anisotropic
dilations and shear transformations on a pair of generator functions ¥*) €

L?(R?), v = 1,2, that is,
V(@) = 2520 (BE ATz — k),

for j >0, =29 < ¢ < 2/, k € Z% where Ay = ($9),42 = (29) are the
anisotropic dilation matrices and By = (} 1), By = B} are the shear matrices
(see [14] for details). Hence the indices j, £,k are associated with a range of
scales, orientations and locations, respectively. Curvelets have a different and
slightly more involved construction that involves anisotropic dilations, rotations
and (non-integer) translations [11].

By combining multiscale analysis and high directional sensitivity, shearlets
and curvelets provide highly sparse representations for a large class of mul-
tidimensional data, outperforming conventional wavelets. One can prove that
shearlets or curvelets provide optimally sparse approximations in the model class
of carton-like functions outperforming wavelet-based approximations [11, 15].
Sparsity has implications not only for image restoration [8, 16, 17, 18] since
finding a sparse representation of an image usually entails capturing its domi-
nant structures. As a result, shearlet-based features were recently employed to
identify and quantify geometric characteristics in fluorescent images of neurons
including the quantification of neurite orientations [19] and the segmentation of

neurons [20].



110

115

120

125

130

135

In the next section, we discuss a method for neuronal reconstruction adapting

ideas from the framework of directional multiscale representations.

3. Segmentation of fluorescent images of neurons

We consider here the problem of segmenting images of neurons containing
multiple cells and identifying their main sub-compartments, namely somas and
neurites. A related problem is to sort individual neurons in the image by auto-
matically assigning each neurite to the respective cell. We will focus first on the
easier task of finding and segmenting each soma in the image. We will discuss
next how this is used to address the sorting and tracing problem.

Automated segmentation of somas in fluorescent images of neurons such
as Fig. 1 can be challenging due to the lack of selective markers and that large
variability in shape and size. In fluorescent images of neurons, somas are usually
visualized in the channel marked by the MAP2 (microtubules associated protein
2) antibody staining which is diffusely distributed in both somas and dendrites.
While it is also possible to use a marker to visualized the cell nucleus, this organ
occupies only a relatively small region inside the soma so that also in this case
further processing is needed to separate somas from neurites.

The simplest method for separating the two structures is to threshold the im-
age based on intensity values [21, 22]. However this approach is unreliable since
high-intensity regions are frequently found outside somas as shown in Fig. 1.
Algorithms based on morphological operators perform generally better but are
very sensitive to parameter setting (e.g., size of structuring elements) [23, 24]
and their performance may decrease significantly when images contain multiple
cells and possibly clustered somas [25]. Methods based on machine learning were
also proposed [26] but they require a training stage, making their implementa-
tion computationally more involved and more sensitive to the specific neuronal
subpopulation on which they are trained. To overcome such limitations, the au-
thors of this paper have recently introduced a new geometric descriptor called

Directional Ratio that relies on the geometric notion of local isotropy [27]. This
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method consists in applying this geometric descriptor to a segmented image of
neurons in order to separate somas from neurites and is illustrated in Sec. 3.4.
Numerical studies by the authors in [25] have shown that this method performs
very competitively against other algorithms. Here we provide a proof of concept

of this new method using a simplified mathematical model.

Definition 1. A point x in a region A is a point of isotropy of A at scale s if

there is a ball of radius s/2 centered at x which is entirely contained in A.

Intuitively, in an image containing blob-like and vessel-like regions, we ex-
pect to find a range of scales such that the points of local isotropy points are
located precisely inside the blob-like regions. Hence, somas and neurites could
be separate based on the local isotropy calculated over an appropriate range of

scales.

3.1. Directional Ratio and soma detection

The Directional Ratio was introduced as an algorithmic and practical method
to identify points in an image based on local isotropy properties [10]. For its
definition, we need to consider a collection of multiscale directional filters, that
is, an appropriate set of functions {¢a ¢ : @ > 0,6 € [0,7)} C L*(R?), where a is
a scale parameter and 6 is a directional parameter. Hence the Directional Ratio
of a function f € L?*(R?) at scale a and location p € R? is defined as

minee[o,ﬂ)ﬂf * ¢a,0(p)|}
maX‘gG[o,ﬂ)ﬂf * ¢a,9(p)|}’

D.f(p) = (1)

where
Frnoo) = [ @) uofo— o) do @)

is the convolution of f and ¢, 9. Note that D, f takes values in [0,1].

In a nutshell, the function D, f(p) quantifies the degree of isotropy of f at
a location p and scale a by taking the ratio of the smallest directional filter
response vs the largest one. If the filter response at p is independent of the

direction, then D, f(p) = 1; this indicates that p is a point of local isotropy of
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f at scale a. Points p for which D, f(p) < 1 correspond to locations with a lack
of isotropy at scale a - the closer to 0, the higher the anisotropy.

A very simple choice of filters consists in taking rotated and rescaled ver-
sions of a rectangular window. That is, let ¢ = x¢g, where @ is the rectangle
[-L/2,L/2] x [-1/2,1/2], for a fixed parameter L > 1. Next we define the
multiscale directional rectangular filters ¢q0 = AyRy¢, where Ry denotes the
2D rotation by an angle (—6) and A, is the (anisotropic) dilation operator
Agf(z1,22) = a_prTa]‘(a_lxha_a:m)7 for a fixed « € (0,1]; the parameter o
controls the anisotropy of the scaling being applied (no anisotropy for o = 1,
increasingly more anisotropy as « approaches 0 ). That is, the filter ¢, ¢ is the
indicator function of the oriented rectangular window (), ¢ obtained by rescaling
Q@ by a along the = direction and by a® along the y direction, and next rotating
the resulting rectangle by 6. In this case, the convolution (2) becomes simply

the integration

Frouit) = [ s

where QZ’H denotes the rectangle (), ¢ centered at p.

To assess the theoretical performance of the Directional Ratio for separating
regions of different local isotropy, we examine below its application where f
is the characteristic of a region including (i) a disk and (ii) a long and thin
rectangle - an assumption that makes the analytic computation of (1) easier.
This choice of f is meant as an idealized model of the image of a cell body and
a vessel. While cell bodies found in experimental images can be more elongated
and vessels not necessarily straight, we will show that the predictions of the

theorem hold remarkably well in typical fluorescent images of neurons.

Theorem 1. Let f = xsuny where S is a disk of radius R > 0 and N is a rect-
angle of infinite length and width w, where SON = &. Let the Directional Ratio
be given by (1) with the multiscale directional rectangular filters ¢, ¢ defined as
above.

(a) Assume L > 2w. Then, for any p € N, provided that a > 4w/L and
at=* > 4/L, it follows that D, f(p) < 1/2.
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(b) There exists a range of scales such that for all points p inside the disk of
radius 0.65R concentric with S we have D, f(p) > 1/2.

E 1
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\\ // 3 \\\\ ///
(a) (b)
Figure 2: Computation of the Directional Ratio of the characteristic function of a disk of
radius R and center O at p = (0,y). (a) At small scales, when % < b (case 1 in narrative),

any oriented rectangle @, ¢ is contained inside the disk (here we show two rectangles at scale
a and orientations 0 = 0,7/2). (b) At larger scales, ¢ < & < 2¢—b (case 3 in narrative), the

area of the region of overlap of the disk and Q, ¢ depends on 6.

PRrROOF. (a) Without loss of generality, suppose that the rectangle N is centered
at the origin, with the long axis parallel to the x5 coordinate. We start by

observing that

I/ * Gao(p >| f@p v 4
N |f*¢a 7r/2 IQP (3)

Daf(p) <

We consider first the numerator in (3) and the rectangle Q} , associated with
the filter ¢4,9. Since L > 2w, the integral pr AN dz is the same for any p € N;
a,0

that is, dz = wa®. For the denominator in (3), we observe that the

ng‘onN
integral | Q7 anN dx depends on the value of the first coordinate of p. Its value

is minimized when p = (w/2,z3) (i.e., p at the boundary of N), in which case

fQ = %aL. If a* < w (width of filter less or equal than w), using

a, 7r/2
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the assumption that a > 4w/ L, it follows that, for any p € N

wa® B 2w 1

o) = — < .
Sal oL 2

D, f(p) <

Otherwise, if a® > w (width of filter larger than w), fQZ Ay dr > Fal so

/2

that, using the assumption that a’=% > 4/L, we have

g

a® - 2a% 1

= — < =
salL al 2

D, f(p) <

(b) Without loss of generality, let us assume that the disk S is centered at
the origin and p is located on the vertical axis, i.e., p = (0,y), 0 < y < 0.65R.

Also, let us assume a® < %R. We can write

mingeo,x) fQQ‘eOS dx

Dafp = .
( ) ma'XGG[O,w) fQZ ,NS dz

(4)

If p is at the origin, i.e., y = 0, then fQﬁ,e”S dz is independent of 6 and
hence from (4) we observe that D, f(p) = 1. If p is not at the origin, then let b
and ¢ be given as in Fig. 2(a); that is, they denote the half-length of the longest
vertical and horizontal rectangles, respectively, centered at p and fully contained
inside the disk. We discuss below several cases. Note that, since y < 0.65R and
R > 5a%, it follows that b > a®.

Case 1. % < b. Note that b < ¢. Hence the rectangles QZG of length L are
fully contained inside S for all orientations 6; hence D, f(p) = 1.

Case 2. b < % < ¢. Since b < ¢, the integral sz’enS dz is maximal when
6 = 0 and minimal when 6§ = 7/2. We denote by A, the area of the circular
segment whose lower boundary is the line x5 = b and the upper boundary is the

boundary of the disk S (see Fig. 2(b)). Hence

(b+%)a*+A b 1 A 1

D, = = — .
f(p) Laa* La 2 Laa*™ > 2

Case 3. ¢ < % < 2¢ —b. The integral fQi,eﬁs dx is still minimal when
¢ = m/2 while the maximal response occurs for an angle 0 < 0 < /2.
We consider first the case where # = 0. Denoting by A; the area of region

of intersection of the rectangle Q% ; and the disk S for #1 > ¢ (see Fig. 2(b)) we

10
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have
(b+ “L)a™ + A,

D =
of () 2ca® + 2As

Next we observe that As < da®, where § = \/R2 -(y—-%)- \/R2 -+ %)
We can estimate § as

(%

2ya 2ya® ya

0 < < =
VB -5 Bt y) /Rty

From the last observation, using the fact that b > a® and 2¢ < al, it follows

that

b+ aL)ge 1 2b+al 1 aL + 2a®
Daf(p) Z ( 2 )ao‘ =5 +Z >3 e ya .
2ca® —1—2—9C a® 2 2c+2%a” 2 aL—&—ZEaO‘

(5)

Let y = BR, with 0 < 8 < 1. Observe that R? = (y + %)2 + ¢? so that

AA=R*—(y+ %)2 Hence we can write

2 2R2 2R2 2
y2 2 2/8 o P 2 fﬁ 2 1 po 99 52 B-

The above quantity is less than one if 3 < 0.65. Hence, using the observation

that £ < 1in (5), it follows that D, f(p) > 1.

If @ # 0, then either the rectangle QZ g overlaps the boundary of the disk at
both ends or one of the two ends is fully contained inside the disk. In the first
case, the same estimate used in (5) will imply that D, f(p) > 1. In the second

case, we have
(b+ %F)a* + A

D, = )
U (¢ + “L)a~ + Ay

where ¢ and Ay are shown in Fig. 2(b). Since ¢/ < % and Ay < Ag, arguing

as above we have

(b+%)a* 1 26+al _ 1 aL+2a 1
= - > - > -,
aLa®+As 2 al+%a> "~ 2al+%a> = 2

D.f(p) >

Remark 1. The analysis of part (b) of Theorem 1 can be carried over for larger
values of a but the detailed discussion would become very technical. We note

that, for ‘very large’ values of a, approximately if aL > 4R — 2b, no rectangles

11
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Figure 3: Numerical estimation of the Directional Ratio D, f(p) as a function of the scale
a (measured in pixels) where f is the characteristic function of a disk of radius R centered
at O. We display the result for several locations p = (0,y) where 0.5R < y < R using (a)
rectangular filters and (b) anisotropic Gaussian filters. As predicted by Theorem 1 and 2,
away from the boundary of the disk the values of D, f(p) is above % for a range of scales. To

generate these plots we set R = 200, L = 130 and H = 33 pixels.

Qg,e is contained in S and the directional ratio becomes a constant function of

a, namely

Da(p) = ngﬂomsdx _c
(lp_pr nSd(L'NR.

aym /2

We also remark that the value of y in the proof of Theorem 1(b) such that
D,f(p) > % can be made larger than 0.65R even though one cannot get too
close to R. If p is selected very close to the boundary of S, the value of D, f(p)
can become very small. Figure 3(a) displays the values of Directional Ratio
computed on a synthetic image f = xg where S is a disk of radius R centered
at the origin, as a function of the scale, for representative locations p. The figure
shows that the behavior is consistent with the theoretical prediction and that

1

there exists a range of scales such D,(p) > 5 even for p close to the boundary.

Remark 2. As mentioned above, Theorem 1 is motivated by the problem of
separating neurites from somas in microscopy images. Let us be more specific

about the dimensions found in typical experimental images.

12
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In a primary rat hippocampal neuron — a frequent animal model — a soma
is typically between 10 and 20 pm in diameter, while neurites have diameters
between 0.5 and 1.5 pum [28, 29]. Hence in a typical confocal fluorescent image
such as Figure 1, where resolution is about 0.25 pum per pixel, a soma is about
40 to 80 pixels in diameter and a neurite is about 2 to 6 pixels in diameter.

Below we verify that the assumptions of Theorem 1 are satisfied in typi-
cal images of neurons and show that we can find a range of scales where the
computed values of the Directional Ratio separate somas from neurites. For
simplicity, we assume that o = 1/2.

Based on the dimensions indicated above, we model a neurite as a long
rectangle of width w = 6. Hence, by choosing L = 13 the assumption of
Theorem 1(a) is satisfied and D, f(p) < 1/2 for a > 24/13. Next we model a
soma as a disk S of radius R = 20. According to Theorem 1(b), we need to
impose /a < %, that is, a < 4. Hence, for y = 0.65R, we find that b ~ 0.35R,
¢~ 0.76R so that Case 1 holds for a < 1.08, Case 2 holds for 1.08 < a < 2.34
and Case 3 holds for 2.34 < a < 3.60. For y = 0.50R, we find that b ~ 0.50R,
¢~ 0.87R so that Case 1 holds for a < 1.54, Case 2 for 1.54 < a < 2.68, Case 3
for 2.68 < a < 3.82.

8.2. Multiscale anisotropic Gaussian filters

There are other choices of directional filters in (1) offering other potential ad-
vantages. An important example are the oriented anisotropic Gaussian functions
— a class of functions originally introduced for problems of edge detection [30].
They are obtained by scaling a 2D Gaussian using different factors o7 and o9

in the x1 and x5 directions, respectively, as

1 1 /2% a3
go(x1,w2501,02) = Ym0 exp D) ?'F? )
1 2

and next rotating the coordinate axes by an angle 6, obtaining:

( ) 1 1 [ (w1 cosf + x4 sin 0)?
x1,X2;01,02) = ——
96(%1,T2;01,02 o0y 2 o?
N 54(—33151119—1;1‘20059)2)).
93

13
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One of the most useful properties of these functions is the existence of a very
efficient numerical algorithm to implement their convolution in a separable
form [31]. That is, the convolution with the anisotropic Gaussian gg(x1,x2; 071, 02)
can be expressed as the composition of a 1D convolution with a Gaussian filter
in the x; direction followed by another 1D convolution with a Gaussian filter in

a non-orthogonal direction, namely:

1 1% 1 ¢2
99($17$2;01702)=mexp “552 * €XP 5.7 |
1 ¢

where t = x1 cos ¢ + 2 sin ¢ and ¢ is an appropriate functions of §. We remark
that this property does not hold in the case of rotated rectangular filters since
these functions are not separable except for very special angles of rotation. Ad-
ditionally, one can implement a convolution with a Gaussian using a recursive
approximation. Using these observations one obtains a convolution algorithm
that is numerically accurate and significantly faster than a FFT-based 2D con-
volution! In [25], the authors of this paper have adapted this idea to obtain a
very fast algorithm for the computation of the Directional Ratio. In particular,
they have shown that, for a typical image of 512x512 pixels, the computing time
of the algorithm for soma detection based on the Directional Ratio is reduced
of about a factor of 4 when the 2D convolution of rectangular filters is replaced
by the separable convolution of Gaussian filters (going from 0.86s to 0.21s using
a MacBook with Intel Core i5 2.4GHz processor and 16 GB RAM). Using this
routine, we can detect somas faster than using standard morphological operators
and with much higher accuracy.

Theorem 1 can be carried over to the case of anisotropic Gaussian filters
yielding a similar result. In the statement below, we set o9 = a, where a > 0
is the scale variable and set oy = Ho, = H = a, where H > 1 is a fixed

parameter. We display the plot of the Directional Ratio as a function of the

1For an image of size N x N, convolution implemented by FFT requires log N2 multiplica-
tions per pixel; separable convolution requires only 4L multiplications per pixel, where L X L

is the filter size; separable convolution and recursive approximation improves further [31].

14
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Figure 4: Soma segmentation using Directional Ratio. (a) Confocal image of cultured neurons
stained with soma-dendritic (MAP2) marker. Image size 512x512 pixels (1 pixel = 0.25 pm)
(b) Segmented binary image. (c) Directional Ratio computed inside the segmented region
(white region in Panel B) with values between 0 and 1. For this computation: a = 2,
L = 24. Soma region is obtained by thresholding the Directional Ratio with threshold 0.5 (d)
and next applying the Level Set method (e). Computation is repeated by thresholding the
Directional Ratio with threshold 0.9 (g) and applying the Level Set method (H). Segmented
somas overlapping the segmented image for the two runs of the algorithm are shown in (f)

and (i).
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scale using anisotropic Gaussian filters in Figure 3(b).

Theorem 2. Let f = xsun where S is a disk of radius R > 0 and N is
a rectangle of infinite length and width w, where S "N = &. Let the Di-
rectional Ratio be given by (1) with the multiscale anisotropic Gaussian filters
Pa0(x1,22) = go(21,22;0H, a).

(a) Let M > 0. For anyp € N, if Ma < w < a, provided H > M/0.4 it
follows that D, f(p) < 1/2.

(b) Let H < 40. There exists a range of scales such that for all points p
inside the disk of radius 0.65R concentric with S we have D, f(p) > 1/2.

PROOF. The proof follows the main ideas of Theorem 1. In a nutshell we
will approximate the anisotropic Gaussian function go(21,22;aH,a) with the
characteristic function of the rectangle 4aH x 4a. In the following, it may be

convenient at times to write

ba,0(1,22) = go(21, w23 aH,a) = y(x1,aH) v(x2,a),

1
2o

2
exp(—52z ).
(a) Without loss of generality, suppose that the rectangle N is centered at the

where y(z1,0) =

origin, with the long axis parallel to the zo coordinate. We start by observing

that f
5 buo) f bunle —p)da
Del®) < 15 o~ T Gumpa@ — p)de

The numerator in (6) is maximized when p is on the x5 axis and the denominator

(6)

is minimized when p is on the boundary of the set N; without loss of generality,

we can choose p = (0, 0) for the numerator and p = (—w, 0) for the denominator.

16
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Hence

[ [y (@1, aH) y(x2, a) day dxg
[ [y (@1 +w,a)y(x2,aH) day day
SOy, aH) diy
Iy, (@1, a) day
fow/2 v(21,aH) dxy
Jo (@1, a) day

fow/ZH ’Y(mla a) dry

fow y(z1,a) dry
Using the assumption that Ma < w < a and that M < 0.4H we conclude that

M/2H
JOMPZH o (1, a) day

Jo (@1, a) day

(b) Without loss of generality, we assume that the disk S is centered at the

IN

Do f(p)

2

Daf(p) <2 <

1
5"

origin and p is located on the vertical axis, i.e., p = (0,y), 0 < y < 0.65R.
We also assume R > 20a (note: R > 5(4a)R and compare with R > 5a® in
Theorem 1 ). We can write

minge(o,r) [ Pa,0(r — p) dz
maxge(o,r) [g Pa,0(x —p)de

Daf(p) = (7)

If p is at the origin then [g ¢4 ¢(z — p)de is independent of § and from (7)
it follows that D, f(p) = 1. If p is not at the origin, then let b and ¢ denote
the half-length of the longest vertical and horizontal rectangles, respectively, of
width 409 = 4a centered at p and fully contained inside the disk. With this
understanding, one can interpret Fig. 2 as illustrating the essential support of
the anisotropic Gaussian function, that is, the support accounting of about 95%
of its area.

We discuss below several cases. Note that, since y < 0.65R and R > 20a, it
follows that b > 4a.

Case 1. 2aH < b. We have

_ fs Pa,n2(x —p)dx -
= ol —p)do > /S%,Tr/z(x —p)dx = - Garo(z) dz > 0.9,

where the last inequality is due to the fact the region of integration S+p contains

D, f(p)

the rectangle [—2a, 2a] x [-2aH, 2aH| (recall that o9 = a,01 = aH).
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Case 2. b < 2aH < 2c¢. Since b < ¢, again the integral fs Ga0(x — p)dz is

maximal when § = 0 and minimal when 6 = 7/2 so that

o fs¢a77r/2(x_p) dx 7
= ibeol—p)dz /S%m(w )= | dunja(a)de.

Since b > 4a and 2aH < 2¢ then the rectangle [—2a, 2a] X [-2aH, 4a] is contained

D, f(p)

in the region of integration S + p. Since 2La = 207 and H < 40, then 4a >
0.1Ha = 0.107 and fS+p barj2(x) dr > 1/2.

For 2aH > 2c the integral [g ¢ag(x — p)dz is still minimal when § = /2
while the maximal response occurs for an angle 0 < 6 < 7/2. As a increases
further, however, the angle of maximal response becomes § = 7/2 and the angle
of minimal response § = 0. In fact, for 2aH > R and p inside S, we can think
¢a,0(x —p) and ¢, /2(x — p) as essentially constant along the lines x; = y and

x1 = 0 respectively. As in theorem 1, for 2aH > R we will find that D, (p) ~ &.

8.3. Effect of noise

So far we have analyzed the computation of the Directional Ratio in the
absence of noise. If the image f is corrupted by noise, the value of the Directional
Ratio might be affected due to the impact of noise on the convolution |f *
¢a,0| that could potentially modify the angle 6 at which this quantity attains
its maximum or minimum. We argue below that the effect of the noise is
not expected to be significant because the convolution with a Gaussian (or
rectangular) kernel has the effect of reducing the impact of the noise in the
image.

Let us examine the situation where a digital image f(i,7) with values ¢,j €
N x N is corrupted by additive white Gaussian noise, that is, at each pixel (4, ),
we observe the values

fu(ig) = f(i,5) +n(i, j)

where the noise n(i, j) is i.i.d. with zero mean and standard deviation o,,.

If ¢ is a Gaussian kernel of standard deviation h, the standard deviation
of the noise in f, — f, * ¢ is reduced. Namely, let the number of samples k

of the noise in an interval of size h be k = h/d. Then one can show that the
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standard deviation of the noise (that can be interpreted as the noise amplitude)

is multiplied by k\/lg (cf. Theorem 2.2 in [32]).

Figure 5 shows that the effect of additive white Gaussian noise on the esti-
mation of the Directional Ratio is negligible even for relatively high values of
the standard deviation of the noise. Tests run using Poisson noise (not reported

here) show that also in that case the impact is negligible.

1 : : . 1

0.9 0.9
0.8 e ] S 0.8} 2
N b, ¥ ==
ooy TNE 0rr T
=y o 3
o2 a 2
w067 ~— 0.6
o
= 0.5 0.5
=
204 0.4
3]
2oa 03
& - .
s without noise 0.2 —without noise
- Gaussian noise with sigma =50 | = Gaussian noise with sigma = 50
o Gaussian noise with sigma " 700 1511 Gaussian noise with sigma = 70
Gaussian noise with sigma = 90 —— Gaussian noise with sigma = 90
0 0
1 15 2 2.5 3 3.5 4 1 1.5 2 25 3 35 4
scale a scale a
(a) (b)

Figure 5: Numerical estimation of the Directional Ratio Do f at p = (0,0.9R), as a function
of the scale a measured in pixels, in the presence of noise using (a) Rectangular and (b)
Anisotropic Gaussian filters. The characteristic function f of the disk of radius R centered
at O with amplitude 255 is corrupted by white Gaussian noise with standard deviation o =

50,70,90. Values of R, L, H are set as in Fig. 3.

8.4. Soma segmentation and neurite separation

As described above, the evaluation of the Directional Ratio of an image is
designed to provide quantitative information useful to separate blob-like regions
from vessel-like structures. A direct application of this idea to separate somas
from neurites in an image of a neurons is illustrated in Fig. 4 and consists of

the following steps.

1. Segmentation. The image is first segmented using the SVM method dis-
cussed in Sec. 2 (Fig. 4(b)). This method generates a binary image iden-

tifying a region that contains both somas and neurites.
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2. Directional Ratio. Directional Ratio is computed at an appropriate scale
using as a mask the segmented region computed in step 1 (Fig. 4(c)).

3. Thresholding. The Directional Ratio plot is thresholded using as threshold
value % hence identifying a region corresponding to somas and a comple-

mentary region corresponding to neurites (Fig. 4(d)).

As the figure shows, the method based on the Directional Ratio finds the
somas in the image very reliably. In addition, thanks to the fast implementation
of the anisotropic Gaussian filters, the computing time is faster than standard
morphological operators [25]. This implementation has however some limita-
tions due to the simplifying assumptions of our model. In experimental images,
somas are not necessarily circular but may be rather elongated with irregular
boundaries. To improve the algorithm, a relatively simple refinement consists
in the following modification. Following step 3, possibly with a higher threshold
value (resulting in the detection of a smaller region as shown in Fig. 4(g)), we
apply the classical Level Set algorithm [33] to grow the detected region with a
growth speed controlled by the Directional Ratio. The final result displayed in
Fig. 4(h-i) shows that this refined version of the algorithm segments the somas
with high accuracy. Extensive numerical demonstration of this algorithm includ-
ing a comparison with competing algorithms can be found in [25]; the numerical
code is available at https://github.com/cihanbilge/SomaExtraction.

We remark that the selection of the scale parameter at which to compute
the Directional Ratio can be automatized by estimating the ‘dominant scale’ of

the image using the principles of automated scale selection [25, 34].

3.5. Digital neuron reconstruction

As observed in Sec. 1, despite the significant progress made by the scientific
community, digital neuron reconstruction remains a challenging problem and
existing algorithms have still significant limitations. In particular, even though
there are tracing algorithms that perform competitively, they are typically de-
signed to process images containing single neurons or multiple neurons that are

separated [6, 35, 36]. If multiple cells with non-separated neurons are present,
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these methods are usually unable to automatically sort traces into neuronal
arbors corresponding to individual neurons [37]. As shown in Fig. 4, even in im-
ages of neuronal cultures with relatively low density it is common to see neurites
that appear to overlap. Automatically sorting neuronal trees in these images is

not a trivial problem in general.

o)

Figure 6: Neuronal tracing. (a) Confocal image of cultured neurons labelled with anti-MAP2
antibody and (b) corresponding digital reconstruction where somas are segmented and separate

individual trees are extracted for each neuron.

We outline below a strategy for neuronal tracing that is designed to sort
individual neuronal trees found in two-dimensional images where neurites from
different neurons may overlap. This method relies critically on the soma seg-
mentation method described above as it assigns the root of each neuronal tree
corresponding to the soma location. The algorithm consists of the following

steps:

1. Segmentation and soma detection. This is the algorithm presented in
Sec. 3.4. It identifies somas and neurites.

2. Path initialization. It finds the initial location and orientation of each

path emanating from a soma into a neurite.

3. Tracing. After generating seed points along the neurites using an appro-
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priate distance function, it progressively compute paths along each neurite
emanating from each soma. Intersecting neurites are solved by following

380 the path with minimal change in orientation.

The application of this method to compute individual trees for each neuron in an
image of a neuronal culture is illustrated in Fig. 6, showing that neuronal trees
are accurately separated. The numerical code to generate this image is available
at https://github.com/cihanbilge/AutomatedTreeStructureExtraction.
385 By computing separate traces for each neuron, this algorithm facilitates the
computation of multiple morphometric characteristics corresponding to each
neuron in the image. One main advantage of this approach is that each neu-
rotic trace provides a local coordinate system that is useful to measure local
expression levels of analytes visualized in the fluorescent image by computing
s0 their local intensity. A more detailed description and illustration of this algo-

rithm is beyond the scope of this paper and will be discussed in future work.
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