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Abstract—Security of electric power transmission and distri-
bution systems is currently one of the most challenging issues
due to rising concerns regarding increased cyber-attacks in the
energy sector. In the smart electric power transmission and
distribution system, cyber-attackers are capable of causing large-
scale damage (including blackout). In response to these attacks in
the energy sector, different machine learning based game theory
approaches are used to mimic the complex interactions between
adversaries (the attacker and defender) in a smart electric power
system. Most of the existing works fail to replicate the real-
time interactions by verifying the criticality of the identified
contingencies or by reflecting the attack impacts on the power
system. In this paper, we identify the critical contingencies of an
electric power transmission and distribution system adopting an
adversarial stage game with value iteration. We adjust the defense
strategy from attacker’s learned attack action (eventually reduces
the generation loss) and provide alternative action choices in case
of limited access to the system. Then, we analyze the impact of
the learned attack policies in a simulated power system using the
PowerWorld simulator in two case studies. All the experiments
are conducted on two standard power system test cases (W &
W 6 bus system and IEEE 39 bus system). The effectiveness of
the learned policy is verified by adjusting the defender’s policy
according to the attacker’s learned policy. The simulation results
successfully prove the efficiency of the proposed research in
learning critical contingencies, providing defense strategies, and
replicating the attack impacts on power systems.

Index Terms—Reinforcement learning, Markov decision pro-
cess, defense strategy, adversary, and stage game.

I. INTRODUCTION

earning methods are becoming popular in different fields
L of cyber-physical power system. These fields include
planning, operation, maintenance, control, and security of
the system [1]-[3]. Currently, the vulnerability of the power
system has become significantly important due to the increased
complexity and inter-connectivity of heterogeneous devices.
Several power outage related incidents occurred around the
globe recently, such as in Ukraine, Kenya, Nigeria, and New
York [4], [5]. In 2017, the number of total power outage
events in the United States was 3,526 and affected almost
36.7 million people. Among the different reasons behind these
power outage events, terrorist attack is very crucial. Over
42 international terrorists groups were listed by the United
States Department of State around the world as potential
threats to the United States in 2006. Attackers conducted

approximately 2,500 attacks against transmission lines and
towers in different parts of the globe over the last 10 years [6].
The most frequently attacked element of power transmission
and distribution systems is the power stations. Power stations
have been attacked more than 500 times in the past decade.
According to a recent study conducted by ITIC (information
technology industry council), just 60 minutes of downtime
causes an organization to lose $100,000. In 2017, power
outage events in the United States caused power outages for
284,086 minutes, which is almost equivalent to 197 days [6].
So, the large amount of financial damage we are bearing due
to the power outage events is a major concern for the utility
operators and planners. The advancement in cyber-weapons
is making the power system more vulnerable. Dragonfly,
Dragonfly 2.0, NotPetya, WannaCry, Industroyer, and Stuxnet
are among the modern generation cyber weapons [7]. MadloT
(Manipulation of Demand) is one of the recent advances in the
attack types which manipulates the demand to cause frequency
deviation, cascaded failures, and so on. According to security
experts, we are heading towards a Cyber Pearl Harbor, and
the next 9/11 will be in the energy sector. Considering the
impacts of the cyber-attacks on energy sector, we divide the
power system entities into two groups: the terrorists and the
authorities or the operators. The terrorists intend to attack the
system to cause and maximize damage. On the other hand, the
power system operators aim to protect the system elements
from loss or to reduce the damages. The interactions between
these entities depend on several factors, such as their targets,
accessibility to the information, and their rationality. Game
theory is a useful analytical tool to analyze these complex
interactions between the adversaries. Machine learning can
provide a strong foundation to the formulation and solution
of these game theoretical models in the adversarial networks.
Recently, more research has been attempting to identify the
defense strategy of a cyber-physical power system in response
to the attack actions using game theory and machine learning
[8]-[10].

In [11], the authors implemented a static game theory
solution concept, identified as the Shapley value, to repre-
sent the coalition formation game theory in assessing the
component’s criticality. The authors in [12], implemented a
stochastic game in smart grid security against coordinated



cyber-physical attacks as a two-person zero-sum game. In
[13], the authors replicated the cascading failure attacks in
the smart power system using a stochastic one-shot game.
A two-player game theory-based adversarial framework for a
false data injection attack against power system measurements
is implemented by the authors in [14]. They implemented
a two-player zero-sum game as a one-shot process. In [15],
the authors implemented a multi-stage game between the
adversaries of the system adopting a sequential attack. They
used a reinforcement learning algorithm to solve the game
and provide the attacker’s optimal action choices. So, the
Markov decision processes and game theory have been used
recently for solving problems in the smart grid. Some of the
aforementioned literature uses collaborative environments for
game implementation in the power system. Most of the game
related vulnerability analysis in the literature did not verify the
severity of the attack by adjusting learned action policies of
the attacker. Additionally, they did not consider the limited
accessibility over the systems’ information and alternative
choices of actions. Moreover, the attack impact is rarely
analyzed in the aforementioned literature. These limitations
obstruct the scope of the existing research in analyzing the
vulnerability of the system in the presence of adversaries.

Motivated by the aforementioned literature, our aim is to
recreate some high-impact, low-frequency (HILF) events in
the grid operation. We implement a stage-game (one-shot
game) between the adversaries and propose the solution based
on a reinforcement learning algorithm by identifying optimal
attack strategies (capable of triggering HILF events). We
provide alternative action choices to the attacker in case of
limited access to the system. We further validate the severity
of the identified contingencies by adjusting the defender’s
defense strategy following the attacker’s learned action. We
also illustrate the impact of the learned attack policies in a
simulated power system platform (PowerWorld).

The rest of the paper is organized as follows: Section II
provides detailed explanation and analysis of the benchmark
models, threat and attack model, the attacker-defender two-
person stage game. Section III provides details about the
design parameters of the game, simulation results and analysis.
Finally, we conclude the paper by summarizing the contribu-
tion of the paper in Section IV.

II. PROBLEM FORMULATION AND SOLUTION

In this section, we formulate the gaming framework between
the adversaries in the power system. We solve the formulated
adversarial stage game using a reinforcement learning algo-
rithm. We discuss the test benches, threat and attack model,
and formulation and solution of a two-person stage game
between the adversaries.

A. Benchmark model

The majority of simulation studies related to the power
system are conducted on standard test cases available online.
To conduct the game, W & W 6 bus system, and IEEE 39 bus

system are used as the test systems. These models have the
following configurations:

Table I: System summary of the test systems used to conduct the
adversarial stage game.

W& W6 IEEE 39
bus system  bus system
Total loading capacity (MW) 210 6150
Total transmission lines 11 46
Total bus number 6 39
Total generators 3 10

To create the attack scenario the topological information
is used by the attacker. The threat and attack model will be
explained briefly in the next sub-section.

B. Threat and attack model

We first consider that the cyber-attacker gained access to
the control center of electric power system. It has the limited
ability to switch transmission lines from active to inactive
status (line switching). The threat and attack model is adopted
from [15], [16]. The model starts with initializing the pre-
contingency power flow. By dispatching the pre-contingency
power flow we ensure the n — 1 contingency security of the
system. We apply the contingencies by switching the selected
transmission lines from active status to inactive status. Then
we apply n — k contingencies, where k is the order of the
contingencies. After execution of the attack, the simulation is
terminated. Due to the execution of attack, the system may
be separated into multiple islands. Then the generator ramp
rates are varied to adjust the demand and supply. Once the
generators re-dispatch the power flow, the total generation,
>_gec Py is compared to the total demand, 3 ;. , Pu which is
defined by Z where, Z = (3 c5 Py — > _qep Pa > 0). Here,
G and D are the set of generators and load buses, respectively.
If Z > 0, generators in the islands are tripped one by one to
balance the generation and demand. If Z < 0, load shedding
occurs as the multiplication of a scalar quantity, A\, where,
A= ZLG];Z. Then, we apply a standard DC power flow to
check the overloads in the transmission lines. The overloads
are calculated using the formula below:

t+At

Aoy (1, AF) = {Ot (F5(t) = F)dt itf;(6) > J,

, (1
otherwise

Then, we update the relay settings. We use time delayed
overcurrent relays to identify the branches to be tripped due
to overcurrent. The overcurrent threshold is termed as 0;. For
branch j, if the power flow is f; and flow limit is f;, the
outage occurs when concurrent overload o; exceeds the limit

Oj.

C. Attacker-defender two-person stage game using Q-learning

We formulate the game between the adversaries of the
power system as a two-person stage game.
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Figure 1: Attacker defender interactions in a power system repre-
sented by Q-learning.

Figure 1 shows the attacker-defender interaction in the
power system environment represented by a Q-learning frame-
work. Q-learning basically learns the optimal action policies
based on the action execution by the agent and its feedback
from the environment. The adversaries in the power system act
like the agents and the power system itself can be considered
as the environment for learning procedures. The rewards
are the feedback from the environment as a result of the
adversaries’ actions. We use typical reinforcement learning
to learn the optimal action strategies of the adversaries. The
quality of the state of this game is defined by

Q(s,a,d) = R(s,a,d) +7Y_T(s,a,d,s")Va(s') (2)
"

where, @ is the quality of the state s, associated with actions a,
and d. R, represents the reward associated with these actions.
v, represents the discount factor and it ranges from 0 to 1.
T(s,a,d,s"), represents the transition function to transit from
state s to s’ due to the execution of action a and d. This state
transition is considered equal for all the states. The value of
the state for the attacker can be defined by:

Vou(s') = max min Z Q(s',a,d)m(a) 3)

We assume the defender is a passive player and attacker is
the leading player. So, the defender’s action will be fixed
throughout the game and the attacker will learn via a trial
and error process playing against the defender. This problem
can be solved using value iteration [17], [18].

max V,(s")

s.t. Z Q(s,a,d)m > V,(s)
a €SN, 4)
Z m(a) =1
a €SN,
m(a) >0,Va € Sa

The optimal policy can be defined as
7'(s) = argmax Qx (s, a, d) 5)

We update the probabilities of the state-action pairs following
the formula below
C(s,a,d)

Pr(s,a,d) «+
ZaeA,dED C(Sa a, d)

(6)

where, C(s,a,d) represents the number of times state s is
visited by the agent (the attacker) while taking action a € A.
This probability is calculated based on the frequency of that
specific state action pairs visited. The attacker’s mixed strategy
for a given state s will be:

wa(s) =[Pr{a(s) =a1},...,Pr{a(s) =an}] (7)

where
N
Z Pr{a(s) = a;}
i=1

Here Pr{a(s) = a;} is the probability of choosing attack

action a; in state s € Sa. ma(s) is the probability distribution
over the attacker’s action space associated with state s.

=1 (8)

III. SIMULATION STUDIES

The simulation is conducted using MATLAB R2018a on a
standard PC with an Intel(R) i7-6700 CPU running at 3.40GHz
and 24.0 GB RAM.

A. Design parameters

In this subsection, we describe the design parameters for
the adversarial stage game in cyber-physical power system
security.

The collection of targets for the adversaries are termed
as attack and defense sets. In this game, the attacker is an
active player and the defender is a passive player. We use line
switching attack as the attack scheme of this game. So, both
the adversaries’ target sets will consists of the transmission
lines from the test systems. The attacker’s target set can be
represented by
s Tn} ©))
where x,, represents the n'”* transmission line among the tar-
gets of the attacker in the test system. Similarly, the defender’s
target set can be represented by

Sd:{ylay27"'7ym} (10)

where 7/, represents the m!" transmission line among the
targets of the defenders in the test system. After each attack-
defense action execution, the reward is assigned as the feed-
back from the environment (the power system). The reward
is defined as the generation loss due to the attack-defense
actions in the power system. The target of the attacker is to
maximize the generation loss of the system while the defender
is trying to minimize generation loss with its passive defense
policy. The value of « close to zero ensures that the agent
will focus on short term/immediate reward. And the value of
v close to 1 ensures that the agent will focus on long term
reward (future reward). In this game, we consider the value
of 7 as 0.9. So, the agent will focus on long term reward
rather than immediate reward. The exploration and exploitation
probability is represented by e. It ranges from zero to one. It
represents how much of the total iterations the agent (learning)
will explore and how much it will follow optimal policy. The
value of ¢ initially starts with a relatively large number. Then
it gradually reduces to a very small positive value (final €)
close to zero. We use generation loss as the immediate reward
of an action.

Sa = {$1,$2,...



B. Simulation results

In this subsection, we conduct some case studies for stage
game between the power system adversaries.

1) Case study 1 (W & W 6 bus system): In this case
study, we conduct the stage game between the adversaries
in W & W 6 bus system. The system has 6 buses and 11
transmission lines. So, the defender’s defense policy will be
fixed throughout the game. First, we randomly assume that the
defender is defending transmission line 1. We further assume
that the defended transmission line cannot be attacked.
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Figure 2: Cumulative sum of future rewards of the attacker in
the adversarial stage game. The defender is defending a randomly
predefined transmission line (transmission line 1).

Figure 2 shows the cumulative sum of future rewards (Q-
values) for the adversarial stage game conducted between the
adversaries. The attacker conducts the game for 1000 iterations
for learning through a trial and error process. From the
figure, we can see that after 400 iterations the learning agent
converges to it’s optimal policy. The agent follows equation
(6) to update the probabilities of these action selections.
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Figure 3: Probability update for all the transmission lines to be
selected as an action. The green curve shows the probability update
of transmission line 5. The initial oscillation in probability updating
of the transmission lines represents the random exploration of the
action selection by the attacker.

Figure 3 shows the probability update of the transmission
lines of W & W 6 bus system to be selected as an attack
action. From this figure, we can see that the probability
of transmission line 5 to be selected as an attack action
increases after enough exploration (after 400 iterations). The
initial oscillations of the probabilities of the transmission lines
happens due to the random action selection of the agents

during the learning process (exploration). On the other hand,
the probabilities of the other transmission lines to be selected
as attack actions (optimal actions) drop while following the
greedy policy.
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Figure 4: Action selection probabilities for the transmission lines
of W & W 6 bus system. Transmission line 5 has the higher
probability to be selected as an action while the defender is defending
transmission line 1.

Figure 4 shows the probabilities of the transmission lines for
action selection. From this figure, we can see that transmission
line 5 has the highest probability to be selected as an attack
action while the defender is defending transmission line 1. In
practical life, it may happen that, after triggering the attack the
transmission line is reinforced due to the protection scheme
of the system or that specific transmission line or area is
connected to distributed energy resources (DER). In that case,
attacking on that transmission line will not be successful. In
any of these cases, if transmission line 5 is not accessible,
connected to DER or reinforced, the attacker will attack
the transmission line with the next highest probability. If
transmission line 5 is inaccessible, the next highest probability
goes with transmission line 4 or 11 which is 0.043. So, the
attacker will select these transmission lines as the attack action.
Next, we consider that learning the most critical transmission
line of W & W 6 bus system, we adjust the defense policy of
the defender. Now, the defender will protect transmission line
5. With this new defense policy, we conduct the game again.
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Figure 5: Cumulative sum of future rewards of the attacker in the
adversarial stage game with the adjusted defender’s policy in W &
W 6 bus system. The sum of future rewards reduces as we adjust the
defender’s policy according to the attacker’s learned action policy.
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Figure 5 shows the cumulative sum of future rewards for
the attacker. Compared to Figure 2, the adjusted policy has
lower value of cumulative sum of future rewards (generation
loss is reduced).
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Figure 6: Action selection probabilities for the transmission lines
of W & W 6 bus system with the adjusted defender’s policy. As
the defender is defending transmission line 5 (adjusted), the attacker
selects the next most critical transmission line (transmission line 3
to attack.)

Figure 6 shows the action selection probabilities of the
transmission lines of W & W 6 bus system with the adjusted
defender’s policy. So, according to this figure, while the
defender is defending transmission line 5, the attacker will
attack transmission line 3.

2) Case study 2 (IEEE 39 bus system): In this subsection,
we use IEEE 39 bus as the test system to conduct the
adversarial stage game and then we analyze the impact of
the attack on a simulated power system using the PowerWorld
simulator. First, we conduct the stage game on the IEEE 39
bus system to identify the most vulnerable branch/branches
from the system.
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Figure 7: Action selection probabilities for the transmission lines

of IEEE 39 bus system. The defender’s pre-defined action policy
is transmission line 5.

Figure 7 shows the action selection probabilities for an
adversarial stage game in the IEEE 39 bus system. From
this figure, we can see that transmission line 37 has the
highest probability to be selected as an action by the attacker.
From several runs, we found that there are actually three
transmission lines most vulnerable in the IEEE 39 bus system.
They are transmission line 8, 12, and 37. And the selection
probability of this transmission lines is 0.614.
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Figure 8: Probability update of the attacker’s action selection proba-
bilities for the IEEE 39 bus system. The randomly predefined defense
action is transmission line 5. The red curve shows the probability
update of transmission line 37 to be selected as the attack action.

Figure 8 shows the updating of the probabilities via trial and
error in the learning process. Switching transmission line 37
will cause cascaded failure of several transmission lines (lines
12, 8, 5, 21, 18, 4, and 31). This attack also creates multiple
sub-grids from different buses, such as bus 10, 14, 25, and 31
divides into 2, 3, 4, and 5 sub-grids, respectively. There are
more buses that divide into multiple sub-grids. Now we move
forward to the PowerWorld simulator to observe the impact of
the transmission line attack in the simulated power system. We
conduct the simulation for 3 seconds and assume the attack
happens at 1.5 seconds. We attack transmission line 37 as the
target. Transmission line 37 is connecting bus 6 and bus 31.
Due to the attack, transmission line 6 opens from both ends.
For evaluation of the impact, we consider voltage violation as
the index. Several references reported different voltage limits
[19], [20]. We assume the voltage limit for bus voltages in per
unit is 0.9 to 1.1.
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Figure 9: Bus voltages at bus 6 and bus 31.

Figure 9 shows the bus voltages at bus 6 and bus 31. Voltage
at bus 6 drops from 1.074 to 1.003, which is within the range.
But, voltage at bus 31 rises from 0.982 to 1.301, which is
above the upper limit of the voltages (p.u.). So, bus 31 violates
the voltage limit. Figure 10 shows the generation and load
change before and after switching transmission line 37 in IEEE
39 bus system. The attack over transmission line 37 reduces
the generation and load of the system by creating disturbances
in the system.
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before and after the attack. Both units are in MW.

Figure 11 shows the line current flow (p.u.) in transmission
line 37. The figure shows that the current drops to zero at 1.5
seconds due to the initiation of the attack.
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Figure 11: Line current at transmission line 37 of IEEE 39 bus

system.

Apart from the impacts on the bus voltages and generations,
the frequency of the system also becomes unstable due to the
attacks. According to the European Network of Transmission
System Operators for Electricity (ENTSOE) standards, if
the frequency of the European grid goes beyond the range
[47.5Hz - 51.5H 2], the system can hardly avoid a blackout.

IV. CONCLUSION AND DISCUSSION

Learning based vulnerability identification and defense
strategy formulation is becoming very crucial. In this paper, we
implement a stage game between the adversaries of the power
system and identify the critical elements of that power system.
In case study I, we identify the critical transmission line of
the W & W 6 bus system, provide alternative action choices
for the attacker and further prove that timely adjustment of
the defense strategy from the learned attack actions reduces
the system loss. In case study II, we identify the critical
elements of the IEEE 39 bus system and further analyze the
impact of the attack in the power system using the PowerWorld
simulator. These outcomes of the case studies will provide
clear insight for learning the defense strategy in the adversarial
grid environment.
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