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Abstract—Security of electric power transmission and distri-
bution systems is currently one of the most challenging issues
due to rising concerns regarding increased cyber-attacks in the
energy sector. In the smart electric power transmission and
distribution system, cyber-attackers are capable of causing large-
scale damage (including blackout). In response to these attacks in
the energy sector, different machine learning based game theory
approaches are used to mimic the complex interactions between
adversaries (the attacker and defender) in a smart electric power
system. Most of the existing works fail to replicate the real-
time interactions by verifying the criticality of the identified
contingencies or by reflecting the attack impacts on the power
system. In this paper, we identify the critical contingencies of an
electric power transmission and distribution system adopting an
adversarial stage game with value iteration. We adjust the defense
strategy from attacker’s learned attack action (eventually reduces
the generation loss) and provide alternative action choices in case
of limited access to the system. Then, we analyze the impact of
the learned attack policies in a simulated power system using the
PowerWorld simulator in two case studies. All the experiments
are conducted on two standard power system test cases (W &
W 6 bus system and IEEE 39 bus system). The effectiveness of
the learned policy is verified by adjusting the defender’s policy
according to the attacker’s learned policy. The simulation results
successfully prove the efficiency of the proposed research in
learning critical contingencies, providing defense strategies, and
replicating the attack impacts on power systems.

Index Terms—Reinforcement learning, Markov decision pro-
cess, defense strategy, adversary, and stage game.

I. INTRODUCTION

L earning methods are becoming popular in different fields

of cyber-physical power system. These fields include

planning, operation, maintenance, control, and security of

the system [1]–[3]. Currently, the vulnerability of the power

system has become significantly important due to the increased

complexity and inter-connectivity of heterogeneous devices.

Several power outage related incidents occurred around the

globe recently, such as in Ukraine, Kenya, Nigeria, and New

York [4], [5]. In 2017, the number of total power outage

events in the United States was 3, 526 and affected almost

36.7 million people. Among the different reasons behind these

power outage events, terrorist attack is very crucial. Over

42 international terrorists groups were listed by the United

States Department of State around the world as potential

threats to the United States in 2006. Attackers conducted

approximately 2, 500 attacks against transmission lines and

towers in different parts of the globe over the last 10 years [6].

The most frequently attacked element of power transmission

and distribution systems is the power stations. Power stations

have been attacked more than 500 times in the past decade.

According to a recent study conducted by ITIC (information

technology industry council), just 60 minutes of downtime

causes an organization to lose $100, 000. In 2017, power

outage events in the United States caused power outages for

284, 086 minutes, which is almost equivalent to 197 days [6].

So, the large amount of financial damage we are bearing due

to the power outage events is a major concern for the utility

operators and planners. The advancement in cyber-weapons

is making the power system more vulnerable. Dragonfly,

Dragonfly 2.0, NotPetya, WannaCry, Industroyer, and Stuxnet

are among the modern generation cyber weapons [7]. MadIoT

(Manipulation of Demand) is one of the recent advances in the

attack types which manipulates the demand to cause frequency

deviation, cascaded failures, and so on. According to security

experts, we are heading towards a Cyber Pearl Harbor, and

the next 9/11 will be in the energy sector. Considering the

impacts of the cyber-attacks on energy sector, we divide the

power system entities into two groups: the terrorists and the

authorities or the operators. The terrorists intend to attack the

system to cause and maximize damage. On the other hand, the

power system operators aim to protect the system elements

from loss or to reduce the damages. The interactions between

these entities depend on several factors, such as their targets,

accessibility to the information, and their rationality. Game

theory is a useful analytical tool to analyze these complex

interactions between the adversaries. Machine learning can

provide a strong foundation to the formulation and solution

of these game theoretical models in the adversarial networks.

Recently, more research has been attempting to identify the

defense strategy of a cyber-physical power system in response

to the attack actions using game theory and machine learning

[8]–[10].

In [11], the authors implemented a static game theory

solution concept, identified as the Shapley value, to repre-

sent the coalition formation game theory in assessing the

component’s criticality. The authors in [12], implemented a

stochastic game in smart grid security against coordinated



cyber-physical attacks as a two-person zero-sum game. In

[13], the authors replicated the cascading failure attacks in

the smart power system using a stochastic one-shot game.

A two-player game theory-based adversarial framework for a

false data injection attack against power system measurements

is implemented by the authors in [14]. They implemented

a two-player zero-sum game as a one-shot process. In [15],

the authors implemented a multi-stage game between the

adversaries of the system adopting a sequential attack. They

used a reinforcement learning algorithm to solve the game

and provide the attacker’s optimal action choices. So, the

Markov decision processes and game theory have been used

recently for solving problems in the smart grid. Some of the

aforementioned literature uses collaborative environments for

game implementation in the power system. Most of the game

related vulnerability analysis in the literature did not verify the

severity of the attack by adjusting learned action policies of

the attacker. Additionally, they did not consider the limited

accessibility over the systems’ information and alternative

choices of actions. Moreover, the attack impact is rarely

analyzed in the aforementioned literature. These limitations

obstruct the scope of the existing research in analyzing the

vulnerability of the system in the presence of adversaries.

Motivated by the aforementioned literature, our aim is to

recreate some high-impact, low-frequency (HILF) events in

the grid operation. We implement a stage-game (one-shot

game) between the adversaries and propose the solution based

on a reinforcement learning algorithm by identifying optimal

attack strategies (capable of triggering HILF events). We

provide alternative action choices to the attacker in case of

limited access to the system. We further validate the severity

of the identified contingencies by adjusting the defender’s

defense strategy following the attacker’s learned action. We

also illustrate the impact of the learned attack policies in a

simulated power system platform (PowerWorld).

The rest of the paper is organized as follows: Section II

provides detailed explanation and analysis of the benchmark

models, threat and attack model, the attacker-defender two-

person stage game. Section III provides details about the

design parameters of the game, simulation results and analysis.

Finally, we conclude the paper by summarizing the contribu-

tion of the paper in Section IV.

II. PROBLEM FORMULATION AND SOLUTION

In this section, we formulate the gaming framework between

the adversaries in the power system. We solve the formulated

adversarial stage game using a reinforcement learning algo-

rithm. We discuss the test benches, threat and attack model,

and formulation and solution of a two-person stage game

between the adversaries.

A. Benchmark model

The majority of simulation studies related to the power

system are conducted on standard test cases available online.

To conduct the game, W & W 6 bus system, and IEEE 39 bus

system are used as the test systems. These models have the

following configurations:

Table I: System summary of the test systems used to conduct the
adversarial stage game.

W & W 6
bus system

IEEE 39
bus system

Total loading capacity (MW) 210 6150
Total transmission lines 11 46

Total bus number 6 39
Total generators 3 10

To create the attack scenario the topological information

is used by the attacker. The threat and attack model will be

explained briefly in the next sub-section.

B. Threat and attack model

We first consider that the cyber-attacker gained access to

the control center of electric power system. It has the limited

ability to switch transmission lines from active to inactive

status (line switching). The threat and attack model is adopted

from [15], [16]. The model starts with initializing the pre-

contingency power flow. By dispatching the pre-contingency

power flow we ensure the n − 1 contingency security of the

system. We apply the contingencies by switching the selected

transmission lines from active status to inactive status. Then

we apply n − k contingencies, where k is the order of the

contingencies. After execution of the attack, the simulation is

terminated. Due to the execution of attack, the system may

be separated into multiple islands. Then the generator ramp

rates are varied to adjust the demand and supply. Once the

generators re-dispatch the power flow, the total generation,∑
g∈G Pg is compared to the total demand,

∑
d∈D Pd which is

defined by Z where, Z = (
∑

g∈G Pg −
∑

d∈D Pd > 0). Here,

G and D are the set of generators and load buses, respectively.

If Z > 0, generators in the islands are tripped one by one to

balance the generation and demand. If Z < 0, load shedding

occurs as the multiplication of a scalar quantity, λ, where,

λ =
∑

g∈G Pg
∑

d∈D Pd
. Then, we apply a standard DC power flow to

check the overloads in the transmission lines. The overloads

are calculated using the formula below:

Δoj(t,Δt) =

{∫ t+Δt

t
(fj(t)− f̄j)dt iffj(t) > f̄j

0 otherwise
(1)

Then, we update the relay settings. We use time delayed

overcurrent relays to identify the branches to be tripped due

to overcurrent. The overcurrent threshold is termed as ōj . For

branch j, if the power flow is fj and flow limit is f̄j , the

outage occurs when concurrent overload oj exceeds the limit

ōj .

C. Attacker-defender two-person stage game using Q-learning

We formulate the game between the adversaries of the

power system as a two-person stage game.
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Figure 1: Attacker defender interactions in a power system repre-
sented by Q-learning.

Figure 1 shows the attacker-defender interaction in the

power system environment represented by a Q-learning frame-

work. Q-learning basically learns the optimal action policies

based on the action execution by the agent and its feedback

from the environment. The adversaries in the power system act

like the agents and the power system itself can be considered

as the environment for learning procedures. The rewards

are the feedback from the environment as a result of the

adversaries’ actions. We use typical reinforcement learning

to learn the optimal action strategies of the adversaries. The

quality of the state of this game is defined by

(2)Q(s, a, d) = R(s, a, d) + γ
∑
s′

T (s, a, d, s′)Va(s
′)

where, Q is the quality of the state s, associated with actions a,

and d. R, represents the reward associated with these actions.

γ, represents the discount factor and it ranges from 0 to 1.

T (s, a, d, s′), represents the transition function to transit from

state s to s′ due to the execution of action a and d. This state

transition is considered equal for all the states. The value of

the state for the attacker can be defined by:

(3)Va(s
′) = max

π∈Π
min
d

∑
a

Q(s′, a, d)π(a)

We assume the defender is a passive player and attacker is

the leading player. So, the defender’s action will be fixed

throughout the game and the attacker will learn via a trial

and error process playing against the defender. This problem

can be solved using value iteration [17], [18].

(4)

max
π

Va(s
′)

s.t.
∑

a ∈SNa

Q(s, a, d)π ≥ Va(s
′)

∑
a ∈SNa

π(a) = 1

π(a) ≥ 0, ∀a ∈ SA

The optimal policy can be defined as

(5)π′(s) = argmax
a

Qπ(s, a, d)

We update the probabilities of the state-action pairs following

the formula below

(6)Pr(s, a, d) ← C(s, a, d)∑
a∈A,d∈D C(s, a, d)

where, C(s, a, d) represents the number of times state s is

visited by the agent (the attacker) while taking action a ∈ A.

This probability is calculated based on the frequency of that

specific state action pairs visited. The attacker’s mixed strategy

for a given state s will be:

(7)πA(s) = [Pr{a(s) = a1}, . . . , P r{a(s) = aN}]
where

(8)

N∑
i =1

Pr{a(s) = ai} = 1

Here Pr{a(s) = ai} is the probability of choosing attack

action ai in state s ∈ SA. πA(s) is the probability distribution

over the attacker’s action space associated with state s.

III. SIMULATION STUDIES

The simulation is conducted using MATLAB R2018a on a

standard PC with an Intel(R) i7-6700 CPU running at 3.40GHz

and 24.0 GB RAM.

A. Design parameters
In this subsection, we describe the design parameters for

the adversarial stage game in cyber-physical power system

security.
The collection of targets for the adversaries are termed

as attack and defense sets. In this game, the attacker is an

active player and the defender is a passive player. We use line

switching attack as the attack scheme of this game. So, both

the adversaries’ target sets will consists of the transmission

lines from the test systems. The attacker’s target set can be

represented by
(9)Sa = {x1, x2, . . . , xn}

where xn represents the nth transmission line among the tar-

gets of the attacker in the test system. Similarly, the defender’s

target set can be represented by

(10)Sd = {y1, y2, . . . , ym}
where ym represents the mth transmission line among the

targets of the defenders in the test system. After each attack-

defense action execution, the reward is assigned as the feed-

back from the environment (the power system). The reward

is defined as the generation loss due to the attack-defense

actions in the power system. The target of the attacker is to

maximize the generation loss of the system while the defender

is trying to minimize generation loss with its passive defense

policy. The value of γ close to zero ensures that the agent

will focus on short term/immediate reward. And the value of

γ close to 1 ensures that the agent will focus on long term

reward (future reward). In this game, we consider the value

of γ as 0.9. So, the agent will focus on long term reward

rather than immediate reward. The exploration and exploitation

probability is represented by ε. It ranges from zero to one. It

represents how much of the total iterations the agent (learning)

will explore and how much it will follow optimal policy. The

value of ε initially starts with a relatively large number. Then

it gradually reduces to a very small positive value (final ε)
close to zero. We use generation loss as the immediate reward

of an action.
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B. Simulation results

In this subsection, we conduct some case studies for stage

game between the power system adversaries.

1) Case study 1 (W & W 6 bus system): In this case

study, we conduct the stage game between the adversaries

in W & W 6 bus system. The system has 6 buses and 11

transmission lines. So, the defender’s defense policy will be

fixed throughout the game. First, we randomly assume that the

defender is defending transmission line 1. We further assume

that the defended transmission line cannot be attacked.
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Figure 2: Cumulative sum of future rewards of the attacker in
the adversarial stage game. The defender is defending a randomly
predefined transmission line (transmission line 1).

Figure 2 shows the cumulative sum of future rewards (Q-

values) for the adversarial stage game conducted between the

adversaries. The attacker conducts the game for 1000 iterations

for learning through a trial and error process. From the

figure, we can see that after 400 iterations the learning agent

converges to it’s optimal policy. The agent follows equation

(6) to update the probabilities of these action selections.
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Figure 3: Probability update for all the transmission lines to be
selected as an action. The green curve shows the probability update
of transmission line 5. The initial oscillation in probability updating
of the transmission lines represents the random exploration of the
action selection by the attacker.

Figure 3 shows the probability update of the transmission

lines of W & W 6 bus system to be selected as an attack

action. From this figure, we can see that the probability

of transmission line 5 to be selected as an attack action

increases after enough exploration (after 400 iterations). The

initial oscillations of the probabilities of the transmission lines

happens due to the random action selection of the agents

during the learning process (exploration). On the other hand,

the probabilities of the other transmission lines to be selected

as attack actions (optimal actions) drop while following the

greedy policy.
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Figure 4: Action selection probabilities for the transmission lines
of W & W 6 bus system. Transmission line 5 has the higher
probability to be selected as an action while the defender is defending
transmission line 1.

Figure 4 shows the probabilities of the transmission lines for

action selection. From this figure, we can see that transmission

line 5 has the highest probability to be selected as an attack

action while the defender is defending transmission line 1. In

practical life, it may happen that, after triggering the attack the

transmission line is reinforced due to the protection scheme

of the system or that specific transmission line or area is

connected to distributed energy resources (DER). In that case,

attacking on that transmission line will not be successful. In

any of these cases, if transmission line 5 is not accessible,

connected to DER or reinforced, the attacker will attack

the transmission line with the next highest probability. If

transmission line 5 is inaccessible, the next highest probability

goes with transmission line 4 or 11 which is 0.043. So, the

attacker will select these transmission lines as the attack action.

Next, we consider that learning the most critical transmission

line of W & W 6 bus system, we adjust the defense policy of

the defender. Now, the defender will protect transmission line

5. With this new defense policy, we conduct the game again.
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Figure 5: Cumulative sum of future rewards of the attacker in the
adversarial stage game with the adjusted defender’s policy in W &
W 6 bus system. The sum of future rewards reduces as we adjust the
defender’s policy according to the attacker’s learned action policy.
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Figure 5 shows the cumulative sum of future rewards for

the attacker. Compared to Figure 2, the adjusted policy has

lower value of cumulative sum of future rewards (generation

loss is reduced).
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Figure 6: Action selection probabilities for the transmission lines
of W & W 6 bus system with the adjusted defender’s policy. As
the defender is defending transmission line 5 (adjusted), the attacker
selects the next most critical transmission line (transmission line 3
to attack.)

Figure 6 shows the action selection probabilities of the

transmission lines of W & W 6 bus system with the adjusted

defender’s policy. So, according to this figure, while the

defender is defending transmission line 5, the attacker will

attack transmission line 3.
2) Case study 2 (IEEE 39 bus system): In this subsection,

we use IEEE 39 bus as the test system to conduct the

adversarial stage game and then we analyze the impact of

the attack on a simulated power system using the PowerWorld

simulator. First, we conduct the stage game on the IEEE 39
bus system to identify the most vulnerable branch/branches

from the system.
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Figure 7: Action selection probabilities for the transmission lines
of IEEE 39 bus system. The defender’s pre-defined action policy
is transmission line 5.

Figure 7 shows the action selection probabilities for an

adversarial stage game in the IEEE 39 bus system. From

this figure, we can see that transmission line 37 has the

highest probability to be selected as an action by the attacker.

From several runs, we found that there are actually three

transmission lines most vulnerable in the IEEE 39 bus system.

They are transmission line 8, 12, and 37. And the selection

probability of this transmission lines is 0.614.
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Figure 8: Probability update of the attacker’s action selection proba-
bilities for the IEEE 39 bus system. The randomly predefined defense
action is transmission line 5. The red curve shows the probability
update of transmission line 37 to be selected as the attack action.

Figure 8 shows the updating of the probabilities via trial and

error in the learning process. Switching transmission line 37
will cause cascaded failure of several transmission lines (lines

12, 8, 5, 21, 18, 4, and 31). This attack also creates multiple

sub-grids from different buses, such as bus 10, 14, 25, and 31
divides into 2, 3, 4, and 5 sub-grids, respectively. There are

more buses that divide into multiple sub-grids. Now we move

forward to the PowerWorld simulator to observe the impact of

the transmission line attack in the simulated power system. We

conduct the simulation for 3 seconds and assume the attack

happens at 1.5 seconds. We attack transmission line 37 as the

target. Transmission line 37 is connecting bus 6 and bus 31.

Due to the attack, transmission line 6 opens from both ends.

For evaluation of the impact, we consider voltage violation as

the index. Several references reported different voltage limits

[19], [20]. We assume the voltage limit for bus voltages in per

unit is 0.9 to 1.1.
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Figure 9: Bus voltages at bus 6 and bus 31.

Figure 9 shows the bus voltages at bus 6 and bus 31. Voltage

at bus 6 drops from 1.074 to 1.003, which is within the range.

But, voltage at bus 31 rises from 0.982 to 1.301, which is

above the upper limit of the voltages (p.u.). So, bus 31 violates

the voltage limit. Figure 10 shows the generation and load

change before and after switching transmission line 37 in IEEE

39 bus system. The attack over transmission line 37 reduces

the generation and load of the system by creating disturbances

in the system.
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Figure 10: Total generation and load change for IEEE 39 bus system
before and after the attack. Both units are in MW.

Figure 11 shows the line current flow (p.u.) in transmission

line 37. The figure shows that the current drops to zero at 1.5
seconds due to the initiation of the attack.
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Figure 11: Line current at transmission line 37 of IEEE 39 bus
system.

Apart from the impacts on the bus voltages and generations,

the frequency of the system also becomes unstable due to the

attacks. According to the European Network of Transmission

System Operators for Electricity (ENTSOE) standards, if

the frequency of the European grid goes beyond the range

[47.5Hz - 51.5Hz], the system can hardly avoid a blackout.

IV. CONCLUSION AND DISCUSSION

Learning based vulnerability identification and defense

strategy formulation is becoming very crucial. In this paper, we

implement a stage game between the adversaries of the power

system and identify the critical elements of that power system.

In case study I, we identify the critical transmission line of

the W & W 6 bus system, provide alternative action choices

for the attacker and further prove that timely adjustment of

the defense strategy from the learned attack actions reduces

the system loss. In case study II, we identify the critical

elements of the IEEE 39 bus system and further analyze the

impact of the attack in the power system using the PowerWorld

simulator. These outcomes of the case studies will provide

clear insight for learning the defense strategy in the adversarial

grid environment.
ACKNOWLEDGMENT

This work is supported in part by National Science Foun-

dation under grant #OIA−1833005 and #ECCS−1726964.

REFERENCES

[1] M. Esmalifalak, L. Liu, N. Nguyen, R. Zheng, and Z. Han, “Detecting
stealthy false data injection using machine learning in smart grid,” IEEE
Systems Journal, vol. 11, pp. 1644–1652, Sep. 2017.

[2] D. S. Terzi, B. Arslan, and S. Sagiroglu, “Smart grid security evaluation
with a big data use case,” in 2018 IEEE 12th International Conference
on Compatibility, Power Electronics and Power Engineering (CPE-
POWERENG 2018), pp. 1–6, April 2018.

[3] Z. Zheng, Y. Yang, X. Niu, H. Dai, and Y. Zhou, “Wide and deep
convolutional neural networks for electricity-theft detection to secure
smart grids,” IEEE Transactions on Industrial Informatics, vol. 14,
pp. 1606–1615, April 2018.

[4] V. Africa, NIGERIA: TOTAL BLACKOUT AS POWER
GRID COLLAPSES, June 2018 (accessed November 28,
2018). Available at: https://alternativeafrica.com/2018/06/16/
nigeria-total-blackout-as-power-grid-collapses.

[5] P. Fairley, Averting the Blackout of the Century, March 2016 (accessed
November 28, 2018). Available at: http://discovermagazine.com/2016/
march/15-blackout-of-the-century/.

[6] EATON, Blackout Tracker, 2017 (accessed November 2,
2018). Available at: http://electricalsector.eaton.com/forms/
BlackoutTrackerAnnualReport.

[7] S. Rolley, A foreign entity has breached the US
power grid, September 2017 (accessed November 28,
2018). Available at: http://willcountynews.com/2017/09/09/
a-foreign-entity-has-breached-the-us-power-grid/.

[8] S. Paul and Z. Ni, “A study of linear programming and reinforcement
learning for one-shot game in smart grid security,” in 2018 International
Joint Conference on Neural Networks (IJCNN), pp. 1–8, July 2018.

[9] M. Touhiduzzaman, A. Hahn, and A. Srivastava, “A diversity-based
substation cyber defense strategy utilizing coloring games,” IEEE Trans-
actions on Smart Grid, pp. 1–1, 2018.

[10] Z. Ni, S. Paul, X. Zhong, and Q. Wei, “A reinforcement learning
approach for sequential decision-making process of attacks in smart
grid,” in 2017 IEEE Symposium Series on Computational Intelligence
(SSCI), pp. 1–8, Nov 2017.

[11] F. Pourahmadi, M. Fotuhi-Firuzabad, and P. Dehghanian, “Application
of game theory in reliability-centered maintenance of electric power
systems,” IEEE Transactions on Industry Applications, vol. 53, pp. 936–
946, March 2017.

[12] L. Wei, A. I. Sarwat, W. Saad, and S. Biswas, “Stochastic games for
power grid protection against coordinated cyber-physical attacks,” IEEE
Transactions on Smart Grid, vol. 9, pp. 684–694, March 2018.

[13] W. Liao, S. Salinas, M. Li, P. Li, and K. A. Loparo, “Cascading failure
attacks in the power system: A stochastic game perspective,” IEEE
Internet of Things Journal, vol. 4, pp. 2247–2259, Dec 2017.

[14] Q. Wang, W. Tai, Y. Tang, M. Ni, and S. You, “A two-layer game
theoretical attack-defense model for a false data injection attack against
power systems,” International Journal of Electrical Power & Energy
Systems, vol. 104, pp. 169 – 177, 2019.

[15] Z. Ni and S. Paul, “A multistage game in smart grid security: A
reinforcement learning solution,” IEEE Transactions on Neural Networks
and Learning Systems, pp. 1–12, 2019.

[16] M. J. Eppstein and P. D. H. Hines, “A random chemistry algorithm for
identifying collections of multiple contingencies that initiate cascading
failure,” IEEE Transactions on Power Systems, vol. 27, pp. 1698–1705,
Aug 2012.

[17] C. Y. T. Ma, D. K. Y. Yau, X. Lou, and N. S. V. Rao, “Markov game
analysis for attack-defense of power networks under possible misinfor-
mation,” IEEE Transactions on Power Systems, vol. 28, pp. 1676–1686,
May 2013.

[18] Y. Xiang and L. Wang, “A game-theoretic study of load redistribution
attack and defense in power systems,” Electric Power Systems Research,
vol. 151, pp. 12 – 25, 2017.

[19] S. R. Islam, D. Sutanto, and K. M. Muttaqi, “A decentralized multi-agent
based voltage control for catastrophic disturbances in a power system,”
in 2013 IEEE Industry Applications Society Annual Meeting, pp. 1–8,
Oct 2013.

[20] S. Satsangi, A. Saini, and A. Saraswat, “Clustering based voltage control
areas for localized reactive power management in deregulated power
system,” 2012.

6


