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ABSTRACT

Water turbidity is a frequent impediment for achieving satisfactory imaging clarity in
underwater video and inhibits the extraction of information concerning the condition of
submerged structures. Ports, rivers, lakes and inland waterways are notoriously difficult spots
for camera inspections due to poor visibility. This problem motivated us to study methods to
extract a cleaner image /video from the one acquired in an almost real-time setting (delay of the
order of 6-7 secs). This type of problem arises in image post-processing as an illumination
neutralization problem and, it can also be viewed as a blind deconvolution problem. We present
a method which enables the derivation of a cleaner image from a poor visibility original by
means of a combination of linear and non-linear deterministic mathematical transformations for
illumination neutralization implementable in almost real-time on GPUs. Real time visibility
improvement for marine and water environments is a suite of algorithms aiming to restore the
visibility of images and videos acquired under the surface of every water body utilizing our
illumination neutralization method. We are currently transitioning from an academic
algorithmic suite to a product we will call AAZvision (ALSvsion) from the Homerian Greek word
AAX which means sea. Upon completion of the project, the GUI will enable the view of the
original camera feed and of the visibility improved video side-by-side. This software is not
intended to replace the original video feed, but to offer guidance for interpreting it. AAXvision
can be used for a variety of visual inspections in marine and offshore industries. The method we
present also works for visibility restoration in still images or videos acquired in poor
atmospheric conditions such as fog, haze, smoke or with insufficient illumination. One of our
main contributions is the development of a mathematical theory which enables the derivation of
results showing that lines and textures significant for the identification of structures and of
structural problems are made visible as they appear in an image or video acquired in good
imaging conditions.

Keywords: Underwater video, water turbidity, illumination, singularity enhancement, visibility
improvement, compression
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1 INTRODUCTION, PROBLEM STATEMENT AND, STATE-OF-THE-ART

Water with or without suspended solid particles are mediums affecting light reflected back to the camera
or directly sent to it from the light source. This is also true for diluted particles, such as salt. Therefore,
various degrees of water clarity affects image and footage visibility. In this paper we present a new approach
for removing or mitigating the effects of poor footage visibility, even in high water turbidity.

Our starting point, is to treat this problem, as a poor illumination scene problem modeled by the
Lambertian principle of illumination:

Image(f) = luminance(S) x Reflectance(R). (1)

The model postulates that Luminance, S, is the function modeling the energy and spectrum of light rays
carrying the structural information of objects in a scene. These light rays are either reflected (back-scattered)
due to interaction with the surface of an object in a scene, or emitted directly by a light source present in
the scene captured in still photo or video f which is what we see. Luminance is not scene illumination
but it depends on it. All structural properties of objects in a scene, namely edges, curvature of surfaces,
the structural texture of a surface together with its color and consistency determine its natural abilities
to backscatter light. The percentage of light energy a surface can scatter back is called albedo in physics.
When the light from an object is captured by a camera, there are two more factors affecting what the camera
sees, the angle of incidence and the relative angle of the light trajectory backscattered from the object with
respect to the camera axis. These two angles and the object’s albedo determine what we call Reflectance
R. This discussion indicates that R contains all of the geometric and structural information of scene objects
and of their relative placement in the scene (foregroung vs background). Consequently, what we want to
see in an image is R, but, instead, of R we see f. When illumination uniformly and adequately floods the
scene (e.g. flood light) and the medium through which rays travel is vacuum or air with no suspended
particles, we haveideal illumination or S constant at every point of the scene, which we conventionally set
S =1 everywhere. In this case, the amount of light energy reaching the camera depends only on the surface
properties of the object, incident and observation angles and is not be affected by the distance of the object
from the camera plane (as long as this distance is not big). Here, we assume that the distance is such that
does not exceed the distance within which the camera can generate a focused image. These remarks imply
that in underwater imaging, S is not constant. Also, we may say that, poor wvisibility is a condition where
the viewer of f cannot infer the structural information R carries.

Extracting R, when it is not constant, becomes as ill-posed of a problem as solving the equation 10 = zy,
with z,y > 0. However, if someone gives us some idea about the applicable range of  we can find all suitable
y in the previous equation. A similar line of thought is adopted here for extracting an approximation of
Reflectance containing all pertinent information from Eq. (1). However, this task is not easy. A commonly
used assumption is that there exists a linear basis of functions with respect to which the expansion of S is
sparse, while R has different sparsity properties, if represented by the same basis. Leveraging the different
sparsity properties of S and R we develop a new method and a new mathematical line of thought to address
the problem of extracting this informative approximation of R given f.

Only the key ideas of this method are presented in this paper in a format suitable for a technically
educated yet, not mathematically savy audience. Our method is numerically efficient, faster than other state
of the art best performers. Also, our approach is general enough to work even when significant turbidity
degrades the visibility of underwater images and footage. We demonstrate, that even in these conditions,
our method can be used to improve the visibility of underwater images and footage to the point that a lot of
useful structural information can be inferred with the side by side analysis of original and improved footage.
We also give indications why our method is suitable for real-time visibility improvement of such footage.

Water affects light propagation due to scattering, which is increased by suspended solid particles in the
water. Light absorption is one way this effect manifests. Turbidity is an optical determination of the level of
water clarity. It is caused by a variety of non-soluble particles, e.g clay, sand silt or algae. Suspended particles
are those that have diameter larger than 2um. Anything smaller is considered soluble. Water turbidity is
the amount of light scattered by suspended particles in water. Its opposite, water clarity is measured by
means of Secchi disks. In this case we measure the depth at which such a disk is no longer visible when
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submerged without the use of an external light source but in broad daylight and with no additional light
sources. For a more detailed discussion of water turbidity the reader may refer to (Kemker 2014, Anderson
and Davie 2004). Notably, marine environments have lower turbidity levels than freshwater sources. In fact,
the higher the salinity is, the better clarity becomes (Kemker 2014). The theory we develop establishes that,
under certain assumptions for luminance, we can generate an illumination neutral image which contains all
useful information. Specializing this to underwater video our methods should lead to a neutralization of the
effects of turbidity on S, and, thus to restoration of visibility. Whether the general assumptions we make for
luminance are satisfied by the turbidity modified luminance is not yet known to us. We need experimental
verification of this fact which is part of our future research plans. In this paper we provide preliminary
evidence showing that our method for illumination neutralization is able to restore visibility in underwater
images and video affected by turbidity. This is an indirect proof that turbidity modified luminance obeys
the general assumptions we make for luminance.
Our key contributions are:

1. The proposed approach for illumination neutralization is deterministic, so it is a robustly fast prepro-
cessing unlighting tool.

2. We also build a mathematical framework for illumination neutralization enabling us to show rigorously
that illumination is neutralized while desired information content is preserved.

Several attempts and a lot of analysis has been put into this problem by numerous groups, it still remains
unsolved. The greatest need is for algorithms capable of neutralizing illumination effects in outdoor and other
uncontrollable conditions with real-time speed. Many groups talk about illumination normalization or albedo
extraction. First we avoid the term albedo extraction, because, no one has proposed a concrete and rigorous
mathematical definition of albedo. This term is used to refer to the reflectivity properties of surfaces. The
use of the term normalization leaves open a gap; With respect to what do we normalize illumination? These
ambiguities in the terminology motivate us to coin a new term, illumination neutralization implying that we
attempt to extract from an acquired image another one which is illumination or visibility conditions neutral.
This will be made mathematically concrete in the statement of Definition 2.1.1. Illumination neutralization
algorithms fit in two categories (Ochoa-Villegas et al. 2015): Those that treat the illumination problem as
a relighting one and others which treat it as an wunlighting one. Relighting methods improve similarity of
illumination conditions between gallery and probe images (e.g. (Li et al. 2009, Shim et al. 2008, Guan et al.
2012, Shashua and Riklin-Raviv 2001, Shao et al. 2010)). Unlighting methods (e.g. (Kimmel et al. 2003,
Wang et al. 2014, Guo et al. 2013) utilize Lambertian reflectivity, Eq. (1). The main difference between
the two approaches is that unlighting uses only a single input image, while relighting uses multiple images
of the same scene acquired under non-identical illuminations. Our Illumination Neutralization (IN) fits in
the latter category. Most notably, Retinex theory (Land 1964, Land et al. 1977) is an attempt to explain
color perception by the human visual system lead to a generation of unlighting algorithms. Here we list the
most recent work which unifies most of the previous Retinex approaches (Zosso et al. 2015). Finally, we
do not specifically mention contrast enhancement methods here, because these do not attempt to extract R
from f. There are several popular methods of this sort, such as histogram equalization. However, contrast
enhancement provides a better way to view f by adjusting the range of pixel intensity values when visibility
conditions compromise an image. We will revisit this method in Section 3. The next section is somewhat
theoretical and we expect to be less interesting for the majority of the conference’s audience. The reader can
skip what follows after Eq. (5) and look at the Fig. 1 to get an feeling of how the proposed method works.
The main results of this section are summarized in the Conclusions Section.

2 METHODS: MULTISCALE ILLUMINATION NEUTRALIZATION

2.1 Illumination variation and scene structure

As previously stated, our illumination model is Eq. (1). Obviously R is a scene invariant, because, by default
carries all necessary information, edges, curvature of surfaces and, textures. Deriving R, though is an ill-
posed problem, which we circumvent by proposing to obtain a surrogate of R which carries the information
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content of R which is necessary to uniquely identify a scene. This type of information can be problem or
application specific. Typically edges, curvature of surfaces and, textures are the most common elements the
surrogate of R should contain. Moreover, this surrogate image should not vary with illumination. This leads
us to the next definition:

Definition 2.1.1. lllumination neutralization is a process that allows to extract from an image f a function
r which is representative of the scene depicted in the image f, in the following sense: For a given scale, or
spatial resolution, which is identical to those of f, two different scenes cannot be represented by the same
r. Moreover, for a given scene the corresponding r should remain invariant under all possible luminance
configurations.

The definition and the preceding discussion suggest that we can have surrogates of R which are not
identical to R. Nevertheless, a high fidelity approximation of reflectance can serve as a surrogate of R.
When illumination is ideal S = 1 and f = R. This suggests that surrogates should be, illumination invariant
and close approximations of an f of a given scene acquired in ideal illumination or visibility conditions. This
relaxation of the sought solution allows to solve the problem of illumination neutralization without having
to deal with the fact that it is ill-posed. Below, we summarize the discussion that shows that this type of
solution is the proposed illumination neutralization operator. The rest of this section is a summary of S.
Upadhyay’s thesis (Upadhyay 2014) or in (Upadhyay and Papadakis 2017).

We assume that all acquired images f = SR belong to a compact subset  C R? with non-empty interior,
0<y<R(x)<T<oo,and 0 < 7 < S(x) <1 for every z € Q. The assumptions are physically meaningful
because they ensure that there are no regions in the scene with very small reflectance of light nor do we have
locations entirely dark (no photons back-scattered from them).

2.1.1 Modeling Illumination variation

To formalize the statement that luminance lives mainly in coarse scales and varies slowly we use Campanato
Spaces.

Definition 2.1.2. Let Q be a compact subset of R", 1 < p < 0o and n > 0. A function g is said to be in
Campanato space %, (), if there exists a constant > 0 such that for every n-dimensional cube @ C €2,

/Q 9(t) — gol” dt < 1 Q[ ()

where gg = ﬁ Jo 9(t)dt

If 1 is small the previous definition indicates that, in average, the values of g in a small image patch
point are close to the mean value of g (the p-mean oscillation of g) in this patch and this remains true
as the patch becomes smaller and smaller. The definition also suggests that this property remains true
regardless of the location of the patch. For instance, uniformly continuous functions g would satisfy this
property. Empirically, we have seen though that this formalism works for modeling visibility induced S
in underwater images and footage. However, further experimental investigation is warranted to prove that
turbidity-induced luminance lives in Campanato spaces and which are the parameters n and p determining
those spaces.

We observe that when (n — 1)/p > 0, then the p-mean oscillation of g (the left-hand side in (2)) decays
to zero as |Q] — 0. Therefore, (1 — 1)/p reflects the rate of decay of p-mean oscillations as the scale
increases. The minimum value of 4 satisfying (2) is a semi-norm for the Campanato space .2, ,,(€2) denoted
by || 2, (9. Semi norms generalize the concept of length of a vector. The semi-norm lgll 2, () for a
function is small if the variations in g are locally small. Utilizing these properties we model illumination
variation by a function S : @ — [r, 1] with 7 > 0 in a suitable Campanato space .2, () with sufficiently
small semi-norm and positive (n — 1)/p. Slowly varying luminance regardless of how poor visibility is, still
belongs to a Campanato space identified by a high value of p.




Proceedings of the 23rd Offshore Symposium, February 14th 2018, Houston, Texas
Texas Section of the Society of Naval Architects and Marine Engineers

2.1.2 Modeling scene structures

The structure of a scene of interest contains singular and smooth patches. The former have significant
high frequency content and can either be jump discontinuities or continuous functions with high frequency
oscillations or discontinuous higher order partial derivatives. To generate a faithful surrogate image of a scene
from f, we must preserve this local oscillatory behavior. In practical terms, locally, all around an image we
want to recover the degree of “sharpness” of various edges describing structures in the imaged scene. To be
able to assess that we do so, we incorporate in our discussion an ensemble of singularity descriptors, obtained
from different microlocal spaces measuring the local singular content at points of continuity of f. Microlocal
spaces model mathematically local oscillations associated with edges, texture and other useful image content
information. This is why microlocal analysis becomes relevant.

Definition 2.1.3. Let xg € Q and o > 0. A locally bounded function g : Q — R belongs to C*(xq) if there
exist a constant > 0 and a polynomial P satisfying deg(P) < a and such that in a neighborhood of xq ,

lg(z) = Pz —20)| < pul|2 — mo|™. (3)
The Hélder exponent (Jaffard et al. 2007) of g at xq is,
hg(xo) = sup{a: g € C*(x0)} (4)

Inequality (3) mimics in non-smooth functions what Taylor polynomial approximations can do in analytic
functions. This is why we have the presence of the polynomial term P in the LHS of this inequality. For
example, for g(x) = |z| at g = 0 we can only choose P(x) = 0 and o = 1. any value of a < 1 will work as
well, but we cannot choose an a > 1. The wedge of the absolute value at the origin limits its smoothness
at this point. If you pick another point you can choose o € [1,2] but no greater than 2 because you need
to choose P to be a linear function. Keep in mind that (3) is only satisfied locally around zy. Edges are
lines of points of non-smoothness, that is approximating P will have low degree and « will be small, as in
the wedge example of g(x) = |z|. Picture g(x,y) = |z| , with —1 < 2z < 1 and y in any interval. In local
Holder spaces we can characterize the sharpness or regularity at points x¢, that is the Holder exponent of g
at a point z(, based on the asymptotic behavior of wavelet coefficients of g in a neighborhood of zy. If we
denote by LY (o) the “wavelet leaders” at zq (Jaffard et al. 2007), which is the largest magnitude of wavelet
coeflicients of ¢ in the first order neighborhood of xq at scale j, then the Hélder exponent of g at xq is given

by (Abry et al. 2014),
- (log (L] (w0))
gs(xo) = ljlgigof <log(2—j) (5)

Consequently, if the asymptotic rate of decay of wavelet coefficients between two functions at a point xg
is identical, then the two functions have the same Holder “singularity” exponent at z¢. This understanding
is one of the pivotal motivations in formulating the ZN operator as described in Section 2.2. The definition
of ZN ensures that this asymptotic behavior is inherited by the surrogate image ZN(f).

In addition to characterizing structures locally, it is also important to characterize their topological
organization along curves in the domain of the image. We can study this property by certain multifractal
properties of the set containing identical singularity exponents.

Definition 2.1.4. Iso-Hélder set and Singularity (or multi-fractal) spectrum (Jaffard et al.
2007): Let g be a locally bounded function, and let Ej(H) denote the iso-Holder set, which is the set of
points where the Holder exponent of g takes the value H. The spectrum of singularities of g (denoted by
dy(H)) is the Hausdorff dimension (Triebel 1997) of E,(H).

Preserving Iso-Hélder set and singularity spectrum ensures that the spatial organization of singularities,
described by the Holder exponent, are also maintained along with their pointwise behavior.

It is important to note that a single singularity descriptor does not suffice to characterize all forms of
local oscillatory behavior, hence of local structures. For example, local Holder spaces contain both chirps
(Guilheneuf et al. 1998) and cusps. In this case, having a common Hélder exponent between two points does
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not guarantee the presence of the same type of structure at both locations. But, we can conclude that both
singularity sharpness and structure type are known to be identical when the chirp exponent (Abry et al.
2011) is also preserved in addition to the Holder exponent. This however is true only if the set of possible
structures consists only of chirps and cusps. At any rate, more microlocal descriptors are needed but we are
not going to carry on this tedious discussion here. We have not fully identified all necessary descriptors to
fully characterize a scene and we do not anticipate that a program of this sort is feasible.

What is mathematically a satisfactory surrogate image of a scene? This question can have various
answers, but all boils down to our ability to classify without ambiguity the different classes of objects we
anticipate to have in a scene. Of course, there may be structures that we have never encountered before.
Objects or structures in this class should not be confused with those in other classes within the realm of
our knowledge. For example, with a few strokes of a pen an artist can sketch the face of a person which we
can unambiguously identify. If this type of image, is sufficient for facial identification of individuals, then
sketches can be considered as sufficient surrogate images for faces. This example illustrates that the desirable
properties of the surrogate image depend on the type of information we want to retrieve from an image.
Nevertheless, what is important and can be considered as a minimal requirement for a surrogate image
are boundary lines of objects, textures and, more generally, lines associated with local changes of surface
smoothness. For instance lines associated with sharp gradients are boundaries of an object or signify other
local changes of the continuity properties (as quantified by Holder exponents or other microlocal properties) of
the surface resulting from structural changes (e.g. a crack on a metal surface or a welded seam). Within this
context, as a minimum, a surrogate image must preserve iso-Holder sets and the singularity (or multi-fractal)
spectrum resulting from objects present in a scene. As we will argue in the next subsection the proposed
illumination normalization operator preserves iso-Holder sets and the singularity spectrum of reflectance R
regardless of luminance S. Therefore, ZA generates, or at least, has the hope to generate, surrogate images
of scenes.

2.2 Illumination Normalization operator and associated properties

Let Q C R? be a compact domain with non-empty interior for an Image f = SR. The variation in illumination
o € 2 () for some 1 < ¢ < o0o. Also, as before, 0 <y < f(z) <T' < oo and 0 <7 < o(z) <1 for some
positive values v, T and 7.

Given ¢, ¥; to be a compactly supported scaling function and its associated wavelets used for analysis and
¢ and 1; respectively be the dual family of scaling function and wavelets used for synthesis, The Illumination
Normalization operator (Upadhyay and Papadakis 2017) ZN (+;¢) : L?(Q2) — L?(Q) is defined by

[e9) 3
IN(£50) =D YD Akl F QU Cig)) ik + > Aok (f: OUFs ok Pk (6)

J=0 keK; i=1 kEK

where, the wavelet indices j, k determine the scale j of the decomposition/reconstruction and k determines
the pixel at which the wavelet or the scaling function are centered at the scale j decomposition/reconstruction
step. Inner products are denoted by (;) and the wavelet coefficients of f at scale j and pixel k are the inner
products (f,; ; k). The tildes over the wavelets and scaling function underscore that we may use a different
set of wavelets and scaling function at the reconstruction stage. Moreover, {“Ajvk}j,k>0 is a sequence of
normalizers, with the property that |A; x(f,){f, % )| has the same asymptotic decay as |{f, ;. ;)| when
j — 00, locally around every point x € €2 as long as the point is not close to the boundary of the image.
The operator ZN, as defined above, is proved to have several useful properties:

Theorem 2.2.5. (Upadhyay 2014, Upadhyay and Papadakis 2017) Let R € L*(Q); S : Q — [1,1] (1 > 0)
be a function in L, () with (n —1)/¢ >0, and 0 < v < R(z) < T < +o00. Then for a suitable choice of
normalizer sequence {.Aj,k}j w>0- there exists a constant C(1p) which depends only on the compactly supported

wavelet basis 1 used to define ZN(+;C), such that for any k € Z?* for which |Aox N Q°| # 0 we have,

IZN(SR; ¢) = IN(R; O)llpoe (ag ) < CW) - 11l e, (a0 ) IRIITo (50 1)
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Figure 1: Schematic representation of algorithm implementation of proposed Illumination Neutralization by
AAYvision. The number of wavelet decomposition levels Jy and the Campanato space parameter ¢ need
to be tuned by the user. Part A generates the wavelet coefficients (f,; ;) and (f, o). The gray scale
images in A are formed by the values of the wavelet coefficients at scales j and k. In this example we use only
two scales. Per scale we have three wavelets and one coarse scale filter induced by . Wavelet filters capture
edges, hence the wavelet panels are dominated by a gray background of values close to zero. B implements
the adjustments A; x(f, ) ((f, i jx)) and Aok (f, O)({f, vokr)). Now you see edges being more pronounced
even those in dark regions of the original. At reconstruction C, we form the linear combination shown in the
right-hand-side of Eq. (6). At this stage we have the surrogate image of the scene. Finally, in D we adjust
the dynamic range of the surrogate image pixel intensities to please the eye of the beholder.
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This theorem suggests that for illumination variation resulting in a small ||S|| Ze.n(Aos)» Ve Obtain
IZN(SR; Q) = IN(B; Q)llpe(a, ) ~ 0

It also predicts that regardless of how strong a shadow or turbidity are, as long as they only varies mildly on
any image patch (an assumption consistent with the Lambertian principal), ZN(-; ) essentially generates
the same surrogate image depending only on the imaged scene and camera (or image acquisition) proper-
ties. Thus, ZN approzimately satisfies the uniqueness property required by the definition of illumination
neutralization. But, does it generate informative surrogate images of any scene?

Nonwithstanding our remarks before closing the previous subsection, we are ready to address why ZN
generates a surrogate image. First, note that at each location k£ the non-linear adjustment operators
Ak (f,O)((f, %5 5.k)) are defined in so that they maintain the asymptotic rate of decay of (R,; j k), us-
ing Eq. (5) it is not hard to infer that ZA preserves the local Holder exponents of R regardless of S. On
the other hand, if an edge is a line of jump discontinuities then, they are preserved in the form of a large
but very localized oscillation at the point of discontinuity (Upadhyay and Papadakis 2017, Lemma 2). So
to the extend that all edges correspond to edge discontinuities or to certain Iso-Hélder lines and everything
else is smooth, then the surrogate image contains all pertinent information of R.

3 RESTORING VISIBILITY IN UNDERWATER IMAGES AND OTHER EXPERIMEN-
TAL RESULTS

We already mentioned in the introduction that there is a deluge of techniques for illumination neutralization,
normalization, as others call it, or global visibility enhancement. On the other hand, several existing tech-
niques are either computationally inefficient or just have not established fidelity of visibility enhancement.
By this term, we mean the faithfulness with which local patterns in the input image are preserved irrespec-
tively of illumination. Moreover, marine environments pose more challenges as turbidity varies locally and
globally. The problem with turbidity is not just a simple loss of contrast. Plain contrast enhancement will
improve edge appearance to some extent but not overall, because turbidity changes the spectral properties
of an image (in the sense of Fourier transform) and in a non-trivial way. Illumination neutralization meth-
ods are designed to remove to various degrees the effects of water turbidity on image visibility. Contrast
enhancement methods will not remove the effects of turbidity on the image but they will make details to
look more pronounced with the improvement mainly limited to objects in the foreground.

Moreover, for video enhancements for a real-time implementation computational efficiency and very small
variability in processing time are of essence.

There are a few commercially available products for real-time underwater video visibility enhancement.
All of them are equally computationally efficient and work in real-time but lack proper validation. This is
something we plan to perform for our method in a systematic way and perhaps develop a set of validation
videos for this small industry segment. Moreover, the creators of all other similar commercially available
technologies do not describe their methodologies in any scientific publication, except for the Prohawk system
(US Patent 9129406B2, of M. Kobayashi). Prohawk’s main idea is local intensity histogram equalization.
An improved version of this method is the Contrast-Limited Adaptive Histogram Equalization (CLAHE)
(Zuiderveld 1994). This method is less computationally complex than ours, thus faster than ours, but
qualitatively our method performs better than CLAHE. Fig. 2 provides a visual comparison of the visibility
improvement results with our method and three other methods including CLAHE.

We observe that CLAHE increases the visibility of poorly illuminated regions of the image but trades
uneven illumination with uneven illumination. This shows that CLAHE is not an illumination neutralization
method. Primarily, it appears to function as a contrast enhancement tool and not necessarily as an illumi-
nation neutralization tool. Contrast enhancement will generate an image where edge-associated information
will be more visible relative to neighboring structures. However, those enhancements are good locally and
enhancement is not uniformly consistent in various regions of the same image. In video, these enhancements
will result in non-consistent changes from frame to frame. With illumination neutralization we also have
better contrast but in a uniform manner inter and intra frame because luminance is neutralized, something
than contrast enhancement methods are not designed to perform.
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(a) Raw Image

(c) Subtracting Gaussian blur (d) Non-Local Retinex

(e) Proposed method

Figure 2: An example of some popular methods and our illumination neutralization on an image taken from
Extended Yale B face database (Georghiades et al. 2001). CLAHE (Zuiderveld 1994) does not neutralize the
illumination and only enhances contrast. Subtracting a Gaussian smoothed image from the raw image in
the log-domain eliminates some of the medium spatial frequency structures. This method is more commonly
known as Difference of Gaussians (DoG). There is also a colored version of it. Non local Retinex (Zosso et al.
2013, 2015) achieves illumination neutral output and retains all structure, but is computationally slow. Our
method for illumination neutralization is both computationally fast and retains all structures. Compared to
all other methods ours and Non local Retinex give the best results in the sense that both balance illumination
and retain all structures
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(a) Subtracting Gaussian Blur (b) Proposed ZN operator

Figure 3: We observe that simple methods like subtracting a low pass version of image, using a Gaussian filter
Difference in the log domain, maintain sharp edges but do not enhance some medium frequency structures.
On the other hand, our method preserves structures corresponding to all medium and high frequencies.
As a result, the Facebook face detector fails to detect a face when illumination is neutralized using the
log-Gaussian filter difference, but it is successful when the proposed method is used.

Also, CLAHE is volatile to noise. In underwater imaging noise may be significant and it will be amplified
unless removed prior to the application of contrast enhancement. This may affect the clarity of edges after
restoration. Another problem of this method is that one needs to tune several parameters. In the facial
images of Figure 2 we used the default CLAHE parameters but we had to test several percentile values to
trim outliers before we ended up with one descent image. Another classical off the self method is to subtract
the Gaussian blur from the original image in the log domain. This idea goes back to the work of Marr and
Hildreth on vision Marr and Hildreth (1980). It also neutralizes illumination across the image, but does
not adequately maintain all local structures in the scene. On the lower left side of panel (a) in Figure 2
there is a coffee thermo-mug. This mug becomes more visible in panels (d) and (e) than in (c¢), perhaps, due
to the trimming of mid-frequencies by the Gaussian density. The Non-Local Retinex achieves illumination
neutralization and also maintain local structures, but at the cost of high computational cost as it involves
an L' optimization. Here, L' underscores that what is minimized is the L'-norm of a certain cost functional
C, that the optimizer seeks to find the solution R which minimizes

[ 1ctapldzdy

We did not accidentally used R here. Approximations of reflectance are obtained by Non-Local Retinex using
this L' minimization, but this method is slow, because it cannot be implemented with gradient descent.
Nonetheless, compared with all other methods Non-Local Retinex gives the best visual results.

Our method achieves equally good results as Non-Local Retinex, but it is much faster and requires less
parameter tuning than Non-Local Retinex. One of the strengths of our method is that any wavelet coefficient
in the surrogate image is zero if and only if the corresponding wavelet coefficient in the raw image is zero.
This property ensures that structures corresponding to medium and high spatial frequencies (in the sense of
Fourier, one might also call them wavenumbers) are never lost in the process of neutralizing illumination or
revert the effects of water turbidity (see Fig. 3). This is also another advantage of our method relative to
CLAHE and Retinex: We apply different enhancements for details in an image corresponding to different
spatial frequencies. The other two methods are essentially mono-scale, that is treat all spatial frequencies
the same.

Among all other methods Non-Local Retinex gives the best visual results. However, this method uses
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Well illuminated scene Poorly illuminated scene

Figure 4: A higher value of ¢ seems to work better for both illuminations, due to the high smoothness
and low oscillation of S in both input images of the same scene. Note that both inputs are encoded with
JPEG with lossless compression. These examples highlight how qualitatively close outputs can be despite
the different illumination in the inputs. The best outputs need not be obtained with the same ( setting, as
expected by Theorem 2.2.5. Finally, notice that the shadow boundary on the nose of the subject remains
unaffected in accordance to the theoretical prediction. Illumination is neutralized in the interior of shadows,
but a shadow boundary line remains visible.

optimization,hence processing times can be long and vary significantly, rendering the usefulness of the method
questionable for real-time underwater video visibility enhancement.

In Fig. 1 we give a schematic description of our algorithm. We use images from our facial detection
experiments only for illustration purposes. The effect of the use of different parameter values for ¢ and Jy
in the enhancement of significant image content can be seen in Fig. 4, where the boundary lines of facial
characteristics are enhanced with varying emphasis. This observation begs the question of how to choose the
best values for these two parameters. We believe that there is no universal answer to this problem. Both
of these parameters are determined by the properties of S, which we are not known and may vary based on
the nature of S: Optimal values for ¢ and Jy in underwater imaging are not expected to be the same for
images of dry scenes with illumination affected by a shadow as in Fig. 4. We have not systematically studied
yet how water turbidity affects the choices for ¢ and Jy. However, we have observed that the best ranges of
values for ¢ and Jy depend on the bandwidth of the camera and its focus. When the resolution is higher it
is better to use bigger values for Jj.

The proposed method has not been implemented yet outside of a typical academic environment. Lolaark
LLC!, a partnership with the University of Houston, is currently working to develop a real-time visibil-
ity video enhancement software system available for commercial use by July 2018 under the brand name
AAYvision (ALSvision) from the Homerian Greek word AAY which means sea. With the use of a graphics
processing unit (GPU) the required computations can be executed fast. We estimate that from the time
the input video is acquired till to the time the video will be enhanced and shown to the user there will be a
delay ranging from 5 to 10 seconds. The system will be deployed on a conventional laptop with an external
graphics card unit and interface with input devices from the underwater camera feed. AAXvision is being
designed to work with analog, AHD (those are HD cameras but output analog images) and SDI cameras
(those output digital images). In Figs. 7 through 10 we showcase how AAXvision enhances underwater in-

P is exclusively licensed to Lolaark LLC by the University of Houston BOR.
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spection footage acquired with a conventional analog camera with visibility at 1.5m, much less than the 5m
suggested visibility requirement for a marine underwater inspection. This shows the potential of AAYvision
for eliminating the need to move a vessel to clear waters for an underwater inspection. The same technology
can be utilized for underwater inspections of deep sea off-shore facilities or in murky waters or wherever
water visibility is an issue. The AAYvision GUI will be designed to allow the user to choose the values of ¢
and Jy optimizing the appearance of the improved video.

Currently, industry uses two types of cameras with the second type gradually becoming more mainstream,
analog and digital. Most commercial footage acquisition systems either apply some compression right at the
camera or apply compression in what the industry knows as DVRs. DVR’s are the primarily interface
between the camera and the monitor performing the visual inspection. Those also serve as storage devices.
When, the video input is captured in an analog form DVRs also perform the conversion from analog to
digital using MPEG. There are lossy and lossless compression forms of MPEG. MPEG is an algorithm for
video encoding and compression. We stress, that once an image is acquired in a digital form all media require
it to be encoded, as if it is written in words using a universal alphabet, in oder to be used, transmitted or
displayed on monitor. Encoding automatically uses some rate of compression and the latter is of two kinds:
Lossless where the original image can be fully reconstructed to avoid loss of information, or lossy where the
choice of what is significant to the eye of the beholder is made by the algorithm based on transmission or
storage constraints. MPEG maintains a high level of clarity and contrast in regions where there is significant
amount of information (lots of pixel intensity gradients) and applies much higher compression rates where an
image is smooth (small intensity gradients not varying rapidly) as shown in Fig. 6. In the latter regions the
high compression rates create pixel value differences that illumination neutralization will enhance because
it is designed to perceive them as lines of an object which is barely visible (see Fig. 5). For this reason our
method and any other illumination neutralization method will perform best in raw (uncompressed) images
or in images stored with lossless compression. Also relatively big suspended particles in water will contribute
to the overall pixelization. On the other hand, we avoid a lot of these undesirable effects when we enhance
HD-video stored with small compression loss rates (see Figs. 11 and 15).

4 CONCLUSIONS

We presented a novel, multiscale non-linear transform which enables the enhancement of singularities ob-
scured by low illumination, water turbidity or other factors resulting from multiple scattering of light rays.
The highlights of the method are the following:

e We introduce the concept of a surrogate image of a scene to formulate in a concrete mathematical
manner the concept of illumination neutralization.

e We presented a numerically efficient, multiscale method for illumination neutralization that can be ap-
plied to still images and video capable of generating a unique output containing all pertinent structural
information of a scene regardless of the conditions which inhibit visibility or degrade illumination.

e Contrast enhancement is not illumination neutralization, because this type of transformation only
amplifies differences between pixel value intensities and does not achieve illumination neutral outputs.
In other words, it provides a more informative version of f in Eq. (1) but does not separate S from R.

e The presented enhancement method can generate an output video with significantly improved visibility
even when turbidity is high.

e Asaresult we anticipate that marine and off-shore industries can improve their operations by expanding
the domains in which marine inspections can be credibly performed.

e The proposed method can be implemented with a system that original footage and improved should
be watched side by side and conclusions should be derived by inspecting both the original and the
improved footage.
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Figure 5: Examples of three images used in an object detection experiment using the proposed method. All
three original inputs are shown on the left column and have been retrieved from a public internet image
database. In all of them visibility is reduced due to low and uneven illumination. Top and middle originals
have been encoded with a lossy compression JPEG. Lossless compression has been applied to the bottom
original. In the right column you can observe the outputs of ZA for each one of the originals. The pixelization
appearing mostly where the original images are dark is the result of the enhancement of pixelization existing
in the input images. We show this in Fig. 6. Observe that the output of the bottom image does not have
these artifacts.
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Figure 6: Left column: In rows 1 and 3 we have the two originals from Fig. 5 encoded with lossy compression.
Observe the pixelization already present in the compressed original images due to very high compression rates
applied on the dark regions marked by the red rectangles. Those rectangles are blown up below each original.
In the right column, next to each original, we have the outputs of ZA/. The red rectangles correspond to
the yellow rectangles. In each one of them we observe pixelization. In rows 2 and 4 of the right column we
re-display the red rectangles of the originals in the left column by merely adjusting the dynamic range of
pixel values in each of these red rectangles. These adjustments reveal the same pixelization pattern we see in
the yellow rectangular regions in the outputs of ZA. These two examples underscore that high compression
rates will generate pixel artifacts due to the nature of JPEG encoding. For best results ZA should be applied
to images with lossless compression or with small compression rates.
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(a) Original video frame (b) Hlumination Enhanced

Figure 7: Frame from video inspection of a fixed tunnel bow thruster. The camera used was analog and
compression was performed by an old DVR. Here we see how extreme glare results in mediocre enhancement.
Glare appears to act almost as an overwhelming smoothing filter. Visibility is about 1.5m. All enhancements
in this and in all subsequent figures are performed with AAYvision.

Figure 8: Frame from the same video inspection of a fixed tunnel bow thruster. Visibility is about 1.5m. (a)
Blade damage of tunnel bow thruster shown in original footage shot with an analog camera. Visibility was
about 1.5m. (b) Metal missing from the blade is clearly visible in this panel after enhancement.

(a) Original video frame (b) Enhanced

Figure 9: Frame from the same video inspection of a fixed tunnel bow thruster.
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(a) Original video frame (b) Enhanced

Figure 10: Frame from the same video inspection of a fixed tunnel bow thruster. Some mild pixelization
is observed in the region between the blades due to suspended particles and high compression rate. Notice
how the strong glare is gone in (b).

(a) Sea Lion swimming (b) Enhanced

Figure 11: Sea Lion swimming in Galapagos. Frame from HD video with small compression rate. Water
clarity high. Enhancement with AAXvision, no compression related pixelization artifacts. This image was
compressed with a very low compression rate protocol.

Figure 12: High turbidity simulation experiment in a small tank. The water depth is 9.5in. The metal plate
shown on the right panel was resting on the bottom of the tank.
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(a) Original (b) Enhanced

Figure 13: With an analog camera and the use of the Empia video capture software configured for the
minimum loss of information we acquired a short video. The camera was moving in contact with the light
source at varying depths inside the small tank. The plate image after enhancement is shown on the right
panel. The plate is still visible in the original (a). The circular pattern in (b) is caused by the enhancement
of the boundary of the light beam. The height dimension of the plate is also enhanced as a darker boundary
in (b). Pixelization due to turbidity and high compression is also visible.

Figure 14: In this frame the enhanced is overlayed on the original in the turbidity simulation experiment
(Fig. 12). At this point the camera is only 9.5in hovering over the metallic plate which is somewhat visible
in the enhanced frame. Again we see the circular pattern of light source.
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Figure 15: Sample frames from a dock inspection. The camera used is digital and the footage is compressed
with a lossy compression protocol H.264 high profile 10. The loss rate is medium. Pixelization can be
observed on the darker area of the enhanced image but a lot less under the dock despite of the turbidity.
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