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ABSTRACT

In this work, we attempt to illustrate possible applications of automated object detection in video
sequences and still images using state-of-the-art artificial intelligence methods, such as convolutional
neural networks. These novel tools can be used in various application domains in offshore operations.
Neural networks can be trained to detect humans, specific objects and even learn how to conduct pipeline,
anchor, tank and other types of inspections where they can significantly reduce the possibility of human
error, not by replacing the human operator, but by helping him or her to be more effective and efficient.
One of the problems we will discuss is how to harness the power of image pre-processing methods to
increase the informative content of inputs, especially in environments where video or still-image visibility
may be poor due to weather conditions, underwater turbidity or smoke.

Keywords: Water turbidity, fog, uneven illumination, visibility improvement, object detection,
multimodal deep learning, convolutional neural networks, virtual lookout,
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1 INTRODUCTION

Artificial intelligence for big data management is gradually becoming a reality of life, although there is a significant
need for theoretical work in the understanding of how neural networks with a significant number of hidden layers work.
They can be used for decision-making and harness the innate ability of neural networks to handle multiple inputs to
generate one output, namely a decision or suggestion. Prior to the Al revolution, the trend to load airplane cockpits
with numerous sensors resulted in a number of multiple inputs often in the form of audible alarms or visual displays
simultaneously activated. This is one instance, where numerous information input channels have to be simultaneously
interpreted by a single operator, namely the pilot, who has to make a decision explaining the causes of these alarms.
Aviation psychologists even in the 80s have worked on this problem of the increased monitoring workload of humans
and concluded, that big amount of information provided to pilots by monitoring systems and warnings poses as equal
problem as limited amount of information would do Endsley (1999). Needless to mention that in aviation multiple
alarms are often related to serious flight incidents.

Although not smarter than humans, Al can handle more effectively information from multiple sensors, but to do so,
Al systems often require excessive training. We can think of an artificial intelligence system, as an integrated piece of
software and hardware which will interpret a condition and assign to it a label, or an interpretation of a situation. This
integrated system may function properly only if any situation it encounters fits well within the probabilistic parameters
of its training. Anything outside its experience, will only trigger a random response. One way to increase its experi-
ence, especially in cases, which are not going to be fit properly within its knowledge space, is to use multiple inputs.
One example is ABB’s experimental Virtual Lookout, which combines visual camera inputs with LIDAR sensors too
measure distance from various visible targets. Hyperspectral imaging is another example of the use of multiple sensors
or modalities to help interpret information. This modality has been used for the detection of underwater pipeline cor-
rosion, or from airborne sensors to detect types of marine life or water pollution, e.g. Roper & Dutta (2006), Johnsen
et al. (2016). In the jungle of Deep Learning, multimodal learning has been used with audio and video with of lips
movement for speech recognition Ngiam et al. (2011), Srivastava & Salakhutdinov (2012), and images combined with
distance data obtained by RGB-D sensors for classification Eitel et al. (2015).

In this work we use a single input to generate artificially additional inputs, which we fuse, as we would do, had we
have more than one physical modality. In no case, do we advocate that additional physical modalities are not useful.
Definitely they are, but our purpose is to hint that virtual modalities can potentially help the automated decision
process, when the input sensor operates in conditions which may potentially deliver less reliable inputs. To investigate
the role of virtual modalities in improving the overall system accuracy, we use a top performer Neural Network, the
Faster R-CNN. In fusing the virtual with the physical inputs, we chose not to change the network’s basic elements of
architecture.

Al acolytes may argue that when we train systems, we must include examples even from marginal conditions.
However, there is always a risk of using an excessive number of training examples to account for a multitude of
acquisition conditions which render the system unable to generalize, that is to be unlikely to derive a correct decision,
when an input presented to it is not similar to the set of its experiences. The size of the training set depends not only
on the number of labels the system must learn to output, but also on the inherent variability within the class of same
label inputs and the variability of input acquisition conditions. Taking all three into account it is not difficult to realize
that the training set quickly grows immensely.

The remedy we propose for this situation is to help the system improve its generalizability by reducing the set
of conditions influencing the needed volume of training examples, and compensate for this reduction by adding the
inputs from the virtual modalities. Moreover, the need to have a huge training set requires an equally big data collection
enterprise, which may be both costly and time consuming. It is not hard to be trapped into this kind of predicament. For
instance, if we want to develop a system to detect metal surface corrosion, we need to present to the system a balanced
number of training examples from healthy and corroded surfaces. Here, we need to introduce the term ground truth
which is widely used when referring to training examples. The key work here is the word “balanced”, which requires
a possibly time-consuming data collection from corroded surfaces with medium of low levels of deterioration. In such
cases, the best approach is to collect data samples of what is designated as normal, and use a NN which scores samples
presented to it. Score outputs express the network’s belief that an examined surface patch is healthy. In this case,
with a properly trained system we can reasonably expect that patches with signs of deterioration will be outliers and
therefore will receive low scores, which are often called by the NN community as confidence scores.
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We begin our presentation with a brief overview of the two virtual modalities we use, followed by a sketchy
description of the neural network architecture we use to fuse the physical and virtual modalities inputs. Finally we
close with our experimental results.

2 METHODOLOGY

2.1 Digital Image Enhancement and Illumination Neutralization

Digital image enhancement is the process of adjusting the pixel values of a digital image, with the purpose of deriving
an image which is visually more appealing and/or more informative. To this end, a broad range of image enhancement
techniques have been proposed, starting from the simplest brightness, contrast or sharpness adjustment, to the removal
of various types of distortion, such as noise created by the digital camera sensor. In addition, to this distortion type,
image enhancement methods, often, focus on specifically enhancing specific image informative content, such as edges
(e.g. Canny Edge Detector) or texture. However, there are image acquisition conditions which inhibit the capture of a
still image or video footage with enough information to allow these image enhancement methods to fulfill their role.
Examples of such conditions are low-light, especially at night with insufficient illumination, shadows cast by objects,
and the presence of light scatterers, such as haze, fog, water vapors in general, and underwater suspended particles.
Object detection by artificially intelligent systems depends on the extraction of features, or more simply, the generation
of identifying signatures which indicate the presence of a certain local shape in an image indicative of the presence
of a certain object, e.g. a cylindrical surface. As more objects may share the same shape, e.g. in our example both
cans and pipes have this shape, the Al system will learn how to piece together these signatures and conclude that a
certain type of an object is present at a certain location of an image and perhaps quantify its belief on how reliable the
detection is. This is a relatively complex method. A system under supervised learning achieves this goal to a certain
extend. In the next section we discuss this issue in greater detail.

State of the art object detectors are exposed through supervised training to a variety of imaging conditions. so
low illumination, or shadows do not often pose significant problems to them. But when imaging conditions, such as
water vapors, haze, smoke or water turbidity, in general conditions conducive to the higher than normal scattering of
light rays, detections become acutely uncertain. So, what if there are methods which can essentially “lift the veil of
invisibility” and make the object detector to work properly? To make this point more clear, we stress that the extra
variability these exterior conditions impose create perturbations to a classifier which do not necessarily fit well within
its learned experiences. Consequently, ameliorating their effects on an input image makes the objects in the input more
similar to the classifier’s experience. In this work we used two such methods, originally designed to neutralize the
effects of uneven or low illumination. We use these methods to create supplementary features, as if we incorporate
them as separate inputs from additional modalities.

Illumination neutralization algorithms into two main categories Ochoa-Villegas et al. (2015): Those that treat
the illumination problem as a relighting problem and those that treat it as an unlighting one. Relighting methods
improve similarity of illumination conditions between gallery images and a probe image Unlighting methods utilize
the Lambertian reflectivity principle:

Image(I) = Iluminance (B) X Reflectance (R). (1)

Reflectance of objects in a scene is a quantification of what luminous energy the surface of an object can reflect back
regardless of the sources of this energy. So reflectance depends on both geometric and textural properties of surfaces
of various objects in a scene. Image edges, in particular, are associated with areas of high curvature of the surfaces of
objects in an image as seen from a camera. [lluminance, represents the amount of light that reaches all objects in an
image reduced by scattering on the surfaces in the image scene. Hence, illuminance, or simply luminance, does not
necessarily capture correctly the effects of light scattering when the space between the scene and the camera contains
anything other than clean air or, ideally, vacuum. Consequently, methods aiming to solve (1) are ideally suited for
visibility improvement in turbid, or foggy environments.

Unlighting methods aim at solving this under-determined problem by approximating B and R from /. A good
classical and with a lengthy history example is Retinex Land (1964), Land et al. (1977) modeled after the color
perception system human vision. We use a modern and relatively fast variation of it, the Variational Retinex (VR)
(Fu et al. (2016)). The other method we use is Illumination Normalization (Upadhyay et al. (2018)).
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After taking logarithms of both sides of (1), the right-hand side has two terms which are approximated by means
of a constraint optimization algorithm. This is the key idea of VR. The assumption for the solution or the constraints
more precisely, are that solution should be such that regions with small value changes in R occupy most of the image,
and what remains is edges and that the overall difference / — R must be small. The optimization uses two weights or
free parameters which control how much each of these constraints weigh in the final outcome. Clearly, the accuracy
of the solution is heavily influenced by the choice of these two parameters. Prior knowledge of imaging conditions
can possibly help to better choose the values of these two parameters. In our experiments, we used the MATLAB
implementation provided by the authors of Fu et al. (2016) to acquire the reflectance estimation of the scenes (Figure
1 (b) and (d)). A major challenge in this implementations is finding optimal values for the two free parameters which
control the minimization process.

On the other hand, the Illumination Normalization (IN) operator is a deterministic method, so it is faster than
VR, thus, suitable for real-time applications of visibility improvement (Upadhyay et al. (2018)). The IN operator uses
a multiscale transform to brake down an image into a individual components which, if put together, reconstruct the
original. The IN operator takes each individual component and normalizes it in a way that the effect of illuminance at
each scale is canceled out (Figure 1 (c) and (f)). The main effect of the transform is that the lower-scale components
of this transform become more flat in terms of brightness, whereas the higher scale components which primarily carry
the details of texture and edge information become more prominent. As a result, details necessary to object detection
become more visible as if the image was acquired with adequate and uniform illumination. In Upadhyay & Papadakis
(2019) the last two authors give a set of mathematical arguments proving that the outputs of IN operator contain
information on shapes which is essentially the same with the information carried by a well-illuminated image of the
same scene.

(d) Raw (original) (f) IN enhanced

Figure 1: VR and IN image enhancement methods generate images where details, necessary to object detection, can
become more visible. Given any raw input (1st column), we use the VR method to acquire an estimate of the scene’s
reflectance (2nd column) and the IN method to obtain a derivative image of the scene where the effect of illuminance
has been reduced significantly (3rd column). In section 2.5 we state our premise that such image derivatives can be
perceived as virtual imaging modalities, as the informative content they create may contain sufficient complementary
information, with respect to the original image. In section 3 we demonstrate how state-of-the-art machine learning
algorithms can be trained in tandem on the raw and artificial imaging modalities to learn representations that effectively
harness the complementarity of information of virtual modalities (Original images are from the VOC2007 dataset).
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2.2 Object detection

In an automatic object detection task, provided an input image and a pre-determined set of target object classes (e.g.,
person, car, dog etc), a system is expected to designate the smallest possible rectangular image regions containing an
object from the target classes (detection regions) in a tight manner and also to predict the correct class label for each
detection region. The fact that the number of possible detections per image, as well as the range of classes where
those detections fall into, is not fixed, adds an extra degree of difficulty to this, supervised learningl, task. Indeed, it is
common to observe that a detection region contains objects from more than one of the target classes. In such a case,
an efficient system should be able to assign all the appropriate labels to this same detection region. In this and the
following sections we discuss the use of artificial modalities as inputs in DNN-based object detectors.

With a variety of applications, ranging from security (e.g., face detection and action detection) to industrial quality
control (e.g., machine inspection, aerial surveillance and image analysis) and even commercial (e.g., visual search
engines, autonomous navigation systems, point and shoot cameras), object detection holds an exceptionally dominant
place in the efforts of computer vision researchers’ community.

2.3 Modern object detection and classification

Our discussion, from now on, presents design ideas for DNNs which are fairly generic, despite the use of object
detection as a case study. The ideas we present can easily be adopted for any multiclass, or one-class classification
NNs with images as input data.

Notable early approaches to solve the object detection include the fast Viola-Jones framework Paul Viola (2001)
and the combination of Histogram of Oriented Gradients (HOG) with Support Vector Machines (SVM) Dalal & Triggs
(2005). During the recent years, artificial Neural Networks as Deep Neural networks (DNNs), and especially their
sub-class of Convolutional Neural Networks (CNNs), have proven to be very successful on supervised learning
image analysis tasks, including object detection. One of the first DNN approaches proposed the use of CNNs with
multi-scale sliding windows scanning the input image Sermanet et al. (2014) which evolved into the various versions of
YOLO (Redmon et al. (2015, 2016), Redmon & Farhadi (2018)) and RetinaNet(Lin et al. (2017)). These approaches
are classified as one-stage methods for object detection. An alternative approach proposed the use of two stages,
where regions with high probability to contain objects are singled out first, in what is known as a region-proposal
stage. Then, a classifier examines each of these regions, to come up with a final decision on whether an object appears
in the region and from which target class Girshick et al. (2014), Girshick (2015), Ren et al. (2015). There is a trade-off
between processing time versus detection performance in both these approaches and utilizing the whole spectrum of
their potential remains a very active domain of research.

2.4 Faster R-CNN

In the original settings of Region-proposal object detection, given an image input and a set of target object classes
which the system is trained to recognize, a region-proposal detection system initially generates a feature representation
of the input. Then, a binary “objectness” classifier examines this representation, to select Regions of Interest (Rols)
on the image, i.e. rectangular image regions where high confidence arises that one object from, at least, one of the
target classes, is present. Subsequently, a learned representation for each Rol propagates, independently, into a second
classifier that yields two final decisions. Primarily, for each ROI, this classifier gives ’confidence score’ per target
class, corresponding to the system’s belief that an object from the specific target class appears in this ROI. Usually,
one more confidence score is estimated, corresponding to class background, i.e. confidence that the ROI does not
contain any object. Secondarily, for those target classes that the ROI receives relatively high confidence score to
contain a corresponding object, the classifier attempts to adjust the dimensions and location of the rectangular ROI,
aiming at a final detection region that captures the object in a tight-fit manner.

This, region-based, approach was introduced in Girshick et al. (2014) as Region proposal CNN (R-CNN) and
quickly evolved into the Fast Girshick (2015) and finally the Faster R-CNN Ren et al. (2015). The main innova-
tion of the latter, as compared to its region-based predecessors, is that the system addresses both region proposal

'In machine learning terminology, supervised learning refers to the process of training an algorithm by providing a ’labeled’ training data-set.
This means that, each data-set instance during the training is a pair of an input (typically an array of descriptors) and the ’correct output’ that the
algorithm is expected to return (supervisory signal or label).




Proceedings of the 24th Offshore Symposium, February 20th 2019, Houston, Texas
Texas Section of the Society of Naval Architects and Marine Engineers

and classification challenges resorting exclusively to CNNs, assisted by ranking operations and thresholding rules
w.r.t. estimated ’confidence’ values. In short, Faster R-CNN has two main components (Figure 2). The input image

Input Image Regions of
Interest (Rols) ﬁ’:
Convolutional Classifier final |l

Feature “ decisions

Representation

CFR)
—> RPN — —— RolP — @ees - RCNN
P

Anchor Boxes

combined with =

Sequence of the CFR
Convolutional +

ReLU + Max-pooling

layers

Figure 2: The Faster R-CNN object detection model depends exclusively on convolutional layers to tackle both Re-
gions of Interest (Rols) detection and Region regression-classification. The input image assumes its Convolutional
Feature Representation (CFR), propagating through a sequence of convolutional layers with ReLU activation and pe-
riodical max-pooling operations, which reduce the spatial dimensions. The Region Proposal Network (RPN) receives
the CFR and again through convolutional layers singles out Regions of Interest (Rols), i.e. rectangular regions of the
image with high *probability’ of an object to exist. Finally, the Rols get re-sized and vectorized to fit as input to the
R-CNN classifier, where through Fully Connected (FC) layers the final classification decision is returned.

propagates through a sequence of (trainable) convolutional layers which transform it into a (convolutional) feature
volume? (3-dimensional array of descriptors), preserving the spatial organization, with periodical sub-sampling op-
erations reducing its overall spatial dimensions. A (convolutional) Region Proposal Network (RPN), utilizes this
deep feature extraction to identify rectangular sub-areas of the image that ’probably’ contain one or more objects from
the target classes (Rols), completing the first component. For the second component, the feature volume’s portion
that corresponds to each Rol is extracted (Rol Pooling (RoIP)) and propagates through a regression predictive model,
implemented using fully connected layers (R-CNN), that assign the final target class confidence scores (including a
’rejection confidence score’) and the final corrections of the Rols location and dimensions.

One of the key novelties for the generation of Rols in Faster R-CNN is the introduction of a deterministically
constructed set of reference bounding boxes, called anchor boxes (Ren et al. (2015)). These boxes have fixed, pre-
determined, sizes and are (practically) uniformly positioned on the input image. There are many of them and overlap
with one another. Any region candidate for becoming a ROI during the RPN stage, is referenced back to a unique an-
chor box, with a specific center location and dimensions with respect to the original input image /. If the dimensions
of a convolutional feature volume, generated from a specific input are W (width) x H (height) x D(depth) in pixels, for
each anchor location (i, j) € [1,2,...H| x [1,2,...,W] the system uses a set of rectangular anchor boxes, Sachors (i, J)s
with a variety of predetermined dimensions. In our implementation, we use nine anchor boxes per pixel (i, j), one
square and two equal rectangles, landscape and portrait, each one of them with three different area sizes.

The Faster R-CNN architecture, and more specifically the VGG-16 based which is one of its most representative
implementations, constitutes the basis for our virtual multimodal architecture. In the next sections we will review in
detail the mechanisms of Faster R-CNN’s components and will discuss the changes we propose, aiming in utilizing
the artificial multimodal inputs.

2.5 Multimodal Faster R-CNN with artificial modalities

The success of DNNs and CNNs on supervised learning tasks using single modalities, motivated efforts to further
improve the performance of such systems by combining multiple modality inputs (multimodal learning). (Ngiam
et al. (2011), Srivastava & Salakhutdinov (2012), Eitel et al. (2015)). A common element in all these, recent, deep

20ften referred as feature representation in the literature.
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multimodal approaches is that multiple modalities need to be a-priori available with the data-set. However, there
are many situations where only one modality (e.g., monochromatic images) is available. In this section, and our
experimental results in section 3, we demonstrate how image enhancement methods, such as VR and IN, derive scene
perspectives (see Figure 1) that can complement the, often, limited information in the original (raw) modality. We
treat the IN and VR derivatives as virtual imaging modalities, derived by the single available raw image modality.

We introduce a deep feature fusion architecture, the virtual multimodal Faster R-CNN, that combines the com-
plementary information found in the original images and the derived modalities, improving detection and classification
accuracy. Our proposed architecture is designed and implemented as a region proposal network, based on the popular
Faster R-CNN model. However, its main innovation, fusion at the feature representation level using derived artificial
imaging modalities when only one data modality is available, can be easily extended to multi-scale window networks.
This remains part of our ongoing research.

2.6 Generating complementary information from virtual imaging modalities
The algorithmic design we propose in this section, relies on one premise:

Image derivatives, generated from raw images using powerful image enhancement methods such as VR
and IN, can be perceived as virtual imaging modalities. The informative content they create may con-
tain sufficient complementary information, with respect to the original image. State-of-the-art machine
learning algorithms can be trained in tandem on the raw and artificial imaging modalities to learn repre-
sentations that effectively harness the complementarity of information of virtual modalities. Moreover,
when the conditions during image acquisition had been adverse, e.g., under low/uneven illumination, the
artificial modalities can compensate for the loss of information.

Of course, this is also true for the case of non virtual modalities. For example, Lidar and Sonar can reveal the shape
of objects even in zero visibility conditions, where image acquisition in the visual spectrum is useless. Successful
methods have been developed to combine complementary information from different acquisition sensors, as we discuss
in the following sections. In this work we focus on the following problem, which is of pivotal importance in the
common case where only one imaging (original) modality is available:

Can the complimentarity of information from original and virtual modalities be leveraged to improve
detection and recognition accuracy of state-of-the-art algorithms?

2.7 Virtual multimodal Faster R-CNN

We adopt the architecture of the very widely used, VGG-16 based, Faster R-CNN object detector. We independently
train clones of this model and then transfer trained sections into a fusing architecture, which we design explicitly
for accommodating the complementary informative input from IN and VR. We should note, though, that that this
strategy can easily be extended to different Faster R-CNN set-ups, and even to other popular, not region-based, object
detection architectures (e.g., YOLO (Redmon & Farhadi (2018)) and RetinaNet(Lin et al. (2017))). For simplicity, we
describe in detail only the fusing architecture of our Bi-modal Faster R-CNN set-up. However, the generalization to
accommodating a larger number of, physical or virtual, modalities, such as the Tri-modal version that we use in our
experiments (section 3), is fairly straight forward.

Starting with the original (raw) data-set, which consists of monochromatic (e.g., gray-scale) images (RD), we
select and apply the image enhancement method of our choice. The derivative data-set (SD) will serve as additional,
virtual imaging modality. Using the real RD and the derivative SD imaging modalities, we train two independent, but
identically structured, Uni-modal VGG-16 Faster R-CNN networks, as described in the following paragraph.

Uni-modal VGG16 Faster R-CNN

For each training session (RD and SD), the corresponding image becomes the input of a Convolutional Feature
Representation (CFR). This mapping is implemented by a series of 13 convolutional layers, each one followed by
Rectified Linear Units (ReLU), with the max pooling operation activated after selected layers, as shown in Figure 3.
The number of filters increases after every few layers, as is common in CNN architectures. This process transforms
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Figure 3: The Unimodal VGG16 Faster R-CNN propagates the image input through a sequence of convolution layers
(Convolutional Feature Representation (CFR) stage), periodically reducing the spatial dimensions with Max Pooling,
generating the (convolutional) feature volume. This representation enters the RPN which, using the pre-determined
anchor boxes as reference regions, selects ROIs, i.e. regions of high "objectness’. Finally, each ROI is vectorized
and pushed into the R-CNN classifier stage where, through a succession of Fully Connected (FC) layers, the system
arrives at the final decision: object from which classes appears in the detected region (if any) and final location and
dimensions adjustments to fit the object tightly (if any).

the original input into a 3-dimensional array, the (convolutional) feature volume®. The max pooling operations (red
color layers in Figure 3) divide the CFR component in five sections. The spatial dimensions of the feature map are
bisected as the volume of processed data passes forward, from one section to the next. We label each convolutional
layer as convM.P, where M = {1,2,3,4,5} corresponds to the section where the layer belongs and P is its position
in the specific section. For example, convl.1 refers to the very first convolutional layer that receives the input image,
while conv5.3 refers to the last convolutional layer in the CFR component. The coefficients throughout the CFR
component, both for the convolutional filters and the biases, are all initialized using the corresponding coefficients of
the VGG-16 network pre-trained on the (RGB) Imagenet data-set (Deng et al. (2009)) (see following paragraph for
more details on the model parameters’ initialization). The spatial dimensions of all convolutional filters (kernels) used
in the CFR component are the same, 3 x 3. We allow the training to update all layers’ filter coefficients. Furthermore,
all convolution operations act on the previous layer’s output-array with zero-padding applied as needed, so that the
output’s spatial dimensions do not drop due to the convolution operation Thus, for an image input of size n x m,
the output of the CFR stage, i.e. the output of the conv5.3 layer, is a convolutional feature volume with dimensions
(m/2%) x (n/2%) x 512.

The convolutional feature volume enters the next stage of the unimodal network, the RPN. In this stage, one more
convolutional layer (RPN3x3c0nv), composed by 512 filters of size 3 x 3 and followed by ReLU operation, acts on

30ften called feature map or feature representation
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the feature representation. Once more, appropriate zero padding is used to retain the map’s spatial dimensions. The
RPN3300ny OUtput enters two independent 1 x 1 convolutional layers, each with enough channels to output objectness
scores (RPN,;,s) and bounding box predictions (RPNpp,.) respectively, for all corresponding anchor boxes of the
image. More precisely, since we use |Squenors| = 9 anchor configurations, the RPN, 4 layer will have 2 -9 = 18 output
channels (a pair of confidence scores per anchor representing confidence of being an object or being background)
while RPNpp,, Will have 4 -9 = 36 output channels, corresponding to 4 regression bounding box (bb) adjustments for
each anchor (Ay,, Ay, . App—widrh a0d App_peigh TESPECtively).

An (m/2%) x (n/2*) x 512 feature volume yields a total of M = (m/2%) x (n/2*) x 9 candidate ROIs. Each of
them has now been assigned objectness scores and bounding box adjustment values. However many of these regions
are in practice ’significantly’ overlapping due to the anchors’ construction. At this point, a process known as Non-
Maximum Suppression (NMS) takes place. The aim of this process is to eliminate most of the overlapping ROI
candidates, allowing those with the highest objectness scores to prevail. The list of candidate regions is re-arranged
in decreasing order with respect to objectness score* and a predetermined NMS threshold, NMS,,..; € (0,1), comes
into play. The regions are compared on the basis of their Intersection over Union (IoU) ratio; the IoU of two image
|ANB|
|AUB]
pixel units. Each Rol candidate region that demonstrates loU> NMS;,.s, with a region found higher in the list, gets
discarded. Through this process, the RPN yields the final list of ROIs.

ROIs, through their reference anchor and the quadruple of region adjustments, should be regarded as sub-regions of
the original, n x m, input image. However, ROIs can also be projected onto the convolutional feature volume, defining
feature volume *3D-slices’. These 3D-slices are extracted and interpolation in space is applied, to achieve a uniform
size of 7 x 7 x 512, completing what is commonly referred to as the ROI pooling step. These, new equally sized, Rol
feature volumes assume now the role of Rol descriptors for the final, R-CNN classification, stage.

Each ROI feature volume that comes out of the ROI pooling process is vectorized and pushed into the Fast-
RCNN classifier. Here, two consecutive, Fully Connected (FC)+ReLU layers, FC; and FC, respectively, transform
the vector representation, both producing outputs of size 4096. The (random) drop-out operation, a very common
sparsification (regularization) technique that allows only an arbitrary percentage of the coefficients to be fine-tuned
at each training iteration (to reduce over-fitting), may be used here’. Note that certain sparcification (a reduction in
the number of small in magnitude thought as insignificant values) already has taken place, through the ReLLU and the
max-pooling operations. This additional sparsification step can compensate for some residual over-redundancy of the
feature mapping mechanism, built before the RPN (original sparsification comes from max-pooling operations and
the ReLU non-linearity). We note here that, the drop-out operation is commonly regarded as regularization of the
back-propagation process. We believe that both viewpoints offer a different, useful perspective.

At last, the feature vector output of FC, enters two parallel, independent FC layers, that yield the two final system
predictions. The first (FCpjuss—score) generates the softmax® confidence scores per class, including one background
class. The second (FCpp,y) yields the final regression bounding box adjustments, intended to make each detection
region as tight as possible around the predicted object. Thus, in a detection task where the number of target classes is
C, the final output of any original input is a summary 'report’ for a number of Rols, say N, presented in two tables:

, measured in

regions A and B is defined as the ratio of their intersection area over the area of their union (

P <0, I}N *(C+1): contains the F Celass-score 1ayer output (softmax class scores). Each row corresponds to a Rol.
Each column corresponds to a target object class, plus one more column for class ’background’.

B € RV*+(C+1): contains the F Cppox layer output (box adjustments). Each row corresponds to a Rol. Every
next quadruple of entries in a row corresponds to one of the target classes, again with the addition of an extra
quadruple for “background’.

4Note that only the confidence score of being an object is used

SIn our experiments we observed that in this particular situation drop-out does not allow the model to achieve its best performance. Thus,
we adopted an early-stopping-like technique, by allowing the training to continue for many epochs after convergence on the training set has been
achieved, and then choosing the model that performs best on the validation set as representative of the scheme
e

SGiven a vector u = (uy,uz,...ux) € R¥ the softmax of u is composed by the elements s(u); = K on
k=1€%
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Initialization

During training all but the predefined, if any, filter entries the system will use will be learned via a process which
forces them to change in a way that a certain input from the training set must be matched to a certain output. One
classical approach is to give random values to those entries. Assigning values to any filters entries or weights to
fully connected layers at step one of the training is called initialization. One of the main difficulties when training
deep CNNSs is that the convolutional layer coefficients, if randomly initialized, tend to over-fit the training data-set.
Furthermore, for many computer vision tasks, even data-sets composed by hundreds of thousands of instances can
be considered relatively small to represent adequately the input space in its generality. These factors can lead, not
only to very long training sessions but, even worse, to models where the loss-function optimization process (see next
paragraph) gets trapped inside a ’local minimum’, or reaches a ’saddle point’, quite far from a model that would
generalize efficiently on un-seen data. A widely accepted solution to this problem, akin to the ’human experience’, is
transfer-learning. According to the transfer-learning strategy, new architectures that have to be trained on relatively
small datasets, can benefit by ’borrowing’ convolutional or FC layers’ coefficients, previously trained on much larger
data-sets. There is evidence that this transfer of coefficients works even when the tasks are not exactly the same. We
use the, openly available, pre-trained VGG 16 coefficients from Simon et al. (2016), to initialize the filter coefficients
in all convolutional layers in the CFR stage of our unimodal sessions. Ideally, in our enhanced data SD-unimodal
session, we would rather use an initialization using coefficients obtained from pre-training VGG16 with an enhanced
version of the ImageNet data. However, due to computational limitations arising from the large size of the ImageNet
data-set, this has not been feasible during our experiments.

The coefficients for all the layers following the CFR stage, convolutional and fully connected, are randomly ini-
tialized, using normal distributions random inputs, but ignoring the values that are more than two standard deviations
(stddev) away from the mean. Values outside this interval are discarded and re-drawn. The parameters of the normal
distributions we use in our implementation are: (i) mean= 0 and stddev= 0.001 for the F Cpp,, layer and (ii) mean= 0
and stddev= 0.01 for all remaining layers.

Loss function and optimization

Supervised machine learning apparatus is driven by what is known as the loss function, that measures the discrepancy
between the system’s predictions and the correct ’labels’ (ground truth values). Loss function plays the role of the
objective function in an optimization scheme and is evaluated at each training iteration. To control the quality of the
approximation of the model’s predictive function (here the predictive function is a scoring function), the model aims at
optimizing (minimizing) the loss function, by updating the model’s trainable variables as needed (backpropagation).
However, simply minimizing the loss function does not necessarily lead to a good predictive model. During the training
phase, therefore also during the loss function minimization process, only instances from the training set are examined.
But the evaluation of a model’s predictive accuracy is done by measuring its predictive ability on the separate test set,
after the model’s training has been completed (usually on the basis of loss function convergence). The ability of a
model to predict the labels of instances that never appear during its training phase is commonly known as the model’s
generalization capability. Good generalization capability is the key ingredient that needs to complement a successful
loss function minimization scheme, in order to obtain an efficient predictive model. These issues need to be very
carefully considered when designing the model architecture, the loss function as well as the optimization scheme.

For the Uni-modal Faster R-CNN, we use the loss function defined in Ren et al. (2015). In short, the loss for an
image input is defined as the sum of four partial losses, evaluated in it’s two prediction stages:

RPN + LOSSRPN

Losstorar = Loss reg T Lossjs + LosSyeg

The first two terms of the sum (RPN loss) refer to the classification (log loss) and bounding box regression loss of the
RPN respectively. The last two terms (classifier loss) steer the final classification and detected region regression loss.
The classification loss terms penalize the difference between the systems confidence that a region contains an object
and the actual objectness label of the region (0 if the region does not contain object and 1 if it does). Both regression
loss terms measure the *mismatch’ of an estimated detection box with the corresponding ground truth box, at some
location of the image that contains an object.

A critical factor of the training process is the balanced mix of anchor boxes used to evaluate RPN loss. Anchor
boxes can be divided into two categories. Those that do overlap ’significantly’ with ground truth box annotation of an
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object from the target classes, and those which do not. We call the former foreground anchor boxes and the latter
background anchor boxes. Since objects from the target classes in most images occupy a small portion of the total
image area, the Rol candidate anchor boxes dealt by the RPN that are background anchor boxes highly outnumber the
foreground ones. This may bias the model towards the background ’class’, if all anchor boxes are allowed to enter the
RPN loss. To avoid this, during training, the set of anchor boxes is divided into two groups:

positive: Those that have an IoU greater than 0.5 with a ground-truth region of the image, and
negative anchors: Those that have 0 <IoU< 0.1 with all ground-truth regions of the image.

Then, a balanced random sample of 256, both positive and negative, anchors is selected. In the evaluation of the RPN
loss terms at each training iteration, only the mini-batch anchor boxes are used in the calculation of Lossfl’;N and, from
those, only the positive anchor boxes and their ’closest’ ground truth regions are used in the calculation of Lossfe‘;N .
Using the Loss7,4, Stochastic Gradient Descent (SGD) with momentum (Sutskever et al. (2013)) is used as the
optimization scheme, with the momentum value set at 0.9. The initial value for the learning step is set to 0.001 and

decreases in a step-decay manner, multiplied by a factor of 0.1 every 70,000 training iterations.

Bi-modal VGG16 Faster R-CNN

We allow the two independent training sessions, for the RD and VR Unimodal Faster R-CNN respectively, to converge.
Then, we transfer the CFR stage coefficients and the RPN3 3.0, coefficients of the best performing agent7 from each,
into the Bi-modal Faster R-CNN (Figure 4), which we design and train as follows:

The RD physical modality and the SD virtual modality are used as inputs to two CFR streams, arranged in parallel.
Each stream is initialized with the coefficients learned and transferred from the corresponding RD and SD Unimodal
sessions, from the previous step. The coefficients of these two, independent, streams will remain un-effected by
the (optimization guided) updating process, throughout the whole bi-modal training session. The feature volumes
generated by RD-CFR and SD-CFR enter the RPN stage, where two separate RPN33.0ny layers receive them, the
RD — RPN33¢om and SD — RPN3,3.0m Tespectively, both with the same set-up as in the unimodal case®, but each
initialized using the pre-trained RPN3 3.0y coefficients of its corresponding unimodal peer. The outputs of these two,
parallel, convolutional layers, are concatenated (deep features fusion) towards the ’depth’ dimension. The rest of the
RPN stage maintains the same structure as in the Unimodal case, producing the Rols of high objectness confidence, and
the training remains the same. It is important to note though, that, since the depth dimension of the fused representation
has doubled due to the fusion of the two feature volumes, the depth of the 1 x 1 filters in the two, parallel, convolutional
layers that conclude the RPN stage, are also doubled. Now, the Bi-modal model has, hopefully, already used the dual
information from the RD and SD fused representation volumes, created in the RPN stage, to better estimate the Rols.
For the R-CNN classifier stage, we perform a second deep feature fusion, by concatenating the, already generated,
feature outputs from the RD-CFR and SD-CFR stages, towards the depth dimension. Then we (inversely) project the
generated Rols on this fused convolutional feature volume (FCFV). We note that in this case, the representation
’slices’ extracted in the Rols pooling stage inherit the depth of the FCFR, which is twice the size of that in the uni-
modal case. The rest of the Bi-modal architecture proceeds with the same manner as the Uni-modal network. The Rol
feature representations are vectorized and enter the R-CNN classifier stage. However, since this time the vectorized
Rol array has twice the size of the Uni-modal equivalents, the size of the embedding matrix in the F'C; layer for the
Bi-modal architecture needs to have dimensions (7 x 7 x 2 x 512) x 4096. Once more, for FC; and FC;, layers in
the Bi-modal network, one can choose to use Drop-Out, probably to correct the redundancy of information, which
may lead to over-fitting. However, in our implementation, in order to avoid the negative implications of fine tuning the
model, we do not use drop-out but, once again, follow our Uni-modal ’early-stopping’ approach. That is, we train until
the model has safely converged and then we run validations using snapshots of the model, recorded at every 5,000
training iterations, choosing the best-performing one as the optimal model. The final predictions of class confidence
scores and bounding box estimations enter the same loss functions with those described in the uni-modal case.

7We save a *snapshot’ of the models’ coefficients every 5,000 training iterations. A validation is performed on the validation dataset using each
coefficient’s snapshot and the best performing is determined according to our "over-all classes’ evaluation metric, described in section 3
8512 filters of size 3 x 3 followed by the ReLU operation
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Figure 4: BiModal Faster R-CNN propagates the dual modality input through two parallel streams of identically struc-
tured, but independently pre-trained, CNNs. The CNN that receives the Raw (physical) modality (RD) is pre-trained
on Raw images while the CNN that receives the virtual modality (SD) is pre-trained trained on processed images. The
two streams produce two separate Feature volume representations. The two representations are concatenated (deep
features fusion) and the new, deeper, volume enters the Region Proposal Network (RPN), allowing the system to esti-
mate more accurate Region of Interest (Rol) detections. Finally, fused representations of these Rols enter the classifier
leading to more accurate label decisions.

Initialization of the Bi-modal Faster R-CNN

As we already mentioned, all the filter coefficients in the two parallel CFR stages, as well as the filter coefficients in the
two parallel RD — RPN3y3¢0ny and SD — RPN3x3.0ny layers, are initialized by transferring the corresponding coefficients
of the best performing models from the Unimodal networks. Once more, we emphasize that these coefficients will
remain fixed during the Bi-modal network training process, unaffected by the update which takes place after each
training *forward pass’, in what is commonly known as the ’back-propagation’ step in deep learning terminology.
Apart from these, transferred, coefficients, all other coefficients, in all remaining layers of the Bi-modal network,
convolutional and FC, are randomly initialized, using the same initialization set-up we used in the Unimodal training
sessions. Furthermore, all these coefficients in the remaining layers, are allowed to get updated during each back-
propagation step, until the model converges.
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Before we close this paragraph, we need to mention one more thing. It would be possible to transfer the inde-
pendently pre-trained coefficients of the F'C; layers from the RD and SD Uni-modal networks, and combine them to
initialize the F'C; layer in the Bi-modal network. This could provide further generalizability gains to the Bi-modal
network, and in extension to any multimodal network, especially since the size of F'C| layer increases proportionally
to the number of modalities used, but our postulate does not imply increase in the usable complementary information
that is proportional to the number of used modalities. This type of modified multimodal Faster R-CNN initialization
remains part of our ongoing experimentation.

3 EXPERIMENTS

We test our Multimodal Faster R-CNN implementation on two very popular, publicly available datasets suited for
object detection, the Pascal VOC 2007 (Everingham et al. (n.d.a)) and VOC 2012 (Everingham et al. (n.d.b)) challenge
databases. More specifically we follow the object detection task rules: Predict the bounding box and label of each
object from the twenty target classes in an image unknown to the system being tested. As the challenges’ creators
state: The main goal in these challenges is to recognize objects from a number of visual object classes in realistic
scenes (i.e. not pre-segmented objects). This can be treated as a supervised learning problem and a training set of
labeled images, from twenty different object classes, is provided. The twenty object classes that have been selected
for both challenges are:

Person: person

Animal: bird, cat, cow, dog, horse, sheep

Vehicle: aeroplane, bicycle, boat, bus, car, motorbike, train
Indoor: bottle, chair, dining table, potted plant, sofa, tv/monitor

We run two independent experiments, comparing the accuracy of the Unimodal Faster R-CNN with raw image input
(benchmark) against our Bimodal and Trimodal Faster R-CNN architectures, that use the IN/VR artificial imaging
modalities. We follow the standard experimental set-up for the VOC2007 and VOC2012 detection tasks:

VOC2007 detection: We train on both the train and validation VOC2007 data-sets, composed by 5,011 images
containing 12,608 object instances in total. We validate the model on the VOC2007 fest data-set, composed by
4,952 images containing 12,032 object instances in total.

VOC2012 detection: Due to lack of available annotation for the VOC2012 fest set, here we train only on the
VOC2012 train data-set, composed by 5,717 images containing 13,609 object instances in total. Then, we
validate the model on the VOC2012 validation data-set, composed by 5,823 images containing 13,841 object
instances in total.

3.1 Precision over recall evaluation per object class

In all the Faster R-CNN based network’s we use in our tests, a usually large number of Rols are selected from the
RPN classification as significant object-containing Rols. Each one of these Rols enter the R-CNN classifier, which
predicts the final detection region and gives to it a confidence score per class. It is crucial to understand that this NN
is a scoring system and the score is its belief that a certain region selected among those that have been qualified by
RPN contains an object from a certain class. In Figs. 7,8, and 9 the green detection boxes are such regions but those
displayed are a minuscule fraction of all anchor boxes qualified by both RPN and classifier. Recall, that RPN assigns
to each anchor box a similar “objectness score”

Given some confidence-threshold value cz4 for class A, a detection region, say BB j...; (recorded in the array B),
is declared as a positive detection of object from class A, if the class A confidence estimated by the R-CNN classifier,

say scoredee’“’ (as recorded in the array P), exceeds the value of ct4. If 107> < scorefB"”“" < cty then BBygeer is
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1registe1red9 as negative detection, i.c. the network’s classifier decides that no object from class A is found in BBgesecr-
This rule, yields a classifier for each class and confidence-threshold value.

Now, for evaluation purposes, a positive detection region BB pos—derecr» fOr some cty, is considered a True Positive
(TP) detection if it satisfies both following rules:

(i) BBpos—detect has an IoU> 0.5 overlap with a class A ground truth box, say GTx

(i) GTy ground truth region is not overlapped (under the same IoU criterion) by another positive detection box of
higher class A confidence

If at least one of (i) or (ii) is not satisfied, BBys—gerecr 18 registered as False Positive (FP) detection. It is important
to observe here that, the system needs to be "chary’ with its positive decisions. Indeed, in case of multiple *valid’
detections of the same object in an image, all detection regions, except from the most confident one, will be declared
as false positives for the evaluation purposes'? .

To obtain a comparable measure for the accuracy per class of all Faster R-CNN based networks we use in our tests,
we adopt again the Precision (Prec) over Recall (Rec) standard metric. In probabilistic terms, for any class ¢ and

some confidence-threshold ct., we define

Prec. =P(detected region indeed contains object from class c |

system declared that the detected region contains object from class c)

which is also known as positive predictive power in biomedical tests. On the other hand, recall is the sensitivity of a
system, i.e.

Rec. =P(system declared a detection region containing object from class c |

an object from class c indeed exists in this region)

where P(A|B) represents the conditional probability of event A given B. For the purpose of extracting empirical
probabilities of performance, precision and recall are given by the following formulas:

Number of class ¢ TP detections

Prec, = Iy -
" Total number of class c positive predictions

and
Number of class ¢ TP detections

Rec. = : :
¢ Total number of class ¢ ground truth regions in the (test)set

Typically, lower precision is expected at higher levels of recall and vice versa. However, in many applications, it
is more important to know the precision of a system even at low recall levels, or the recall at low precision levels.
Furthermore, it can be of great importance to know what is the best precision one can expect when recall below a
specific level cannot be tolerated, or the best recall one can expect when precision below some level is unacceptable.
To help understand those concepts we stress that recall is sensitivity and precision is the positive predictive value of
the system for screening tests in medicine.

We plot corresponding curves for all significant confidence-threshold values. This curve represents the, per class,
accuracy of the multi-class object detection model. Depending on the use of each modality, physical or virtual, we
obtain the following networks, of which we compare their individual performances:

Raw: The Unimodal Faster R-CNN network, described in section 2.5, using only the raw grayscale version of
the data both for training and testing.

Bimodal.Raw.IN: The Bimodal Faster R-CNN architecture, described in section 2.5, fusing the raw grayscale
and the virtual modality induced by IN version of the data, both for training and testing.

9Tt is common for this minimum score threshold value to be set higher than our 103 choice, so that less regions will enter the evaluation stage
as negative, leading to faster evaluation calculations. However, we purposefully decide to set this threshold in such a low value that (almost) all
Rols will enter the evaluation stage, providing us with a more complete picture of the over-all precision/recall trade-off of each tested model.

101p statistics language this means that all rank 2 and higher detection regions that effectively capture the specific object will enter the evaluation
as false positives
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Bimodal.Raw.VR: The Bimodal Faster R-CNN architecture, fusing the raw grayscale and the virtual modality
induced by VR version of the data, both for training and testing.

Trimodal.Raw.IN.VR: The Trimodal Faster R-CNN architecture, fusing the physical raw grayscale and both
the IN and VR virtual modalities.

Results per class

In Figure 5 we present the precision over recall curves (for a few classes) from the Raw Unimodal Faster R-CNN
detector against our Trimodal Faster R-CNN architecture. In most cases, class accuracy improves anywhere from
somewhat to significantly, when we use the proposed Multimodal networks (Bimodal or Trimodal Faster R-CNN)
relative to the raw-Unimodal model (e.g., for classes potted-plant, bird, sheep and sofa in Figure 5(a)-(d)). The gain in
precision with the Trimodal architecture is anywhere between 0.02% up to 18.16% in most recall levels. On the other
hand, there are object classes, e.g., the class bus (Figure 5(e)) where the Trimodal network results in a lower precision
than its raw-Unimodal peer. We also find object classes, such as dining-table (Figure 5(f)), where performance is
mixed

‘We observe a similar behavior with the VOC2012 database. Thus, in order to reach a conclusion on whether an
overall accuracy gain arises from our Multimodal architecture in both these tasks, relatively to the Raw-Unimodal
model, we propose to use a descriptive augmented metric, to represent performance of each model over all object
classes.

Precision
Precision
Precision

~— VOC2007 Raw
VOC2007 Trimodal (Raw.IN.VR)

~— VOC2007 Raw
VOC2007 Trimodal (Raw.IN.VR)

~— VOC2007 Raw
VOC2007 Trimodal (Raw.IN.VR)

- o Pobd o
0.2 0.4 0.6 . 1.0 0.0 0.2 0.4 0.6 0.8 1.0 X 0.2 0.4 0.6
Recall Recall Recall

(a) class: potted plant (b) class: bird (c) class: sheep

Precision
Precision
Precision

.0 .0 —
0.2 0.4 0.6 . K 0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Recall Recall Recall
(d) class: sofa (e) class: bus (f) class: dining table

Figure 5: Precision over recall, from VOC2007 object detection task, for classes potted plant (a), bird (b), sheep (c), sofa (d),
bus (e) and dining table (f). Both models, the Raw Unimodal Faster R-CNN (blue) and the Raw.IN.VR Trimodal Faster R-CNN
(orange), have been trained on the corresponding version of the VOC2007 train+validation dataset. Their performance is evaluated
on the corresponding VOC2007 fest data-set. In most object classes, e.g., (a)-(d) here, we observe a significant increase of precision
when we use our Raw.IN.VR-Trimodal model. However, there are cases, e.g. (e) here, where the virtual modalities based Trimodal
architecture demonstrates lower precision, and others where performance is mixed (f).

Each model’s performance can be studied on a three-dimensional space, with Recall (r), Precision (p) and Object
Class (c) defining the three dimensions. The range for the first two dimensions, r and p, is the interval [0,1] C R.
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Figure 6: All-class average recall (AR) plotted as a function of precision (p) for the VOC2007 (top row) and VOC2012
(bottom row) multi-class object detection tasks. The blue curve is drawn for the Raw-Unimodal Faster R-CNN
benchmark. The orange curve is drawn for the proposed Trimodal Faster R-CNN architecture, where we combine
deep features from the Raw and both virtual IN and VR modalities. Our Raw.IN.VR-Trimodal detector achieves
significant increase in the (expected) recall on the largest part of the precision range. In the VOC2007 case, apart from
a low region below 37% precision, the Raw.IN.VR-Trimodal detector achieves an increase of the expected (overall
object classes) recall from 0.09% to 1.42% (at 90% precision). In the VOC2012 case, the proposed Raw.IN.VR-
Trimodal architecture achieves significant increase in the (expected) recall on the whole precision range, from 0.15%
up to around 1.76% (at the neighborhood of 85% precision), relatively to the Raw-Unimodal benchmark.

Dimension c is discrete and assumes any value from the set {1,2,...,C}, where C is the number of target object
classes. In our VOC2007 and VOC2012 tasks, C = 20. For any model for which the precision recall values (curves)
have been evaluated for all object classes, we define the function r(c, p) as

r(c, p) = recall value at precision level p for class ¢

Note here that, precision does not necessarily cover all the available [0, 1] range, however there exists a meaningful
correspondence between all achieved precision ranges between the different classes. Now, we define the Average
Recall (AR) as
20
AR(p) = Z emp(c)r(c,p) 2)
c=1

where emp/(c) equals the relative frequency of appearance of object class ¢ in each task’s data-set, i.e. the ratio of class
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c ground truth regions in the data over the total number of ground truth annotations in the data. Thus AR is the average
empirical expectation of recall r as a function of precision p.

We use the AR function to evaluate the (expected) over-all performance of the Faster R-CNN based models. We
plot the AR over precision curves from different models on the same graph, to compare their performance in terms
of expected over-all recall at any level of precision. In both cases, on the VOC2007 and on the VOC2012 databases,
for the task of multi-class object detection, we have observed a significant improvement in the AR, the class-average
recall, for the largest part of the precision range, when we engage the virtual modalities with any of our Multimodal ar-
chitectures, relative to the Raw-Unimodal benchmark model. However, the boost in expected recall is higher when we
use our Raw.IN.VR-Trimodal Faster R-CNN architecture (Figure 6). More precisely, in the case of the the VOC2007
database, apart from a low region, below 37% precision, using our Raw.IN.VR-Trimodal detector we achieve an in-
crease of the all class-average recall from 0.09% up to 1.42% (at 90% precision). In the case of the VOC2012 database,
the respective increases are observed over the whole range of precision, and range from 0.15% up to 1.76% (at 85%
precision).

4 CONCLUSIONS

Multiple physical modalities provide complementary information for artificial intelligence tasks. They work in such
a way that when the information flow of one modality does not contribute sufficiently to a decision making process,
additional modalities with play a complementary role which, will hopefully decrease disambiguation of this task. If
only one physical modality can generate inputs, then there is only one way to proceed; maximize the extraction of
information from the single physical modality inputs. In this work we propose that one specific pathway to achieve
this goal is by creating virtual modalities, which generate artificial inputs from the single available input. The single
physical input and the artificially generated derivative inputs are jointly fed to a Neural Network classifier. We do
this in two ways, either by expanding the feature space or by utilizing the structure of the Neural Network classifier,
which now receives the single output along with the virtual inputs and generates an expanded feature vector for any
non-virtual input.

Within this framework, we have been able to provide preliminary experimental evidence to support the claim that
the IN and VR operators increase the ability of the deep object detection NN to assign less ambiguous confidence
scores, without imposing significant changes in the network architecture other than those necessary to accommodate
the additional artificial modalities. The reader can see the result of this disambiguation in Figures 7,8 and 9.

Our results are preliminary since we have not ascertained the statistical significance of our findings, mainly, due to
our intention to adhere as much as possible to the evaluation protocols of the Pascal VOC object detection competitions.
The computational overload required for this task was another contributing factor for this decision. Moreover, the
precision-recall curves of the R-CNN classifier performance show mild improvement with the fusion of the features
of the virtual modalities we use. Of course, one may wonder whether the same or better improvement can be achieved
with changes in the networks architecture. Although, this is quite possible, the improvement of discriminability seems
to suggest that the artificial modalities inputs may even yield additional improvement. However, the huge variety
in network configurations and design can lead to huge volumes of experiments that one cannot possibly perform in
order to establish, beyond any doubt, the usefulness of the artificial modalities along with a physical one. Moreover,
the identification of the correct parameters for the artificial modalities is another issue we did not touch upon in a
systematic way (sensitivity analysis). In fact, in Fig. 9 the reader can see that in adverse atmospheric conditions VR
needs other than its default parameters. Despite the number of unanswered questions our study raised we believe that
the size of the two databases we used for our test experiments provide sufficient evidence that the virtual modalities
can help deep NN classifiers improve performance, not only when inputs are acquired under marginal conditions, but
also when all is, or looks, normal. Furthermore, we achieved this goal without changing their prototypical design of
the NNs we use.

Overall, our present results suggest that the fusion of physical and derived artificial modalities can potentially
improve the accuracy of Al systems.
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Figure 7: Each detection system draws a ’labeled’ rectangle, enclosing in a tight manner any object (from the learned classes)
they detect. The number on the side of the label represents the confidence, of the system, that the rectangle contains an object from
the specific class (in the range [0, 1], where 1 corresponds to certainty). In many occasions, the use of complementary information
from the artificial IN and VR imaging modalities within our virtual multimodal Faster R-CNN architecture leads to higher detection
capability (1st column), relatively to the unimodal system (2nd column) where only the raw image modality is used, especially
when poor visibility obstructs the systems decision. System’s detections with confidence below 0.4 are not displayed.
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Figure 8: As in Figure 7, system detections appear as ’labeled” rectangles, enclosing any object they detect. Again, the number
on the side of the label represents system’s confidence that the rectangle contains an object from the specific class (in the range
[0,1], where 1 corresponds to certainty). Again we observe that the use of complementary information from the artificial IN and
VR imaging modalities within our virtual multimodal Faster R-CNN architecture can lead to higher detection capability, relatively
to the unimodal system where only the raw image modality is used. Higher detection capability of the Trimodal Raw.IN.VR system
here translates into either correcting false detections of the unimodal Raw-only system (e.g. in (f)), or new accurate detections (e.g.
in (d)), or improving significantly the system’s confidence on accurate detections (e.g. in (h)).

Face Recognition Applications”.
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Figure 9: Optimizing the parameters of the image enhancement methods, used to derive the artificial imaging modal-
ities, can further improve the multimodal system’s accuracy. Top row: The raw (physical) modality (a) next to the
derived (artificial) imaging modalities (b)-(d). Both (c) and (d) are generated by the VR method, but using different
parameter settings. Bottom row: Improvement in detection performance, compared to the Raw-Unimodal Faster
R-CNN detection attempt (e), is achieved only when Var, modality replaces Var; in the virtual Trimodal model (g).
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