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Abstract—Circuits may fail in the field due to a wide variety of
failure modes. If there are frequent failures in the field, circuits
are returned to the manufacturer, and the causes of failure must
be identified. The challenge is that wearout mechanisms are
confounded in circuit and system-level failure data. Using such
failure data, it is often hard to separate the underlying failure
causes without time-consuming and expensive physical failure
analysis. To distinguish the wearout mechanisms for each failure
sample, we have developed a quick and low-cost methodology
using maximum likelihood estimation and probability analysis to
determine the origin of the failure distributions, region of error,
and sorting accuracy. We apply our methodology to analyze the
competing wearout mechanisms in 14nm FinFET ring oscillators,
as an example, using simulation. We also consider the problem of
Trojan detection.
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1. INTRODUCTION

The increasing complexity of today’s integrated circuits
creates a need to diagnose the causes of wearout failures,
especially when failure rates are different than expected. The
need to diagnose the causes of failure in the field is also
increasing with the outsourcing of fabrication, which leads to
vulnerabilities to malicious attacks with hardware trojans
utilizing wearout mechanisms to damage chips, causing major
concerns for defense systems [1]-[3]. For circuits and systems,
wearout mechanisms are often confounded, making it difficult
to identify the root cause for breakdown in each sample without
physical failure analysis, which is time-consuming, damages the
sample, and costly [4], [5]. In this paper, we develop a
methodology to identify the probabilistic origin of failure for
each monitored sample, determine the region of error indicating
the time period where the cause of failure is unknown, and
analyze the sorting accuracy. In doing so, we select better
samples for physical failure analysis, saving time and money.
Specifically, we use machine learning to identify samples that
are likely to fail due to each wearout mechanism and those
samples whose cause of failure is unknown. This second group
of samples should be prioritized for physical failure analysis.

Generally, wearout models are developed using test
structures, which are designed to isolate failure modes. These
test structures may not be reflective of the actual system-level
design. In circuits, there is a risk of interactions that may cause
circuits to fail in ways not predicted by the models. This study
uses 14nm FinFET ring oscillators as a circuit vehicle to extract
wearout data, focusing on the front-end vs. back-end
mechanisms. Ring oscillators have behaviors similar to circuits.

Like circuits, they have confounded wearout data similar to
system-level failure data. The various ring oscillators are based
on the 14nm FinFET pdk technology node design kit jointly
developed by IBM, GlobalFoundries (GF), and Samsung.

This work is a simulation study to test our methodology. We
use lifetime simulation of circuits to generate the data sets [6]-
[8], with lifetime simulation models calibrated to test structure
data. We account for stress of layout geometries and transistors,
based on circuit operating conditions.

In our methodology, we first apply maximum likelihood
analysis and the Weibull distribution to failure data to detect the
overall set of Weibull parameters for the first and secondary
wearout mechanisms. Then, with the known competing Weibull
parameters, we apply the probability distribution of each
mechanism at each failure time to assign the most likely and
dominant wearout mechanism for each sample. Next, we
demonstrate how to find the region of error (time interval when
the uncertainty is highest), and the accuracy of the assignment
for each sample. The contributions are (a) a mathematical
approach to find the parameters of wearout distributions from
data where the failure rate distributions come from more than
one wearout mechanism, (b) the identification of the
probabilistic cause of each sample, to guide the selection of
samples for physical failure analysis, and (c) the identification
of time points with the greatest uncertainty in the cause of failure
for the samples.

This paper is organized as follows. Section 2 provides
background information on the wearout models used in this
study and the generation of dataset with more than one wearout
mechanism. Section 3 provides the theory on how to calculate
Weibull parameters from the data and the probabilistic cause of
each sample. We then analyze our ring oscillators in Section 4
with the above methodology described in detail in Section 3. In
Section 5 we consider the application of Trojan detection. The
paper concludes in Section 6 with a summary.

II.  WEAROUT MODES

A. Wearout Models

The investigation of front-end vs back-end breakdown
mechanisms is explored in this study, using front-end of line
time-dependent dielectric breakdown (FEOL TDDB, GTDDB)
and electromigration (EM). FEOL TDDB is one of the most
common front-end breakdown mechanisms, while EM is one of
the leading causes of backend failures. GTDDB occurs due to
the build-up of traps in the gate oxide region. EM is the
dislocation of atoms in interconnect metals from the momentum
transfer of atoms. The wearout models for these two



TABLE I
WEAROUT MODELS [9]-[11]
Mechanism Model
0= AroL WL €7 VT exp (T24) 51
GTDDB where a, b, ¢, d, and Aggo; are process-

dependent constants. V and T are voltage and
temperature. W and L are the width and
length of the MOSFET device.

N = AgyJ " exp(Ea/kT)
where Ag), is a constant, T is temperature, J is
EM current density, E, is the activation energy
(0.85 eV), n=1 (void growth), and k is
Boltzmann constant.

mechanisms are summarized in Table I [9]-[11].

These breakdown mechanisms can be described using the
Weibull distribution with two parameters, n and p. n is the
characteristic lifetime, which is the time-to-failure of a sample
at 63% failure probability, and B is the shape parameter that
describes the spread of the distribution of failure samples. The
parameters used were obtained from experimental data [11]-
[15].

B. Competing Wearout Mechanisms

The confounded failure data in circuits are composed of
competing wearout mechanisms, which occur when failures are
due to more than one breakdown mechanism, independent of
each other (mechanisms do not affect each other). For a failure
sample that has two wearout mechanisms, mechanism 1 and
mechanism 2, the competing failure probability density function
of the overall system, f(t), can be described below [16]:

f(t) = fi(t) * Ra(t) + (1) * Ru(t) 6]
where fi(t) is the probability density function and R;=1-F(t) is
the survival function for mechanism 1, respectively. Fi(t) is the
cumulative distribution function for mechanism 1. f3(t) is the
probability density function and R,=1-Fy(t) is the survival
function for mechanism 2, respectively. Usually one of these
mechanisms will be the dominant failure mechanism, which is
determined by both the B and 1 values, and the other mechanism
will be the secondary mechanism.

The competing probability density function contribution
from mechanism 1, called a,, is defined below:

ar=fi(t) * Ra(t) 2)
which is the probability density function portion of the overall
system showing that mechanism 1 has failed but mechanism 2
is still working. Similarly, the competing probability density
function contribution from mechanism 2, called a,, is defined
below:

ay= () * Ru(t) 3)
When the differences in the individual probability density
functions are large, the failure mechanism that fails much later
will have a survival function close to 1, and the other mechanism
that fails first will have a survival function close to 0. This will
simplify the competing probability density function contribution
to the dominant probability density function.

The competing failure probability density function is
different than the mixed Weibull probability density function
[17]:

f(ty=a * fi(t) + b * fi(t) “4)

where a and b are the mixed weights. The mixed Weibull
probability density function occurs when the breakdown is due
to both mechanisms at the same time.

For the competing Weibull probability density function, the
breakdown at a specific failure time is due to only one
mechanism, but the cause can be from either mechanism 1 or 2,
but not both. The wearout mechanisms are independent and
each wearout mechanism has no influence on failures due to the
other mechanism. This is reasonable for GTDDB and EM, since
they impact different components of the circuit (the transistor
and the backend interconnect, respectively).

III. METHODOLOGY FOR IDENTIFYING COMPETING
WEAROUT MECHANIMS FOR EACH SAMPLE

A. Extraction of Weibull Parameters

In order to investigate the competing failure mechanisms, the
Weibull parameters for each set of competing mechanisms of
various 501-stage ring oscillators are shown in Table II. The
ratio of the B values for the two competing failure mechanisms
were varied to explore the effect of the shape parameter’s
influence in detecting the correct failure distribution for each
sample. All other parameters were kept the same. In all studies,
GTDDB and EM are mechanism 1 and mechanism 2,
respectively.

The failure distribution of the competing mechanisms is
modeled by picking a point randomly from each distribution.
Then, the smaller value is set as the lifetime, because it is the
mechanism that fails first at that time point. Next, the points are
plotted as ordered pairs: (In(t;), In(-In(1-(;}))), (In(t2), In(-In(1-
(), etc. Sample sizes N of 10, 100, and 1000 were generated
for each set to investigate the effect of sample size, which are
shown in Fig. 1.

B. Maximum Likilhood Estimation

As a preliminary analysis step, maximum likelihood
estimation (MLE) is used to determine the overall parameters
present in the competing wearout modes, but it does not assign
the individual samples to their corresponding failure
distributions. From the given observations, which are the failure
times in our examples, MLE finds the parameter values that
maximize the likelihood or highest probability of getting the
observations given the parameters. The likelihood function for
uncensored data is [16]:

L) = CTIY, f(t) )
where 0 is the set of competing Weibull parameters, Bi, i, B2,
2. The log likelihood function can be written as:

In£(®) =YX, Inf(t,) + InC (6)
TABLE II

COMPETING WEIBULL PARAMETERS [11]-[15]

P ratio for

Set ] " B2 "2 1st vs 2nd

(yrs) (yrs) mechanism
1 10 987 | 1.14 | 25.1296 8.77
2 5 987 | 1.14 | 25.1296 4.39
3 1.64 | 9.87 | 1.14 | 25.1296 1.44
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Fig. 1. Failure distribution for case studies with varying sample sizes from 10 to 1000 samples (unit of time: yrs). P is probability.
Pink markers are samples from 1st wearout mechanism, while the black markers are samples from 2nd wearout mechanism.

Various methods can be used to solve eq. (6), and we chose
to use the quasi-Newton method [ 18], which is a type of machine
learning algorithm, due to its simple implementation. For
sample sizes of 10, the initial conditions for both the f and n
were varied at the same time in increments of 5% from -5% to
5%, and the average of each parameter was taken over all
mechanisms. The range of -5% to 5% was chosen, because the
MLE was usually unable to separate the competing Weibull
parameters beyond this range. Similarly, for sample sizes of 100
and 1000, the initial conditions for both  and n were varied at
the same time in increments of 5% from -15% to 15%, and the
average of each parameter was taken over all increments as the
set of overall parameters for the competing mechanisms. For

these two cases, the range of -15% to 15% was chosen, because
the MLE also was usually unable to separate the competing
Weibull parameters beyond this range.

The results for the MLE extracted Weibull parameters for all
sets are summarized in Table III, along with the average of the
absolute error over all deviations for the extracted parameters.
As an overall trend, generally the absolute error increases with
decreasing [ ratio and sample size. Occasionally, there may be
some sets that have a larger absolute MLE error, because the
MLE may be stuck in a local minimum, but this error is still less
than 45%. In fact, most of the absolute errors are still in a
reasonable range, which is less than 30%. These errors can be

TABLE III
AVERAGED MLE EXRACTED WEIBULL PARAMETERS FOR ALL SETS
GTDDB EM
Sal.nple B B absolute n 1 absolute B B absolute - 1 absolute
Size error error error error
average average average average

average average average average
10 8.604 13.963% 9.260 6.176% 1.113 3.336% 17.831 29.044%
i;t 100 10.894 8.942% 10.112 2.453% 1.632 43.155% 20.357 18.992%
1000 10.269 2.687% 9.899 0.291% 1.154 1.195% 24.286 3.358%
10 3.700 25.998% 10.678 8.185% 0.736 35.442% 15.745 37.344%
iezt 100 4.874 2.520% 9.580 2.934% 1.452 27.378% 23.203 13.062%
1000 5.201 4.017% 9.927 0.576% 1.079 5.311% 30.080 19.699%
10 2.087 27.273% 9.667 2.057% 0.924 18.986% 24.973 4.671%
igt 100 1.917 16.917% 9.267 6.108% 0.996 12.598% 23.042 8.771%
1000 1.708 4.169% 11.032 11.778% 1.069 6.200% 20.539 20.286%




minimized further by optimizing the calculation procedure for
performing MLE.

C. Sorting of Weibull Parameters for Each Sample

With the overall Weibull parameters for each set now
known, each failure sample can be sorted into its respective
failure distribution. For each failure time point, the time-to-
failure value can be inputted into each competing probability
density function contribution, eq. (2) and eq. (3), for each
distribution. A higher value represents the higher probability of
the sample belonging to that respective distribution. Therefore,
we are comparing the relative values, or ratio of eq. (2) to eq.
(3), to sort the samples.

An interesting phenomenon is that for the case of
competing wearout mechanisms, the relative values or the ratio
of the hazard function is also the same as comparing eq. (2) to
eq. (3). The hazard function for mechanism 1 is:

t
hy(6) = 29 (7
and similarly, the hazard function for mechanism 2 is:
ho(8) = 29 ®

The hazard function, also known as the instantaneous failure
rate, shows the conditional probability of a failure given that the
system is currently working. When multiplying both sides of
eq. (7) or eq. (8) by R, (t) * R,(t), they can be rewritten as:

Ry (t) * Ry () x hy(t) = f1(t) * Ry(2) (3

Ry () * Ry (£) * hy(t) = f2(8) = Ry (1) )
where the right sides of egs. (8) and (9) equal egs. (2) and (3),
respectively. Since only the relative values or ratio, not the
absolute value, is needed, using the hazard function to sort the
samples has the same results as using the competing probability
density function contributions.

and:

D. Calculations for Region of Error and Accuracy of Sorting

Looking back at eq. (1), at any time point, the competing
failure probability is always composed of two contributions, fi(t)
* Ry(t) and £1r(t) * Ry(t). As mentioned previously, fi(t) * Ra(t) is
the contribution from mechanism 1, where mechanism 1 has
failed but mechanism 2 has not failed, and f5(t) * Ry(t) is the
contribution from mechanism 2, where mechanism 2 has failed
but mechanism 1 has not failed. Therefore, x, which is the
percentage of failures from mechanism 1 at a given time t, is:

¥ = f1(©)*Ra () (10)
f1(©)*R2(8) + f2(©)*R1(2)
and y, which is the percentage of failures from mechanism 2 at
a given time t, is:

— f2(£)*R1 ()
Y = R0 + OB amn

Plotting eq. (10) and (11) for all failure times will show the
region where error will most likely be highest, which occurs near
x=y=0.5, meaning that there is a 50% probability that the sorting
could be right for either distribution. The plot will also show the
region where one distribution has a 100% probability of showing
up, with the other distribution having a 0% probability of
showing up, meaning that this region can have failure samples
sorted to their relative distributions without any inaccuracies.
When the distribution’s 100% probability lowers, any future
time point may have a probability of being sorted incorrectly,
which is called the region of error. This region identifies the

time periods that are most important for physical failure
analysis.

IV. ANALYSIS OF SORTING ERRORS

To determine if there is a difference between the original and
MLE extracted parameters, the sorting of samples to their
respective failure distributions was performed for both types of
parameters. This process was performed by comparing the
values of egs. (2) and (3) at each failure time point to sort the
samples. The region of error, found by using egs. (10) and (11),
and the sorting accuracy were also calculated using both types
of parameters. The results are summarized below.

A. Sorting Errors Using MLE Extracted Parameters

The sorting for each sample, the calculation of region of
error, and accuracy were determined using the MLE extracted
parameters. As shown in Fig. 2, there is a region of no error at
the smaller failure times due to samples coming from only the
dominant wearout mechanism (probability =100%), and this
region becomes larger when either the sample size or B ratio is
decreased. When the f ratio is about the same, there is no region
with no error. The sorting accuracy increases as the f ratio
increases, but varies slightly with a difference in sample size.
When the percentage of each failure distribution is near 50%,
there is a higher probability of the samples being sorted to the
wrong distribution, because the risk of the wrong categorization
is around 50% too. This information can be used to signal that
the samples near this area are the only ones that one may need
to perform failure analysis using transmission electron
microscopy, not the entire lot, which saves analysis costs. The
sorting accuracy is higher than 87.3% for P ratios larger than
4.39 and can reach as high as 100.0%. When the B ratio is about
the same, the sorting accuracy is still higher than 70%.

B. Sorting Errors Using Original Weibull Parameters

The same sorting procedure, along with region of error
accuracy, were carried out using the original Weibull
parameters to compare results with the MLE extracted
calculations. In terms of sorting accuracy, region of error, and
wrongly sorted failure time, the results were comparable, with
similar accuracies. The only difference between using the
original and extracted MLE Weibull parameters is in the
accuracy of the value of the parameters themselves, as shown
in Table IV, but the correct failure mechanism can still be
found. In fact, the sorting accuracies are almost the same as
with  extracted Weibull parameters. Therefore, this
methodology can be used as a fast way to determine the wearout
mechanism for each failure sample.

V.  APPLICATION TO TROJAN DETECTION

The methodology of extracting wearout parameters with
MLE can also be applied to detect Trojans and to select
suspicious samples for failure analysis. Instead of extracting
parameters for two confounded distributions, we assume a
known distribution for mechanism 1, and use MLE to extract
the parameters for mechanism 2 based on the data. Since
hardware Trojans are triggered by unlikely events and
accelerate a specific wearout mode depending on its design, we
consider a worst-case scenario, where the original GTDDB
parameters are B;=1.64, 11=10 yrs, and Trojan affected samples
have altered GTDDB parameters to f,=1.64, ;=5 yrs in a
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Fig. 2. Percentage of each failure distribution for each failure time point (unit of time: yrs) sorted using MLE extracted parameters,
with region of error and sorting accuracy. 1st distribution refers to the 1st wearout mechanism, and 2nd distribution refers to the 2nd

wearout mechanism.

TABLE IV
SEPARATION ACCURACY FOR MLE EXTRACTED
PARMETERS
Sample Size | Set#1 | Set#2 Set #3
10 90.0% | 100.0% | 80.0%
100 93.0% | 89.0% 70.0%
1000 91.7% | 87.3% 73.8%

14nm FinFET 501-stage ring oscillator. Although the
GTDDB B parameters could be different, the hardest case to
distinguish is when they are exactly the same, with the only
difference being the failure time, where n, also known as the
characteristic lifetime, is changed to fail faster. Our algorithms
will assign samples to the two distributions and determine the
region of error (time points) where samples are likely to be
generated by the Trojan. The cause of failure of these samples
can then be analyzed.

The comparison of the results for the original GTDDB and
Trojan altered samples are shown in Table V. The results
demonstrate that MLE can distinguish samples with

accelerated failure lifetime under the same failure mode,
which can be used to indicate that Trojan samples exist.
Furthermore, the positions of wrongly sorted samples are
shown in Fig. 3. Because the § parameters, which determine
the failure mode, are the same, only the n parameters, or
characteristic lifetimes, affect the sorting accuracy. Since the
failure mode is the same, the failure probability will always be
higher for the smaller failure time point, n> (altered Trojan
sample), at each time point, resulting in the parallel lines for
the original GTDDB and Trojan distributions seen in Fig. 3.
This also means that it is easier to have an error when the
failure lifetimes are smaller for these special case scenarios,
because if an occasional sample belonging to the original
GTDDB distribution fails earlier than expected, the sorting
will be incorrect. This is also why the sorting accuracy
decreases as the sample size increases, because a larger
sample size will have a higher probability of sampling original
GTDDB samples that fail early. However, the overall sorting
accuracy is still higher than 75%, and can be as high as 90%,
which indicates that this methodology is still suitable as a

TABLE V
COMPARISON OF ORIGINAL GTDDB AND TROJAN ALTERNATED RING OSCILLATORS
Original GTDDB Trojan Altered GTDDB q
Sample Sorting
Size B error " error B error 4 error Accuracy
average average average average
10 1.377 -16.063% 8.041 -19.594% 1.377 -16.063% 3.206 -35.889% 90.0%
100 1.613 -1.617% 10.305 3.045% 1.733 5.683% 4.962 -0.754% 80.0%
1000 1.603 -2.233% 10.079 0.794% 1.668 1.691% 4.980 -0.405% 77.4%
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Fig. 3. Percentage of each failure distribution for each failure time point (unit of time: yrs) sorted using MLE extracted parameters,
with sorting accuracy. 1st distribution refers to the original GTDDB distribution, and 2nd distribution refers to the Trojan altered

distribution.

quick and easy screening process to detect Trojan altered
samples.

VL

Through maximum likelihood estimation, and probability
analysis, we have demonstrated a methodology to determine
the wearout mechanism in samples with competing wearout
mechanisms. The region of error can be determined for each
set of competing wearout mechanisms, and decreases when
either the P ratio or sample size is increased. The area where
the percentage of each failure distribution is near 50%,
meaning that there is a higher risk of wrong sorting, can be
used to signal that the samples near this point are the only
ones that need physical failure analysis, rather than the entire
lot, which can cut down costs.

The sorting accuracy is also more accurate when the 3
ratio increases but varies slightly with sample size. The
results of the sorting process using the MLE extracted and
original Weibull parameters are the same. The only
distinction may be in the accuracy of the exact values of the
Weibull parameters, but this can be minimized with
optimized MLE calculations. However, the wearout
mechanism can still be determined without any difference
with regard to either the extracted MLE or original
parameters. The methodology was also applied to detect
hardware Trojans, and was able to distinguish the altered
samples. Therefore, this procedure provides a quick and non-
invasive way to carry out low cost failure analysis and a better
way to select samples for costly physical failure analysis.

CONCLUSION
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