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Abstract—Circuits may fail in the field due to a wide variety of 

failure modes.  If there are frequent failures in the field, circuits 
are returned to the manufacturer, and the causes of failure must 
be identified.  The challenge is that wearout mechanisms are 
confounded in circuit and system-level failure data.  Using such 
failure data, it is often hard to separate the underlying failure 
causes without time-consuming and expensive physical failure 
analysis. To distinguish the wearout mechanisms for each failure 
sample, we have developed a quick and low-cost methodology 
using maximum likelihood estimation and probability analysis to 
determine the origin of the failure distributions, region of error, 
and sorting accuracy. We apply our methodology to analyze the 
competing wearout mechanisms in 14nm FinFET ring oscillators, 
as an example, using simulation.  We also consider the problem of 
Trojan detection. 

Keywords—Time-dependent dielectric breakdown (TDDB); 
Electromigration (EM); Weibull distribution; Lifetime; Wearout; 
FinFET; Trojan 

I. INTRODUCTION  
The increasing complexity of today’s integrated circuits 

creates a need to diagnose the causes of wearout failures, 
especially when failure rates are different than expected. The 
need to diagnose the causes of failure in the field is also 
increasing with the outsourcing of fabrication, which leads to 
vulnerabilities to malicious attacks with hardware trojans 
utilizing wearout mechanisms to damage chips, causing major 
concerns for defense systems [1]-[3]. For circuits and systems, 
wearout mechanisms are often confounded, making it difficult 
to identify the root cause for breakdown in each sample without 
physical failure analysis, which is time-consuming, damages the 
sample, and costly [4], [5]. In this paper, we develop a 
methodology to identify the probabilistic origin of failure for 
each monitored sample, determine the region of error indicating 
the time period where the cause of failure is unknown, and 
analyze the sorting accuracy.  In doing so, we select better 
samples for physical failure analysis, saving time and money.  
Specifically, we use machine learning to identify samples that 
are likely to fail due to each wearout mechanism and those 
samples whose cause of failure is unknown.  This second group 
of samples should be prioritized for physical failure analysis. 

Generally, wearout models are developed using test 
structures, which are designed to isolate failure modes. These 
test structures may not be reflective of the actual system-level 
design.  In circuits, there is a risk of interactions that may cause 
circuits to fail in ways not predicted by the models.  This study 
uses 14nm FinFET ring oscillators as a circuit vehicle to extract 
wearout data, focusing on the front-end vs. back-end 
mechanisms.  Ring oscillators have behaviors similar to circuits.  

Like circuits, they have confounded wearout data similar to 
system-level failure data. The various ring oscillators are based 
on the 14nm FinFET pdk technology node design kit jointly 
developed by IBM, GlobalFoundries (GF), and Samsung.  

This work is a simulation study to test our methodology. We 
use lifetime simulation of circuits to generate the data sets [6]-
[8], with lifetime simulation models calibrated to test structure 
data. We account for stress of layout geometries and transistors, 
based on circuit operating conditions. 

In our methodology, we first apply maximum likelihood 
analysis and the Weibull distribution to failure data to detect the 
overall set of Weibull parameters for the first and secondary 
wearout mechanisms. Then, with the known competing Weibull 
parameters, we apply the probability distribution of each 
mechanism at each failure time to assign the most likely and 
dominant wearout mechanism for each sample. Next, we 
demonstrate how to find the region of error (time interval when 
the uncertainty is highest), and the accuracy of the assignment 
for each sample.   The contributions are (a) a mathematical 
approach to find the parameters of wearout distributions from 
data where the failure rate distributions come from more than 
one wearout mechanism, (b) the identification of the 
probabilistic cause of each sample, to guide the selection of 
samples for physical failure analysis, and (c) the identification 
of time points with the greatest uncertainty in the cause of failure 
for the samples.   

This paper is organized as follows. Section 2 provides 
background information on the wearout models used in this 
study and the generation of dataset with more than one wearout 
mechanism.  Section 3 provides the theory on how to calculate 
Weibull parameters from the data and the probabilistic cause of 
each sample. We then analyze our ring oscillators in Section 4 
with the above methodology described in detail in Section 3. In 
Section 5 we consider the application of Trojan detection.  The 
paper concludes in Section 6 with a summary.   

II. WEAROUT MODES 

A. Wearout Models 
The investigation of front-end vs back-end breakdown 

mechanisms is explored in this study, using front-end of line 
time-dependent dielectric breakdown (FEOL TDDB, GTDDB) 
and electromigration (EM). FEOL TDDB is one of the most 
common front-end breakdown mechanisms, while EM is one of 
the leading causes of backend failures. GTDDB occurs due to 
the build-up of traps in the gate oxide region. EM is the 
dislocation of atoms in interconnect metals from the momentum 
transfer of atoms. The wearout models for these two  



TABLE I 
WEAROUT MODELS [9]-[11] 

Mechanism Model 
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where a, b, c, d, and 𝐴𝐴𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 are process-
dependent constants. 𝑉𝑉 and 𝑇𝑇 are voltage and 
temperature. W and L are the width and 
length of the MOSFET device. 

EM 

𝜂𝜂 = 𝐴𝐴𝐸𝐸𝐸𝐸𝐽𝐽−𝑛𝑛exp(𝐸𝐸𝐴𝐴/𝑘𝑘𝑘𝑘) 
where 𝐴𝐴𝐸𝐸𝐸𝐸 is a constant, T is temperature, J is 
current density, Ea is the activation energy 
(0.85 eV), n=1 (void growth), and k is 
Boltzmann constant. 

 

mechanisms are summarized in Table I [9]-[11]. 
These breakdown mechanisms can be described using the 

Weibull distribution with two parameters, η and β. η is the 
characteristic lifetime, which is the time-to-failure of a sample 
at 63% failure probability, and β is the shape parameter that 
describes the spread of the distribution of failure samples. The 
parameters used were obtained from experimental data [11]-
[15]. 

B. Competing Wearout Mechanisms 
The confounded failure data in circuits are composed of 

competing wearout mechanisms, which occur when failures are 
due to more than one breakdown mechanism, independent of 
each other (mechanisms do not affect each other). For a failure 
sample that has two wearout mechanisms, mechanism 1 and 
mechanism 2, the competing failure probability density function 
of the overall system, f(t), can be described below [16]: 

f(t) = f1(t) * R2(t) + f2(t) * R1(t)  (1) 
where f1(t) is the probability density function and R1=1-F1(t) is 
the survival function for mechanism 1, respectively. F1(t) is the 
cumulative distribution function for mechanism 1. f2(t) is the 
probability density function and R2=1-F2(t) is the survival 
function for mechanism 2, respectively. Usually one of these 
mechanisms will be the dominant failure mechanism, which is 
determined by both the β and η values, and the other mechanism 
will be the secondary mechanism.  
 The competing probability density function contribution 
from mechanism 1, called a1, is defined below: 

a1 = f1(t) * R2(t)  (2) 
which is the probability density function portion of the overall 
system showing that mechanism 1 has failed but mechanism 2 
is still working. Similarly, the competing probability density 
function contribution from mechanism 2, called a2, is defined 
below: 

a2 = f2(t) * R1(t)  (3) 
When the differences in the individual probability density 
functions are large, the failure mechanism that fails much later 
will have a survival function close to 1, and the other mechanism 
that fails first will have a survival function close to 0. This will 
simplify the competing probability density function contribution 
to the dominant probability density function.  
 The competing failure probability density function is 
different than the mixed Weibull probability density function 
[17]: 

f(t) = a * f1(t) + b * f2(t)  (4) 

where a and b are the mixed weights. The mixed Weibull 
probability density function occurs when the breakdown is due 
to both mechanisms at the same time.  
 For the competing Weibull probability density function, the 
breakdown at a specific failure time is due to only one 
mechanism, but the cause can be from either mechanism 1 or 2, 
but not both.  The wearout mechanisms are independent and 
each wearout mechanism has no influence on failures due to the 
other mechanism.  This is reasonable for GTDDB and EM, since 
they impact different components of the circuit (the transistor 
and the backend interconnect, respectively).    

III. METHODOLOGY FOR IDENTIFYING COMPETING 
WEAROUT MECHANIMS FOR EACH SAMPLE 

A. Extraction of Weibull Parameters  
 In order to investigate the competing failure mechanisms, the 
Weibull parameters for each set of competing mechanisms of 
various 501-stage ring oscillators are shown in Table II. The 
ratio of the β values for the two competing failure mechanisms 
were varied to explore the effect of the shape parameter’s 
influence in detecting the correct failure distribution for each 
sample. All other parameters were kept the same.  In all studies, 
GTDDB and EM are mechanism 1 and mechanism 2, 
respectively.   
 The failure distribution of the competing mechanisms is 
modeled by picking a point randomly from each distribution. 
Then, the smaller value is set as the lifetime, because it is the 
mechanism that fails first at that time point. Next, the points are 
plotted as ordered pairs: (ln(t1), ln(-ln(1-( 1

2𝑁𝑁))), (ln(t2), ln(-ln(1-
( 3
2𝑁𝑁))), etc. Sample sizes N of 10, 100, and 1000 were generated 

for each set to investigate the effect of sample size, which are 
shown in Fig. 1. 

B. Maximum Likilhood Estimation 
As a preliminary analysis step, maximum likelihood 

estimation (MLE) is used to determine the overall parameters 
present in the competing wearout modes, but it does not assign 
the individual samples to their corresponding failure 
distributions. From the given observations, which are the failure 
times in our examples, MLE finds the parameter values that 
maximize the likelihood or highest probability of getting the 
observations given the parameters. The likelihood function for 
uncensored data is [16]: 

ℒ(𝜃𝜃) = 𝐶𝐶∏ 𝑓𝑓(𝑡𝑡𝑖𝑖)𝑁𝑁
𝑖𝑖=1   (5) 

where θ is the set of competing Weibull parameters, β1, η1, β2, 
η2. The log likelihood function can be written as: 
                      lnℒ(𝜃𝜃) = ∑ 𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡𝑖𝑖) + 𝑙𝑙𝑙𝑙𝑙𝑙𝑁𝑁

𝑖𝑖=1                        (6) 

TABLE II 
COMPETING WEIBULL PARAMETERS [11]-[15] 

Set β1 η1 

(yrs) 
β2 η2 

(yrs) 

β ratio for  
1st vs 2nd  

mechanism 
1 10 9.87 1.14 25.1296 8.77 

2 5 9.87 1.14 25.1296 4.39 

3 1.64 9.87 1.14 25.1296 1.44 

 



 Various methods can be used to solve eq. (6), and we chose 
to use the quasi-Newton method [18], which is a type of machine 
learning algorithm, due to its simple implementation. For 
sample sizes of 10, the initial conditions for both the β and η 
were varied at the same time in increments of 5% from -5% to 
5%, and the average of each parameter was taken over all 
mechanisms. The range of -5% to 5% was chosen, because the 
MLE was usually unable to separate the competing Weibull 
parameters beyond this range. Similarly, for sample sizes of 100 
and 1000, the initial conditions for both β and η were varied at 
the same time in increments of 5% from -15% to 15%, and the 
average of each parameter was taken over all increments as the 
set of overall parameters for the competing mechanisms. For 

these two cases, the range of -15% to 15% was chosen, because 
the MLE also was usually unable to separate the competing 
Weibull parameters beyond this range. 
 The results for the MLE extracted Weibull parameters for all 
sets are summarized in Table III, along with the average of the 
absolute error over all deviations for the extracted parameters. 
As an overall trend, generally the absolute error increases with 
decreasing β ratio and sample size. Occasionally, there may be 
some sets that have a larger absolute MLE error, because the 
MLE may be stuck in a local minimum, but this error is still less 
than 45%. In fact, most of the absolute errors are still in a 
reasonable range, which is less than 30%. These errors can be 

 N=10 N=100 N=1000 

Set 
#1 

   

Set 
#2 

   

Set 
#3 

   
Fig. 1. Failure distribution for case studies with varying sample sizes from 10 to 1000 samples (unit of time: yrs). P is probability. 
Pink markers are samples from 1st wearout mechanism, while the black markers are samples from 2nd wearout mechanism. 

TABLE III 
AVERAGED MLE EXRACTED WEIBULL PARAMETERS FOR ALL SETS 

 Sample 
Size 

GTDDB EM 

β 
average 

β absolute 
error 

average 

η 
average 

η absolute 
error 

average 

β 
average 

β absolute 
error 

average 

η 
average 

η absolute 
error 

average 

Set 
#1 

10 8.604 13.963% 9.260 6.176% 1.113 3.336% 17.831 29.044% 
100 10.894 8.942% 10.112 2.453% 1.632 43.155% 20.357 18.992% 

1000 10.269 2.687% 9.899 0.291% 1.154 1.195% 24.286 3.358% 

Set 
#2 

10 3.700 25.998% 10.678 8.185% 0.736 35.442% 15.745 37.344% 
100 4.874 2.520% 9.580 2.934% 1.452 27.378% 23.203 13.062% 

1000 5.201 4.017% 9.927 0.576% 1.079 5.311% 30.080 19.699% 

Set 
#3 

10 2.087 27.273% 9.667 2.057% 0.924 18.986% 24.973 4.671% 
100 1.917 16.917% 9.267 6.108% 0.996 12.598% 23.042 8.771% 

1000 1.708 4.169% 11.032 11.778% 1.069 6.200% 20.539 20.286% 
 



minimized further by optimizing the calculation procedure for 
performing MLE. 

C. Sorting of Weibull Parameters for Each Sample 
With the overall Weibull parameters for each set now 

known, each failure sample can be sorted into its respective 
failure distribution. For each failure time point, the time-to-
failure value can be inputted into each competing probability 
density function contribution, eq. (2) and eq. (3), for each 
distribution. A higher value represents the higher probability of 
the sample belonging to that respective distribution. Therefore, 
we are comparing the relative values, or ratio of eq. (2) to eq. 
(3), to sort the samples. 

An interesting phenomenon is that for the case of 
competing wearout mechanisms, the relative values or the ratio 
of the hazard function is also the same as comparing eq. (2) to 
eq. (3). The hazard function for mechanism 1 is: 

ℎ1(𝑡𝑡) = 𝑓𝑓1(𝑡𝑡)
𝑅𝑅1(𝑡𝑡) (7) 

and similarly, the hazard function for mechanism 2 is:  
ℎ2(𝑡𝑡) = 𝑓𝑓2(𝑡𝑡)

𝑅𝑅2(𝑡𝑡) (8) 
The hazard function, also known as the instantaneous failure 
rate, shows the conditional probability of a failure given that the 
system is currently working. When multiplying both sides of 
eq. (7) or eq. (8) by 𝑅𝑅1(𝑡𝑡) ∗ 𝑅𝑅2(𝑡𝑡), they can be rewritten as: 

𝑅𝑅1(𝑡𝑡) ∗ 𝑅𝑅2(𝑡𝑡) ∗ ℎ1(𝑡𝑡) = 𝑓𝑓1(𝑡𝑡) ∗ 𝑅𝑅2(𝑡𝑡) (8) 
and: 

𝑅𝑅1(𝑡𝑡) ∗ 𝑅𝑅2(𝑡𝑡) ∗ ℎ2(𝑡𝑡) = 𝑓𝑓2(𝑡𝑡) ∗ 𝑅𝑅1(𝑡𝑡) (9) 
where the right sides of eqs. (8) and (9) equal eqs. (2) and (3), 
respectively. Since only the relative values or ratio, not the 
absolute value, is needed, using the hazard function to sort the 
samples has the same results as using the competing probability 
density function contributions. 

D. Calculations for Region of Error and Accuracy of Sorting 
 Looking back at eq. (1), at any time point, the competing 
failure probability is always composed of two contributions, f1(t) 

* R2(t) and f2(t) * R1(t). As mentioned previously, f1(t) * R2(t) is 
the contribution from mechanism 1, where mechanism 1 has 
failed but mechanism 2 has not failed, and f2(t) * R1(t) is the 
contribution from mechanism 2, where mechanism 2 has failed 
but mechanism 1 has not failed. Therefore, x, which is the 
percentage of failures from mechanism 1 at a given time t, is: 

𝑥𝑥 = 𝑓𝑓1(𝑡𝑡)∗𝑅𝑅2(𝑡𝑡)
𝑓𝑓1(𝑡𝑡)∗𝑅𝑅2(𝑡𝑡) + 𝑓𝑓2(𝑡𝑡)∗𝑅𝑅1(𝑡𝑡) (10) 

and y, which is the percentage of failures from mechanism 2 at 
a given time t, is: 

𝑦𝑦 = 𝑓𝑓2(𝑡𝑡)∗𝑅𝑅1(𝑡𝑡)
𝑓𝑓1(𝑡𝑡)∗𝑅𝑅2(𝑡𝑡) + 𝑓𝑓2(𝑡𝑡)∗𝑅𝑅1(𝑡𝑡) (11) 

 Plotting eq. (10) and (11) for all failure times will show the 
region where error will most likely be highest, which occurs near 
x=y=0.5, meaning that there is a 50% probability that the sorting 
could be right for either distribution. The plot will also show the 
region where one distribution has a 100% probability of showing 
up, with the other distribution having a 0% probability of 
showing up, meaning that this region can have failure samples 
sorted to their relative distributions without any inaccuracies. 
When the distribution’s 100% probability lowers, any future 
time point may have a probability of being sorted incorrectly, 
which is called the region of error.  This region identifies the 

time periods that are most important for physical failure 
analysis.   

IV. ANALYSIS OF SORTING ERRORS 
To determine if there is a difference between the original and 

MLE extracted parameters, the sorting of samples to their 
respective failure distributions was performed for both types of 
parameters. This process was performed by comparing the 
values of eqs. (2) and (3) at each failure time point to sort the 
samples. The region of error, found by using eqs. (10) and (11), 
and the sorting accuracy were also calculated using both types 
of parameters. The results are summarized below. 

A. Sorting Errors Using MLE Extracted Parameters  
 The sorting for each sample, the calculation of region of 
error, and accuracy were determined using the MLE extracted 
parameters. As shown in Fig. 2, there is a region of no error at 
the smaller failure times due to samples coming from only the 
dominant wearout mechanism (probability =100%), and this 
region becomes larger when either the sample size or β ratio is 
decreased. When the β ratio is about the same, there is no region 
with no error. The sorting accuracy increases as the β ratio 
increases, but varies slightly with a difference in sample size. 
When the percentage of each failure distribution is near 50%, 
there is a higher probability of the samples being sorted to the 
wrong distribution, because the risk of the wrong categorization 
is around 50% too. This information can be used to signal that 
the samples near this area are the only ones that one may need 
to perform failure analysis using transmission electron 
microscopy, not the entire lot, which saves analysis costs. The 
sorting accuracy is higher than 87.3% for β ratios larger than 
4.39 and can reach as high as 100.0%. When the β ratio is about 
the same, the sorting accuracy is still higher than 70%. 

B. Sorting Errors Using Original Weibull Parameters 
The same sorting procedure, along with region of error 

accuracy, were carried out using the original Weibull 
parameters to compare results with the MLE extracted 
calculations. In terms of sorting accuracy, region of error, and 
wrongly sorted failure time, the results were comparable, with 
similar accuracies. The only difference between using the 
original and extracted MLE Weibull parameters is in the 
accuracy of the value of the parameters themselves, as shown 
in Table IV, but the correct failure mechanism can still be 
found.  In fact, the sorting accuracies are almost the same as 
with extracted Weibull parameters. Therefore, this 
methodology can be used as a fast way to determine the wearout 
mechanism for each failure sample. 

V. APPLICATION TO TROJAN DETECTION 
The methodology of extracting wearout parameters with 

MLE can also be applied to detect Trojans and to select 
suspicious samples for failure analysis.  Instead of extracting 
parameters for two confounded distributions, we assume a 
known distribution for mechanism 1, and use MLE to extract 
the parameters for mechanism 2 based on the data.  Since 
hardware Trojans are triggered by unlikely events and 
accelerate a specific wearout mode depending on its design, we 
consider a worst-case scenario, where the original GTDDB 
parameters are β1=1.64, η1=10 yrs, and Trojan affected samples 
have altered GTDDB parameters to β2=1.64, η2=5 yrs in a 



 N=10 N=100 N=1000 

Set #1 
(β1/ β2= 

8.77) 

   
90.0% sorting accuracy 93.0% sorting accuracy 91.7% sorting accuracy 

Set #2 
(β1/ β2= 

4.39) 

   
100.0% sorting accuracy 89.0% sorting accuracy 87.3% sorting accuracy 

Set #3 
(β1/ β2= 

1.44) 

   
80.0% sorting accuracy 70.0% sorting accuracy 73.8% sorting accuracy 

Fig. 2. Percentage of each failure distribution for each failure time point (unit of time: yrs) sorted using MLE extracted parameters, 
with region of error and sorting accuracy. 1st distribution refers to the 1st wearout mechanism, and 2nd distribution refers to the 2nd 
wearout mechanism.

14nm FinFET 501-stage ring oscillator. Although the 
GTDDB β parameters could be different, the hardest case to 
distinguish is when they are exactly the same, with the only 
difference being the failure time, where η, also known as the 
characteristic lifetime, is changed to fail faster. Our algorithms 
will assign samples to the two distributions and determine the 
region of error (time points) where samples are likely to be 
generated by the Trojan.  The cause of failure of these samples 
can then be analyzed.  
 The comparison of the results for the original GTDDB and 
Trojan altered samples are shown in Table V. The results 
demonstrate that MLE can distinguish samples with 

accelerated failure lifetime under the same failure mode, 
which can be used to indicate that Trojan samples exist. 
Furthermore, the positions of wrongly sorted samples are 
shown in Fig. 3. Because the β parameters, which determine 
the failure mode, are the same, only the η parameters, or 
characteristic lifetimes, affect the sorting accuracy. Since the 
failure mode is the same, the failure probability will always be 
higher for the smaller failure time point, η2 (altered Trojan 
sample), at each time point, resulting in the parallel lines for 
the original GTDDB and Trojan distributions seen in Fig. 3. 
This also means that it is easier to have an error when the 
failure lifetimes are smaller for these special case scenarios, 
because if an occasional sample belonging to the original 
GTDDB distribution fails earlier than expected, the sorting 
will be incorrect. This is also why the sorting accuracy 
decreases as the sample size increases, because a larger 
sample size will have a higher probability of sampling original 
GTDDB samples that fail early.  However, the overall sorting  
accuracy is still higher than 75%, and can be as high as 90%, 
which indicates that this methodology is still suitable as a  

region 
of error 

region 
of error 

region 
of error region 

of error 

region 
of error 

region of 
error 

TABLE V 
COMPARISON OF ORIGINAL GTDDB AND TROJAN ALTERNATED RING OSCILLATORS 

Sample 
Size 

Original GTDDB  Trojan Altered GTDDB Sorting 
Accuracy β 

average error  η 
average error  β 

average error  η 
average error  

10 1.377 -16.063% 8.041 -19.594% 1.377 -16.063% 3.206 -35.889% 90.0% 
100 1.613 -1.617% 10.305 3.045% 1.733 5.683% 4.962 -0.754% 80.0% 

1000 1.603 -2.233% 10.079 0.794% 1.668 1.691% 4.980 -0.405% 77.4% 
 
 

TABLE IV 
SEPARATION ACCURACY FOR MLE EXTRACTED 

PARMETERS 
Sample Size Set #1 Set #2 Set #3 

10 90.0% 100.0% 80.0% 
100 93.0% 89.0% 70.0% 
1000 91.7% 87.3% 73.8% 

 



quick and easy screening process to detect Trojan altered 
samples.   

VI. CONCLUSION 
Through maximum likelihood estimation, and probability 

analysis, we have demonstrated a methodology to determine 
the wearout mechanism in samples with competing wearout 
mechanisms. The region of error can be determined for each 
set of competing wearout mechanisms, and decreases when 
either the β ratio or sample size is increased. The area where 
the percentage of each failure distribution is near 50%, 
meaning that there is a higher risk of wrong sorting, can be 
used to signal that the samples near this point are the only 
ones that need physical failure analysis, rather than the entire 
lot, which can cut down costs. 

The sorting accuracy is also more accurate when the β 
ratio increases but varies slightly with sample size. The 
results of the sorting process using the MLE extracted and 
original Weibull parameters are the same. The only 
distinction may be in the accuracy of the exact values of the 
Weibull parameters, but this can be minimized with 
optimized MLE calculations. However, the wearout 
mechanism can still be determined without any difference 
with regard to either the extracted MLE or original 
parameters. The methodology was also applied to detect 
hardware Trojans, and was able to distinguish the altered 
samples. Therefore, this procedure provides a quick and non-
invasive way to carry out low cost failure analysis and a better 
way to select samples for costly physical failure analysis.  
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Fig. 3. Percentage of each failure distribution for each failure time point (unit of time: yrs) sorted using MLE extracted parameters, 
with sorting accuracy. 1st distribution refers to the original GTDDB distribution, and 2nd distribution refers to the Trojan altered 
distribution. 
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