
Learning Logistic Circuits

Yitao Liang and Guy Van den Broeck
Computer Science Department

University of California, Los Angeles
{yliang, guyvdb}@cs.ucla.edu

Abstract

This paper proposes a new classification model called logistic
circuits. On MNIST and Fashion datasets, our learning algo-
rithm outperforms neural networks that have an order of mag-
nitude more parameters. Yet, logistic circuits have a distinct
origin in symbolic AI, forming a discriminative counterpart to
probabilistic-logical circuits such as ACs, SPNs, and PSDDs.
We show that parameter learning for logistic circuits is con-
vex optimization, and that a simple local search algorithm can
induce strong model structures from data.

1 Introduction

Circuit representations are a promising synthesis of sym-
bolic and statistical methods in AI. They are “deep” layered
data structures with statistical parameters, yet they also cap-
ture intricate structural knowledge. Recently, many repre-
sentations have been proposed for learning tractable proba-
bility distributions: arithmetic circuits (Lowd and Domingos
2008), weighted SDD (Bekker et al. 2015), PSDD (Kisa et
al. 2014), cutset networks (Rahman, Kothalkar, and Gogate
2014) and sum-product networks (SPNs) (Poon and Domin-
gos 2011). Collectively, these approaches achieve the state
of the art in discrete density estimation and vastly outper-
form classical probabilistic graphical model learners (Gens
and Domingos 2013; Rooshenas and Lowd 2014; Adel,
Balduzzi, and Ghodsi 2015; Rahman and Gogate 2016;
Liang, Bekker, and Van den Broeck 2017). However, we
have not observed the same success when deploying circuit
representations for classification or discriminative learning.
Probabilistic circuit classifiers significantly lag behind the
performance of neural networks (Benenson 2018).

In this paper, we propose a new classification model
called logistic circuits, which shares many syntactic proper-
ties with the representations mentioned earlier. One can view
logistic circuits as the discriminative counterpart to proba-
bilistic circuits. Owing to their elegant properties, learning
the parameters of a logistic circuit can be reduced to a lo-
gistic regression problem and is therefore convex. Learning
logistic circuit structure is reduced to a simple local search
problem using primitives from the probabilistic circuit learn-
ing literature (Liang, Bekker, and Van den Broeck 2017).

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

We run experiments on standard image classification
benchmarks (MNIST and Fashion) and achieve accuracy
higher than much larger MLPs and even CNNs with an or-
der of magnitude more parameters. For example, logistic cir-
cuits obtain 99.4% accuracy on MNIST. Compared to other
tractable learners on MNIST, and the state-of-the-art dis-
criminative SPN learner in particular (Peharz et al. 2018),
our logistic circuit learner cuts the error rate by a factor of
three. Furthermore, we show our learner is highly data effi-
cient, managing to still learn well with limited data.

This paper proceeds as follows. Section 2 introduces the
syntax and semantics of logistic circuits. Sections 3 and 4
describe our parameter and structure learning algorithms,
which Section 5 evaluates empirically. Section 6 elaborates
on the connection with tractable generative models, after
which we conclude with related and future work.

2 Representation

This section introduces the logistic circuit representation.

Notation We use uppercase X to denote a Boolean ran-
dom variable and lowercase x for a specific assignment to it.
Interchangeably, we also interpret Boolean random variables
as logical variables. A set of variables X and their joint as-
signments x are denoted in bold. A complete assignment x
to all variables is a possible world, or interchangeably, a data
sample. Literals are variables X or their negation ¬X . Log-
ical sentences are constructed from literals and connectives
such as AND and OR in the standard way. An assignment x
that satisfies a logical sentence α is denoted as x |= α.

2.1 Logical Circuits

A logical circuit is a directed acyclic graph representing a
logical sentence, as depicted in Figure 1a (ignoring parame-
ters for now). Each inner node is either an AND gate or an
OR gate.1 A leaf (input) node represents a Boolean literal,
that is, X or ¬X , where the node can only be satisfied if X
is set to 1 (true) respectively 0 (false).

The following properties are key for logical circuits to be
well-behaved (Darwiche and Marquis 2002). An AND gate

1We consider negation-normal-form circuits where no negation
is allowed except at the leafs/inputs (Darwiche and Marquis 2002).



−2.6 −5.8

−1 3 42.3

−0.5 0.3 1.5 2.8

−4 1 3.9 4

A ¬A

B ¬B

C ¬C D¬D

(a) Logistic circuit

A B C D gr(ABCD) Pr(Y = 1 | ABCD)

1 0 1 1 -3.1 4.31%
0 1 1 0 1.9 86.99%
1 1 1 0 5.8 99.70%

(b) Weights and classification probabilities for select examples

Figure 1: A logistic circuit with example classifications.

is decomposable if its inputs depend on disjoint sets of vari-
ables. For example, the top-most AND gates in Figure 1a de-
pend on A in their one input and on {B,C,D} in their other
input. When an AND gate has two inputs, they are called its
prime (left) and sub (right). An OR gate is deterministic if
for any single complete assignment, at most one of its inputs
can be set to 1. For example, the left input to the root OR
gate in Figure 1a is 1 precisely when A = 1, and its other
input is 1 precisely when A = 0.

Logical circuits can be extended to probabilistic circuits
that represents a probability distribution over binary random
variables, for example by parameterizing wires with condi-
tional distributions (Kisa et al. 2014). Probabilistic circuits
have been successfully used for generative learning (Liang,
Bekker, and Van den Broeck 2017). Section 6 will discuss
probabilistic circuits in more detail.

2.2 Logistic Circuits

This paper proposes logistic circuits for classification. Syn-
tactically, they are logical circuits where every AND is
decomposable and every OR is deterministic. However,
logistic circuits further associate real-valued parameters
θ1, . . . , θm with the m input wires to every OR gate. For ex-
ample, the root OR node in Figure 1a associates parameters
−2.6 and −5.8 with its two inputs.

To give semantics to logistic circuits, we first characterize
how a particular complete assignment x (one data example)
propagates through the circuit.

Definition 1 (Boolean Circuit Flow). Consider a determin-
istic OR gate n. The Boolean flow f(n,x, c) of a complete
assignment x between parent n and child c is

f(n,x, c) =

{

1 if x |= c

0 otherwise

For example, under the assignment A = 0, B = 1, C = 1,
D = 0, the root node in Figure 1a has a Boolean circuit flow
of 0 with its left child and 1 with its right child. Note that the
determinism property guarantees that under every OR gate,
for a given example x, at most one wire has a flow of 1, and
the rest has a flow of 0.

We are now ready to define the logistic circuit semantics.

Definition 2 (Logistic Circuit Semantics). A logistic circuit
node n defines the following weight function gn(x).

– If n is a leaf (input) node, then gn(x) = 0.

– If n is an AND gate with children c1, . . . , cm, then

gn(x) =
m
∑

i=1

gci(x).

– If n is an OR gate with (child node, wire parameter) inputs
(c1, θ1), . . . , (cm, θm), then

gn(x) =

m
∑

i=1

f(n,x, ci) · (gci(x) + θi) .

At root node r with weight function gr(x), the logistic circuit
defines the posterior distribution on class variable Y as

Pr(Y = 1 | x) =
1

1 + exp (−gr(x))
. (1)

Using Boolean circuit flow, this definition essentially col-
lects all the parameters on wires with flow 1 that reach the
root, in order to then make a prediction. This is illustrated
in Figure 1a by coloring red the gates and wires whose pa-
rameters and weight function are propagated upward for the
example assignment A = 0, B = 1, C = 1, D = 0. The lo-
gistic circuit in Figure 1a defines the same posterior predic-
tions as the table in Figure 1b. Specifically, for the example
assignment, the weight function simply sums the parameters
colored in red: −5.8+2.3+3.9+1.5 = 1.9. We then apply
the logistic function (Eq. 1) to get the classification proba-
bility Pr(Y = 1 | x) = 1

1+exp(−1.9) = 86.99%.

2.3 Real-Valued Data

The semantics given so far assume Boolean inputs x, which
is a rather restrictive assumption and prohibits many ma-
chine learning applications. Next, we augment the logistic
circuit semantics such that they can classify examples with
continuous variables.

We interpret real-valued variables q ∈ [0, 1] as param-
eterizing an (independent) Bernoulli distribution (cf. Xu et
al. (2018)). Each continuous variable represents the proba-
bility of the corresponding Boolean random variable X . For
example, with q setting A = 0.4, B = 0.8, C = 0.2, and
D = 0.7, the probability of ¬A∧D would be (1−0.4)·0.7 =
0.42. The same distribution defines a probability for each
logical sentence, and therefore each node in the logistic cir-
cuit. This allows us to generalize Boolean flow as follows.



Definition 3 (Probabilistic Circuit Flow). Consider a deter-
ministic OR gate n. Let q be a vector of probabilities, one
for each variable in X. The probabilistic flow f(n,q, c) of
vector q between parent n and child c is

f(n,q, c) = Prq(c | n) =
Prq(c ∧ n)

Prq(n)
=

Prq(c)

Prq(n)
,

where Prq(.) is the fully-factorized distribution where each
variable in X has the probability assigned by q.

Logistic circuit semantics now support continuous data
(after normalizing to [0, 1]), simply by replacing Boolean
flow with probabilistic flow in Definition 2. Note that proba-
bilistic circuit flow has Boolean circuit flow as a special case,
when q happens to be binary. Furthermore, due to the deter-
minism and decomposability properties, the probabilities in
Definition 3 can be computed efficiently, together with all
probabilistic circuit flows and weight functions in the logis-
tic circuit. We defer the discussion of these computational
details to Section 3.4. In the rest of this paper, we will abuse
notation and have x refer to Boolean inputs as well as con-
tinuous inputs q interchangeably.

3 Parameter Learning

A natural next question is how to learn logistic circuit pa-
rameters from complete data, for a fixed given circuit struc-
ture (structure learning is discussed in Section 4). Further-
more, we ask whether those learned parameters are guaran-
teed to be optimal, globally minimizing a loss function. We
address these questions by showing how parameter learning
can be reduced to logistic regression on a modified set of
features, owing to logistic circuits’ strong properties.

3.1 Special Cases

Before presenting the general reduction, we briefly discuss
two special cases that establish some intuition.

Linear Weight Functions Consider a vanilla logistic re-
gression model on input variables (features) X. Does there
exist an equivalent logistic circuit with the same weight
function? For sample x, logistic regression with parameters
θ would have weight function x · θ. Following Definition 2,
we obtain such a simple weight function (linear in the input
variables) by placing OR gates over complementary pairs of
literals and associating a θ parameter which each wire (see
Figure 2).2 A large parent AND gate collects these variable-
wise weights into a single linear sum. Finally, an OR gate at
the root adds the bias term regardless of the input.

Proposition 1. For each classical logistic regression model,
there exists an equivalent logistic circuit model.

Boolean Flow Indicators Next, let us consider a special
case that makes no assumptions about circuit structure, but
that requires the inputs to be fully binary. Such a circuit
would have Boolean flows through every wire. Instead of

2The negated variable inputs and parameters θ¬X are redun-
dant, but we keep them for the sake of consistency. Alternatively,
we can fix θ¬X = 0 for all X to remove this redundancy.

θ0

θA θ¬A θB θ¬B θC θ¬C θD θ¬D

A ¬A B ¬B C ¬C D ¬D

Figure 2: Logistic regression represented as a logistic circuit

working with the input variables X, we can introduce new
features that are indicator variables, telling us how the exam-
ple propagates through the circuit, and which wires have a
Boolean flow that reaches the circuit root. The circuit flows
(indicators) decide which parameters are summed into the
weight function; this process has been implicitly revealed in
Figure 1a. By introducing such indicators, we can always
obtain a linear weight function of composite features that
are extracted from sample x. Next, we generalize this idea
of introducing wire features to arbitrary logistic circuits.

3.2 Reduction to Logistic Regression

We will now consider the most general case, with continuous
input data and no assumptions on the circuit structure.

Proposition 2. Any logistic circuit model can be reduced to
a logistic regression model over a particular feature set.

Corollary 3. Logistic circuit cross-entropy loss is convex.

To prove Proposition 2, we need to rewrite the classifica-
tion distribution in Definition 2 as follows.

Pr(Y = 1 | x) =
1

1 + exp(−x · θ)
.

Here, x is some vector of features extracted from the raw
example x. This feature vector can only depend on x; not on
the parameters θ. Thus, the fundamental question is whether
we can decompose gn(x) intox ·θ for all nodes n. We prove
this to be true by induction:

– Base case: n is a leaf (input) node. It is obvious gn can be
expressed as x · θ since gn always equals 0.

– Induction step: assume g of all the nodes under node n
can be expressed as x · θ. We need to consider two cases:

1. If n is an AND gate having (w.l.o.g.) two children,
prime p and sub s. Given gp = xp ·θp and gs = xs ·θs,

gn = xp · θp + xs · θs

=

[

xp

xs

]

·

[

θp
θs

]

.

2. If n is an OR gate with (child node, wire parameter)



inputs {(c1, θ1), . . . , (cm, θm)}. Given gci = xci · θci ,

gn =
∑

i

f(n,x, ci) · (xci · θci + θi)

=













f(n,x, c1) · xc1

f(n,x, c1)
...

f(n,x, cm) · xcm

f(n,x, cm)













·













θc1
θ1
...

θcm
θm













.

Note that this proof holds true regardless of whether the
input sample x is binary or real-valued. With this proof, it
is obvious that learning the parameters of a logistic circuit
is equivalent to logistic regression on features x. We refer
readers to Rennie (2005) for a detailed proof that logistic
regression is convex.

Given this correspondence, any convex optimization tech-
nique can now be brought to bear on the problem of learn-
ing the parameters of a logistic circuit. In particular, we use
stochastic gradient descent for this task.

3.3 Global Circuit Flow Features

In the proof of Proposition 2, features x are computed re-
cursively by induction. However, it is not clear what these
features represent, and how they are connected to the input
data. In this section we assign semantics to those extracted
features. They are the global circuit flow of the observed ex-
ample through the circuit. Global circuit flow is defined with
respect to the root of a logistic circuit.

Definition 4 (Global Circuit Flow). Consider a logistic cir-
cuit over variables X rooted at OR gate r. The global cir-
cuit flow fr(n,x, c) of input x between parent n and child
c is defined inductively as follows. The global circuit flow
between root r and its child c is the (local) probabilistic cir-
cuit flow: fr(r,x, c) = f(r,x, c). Then, for any node n with
parents v1, . . . , vm, we have that

– if n is an AND gate, global flow from child c is

fr(n,x, c) =

m
∑

i=1

fr(vi,x, n),

– if n is an OR gate, global flow from child c is

fr(n,x, c) = f(n,x, c) ·

m
∑

i=1

fr(vi,x, n).

The red wires in Figure 1a have a global circuit flow of 1
for the given Boolean input. In general, global circuit flow
assigns a continuous probability value to each wire.

Based on global circuit flow, we postulate the following
alternative semantics for logistic circuits.

Definition 5 (Logistic Circuit Alternative Semantics). Let
W be the set of all wires (n, θ, c) between OR gates n and
children c with parameters θ. Then, a logistic circuit rooted
at node r defines the weight function

gr(x) =
∑

(n,θ,c)∈W

fr(n,x, c) · θ.

Note that the definition of global circuit flows, as well
as our alternative semantics, follow a top-down induction.
In contrasts, the original semantics in Definition 2 follow a
bottom-up induction. We resolve this discrepancy next.

Proposition 4. The features x constructed in the proof of
Proposition 2 are equivalent to global flows fr(n,x, c).

Corollary 5. The bottom-up semantics of Definition 2 and
the top-down semantics of Definition 5 are equivalent.

We defer the proof of this proposition to Appendix A.
Recall that without parameters, a logistic circuit is sim-

ply a logical circuit, which means that gates in a logistic cir-
cuit have real meaning: they correspond to some logical sen-
tence. Hence, the values of global circuit flow features x cor-
respond to probabilities of these logical sentences according
to the input vector x. This provides us with a precious oppor-
tunity to assign meaning to the features learned by logistic
circuits. We will revisit this point in Section 5.4, where we
also visualize some global circuit flow features.

3.4 Computing Global Flow Features Efficiently

While logistic circuit parameter learning is convex, we
would like to also guarantee that the required feature compu-
tation is tractable. This section discusses efficient methods to
calculate global flow features x (i.e., fr(n,x, c)) from train-
ing samples x offline, before parameter learning.

As is clear from Definition 3, circuit flows make exten-
sive use of node probabilities. We design our computation to
consist of two parts, and dedicate the first part to the calcula-
tion of node probabilities. The first part is a bottom-up linear
pass over the circuit starting with leaf nodes whose proba-
bilities are directly provided by the input sample; see the
details in Appendix B. The second part makes use of these
node probabilities to calculate the global circuit flow fea-
tures in linear time. It is a top-down implementation of the
recursion in Definition 4; see its details in Appendix C. Note
that these computations correspond to the partial derivative
computations used in arithmetic circuits for the purpose of
probabilistic inference (Darwiche 2003).

Our algorithm is completely compatible with fast vector
arithmetic: instead of inputting one single sample each time,
one can directly supply the algorithms with a vector of sam-
ples (e.g., a mini batch), and this yields significant speedups.

4 Structure Learning

This section presents an algorithm to learn a compact logical
circuit structure for logistic circuits from data. For simplicity
of designing the primitive operations, we assume AND gates
always have two inputs (prime and sub).

4.1 Learning Primitive

The split operation was first introduced to modify the struc-
ture of PSDD circuits (Liang, Bekker, and Van den Broeck
2017). We adopt it here with minor changes3 as the prim-
itive operation for our structure learning algorithm. Split-

3Compared to the splits in LearnPSDD (Liang, Bekker, and Van
den Broeck 2017), we do not limit constraints to be on primes.



f0

A ¬A

B ¬B

(a) Before split of f0 on A

f1

f2

A ¬A¬A B

¬B

(b) After split of f0 on A

A B f0 f1 f2

1 1 1 0 1
0 1 1 1 0

0.5 0.6 0.6 0.30 0.30
0.4 0.8 0.8 0.48 0.32

(c) Circuit flow before and after the split.

Figure 3: A split changes the circuit flow.

ting an AND gate happens by imposing two additional con-
straints that are mutually exclusive and exhaustive, in partic-
ular by making two opposing variable assignments. Execut-
ing a split creates partial copies of the gate and some of its
decedents. Furthermore, one can choose to duplicate addi-
tional nodes up to a fixed depth (3 in our experiments). We
refer readers to Liang, Bekker, and Van den Broeck (2017)
for further details on the algorithm for executing splits.

Splits are ideal primitives to change the classifier induced
by a logistic circuit: they directly affect the circuit flows (see
Figure 3). By imposing constraints on AND gates, splits al-
ter the node probabilities associated with the affected AND
gates. Following Definition 3, the circuit flows on the wires
out of those AND gates adapt accordingly. While Figure 3
focuses on the immediately affected wires, the effect of a
split on circuit flows can propagate downward for several
levels, depending on the depth of node duplication. Still the
effects of a split on both the structure of a logistic circuit
and the circuit flows are very local and contained in the sub-
circuit rooted at the OR parent of the split AND gate. How-
ever, its effect on the parameters is global. Once a split is
executed, the whole parameter set needs to be re-trained.

4.2 Learning Algorithm

The overall structure learning algorithm for logistic circuits,
built on top of the split operation, proceeds as follows. Itera-
tively, one split is executed to change the structure, followed
by parameter learning. We only consider single-variable
split constraints and first select which AND gate to split,
followed by a selection of which variable to split on.

When using gradient descent, one hopes that the param-
eter on the AND gate output consistently has its partial
derivatives pointing in the same direction for all training
examples. This will steadily push the parameter to a large
magnitude. If this is not the case, we will use splits to alter
the flow of examples through the circuit. Specifically, those
AND gates whose associated output parameter has a large
variance of its partial derivative (that is, the derivative of

Table 1: Classification accuracy of logistic circuits in context
with commonly used existing models. We report the details
of those existing models in Appendix E.

ACCURACY % ON DATASET MNIST FASHION

BASELINE: LOGISTIC REGRESSION 85.3 79.3
BASELINE: KERNEL LOGISTIC REGRESSION 97.7 88.3
RANDOM FOREST 97.3 81.6
3-LAYER MLP 97.5 84.8
RAT-SPN (PEHARZ ET AL. 2018) 98.1 89.5
SVM WITH RBF KERNEL 98.5 87.8
5-LAYER MLP 99.3 89.8

LOGISTIC CIRCUIT (BINARY) 97.4 87.6
LOGISTIC CIRCUIT (REAL-VALUED) 99.4 91.3

CNN WITH 3 CONV LAYERS 99.1 90.7
RESNET (HE ET AL. 2016) 99.5 93.6

Table 2: Number of parameters of logistic circuits in context
with existing SGD-based models, when achieving the classi-
fication accuracy reported in Table 1

NUMBER OF PARAMETERS MNIST FASHION

BASELINE: LOGISTIC REGRESSION <1K <1K
BASELINE: KERNEL LOGISTIC REGRESSION 1,521 K 3,930K

LOGISTIC CIRCUIT (REAL-VALUED) 182K 467K
LOGISTIC CIRCUIT (BINARY) 268K 614K

3-LAYER MLP 1,411K 1,411K
RAT-SPN (PEHARZ ET AL. 2018) 8,500K 650K
CNN WITH 3 CONV LAYERS 2,196K 2,196K
5-LAYER MLP 2,411K 2,411K
RESNET (HE ET AL. 2016) 4,838K 4,838K

the loss function w.r.t. that parameter) requires splitting for
the parameters to improve. We simply select the AND gate
whose output parameter has the highest training variance.

Given an AND gate to split, we consider candidate vari-
ables X to execute the split with. We construct two sets of
training examples that affect this node: in one group, each
example is weighted by the marginal probability of X; in
the other, with the marginal probability of ¬X . Next, we
calculate the within-group weighted variances of the partial
derivatives. The variable with the smallest weighted vari-
ances gets picked, as this suggests the split will introduce
new parameters with gradients that align in one direction.

5 Empirical Evaluation

In this section, we empirically evaluate the competitive-
ness of our learner on three aspects: classification accuracy,
model complexity, and data efficiency.4 Moreover, we vi-
sualize the most important active feature with regards to
the given sample to provide local interpretation for why the
learned logistic circuit makes such classification.

4Open-source code and experiments are available at https:
//github.com/UCLA-StarAI/LogisticCircuit.





0.6 0.4

0.9 0.1

0.2 0.8 0.40.6

0.1 0.9 0.3 0.7

0.1 0.9 0.8 0.2

0.4 0.6

0.2 0.8 0.30.7

0.8 0.2 0.5 0.5

0.6 0.4 0.9 0.1

Y ¬Y

A ¬A

B ¬B

C ¬C D¬D

A ¬A

B ¬B

C ¬C D¬D

(a) Probabilistic circuit for joint distribution Pr(Y,A,B,C,D)

ln 0.6

0.4

ln 0.9

0.4
ln 0.1

0.6

ln 0.2

0.2
ln 0.8

0.8
ln 0.4

0.3
ln 0.6

0.7

ln 0.1

0.8
ln 0.9

0.2
ln 0.3

0.5
ln 0.7

0.5

ln 0.1

0.6
ln 0.9

0.4

ln 0.8

0.9

ln 0.2

0.1

A ¬A

B ¬B

C ¬C D¬D

(b) Logistic circuit for Pr(Y = 1 | A,B,C,D)

Figure 5: A probabilistic circuit with parallel structures under class variable Y and its equivalent logistic circuit for predicting Y

logistic circuits achieve the best classification accuracy.
From a top-down perspective, each OR gate of a logistic cir-
cuit presents a weighted choice between its wires. Hence,
one can view a logistic circuit as a decision diagram. Un-
der this perspective, splits refine OR gates’ branching rules.
As each branching rule naturally applies to multiple sam-
ples, we hypothesize that the splits selected by our structure
learning algorithm reflect the general conditional feature in-
formation present in the dataset.

5.4 Local Explanation

Next, we aim to share some insights about how to explain the
learned logistic circuit. Specifically, we investigate the ques-
tion: “Why does the logistic circuit classify a given sample x
as y?” Since any logistic circuit can be reduced to a logistic
regression classifier, we can easily find the active global flow
feature that contributes most to the given sample’s classifi-
cation probability. That is, the feature that maximizes x · θ.
We visualize one such feature for MNIST data and one for
Fashion in Figure 4 by marking the variables used in the
their corresponding logical sentences.

6 Connection to Probabilistic Circuits

In recent years, a large number of tractable probabilis-
tic models have been proposed as a target representation
for generative learning of a joint probability distribution:
arithmetic circuits (Lowd and Domingos 2008), weighted
SDD (Bekker et al. 2015), PSDD (Kisa et al. 2014), cutset
networks (Rahman, Kothalkar, and Gogate 2014) and sum-
product networks (SPNs) (Poon and Domingos 2011). These
representations have various syntactic properties. Some put
probabilities on terminals, others on edges. Some use logical
notation (AND, OR), others use arithmetic notation (×,+).
Nevertheless, they are all circuit languages built around the
properties of decomposability and/or determinism.

For our purpose, we consider a simple probabilistic circuit

language based on the logistic circuit syntax, where now the
θ parameters are assumed to be normalized probabilities.6

Definition 6 (Probabilistic Circuit Semantics). A proba-
bilistic circuit node n defines the following joint distribution.

– If n is a leaf (input) node, then Prn(x) = [x |= n].

– If n is an AND gate with children c1, . . . , cm, then

Pr n(x) =

m
∏

i=1

Pr ci(x).

– If n is an OR gate with (child node, wire parameter) inputs
(c1, θ1), . . . , (cm, θm), then

Pr n(x) =

m
∑

i=1

Pr ci(x) · θi.

Figure 5a shows a probabilistic circuit for the joint dis-
tribution Pr(Y,A,B,C,D). This tractable circuit language
is a relaxation of PSDDs (Kisa et al. 2014) and a specific
type of SPN (Poon and Domingos 2011) where determinism
holds throughout. It is also a type of arithmetic circuit.

We are now ready to connect logistic and probabilistic cir-
cuits. It is well known that logistic regression is the discrim-
inative counterpart of a naive Bayes generative model (Ng
and Jordan 2002). A similar correspondence holds between
our logistic and probabilistic circuits.

Proposition 6. Consider a probabilistic circuit whose struc-
ture is of the form (Y ∧α)∨ (¬Y ∧β), where sub-circuits α
and β are structurally identical. Then, there exists an equiv-
alent logistic circuit for the conditional probability of Y in
the probabilistic circuit. Moreover, this logistic circuit has
structure ∨α and its parameters can be computed in closed
form as log-ratios of probabilistic circuit probabilities.

6We also assume smoothness (Darwiche and Marquis 2002).



We first depict this correspondence intuitively in Figure 5.
The logistic circuit has the same structure as the two halves
of the probabilistic circuit, and its parameters are computed
from the probabilistic circuit probabilities. The distributions
Pr(Y = 1 | A,B,C,D) represented by the circuits in Fig-
ures 5a and 5b are identical.

Formal Correspondence Next, we present the formal
proof of this correspondence for binary x. Recall that in our
circuits, only the input wires of OR gates are parameterized.
Let Wδ be the set that contains all these wires in circuit δ:

Wδ = {(n, c) | c is a gate with parent OR gate n} .

After expanding the equations in Definition 6 and following
the top-down definition of global circuit flow (i.e., following
Definition 4), one finds that the joint distribution induced by
a probabilistic circuit δ can be rewritten as

Pr δ(x) =
∏

(n,c)∈Wδ

fδ(n,x, c) · θ
δ
(n,c).

We will exploit this finding in the derivation of the condi-
tional distribution induced by the probabilistic circuit γ =
(Y ∧ α) ∨ (¬Y ∧ β).

Pr γ(Y = 1 | x)

=
Prγ(Y =1)Prα(x)

Prγ(Y =0)Prβ(x) + Pr(Y =1)Prα(x)

=
1

1 +
Prγ(Y=0)Prβ(x)
Prγ(Y=1)Prα(x)

=
1

1 +
Prγ(Y=0)

∏
(n,c)∈Wβ

fβ(n,x,c)θ
β

(n,c)

Prγ(Y=1)
∏

(n,c)∈Wα
fα(n,x,c)θα

(n,c)

As stated in Proposition 6 and shown in Figure 5, sub-
circuits α and β share the same structure. Therefore, we can
further simplify this equation as follows.

Pr γ(Y = 1 | x)

=
1

1 +
Prγ(Y=0)
Prγ(Y=1)

∏

(n,c)∈Wα
f∨α(n,x, c)

θ
β

(n,c)

θα
(n,c)

=
1

1 + exp [−g(x))]
= Pr ∨α(Y = 1 | x)

where

g(x) = log
Prγ(Y =1)

Prγ(Y =0)
+

∑

(n,c)∈Wα

f∨α(n,x, c) log
θα(n,c)

θβ(n,c)
(2)

= θ∨α
root

+
∑

(n,c)∈Wα

f∨α(n,x, c) · θ
∨α
(n,c). (3)

The transformation from Equation 2 to 3 expresses the logis-
tic circuit parameters as the log-ratios of probabilistic circuit
probabilities. For example, the class priors captured in the
output wires of α and β are now combined as a log-ratio to
form the bias term for ∨α, expressed by the root parameter.

This proof also provides us with a new perspective to un-
derstand the semantics of the learned parameters. The pa-
rameters represent the log-odds ratio of the features given
different classes. Note that by Bayes’ theorem, a naive Bayes
model would derive its induced distribution in a sequence
of steps similar to the ones above, resulting in Equation 2.
Given this correspondence, one can also view our proposed
structure learning method as a way to construct meaning-
ful features for a naive Bayes classifier. We know that after
training, naive Bayes classifiers are equivalent to logistic re-
gression classifiers (as in Equation 3).

7 Related Work

Gens and Domingos (2012) proposed the first parameter
learning algorithm for discriminative SPNs, using MPE in-
ference as a sub-routine. Without the support of the de-
terminism property, parameter learning of general SPNs is
a relatively harder question than its logistic circuit coun-
terpart, since it is non-convex. Adel, Balduzzi, and Gh-
odsi (2015) boost the accuracy of SPNs on MNIST to 97.6%
by extracting more representative features from raw inputs
based on the Hilbert-Schmidt independence measure. Pe-
harz et al. (2018) further improved the classification abil-
ity of SPNs by drastically simplifying SPN structure re-
quirements and utilizing a loss objective that hybrids cross-
entropy (discriminative learning) with log-likelihood (gen-
erative learning).

Rooshenas and Lowd (2016) developed a discrimina-
tive structure learning algorithm for arithmetic circuits. The
method updates the circuit that represents a corresponding
conditional random field (CRF) model by adding features
conditioned on arbitrary evidence to the model. This work
further relaxes decomposability and smoothness properties
of ACs for a more compact representation. However, it tar-
gets the setting where there are a large number of output
variables, not single-variable classification.

All the aforementioned literature conforms to a common
trend of abandoning properties of the chosen circuit repre-
sentations for easier structure learning and better prediction
accuracy. They argue that those special syntactic restrictions
complicate the learning process. On the contrary, this pa-
per chooses perhaps the most structure-restrictive circuit as
the target representation. Instead of relaxing the target rep-
resentation’s syntactical requirements, our proposed method
fully leverages the valuable properties that stem from these
restrictions, and in particular convexity.

8 Conclusions

We have presented logistic circuits, a novel circuit-based
classification model with convex parameter learning and a
simple structure learning procedure based on local search.
Logistic circuits outperform much larger classifiers and per-
form well in a limited data regime. Compared to other sym-
bolic, circuit-based approaches, logistic circuits present a
leap in performance on image classification benchmarks.
Future work includes support for convolution, parameter ty-
ing, and structure sharing in the logistic circuits framework.



Algorithm 1: Node probabilities from a real-valued
sample x.

Input: A vector of probabilities x.
Result: Prx(n): the node probability of n for x.

1 for n in the circuit’s nodes, children before parents do
2 if n is a leaf with variable X then
3 if n is X then
4 Prx(n) = x(X)

5 else
6 Prx(n) = 1− x(X)

7 else if n is an AND gate then
8 Prx(n) := 1
9 for c in inputs of n do

10 Prx(n) ∗ = Prx(c)

11 else
// n is an OR gate

12 Prx(n) := 0
13 for c in inputs of n do
14 Prx(n) + = Prx(c)

A Proof of Proposition 4

Before presenting the proof, we restate the proposition.

Proposition. The features x constructed in the proof of
Proposition 2 are equivalent to global flows fr(n,x, c).

In the following, we prove this proposition by induction.

– Base case: the inputs of the root r are either leaf nodes
or AND gates whose inputs are leaf nodes. By definition,
for the root’s input wires, their local circuit flow equals
their global circuit flow. According to the decomposition
matrix of gn in the proof of Proposition 2, the features
associated with the root’s input wires are equivalent to
their local circuit flow. By transitivity, we prove logistic
circuits’ features are equivalent to its global circuit flow
vector in the base case.

– Induction step: assume the proposition holds for all OR
gates in a given logistic circuit except the root r. Again,
the root’s inputs can be either leaf nodes or AND gates.
It is obvious that for the root’s input wires, their associ-
ated features are equivalent to their global circuit flow, as
this has been proven in the base case. So we only need
to focus on the wires of the sub logistic circuits rooted
on those AND gates. The inputs to those AND gates can
either be leaf nodes or OR gates. As the wires between
AND gates and their leaf children do not have parameters,
the correctness of the proposition does not get affected by
them. We can narrow our focus again. Now let us con-
sider an OR gate n, which is an input to some of those
aforementioned AND gates {e1, . . . , em}. By our induc-
tion assumption, its features are equivalent to the global
circuit flows defined with respect to n; in other words,
xn = fn. After propagating xn upwards to the root, we
get

∑m
i=1 f(r,x, e1) · xn. The sum of the global flow

Algorithm 2: Features x from a real-valued sample x.

Input: Node probabilities Prx(·).
Result: Real-valued feature vector x.

1 for n in all nodes, parents before children do
2 v(n) := 0

3 v(root) := 1
4 for n in all non-leaf nodes, parents before children do
5 if n is an OR gate then
6 for c in inputs of n do
7 x(n, c) := v(n) · Prx(c) / Prx(n)
8 v(c) + = x(n, c)

9 else
// n is an AND gate

10 for c in inputs of n do
11 v(c) + = v(n)

on all output wires of n is Fr(n) =
∑m

i=1 f(r,x, e1).
Since Fr(n) is propagated throughout the whole sub lo-
gistic circuit rooted at n, the global circuit flow in this sub
logistic circuit with respect to the root r is Fr(n) · fn =
∑m

i=1 f(r,x, e1) · fn. Therefore, the constructed features
are equivalent to the global circuit flows.

B Calculation of Node Probabilities

We calculate node probabilities in a bottom-up induction on
the structure of the sentence.

– Base case: n is a leaf (input) node. The node probabil-
ity is directly defined in x: Prx(n) = x(X) if n is X;
Prx(n) = 1−x(X) if n is ¬X (lines 2-6 in Algorithm 1).

– Induction step: given that the node probabilities for all the
leaves have been calculated, we move upward to interme-
diate nodes and the root, where there are two cases.

* n is an AND gate with inputs {c1, . . . , cm}. Since in a
logistic circuit every AND gate is decomposable, by in-
dependence of the conjuncts, Prx(n) =

∏m
i=1 Prx(ci)

(lines 7-10 in Algorithm 1).

* n is an OR gate with input nodes {c1, . . . , cm}. Since
every OR gate is deterministic, the probabilistic events
defined at each child within the same OR parent do
not intersect with each other. By mutual exclusivity,
Prx(n) =

∑

i Prx(ci) (lines 11-14 in Algorithm 1).

C Calculation of Global Flows (Features)

Node probabilities Prx(·) are used in Algorithm 2 to obtain
the final feature vector.

We perform a top-down pass starting from the root OR
gate. After visiting an OR gate, the method first calculates
its associated global circuit flows from its inputs; see Line 7
in Algorithm 2. These newly calculated global flows then
get passed down and are accumulated on those child gates
for later use on the descendent gates (Line 8). After visiting



A B ¬A ¬B C D ¬C ¬D

Figure 6: Initial structure of logistic circuits with 4 pixels.

an AND gate, there is no new global circuit flow to be cal-
culated. Hence, the algorithm directly accumulates the flows
passed to those AND gates to their children (Line 10-11).

Note that instead of inputing one single sample at a time,
one can directly supply Algorithm 1 and 2 with a vector
of samples. Our proposed calculation method is completely
compatible with matrix operations, and by doing so, one can
expect a large speedup.

D Initial Structure

All experiments in this paper start with an initial structure
where every pixel has two corresponding leaf nodes, one for
the pixel being true and the other false. Pixels are paired up
by AND gates; an AND gate is created for every joint as-
signment to the pair. AND gates for the same pair share one
OR gate parent. After this, OR gates are paired with AND
gates and every AND gate is connected to its own OR gate
parent until we reach the root. Figure 6 is an example of the
initial structure with 4 pixels. Note that our structure learn-
ing algorithm is compatible with other initial structures and
one can create ad-hoc ones tailored to different applications.

E Details of Existing Classification Models

The reported kernel logistic regression is based on the
pixel n-grams implemented in Vowpal Wabbit (Langford,
Li, and Strehl 2007). The reported random forest has 500
decision trees. The reported SVM with RBF Kernel uses
hyper-parameters C = 8, γ = 0.05 on MNIST and C =
4, γ = 25 on Fashion. The reported 3-layer MLP has layers
of size 784-1000-500-250-10 respectively. The reported 5-
layer MLP has layers of size 784-1000-500-250-2000-250-
10 respectively. The reported CNN with 3 convolutional lay-
ers uses 3-by-3 padded filters in the convolutional layers.

Acknowledgements

This work is partially supported by a gift from Intel, NSF
grants #IIS-1657613, #IIS-1633857, #CCF-1837129, and
DARPA XAI grant #N66001-17-2-4032.

References

Adel, T.; Balduzzi, D.; and Ghodsi, A. 2015. Learning the
structure of sum-product networks via an svd-based algo-
rithm. In UAI, 32–41.

Bekker, J.; Davis, J.; Choi, A.; Darwiche, A.; and Van den
Broeck, G. 2015. Tractable learning for complex probability
queries. In NIPS.

Benenson, R. 2018. What is the class of this image?
http://rodrigob.github.io/are_we_there_

yet/build/classification_datasets_

results.html.

Darwiche, A., and Marquis, P. 2002. A knowledge compi-
lation map. JAIR 17:229–264.

Darwiche, A. 2003. A differential approach to inference in
bayesian networks. J. ACM 50(3):280–305.

Gens, R., and Domingos, P. 2012. Discriminative learning
of sum-product networks. In NIPS, 3239–3247.

Gens, R., and Domingos, P. 2013. Learning the structure of
sum-product networks. In ICML, 873–880.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In CVPR.

Kisa, D.; Van den Broeck, G.; Choi, A.; and Darwiche, A.
2014. Probabilistic sentential decision diagrams. In KR.

Langford, J.; Li, L.; and Strehl, A. 2007. Vowpal wabbit
open source project. Technical report, Yahoo!

Liang, Y.; Bekker, J.; and Van den Broeck, G. 2017. Learn-
ing the structure of probabilistic sentential decision dia-
grams. In UAI.

Lowd, D., and Domingos, P. 2008. Learning arithmetic cir-
cuits. In UAI.

Ng, A. Y., and Jordan, M. I. 2002. On discriminative vs.
generative classifiers: A comparison of logistic regression
and naive bayes. In NIPS, 841–848.

Peharz, R.; Vergari, A.; Stelzner, K.; Molina, A.; Trapp, M.;
Kersting, K.; and Ghahramani, Z. 2018. Probabilistic Deep
Learning using Random Sum-Product Networks. ArXiv.

Poon, H., and Domingos, P. 2011. Sum-product networks:
A new deep architecture. In UAI.

Rahman, T., and Gogate, V. 2016. Merging strategies for
sum-product networks: From trees to graphs. In UAI.

Rahman, T.; Kothalkar, P.; and Gogate, V. 2014. Cutset
networks: A simple, tractable, and scalable approach for im-
proving the accuracy of chow-liu trees. In ECML-PKDD,
630–645. Springer.

Rennie, J. D. M. 2005. Regularized logistic regression is
strictly convex. Technical report, MIT.

Rooshenas, A., and Lowd, D. 2014. Learning sum-product
networks with direct and indirect variable interactions. In
ICML, 710–718.

Rooshenas, A., and Lowd, D. 2016. Discriminative structure
learning of arithmetic circuits. In AISTATS, 1506–1514.

Xiao, H.; Rasul, K.; and Vollgraf, R. 2017. Fashion-MNIST:
a novel image dataset for benchmarking machine learning
algorithms. CoRR abs/1708.07747.

Xu, J.; Zhang, Z.; Friedman, T.; Liang, Y.; and Van den
Broeck, G. 2018. A semantic loss function for deep learning
with symbolic knowledge. In ICML.


