30

31

32

33

34

35

36

37

38

39

40

41

42

SMT-based Answer Set Solver CMODELS(DIFF)
(System Description)

Da Shen

Department of Computer Science, University of Nebraska at Omaha
[South 67th Street, Omaha, NE 68182, USA]

dashen@unomaha.edu

Yuliya Lierler
Department of Computer Science, University of Nebraska at Omaha
[South 67th Street, Omaha, NE 68182, USA]
ylierler@unomaha.edu
https://orcid.org/0000-0002-6146-623X

—— Abstract

Many answer set solvers utilize Satisfiability solvers for search. SMT solvers extend Satisfiability
solvers. This paper presents the CMODELS(DIFF) system that uses SMT solvers to find answer sets
of a logic program. Its theoretical foundation is based on Niemala’s characterization of answer
sets of a logic program via so called level rankings. The comparative experimental analysis
demonstrates that CMODELS(DIFF) is a viable answer set solver.

2012 ACM Subject Classification Computing methodologies — Logic programming and answer
set programming, Software and its engineering — Constraint and logic languages, Theory of
computation — Constraint and logic programming

Keywords and phrases answer set programming, satisfiability modulo theories, constraint satis-
faction processing

Digital Object Identifier 10.4230/0ASIcs.CVIT.2016.23

1 Introduction

This paper describes a new answer set solver CMODELS(DIFF). Its theoretical foundation lies
on the generalizations of Niemela’s ideas. Niemela [19] characterized answer sets of a normal
logic program as models of a propositional formula called program’s completion that satisfy
"level ranking" requirements. In this sense, this system is a close relative of an earlier answer
set solver LP2DIFF developed by Janhunen et al. [10]. Yet, LP2DIFF only accepts programs
of a very restricted form. For example, neither choice rules nor aggregate expressions are
allowed. Answer set solver CMODELS(DIFF) permits such important modeling constructs in
its input. Also, unlike LP2DIFF, the CMODELS(DIFF) system is able to generate multiple
solutions.

The CMODELS(DIFF) system follows the tradition of answer set solvers such as ASSAT [16]
and CMODELS [11]. In place of designing specialized search procedures targeting logic
programs, these tools compute a program’s completion and utilize Satisfiability solvers [9]
— systems for finding satisfying assignments for propositional formulas — for search. Since
not all models of a program’s completion are answer sets of a program, both ASSAT and
CMODELS implement specialized procedures (based on loop formulas [16]) to weed out such
models. Satisfiability Modulo Theory (SMT) solvers [2] extend Satisfiability solvers. They
process formulas that go beyond propositional logic and may contain, for example, integer
linear expressions. The CMODELS(DIFF) system utilizes this fact and translates a logic

© Da Shen and Yuliya Lierler;
B licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1-23:14

\\v OpenAccess Series in Informatics
O0ASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

23:2

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

SMT-based Answer Set Solver CMODELS(DIFF) (System Description)

program into an SMT formula so that any model of this formula corresponds to an answer
set of the program. It then uses SMT solvers for search. Unlike CMODELS or ASSAT, the
CMODELS (DIFF) system does not need an additional step to weed out unwanted models. Also,
it utilizes SMT-LIB — a standard input language of SMT solvers [1] — to interface with these
systems. This makes its architecture open towards new developments in the realm of SMT
solving. There is practically no effort involved in incorporating a new SMT system into the
CMODELS(DIFF) implementation.

Creation of the CMODELS(DIFF) system was inspired by the development of recent
constraint answer set programming solver EZSMT [21] that utilizes SMT solvers for finding
solutions for "tight" constraint answer set programs. On the one hand, CMODELS(DIFF)
restricts its attention to pure answer set programs. On the other hand, it goes beyond
tight programs. In the future, we will extend CMODELS(DIFF) to accept non-tight constraint
answer set programs. The theory developed in this work paves the way for such an extension.

Lierler and Susman [13] demonstrate that SMT formulas are strongly related to constraint
programs [17]. Many efficient constraint solvers® exist. Majority of these systems focus
on finite-domain constraint problems. The theoretical contributions of this work provide a
foundation for developing a novel constraint-solver-based method in processing logic programs.
Currently, CMODELS(DIFF) utilizes SMT-LIB to interface with SMT solvers. By producing
output in MINIZINC — a standard input language of constraint solvers [18] — in place of
SMT-LIB, CMODELS(DIFF) will become a constraint-based answer set solver. This is another
direction of future work.

The outline of the paper is as follows. We start by reviewing the concepts of a logic
program, a completion, tightness and an SMT logic SMT(IL). We then present a key concept
of this work, namely, a level ranking; and state theoretical results. Section 4 presents
transformations from logic programs to SMT(IL) by means of variants of level rankings.
After that, we introduce the architecture of the CMODELS(DIFF) system and conclude with
comparative experimental analysis.

2 Preliminaries

A wvocabulary is a finite set of propositional symbols also called atoms. As customary, a literal
is an atom a or its negation, denoted —a. A (propositional) logic program, denoted by II,
over vocabulary o is a finite set of rules of the form

a<by,...,bs, not bgyq,..., not by, not not byi1,..., not not by, (1)

where a is an atom over ¢ or L, and each b;, 1 < i < n, is an atom or symbol T and L in o.
Sometimes we use the abbreviated form of rule (1)

a<+ B (2)

where B stands for the right hand side of an arrow in (1) and is also called a body. We
identify rule (1) with the propositional formula

by A Abg A=bgir Ao A=y A==bpgq A A—=by = a (3)
and B with the propositional formula

by Ao ANbg A=bpyr A oo o A=bpy A 2=bpypg Ao A by, (4)

! http://www.minizinc.org/

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

D. Shen and Y. Lierler

Note that (i) the order of terms in (4) is immaterial, (ii) not is replaced with classical
negation (), and (iii) comma is replaced with conjunction (A). When the body is empty it
corresponds to the empty conjunction or T. Expression by A...Aby in formula (4) is referred
to as the positive part of the body and the remainder of (4) as the negative part of the body.

The expression a is the head of the rule. When a is 1, we often omit it and say that the
head is empty. We denote the set of nonempty heads of rules in II by hd(IT). We call a rule
whose body is empty a fact. In such cases, we drop the arrow. We sometimes may identify a
set X of atoms with the set of facts {a. | a € X}.

We say that a set X of atoms satisfies a rule (1) if X satisfies a formula (3). The reduct
I of a program II relative to a set X of atoms is obtained by first removing all rules (1)
such that X does not satisfy its negative part =bp4q1 A ... A =by, A 2 =bppy1 A ... A 2—b, and
replacing all of its remaining rules with a < b1,...,bs. A set X of atoms is an answer set, if
it is a minimal set that satisfies all rules of TIX [15].

Ferraris and Lifschitz [6] show that a choice rule {a} < B can be seen as an abbreviation
for a rule a < not not a, B. We adopt this abbreviation here. Choice rules were introduced
in [20] and are commonly used in answer set programming languages.

It is customary for a given vocabulary o, to identify a set X of atoms over o with (i)
a complete and consistent set of literals over ¢ constructed as X U {-a | a € o \ X}, and
respectively with (ii) an assignment function or interpretation that assigns truth value true
to every atom in X and false to every atom in o\ X.

Consider sample programs listed in Figure 1. Program II; has two answer sets, namely,
{a,c} and an empty set. Program Ils has two answer sets: {a,b,c} and an empty set.

Comp(Ily) | Comp(1ly)
114 I, —=c — C. —=c — C.
{c}. {c}. c—a. c—a.
a4+c |a+c c— e, b— a.
a < b. a— c. a— b.
b+ a. c— .
a—cVb.

Figure 1 Sample programs and their completions.

Completion and Tightness

Let o be a vocabulary and II be a program over o. For every atom a in II, by Bodies(I, a)
we denote the set composed of the bodies B appearing in the rules of the form a < B in II.
The completion of II [3], denoted by Comp(Il), is the set of classical formulas that consists of
the rules (1) in II (recall that we identify rule (1) with implication (3)) and the implications

a— \/ B (5)

for all atoms a in 0. When set Bodies(Il,a) is empty, the implication (5) has the form
a — L. When a rule (2) is a fact a. , then we identify this rule with the unit clause a.

For example, completions of programs II; and Il; are presented in Figure 1.

For the large class of logic programs, called tight, their answer sets coincide with models
of their completion [5, 4]. This is the case for program II; (we illustrate that II; is tight,
shortly). Yet, for non-tight programs, every answer set is a model of completion but not

23:3

CVIT 2016

23:4

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

SMT-based Answer Set Solver CMODELS(DIFF) (System Description)

necessarily the other way around. For instance, set {a, b} is a model of Comp(Il2), but not
an answer set of Ily. It turns out that Ily is not tight.

Tightness is a syntactic condition on a program that can be verified by means of program’s
dependency graph. The dependency graph of 11 is the directed graph G such that

the nodes of GG are the atoms occurring in II, and

for every rule (1) in II whose head is an atom, G has an edge from atom a to each atom

b1,...,be.
A program is called tight if its dependency graph is acyclic.

For example, the dependency graph of program II; consists of two nodes, namely, a and
¢, and a single edge from a to ¢ . This graph is acyclic and hence II; is tight. On the other
hand, it is easy to see that the graph of IIs is not acyclic.

Logic sMT(IL)

We now introduce the notion of Satisfiability Modulo Theory (SMT) [2] for the case when
Linear Integer Arithmetic is a considered theory. We denote this SMT instance by SMT(IL).

Let o be a vocabulary and x be a finite set of integer variables. The set of atomic formulas
of SMT(IL) consists of propositions in ¢ and linear constraints of the form

a1x] £ £ apTy X apt (6)

where a1,...,a,+1 are integers and 1, ..., x, are variables in y, & stands for 4+ or —, and
belongs to {<,>,<,>,=,#}. When a; =1 (1 <i < n) we may omit it from the expression.
The set of sMT(IL) formulas is the smallest set that contains the atomic formulas and is
closed under — and conjunction A. Other connectives such as T, L, V, —, and <> can be
defined in terms of = and A as customary.

A valuation 7 consists of a pair of functions

Ty : 0 — {true, false} and

Ty : X = Z, where Z is the set of integers.
A valuation interprets all SMT(IL) formulas by defining

7(p) = 75(p) when p € o,

T(a1z1 £ -+ £ ap@p XM apy1) = true iff a1y (z1) £ - -+ £ an7y (@) > anyq holds,
and applying the usual rules for the Boolean connectives.

We say that an sMT(IL) formula ® is satisfied by a valuation 7 when 7(®) = true. A set
of sSMT(IL) formulas is satisfied by a valuation when every formula in the set is satisfied by
this valuation. We call a valuation that satisfies an SMT(IL) formula a model.

3 Level Rankings

Niemela [19] characterized answer sets of "normal" logic programs in terms of "level rankings."
Normal programs consist of rules of the form (1), where n = m and a is an atom. Lierler and
Susman [13] generalized the concept of level ranking to programs considered in this paper
that include choice rules and denials (rules with empty head).

By N we denote the set of natural numbers. For a rule (2), by BT we denote its positive
part and sometimes identify it with the set of atoms that occur in it, i.e., {b1,...,b }. For a
program I, by A¢(IT) we denote the set of atoms occurring in it.

» Definition 1. For a logic program II and a set X of atoms over At(Il), a function lr:
X — Nis a level ranking of X for II when for each a € X, there is B in Bodies(Il, a) such
that X satisfies B and for every b € B it holds that Ir(a) — 1 > Ir(b).

160

161

162

163

164

165

166

167

168

169

170

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

D. Shen and Y. Lierler

Niemela [19] observed that for a normal logic program, a model X of its completion is also
its answer set when there is a level ranking of X for the program. Lierler and Susman [13]
generalized this result to programs with double negation not not:

» Theorem 2 (Theorem 1 [13]). For a program Il and a set X of atoms that is a model of
its completion Comp(Il), X is an answer set of 11 if and only if there is a level ranking of X
for 1L

The nature of a level ranking is such that there is an infinite number of level rankings for
the same answer set of a program. Theorem below illustrates that we can add a single linear
constraint to limit the number of level rankings by utilizing the size of a program.

» Theorem 3. For a logic program II and its answer set X, we can always construct a level
ranking of X for II such that, for every a € X, lr(a) < |At(T])].

Proof. Since there is an answer set X, by Theorem 2 there exists some level ranking 7’ of
X for II. Then, we can always use the level ranking I’ to construct a level ranking Ir of X
for II such that, for every a € X, lr(a) < |At(II)|. Below we describe the method.

For an integer y, by s(y) we denote the following set of atoms

{a|ae X,lr'(a) =y}
Let Y be the set of integers so that
{ylaeX,lr'(a) =y}

Let Y*® denote the sorted list [y1,...,yx] constructed from all integers of Y, such that
y1 < Y2 < ... < yg. Note that y; > y; if and only if ¢ > j. Obviously, |Y| < |A¢(IT)|. Thus,

k < |At(II)|. For every element y; in Y* and every atom a € s(y;), we assign Ir(a) = i.

Consequently, ir(a) < |At(II)|.

Now we prove that Ir is indeed a level ranking. According to the definition of 7/, for each
atom a € X, there exists B in Bodies(Il,a) such that X satisfies B and for every b € BT
it holds that Ir'(a) — 1 > Ir'(b). We show that Ir(a) — 1 > Ir(b) also holds for each b in this
B*. Atoms a,b belong to some sets s(yx,) and s(yg,) respectively, where ko, ky, < k. By
the definition of s(-), yx, = lr'(a) and yi, = lr'(b). Since Ir'(a) > Ir'(b), Yk, > Yk, Since
for any i and j, y; > y; if and only if ¢ > j, we derive that k, > k;. By the construction of
Ir, lr(a) = ko and Ir(b) = ky. Consequently, Ir(a) — 1 > Ir(b) also holds. Thus, Ir is a level
ranking by definition. <

Strong level ranking

Niemela [19] introduced the concept of a strong level ranking so that only one strong level
ranking exists for an answer set. It is obviously stricter than the condition captured in
Theorem 3. Yet, the number of linear constraints in formulating the conditions of strong
level ranking is substantially greater. We now generalize the concept of a strong level ranking
to the case of logic programs considered here and then state the formal result on the relation
of answer sets and strong level rankings.

» Definition 4. For a logic program II and a set X of atoms over A¢(Il), a function lIr:
X — Nis a strong level ranking of X for IT when Ir is a level ranking and for each a € X the
following conditions hold:

1. If there is B in Bodies(Il,a) such that X satisfies B and BY is empty, then Ir(a) = 1.

23:5

CVIT 2016

23:6

197

198

199

200

209

210

211

212

213

214

215

SMT-based Answer Set Solver CMODELS(DIFF) (System Description)

2. For every B in Bodies(Il,a) such that X satisfies B and BT is not empty, there is at
least one b € B such that Ir(b) + 1 > Ir(a).

» Theorem 5. For a program II and a set X of atoms that is a model of its completion
Comp(Il), X is an answer set of IL if and only if there is a strong level ranking of X for IL.

Proof. This proof follows the argument provided for Theorem 2 in [19], but respects the
terminology used here. We start by defining an operator Tr(I) for a program II and a set I
over At(IT) U L as follows:

Tu(I) ={a|a <+ B eIl satisfies B}.

For this operator we define
Tnt0=0,
and for = 0,1,2, ...
Tat (i+1) =Tu(Ta T 14).

Left-to-right: Assume X is an answer set of II. We can construct a strong level ranking Ir
of X for IT using the T7yx (-) operator. As X is an answer set of IT, we know that X = Tpyx Tw
and for each a € X there is a unique ¢ such that a € Tyx 14, but a ¢ Tygx 1 (i — 1). Let
Ir(a) = i. We now illustrate that Ir is indeed a strong level ranking.

First, we illustrate that Ir is a level ranking. For a € X there is a rule a < B of the
form (1) such that @ < b1, ...,b € IIX and Tyyx 1 (i — 1) satisfies by A--- Ab;. Consequently,
for every b; in {b1,...,b;}, lr(bj) <i—1. Thus, Ir(a) — 1 > Ir(b;). Also, from the way the
reduct is constructed, it follows that X satisfies body B of rule a + B.

Second, we show that Condition 1 of the definition of strong level ranking holds for Ir.
If there is a «+ B € II such that X satisfies B and Bt is empty, then a < T is in II¥. By
definition of the Tx (+) operator, a € Tyx T 1. Consequently, Ir(a) = 1 holds.

Third, we demonstrate that Condition 2 holds for Ir. For a € X, by the construction of Ir
using the Tyx (-) operator we know that there is a unique i such that ir(a) =i, a € Tyx 14,
but a ¢ Tyx 1 (¢ — 1). Proof by contradiction. Assume that there is a rule a + B € 11
such that X satisfies B and B™ is not empty, but for all b € BT, ir(b) + 1 < Ir(a) holds.
Then for all b € BT, ir(b) < Ir(a) — 1. Thus, ir(b) < ¢ — 1. It follows that all b € B
belong to Tx 1 (¢ — 2). Hence, by the definition of Tyyx (+) operator, a € Tyx 1 (i — 1),
which contradicts that a ¢ Ty;x 1 (i — 1). Thus, there is at least one b € BT such that
Ir(b) + 1 > Ir(a).

Right-to-left: Assume that there is a strong level ranking of X for II. By the definition,
it is also a level ranking. Recall that X is a model of Comp(II). By Theorem 2, X is an
answer set of II. |

SCC level ranking

Niemela [19] illustrated how one can utilize the structure of the dependency graph correspond-
ing to a normal program to reduce the number of linear constraints in capturing conditions
similar to these of level ranking. We now generalize these results to logic programs with
doubly negated atoms and denials.

Recall that a strongly connected component of a directed graph is a maximal set V' of
nodes such that each pair of nodes in V is reachable from each other. We call a set of atoms
in a program II a strongly connected component (SCC) of II when it is a strongly connected
component in the dependency graph of II. The SCC including an atom a is denoted by
SCC(a). A non-trivial SCC is an SCC that consists of at least two atoms. We denote the
set of atoms in all non-trivial SCCs of II by NT'(II).

234

235

236

237

238

239

240

242

243

244

245

246

247

248

249

250

252

253

254

256

257

258

259

260

262

263

264

265

266

267

268

269

270

271

272

273

D. Shen and Y. Lierler

» Definition 6. For a logic program II and a set X of atoms over A¢(Il), a function lIr:
X NNT(II) - Nis a SCC level ranking of X for IT when for each a € X N NT(II), there
is B in Bodies(Il,a) such that X satisfies B and for every b € Bt N SCC(a) it holds that
Ir(a) — 1 > Ir(b).

The byproduct of the definition of SCC level rankings is that for tight programs SCC
level ranking trivially exists since it is a function whose domain is empty. Thus no linear
constraints are produced.

» Theorem 7. For a program II and a set X of atoms that is a model of its completion
Comp(Il), X is an answer set of I1 if and only if there is an SCC level ranking of X for II.

This is a generalization of Theorem 4 in [19]. Its proof follows the lines of the proof presented
there with the reference to Theorem 2.

» Theorem 8. For a satisfiable logic program II and its answer set X, we can always
construct an SCC level ranking of X for II such that, for every a € X, lr(a) < |SCC(a)|.

This theorem can be proved by applying the similar argument as in the proof of Theorem 3
to each SCC. This result allows us to set minimal upper bounds for Ir(a) in order to reduce
search space.

Further, Niemela [19] introduces the concept of strong SCC level ranking and states a
similar result to Theorem 7 for that concept. It is straightforward to generalize these results
to logic programs considered here.

4 From Logic Programs to smT(IL)

In this section we present a mapping from a logic program to SMT(IL) such that the models
of a constructed SMT(IL) theory are in one-to-one correspondence with answer sets of the
program. Thus, any SMT solver capable of processing SMT(IL) expressions can be used to
find answer sets of logic programs. The developed mappings generalize the ones presented by
Niemela [19].

For a rule a < B of the form (1), the auxiliary atom g, equivalent to its body, is defined
as

B by Ao ANbg A=bpei Avc o A=byy Abppr A A by (7)

When the body of a rule consist of a single element, no auxiliary atom is introduced (the
single element itself serves the role of an auxiliary atom).

Let II be a program. We say that an atom a is a head atom in II if it is the head of some
rule. Any atom a in IT such that

it is a head atom, or

it occurs in some positive part of the body of some rule whose head is an atom,
we associate with an integer variable denoted by lr,. We call such variables level ranking
variables. For each head atom a in II, we construct an sMT(IL) formula

a— \/ (B A /\lra—lzlrl,). (8)
a+BE€eIl beB+

We call the conjunction of formulas (8) for the head atoms in program II a level ranking
formula of 1I.
For example, the level ranking formula of program Il, in Figure 1 follows

(c%ﬂﬂc) A (a%(c/\lraflzlrc)\/(b/\lraflzlrb)) A (bﬁa/\lrbflzlra). 9)

23:7

CVIT 2016

23:8

275

276

277

278

279

280

284

285

286

288

289

291

292

293

294

296

297

298

299

300

302

303

SMT-based Answer Set Solver CMODELS(DIFF) (System Description)

» Theorem 9. For a logic program II and the set F of sSMT(IL) formulas composed of

Comp(I1) and a level ranking formula of T

1. If a set X of atoms is an answer set of I1, then there is a satisfying valuation T for F
such that X = {a | a € At(Il) and 7(a) = true}.

2. If valuation T is satisfying for F, then the set {a | a € At(Il) and 7(a) = true} is an
answer set for II.

This is a generalization of Theorem 6 in [19]. Its proof follows the lines of the proof presented
there with the reference to Theorem 2.

SCC level ranking

For each atom a in the set NT'(II), we introduce an auxiliary atom ext,. If there exists some
rule a < B in II such that BT N SCC(a) = 0, then we construct an SMT(IL) formula

ext, < \/ BB; (10)

a+Bell and B+*NSCC(a)=0
otherwise, we construct a formula
—ext,. (11)

We also introduce an SMT(IL) formula:

a— exty V \/ (B A /\ lrg — 12> 1ry). (12)
a<—BEIl and BTNSCC(a)#0 beBTNSCC(a)

We call the conjunction of formulas (10), (11) and (12) a SCC level ranking formula of II.
For instance, NT'(II;) is empty, so we introduce no SCC level ranking formula for program
IT;. The SCC level ranking formula of program Il follows

(ea:ta < c) A —exty A (a — exty V(bAlr,—1 > lrb)) A (b — extpV(aAlry—1 > lra)). (13)

The claim of Theorem 9 holds also when we replace a level ranking formula of II with an
SCC level ranking formula of IT in its statement.

Strong level ranking

For each rule a +— B in program II we construct an SMT(IL) formula

aABp —lry=1 when Bt =0,
aNBp— \ lry+1>Ir, otherwise. (14)
beB+

We call the conjunction of formulas (8) and (14) a strong level ranking formula of TI.
For example, the strong level ranking formula of program Il is a conjunction of formula (9)

and formula
(c/\—|—|c—>lrczl) A (a/\c—)lrc—i—lera) A
(a/\b—)lrl,—i—lzlra) A (b/\a%lru—i—lzlrl,).

We now state a similar result to Theorem 9 that makes an additional claim on one-to-one
correspondence between the models of a constructed SMT(IL) formula with the use of strong
level ranking formula and answer sets of a program.

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

D. Shen and Y. Lierler

» Theorem 10. For a logic program 11 and the set F of SMT(IL) formulas composed of
Comp(Il) and a strong level ranking formula of 11

1. If a set X of atoms is an answer set of I1, then there is a satisfying valuation T for F
such that X = {a | a € At(Il) and 7(a) = true}.

2. If valuation 7 is satisfying for F, then the set {a | a € At(Il) and 7(a) = true} is an
answer set for II.

3. If valuations 7 and 7' satisfy F and are distinct, then

{a|a € At(Il) and 7(a) = true} # {a | a € At(Il) and 7'(a) = true}.

Strong SCC level ranking
For each atom a € NT(II), we construct a formula
ext, = Ilr, =1, (15)

and for each rule a < B such that BT N SCC(a) # 0, we introduce a formula

alfBp— \/ lry +1 > lr,. (16)
beB+NSCC(a)

We call the conjunction of formulas (10), (11), (12), (15) and (16) a strong SCC level ranking
formulas of TI.

For instance, NT'(II;) is empty, so we introduce no strong SCC level ranking formula
for program II;. The strong SCC level ranking formula of program Ils is a conjunction of
formula (13) and formula

(eﬂcta—>lra:1)/\(eﬂctb—>lrb:1)/\(a/\b—)lrb—l—lera)/\(b/\a—ﬂra—l—lzlrb).

The claim of Theorem 10 holds also when we replace a strong level ranking formula of 11
with a strong SCC level ranking formula of II in its statement.

5 The CMODELS(DIFF) system

We are now ready to describe the the CMODELS(DIFF)? system in detail. It is an extension of

the cMODELS [11] system. Figure 2 illustrates the pipeline architecture of CMODELS(DIFF).

This system takes an arbitrary (tight or non-tight) logic program in the language supported
by CMODELS as an input. These logic programs may contain such features as choice rules
and aggregate expressions. The rules with these features are translated by CMODELS [11]
into rules considered here. The CMODELS(DIFF) system translates a logic program into
sMT(IL) formulas, after which an SMT solver is called to find models of these formulas (that
correspond to answer sets).

2 CMODELS(DIFF) is posted at https://www.unomaha.edu/college-of-information-science-and-

technology /natural-language-processing-and-knowledge-representation-lab/software /cmodels-diff. php

23:9

CVIT 2016

23:10 SMT-based Answer Set Solver CMODELS(DIFF) (System Description)

Ground Logic Program
1 - Computing Com-]
letion via CMODELS .
2 (1,2) Computing
If Non-tight Completion and Level

Ranking Formulas

If Tieht 2 - Computing Four Variants of Level
g Rankings via Extention of CMODELS The CMODELS(DIFF) Sys-
Clausified Completion And Level Ranking tem utilizes the Orlglnal
Formulas in Semi-Dimacs Format algorithm of CMODELS to
i compute completion, during
3 - EZSMT Transformer . .
which ¢CMODELS determines
whether the program is tight
SMT-LIB File prog g
~— .
or not. If the program is
{ 4, - T sk] gomputisngt Multiple not tight, the correspond-
fswer Sets ing level ranking formula is
Answer Sets added.

Figure 2 ¢MODELS(DIFF) Pipeline

329 Flags -levelRanking, -levelRankingStrong, -SCClevelRanking, and
s —SCClevelRankingStrong instruct CMODELS(DIFF) to construct a level ranking formula,
s a strong level ranking formula, a SCC level ranking formula, and a strong SCC level ranking
sz formula, respectively. And, -SCClevelRanking is chosen by default. Finally, completion and
13 the level ranking formula are clausified using the same technique as in original CMODELS.
14 The CMODELS(DIFF) system outputs the resulting clauses into a text file in semi-Dimacs
#s format [21].

w (3, 4) Transformation and Solving

w7 The transformer is taken from EzsMT v1.1. It converts the semi- Dimacs output from step (2)
18 into SMT-LIB syntax (SMT-LIB is a standard input language for SMT solvers [1]). By default,
s the SMT-LIB output contains an instruction that sets the logic of SMT solvers to Linear
s Integer Arithmetic. If the transformer is invoked with the parameter difference-logic,
s then the SMT-LIB output sets the logic of SMT solvers to Difference Logic instead.

32 Finally, one of the SMT solvers cvc4, z3, or YICES is called to compute models by
us using flags -cved, -z3, or ~yices. (In fact, any other SMT solver supporting SMT-LIB
14 can be utilized.) The CMODELS(DIFF) system post-processes the output of the SMT solvers
s mentioned above to produce answer sets in a typical format disregarding any auxiliary atoms
us or integer variables that are created during the system’s execution.

37 The CMODELS(DIFF) system allows us to compute multiple answer sets. Currently, SMT
us solvers typically find only a single model. We design a process to enumerate all models.
us For a logic program II, after an SMT solver finds a model and exits, the CMODELS(DIFF)
10 system constructs a clause that consists of (i) atoms in At(II) that are assigned false by the
s model and (i) negations of atoms in At(II) that are assigned true by the model. This clause
2 1s added into the sSMT-LIB formula previously computed. Then, the SMT solver is called
3 again taking the new input. The process is performed repeatedly, until the SMT-LIB formula
4 becomes unsatisfiable.

355 In summary, CMODELS(DIFF) has eight possible configurations. We can choose one from
6 the four variants of level ranking formulas, and choose a logic from either Linear Integer
w7 Arithmetic or Difference Logic forthe invoked SMT solver.

358

359

360

362

363

364

365

366

367

368

369

370

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

D. Shen and Y. Lierler

6 Experiments

We benchmark CMODELS(DIFF) on seven problems, to compare its performance with that of
other ASP solvers, namely CMODELS and CLASP [7]. All considered benchmarks are non-tight
programs. The first two benchmarks are Labyrinth and Connected Still Life, which are
obtained from the Fifth Answer Set Programming Competition®. We note that the original
encoding of Still Life is an optimization problem, and we turn it into a decision one. The next
three benchmarks originate from Asparagus?. The selected problems are RandomNonTight,
Hamiltonian Cycle and Wire Routing. We also consider five instances of Wire Routing
from RST Construction®. Then, we use Bounded Models as the sixth benchmark®. Our
last benchmark, Mutual Exclusion, comes from Synthesis Benchmarks’. We rewrite the
seven encodings to fit the syntax of GRINGO 4, and call GRINGO v. 4.5.3% to produce ground
programs serving as input to all benchmarked systems. All benchmarks are posted at the
CMODELS(DIFF) website provided at Footnote 2.

All benchmarks are run on an Ubuntu 16.04.1 LTS (64-bit) system with an Intel core
i5-4250U processor. The resource allocated for each benchmark is limited to one cpu core
and 4GB RAM. We set a timeout of 1800 seconds. No problems are solved simultaneously.

Numbers of instances are shown in parentheses after names of benchmarks. We present
cumulative time of all instances for each benchmark with numbers of unsolved instances
due to timeout or insufficient memory inside parentheses. All the steps involved, including
grounding and transformation, are reported as parts of solving time.

Five distinct solvers are benchmarked: (1) cMODELS(DIFF) invoking SMT solver cvecd v.
1.4; (2) cMODELS(DIFF) invoking SMT solver z3 v. 4.5.1; (3) CMODELS(DIFF) invoking SMT
solver YICES v. 2.5.4; (4) cLAsP v. 3.1.3; (5) CMODELS v. 3.86.1 with Satisfiability solver
Minisat v. 2.0 beta. We use DIFF-CVC4, DIFF-Z3, and DIFF-YICES to denote three variants of
CMODELS(DIFF) used in the experiments.

Table 1 Experimental Summary

Benchmark DIFF-CVC4 DIFF-Z3 DIFF-YICES| DIFF-Z3 DIFF-YICES|CMODELS| CLASP
LIA LIA LIA DL DL

Still Life (26) 731 5423(1) 203 899 194 647 10.8
Ham. Cycl. (50) 15.39 9.78 4.54 6.61 3.57 1.19 0.53
Wire Rout. (10) 1378 562.36 1562 2983(1) 2089(1) 409 12.5
Bound. Mod. (8) 6.08 4.30 2.34 2.93 2.20 1.59 1.38

Labyrinth (30) 19543(8) 27794(12) 20425(10) |22023(9) 21836(9) |16408(7) [5826(2)
Rand. Nont. (20) 27.8 8.65 6.84 7.72 6.47 1.39 3.52
Mut. Excl. (5) 5.26 2.72 1.70 2.28 1.50 0.30 0.13

Table 1 summarizes main results. Under the name of variants of the CMODELS(DIFF)
systems, we state the configuration used for this solver. Namely, "LIA" and "DL" denote that
the logic of SMT solvers is set to Linear Integer Arithmetic and Difference Logic, respectively.
All DIFF systems in the table are invoked with flag -SCClevelRanking. Systems CLASP

https://www.mat.unical.it/aspcomp2014/

https://asp.haiti.cs.uni-potsdam.de/
http://people.sabanciuniv.edu/~esraerdem/ASP-benchmarks/rst-basic.html
http://users.ics.aalto.fi/~kepa/experiments/boundsmodels/
http://www2.informatik.uni-stuttgart.de/fmi/szs/research/projects/synthesis/benchmarks030923.html
http://potassco.sourceforge.net/

[I B

23:11

CVIT 2016

23:12

387

388

389

396

419

420

421

422

423

SMT-based Answer Set Solver CMODELS(DIFF) (System Description)

and CMODELS are run with default settings. We benchmarked CMODELS(DIFF) with all
eight possible configurations. Yet, we do not present all of the data here. CMODELS(DIFF)
invoked with -levelRanking and -levelRankingStrong flags shows worse performance
than settings -SCClevelRanking and -SCClevelRankingStrong, respectively. That is why
we avoid presenting the results on configurations -levelRanking and -levelRankingStrong.
Also, adding constraints for strong level ranking typically slightly degrades the performance so
we do not present the results for the ~-SCClevelRankingStrong configuration. We note that
SMT solver cvc4 implements the same procedure for processing Difference Logic statement
and Linear Integer Arithmetic statements.

Observations

We observe that system CLASP almost always displays the best results. This is not surprising
as this is one of the best native answer set solvers currently available. Its search method is
attuned towards processing logic programs. Given that SMT solvers are agnostic towards
specifics of logic programs it is remarkable how good the performance of CMODELS(DIFF) is.
In some cases it is comparable to that of CLASP.

It is the case that many Satisfiability solvers and answer set solvers share a lot in com-
mon [12]. For example, answer set solver CLASP starts by computing clausified programs
completion and then later applies to it Unit propagator search technique stemming from
Satisfiability solving. That is reminiscent of the process that system CMODELS(DIFF) un-
dertakes. It also computes program’s completion so that Unit propagator of SMT solvers is
applicable to it.

We conjecture that the greatest difference between CMODELS(DIFF) and CLASP lies in the
fact that

in CMODELS(DIFF) integer linear constraints encode the conditions to weed out unwanted

models of completion; SMT solvers implement search techniques/propagators to target

these integer linear constraint;

in CLASP the structure of the program is taken into account by the so called Unfounded

propagator for this task.

In case of Still Life, Hamiltonian Cycle, Wire Routing, and Bounded Models benchmarks
(marked in bold in Table 1) there is one more substantial difference. These encodings contain
aggregates. CLASP implements specialized search techniques to benefit from the compact
representations that aggregates provide. System CMODELS(DIFF) translates aggregates
away, which often results in a bigger problem encoding that the system has to deal with.
System CMODELS also translates aggregates away. This is why we underline the solving
times of CMODELS, as it is insightful to compare the performance of CMODELS to that
of CMODELS(DIFF) alone. Indeed, CMODELS(DIFF) utilizes the routines of CMODELS for
eliminating aggregates and computing the completion of the resulting program. Thus, the
only difference between these systems is in how they eliminate models of completion that are
not answer sets. System CMODELS(DIFF) utilizes level rankings for that. System CMODELS
implements a propagator in spirit of Unfounded propagator of CLASP, but the propagator of
CMODELS is only used when a model of completion is found; CLASP utilizes this propagator
as frequently as it utilizes Unit propagator [14, Section 5]. We believe that when we observe
a big difference in performance of CMODELS(DIFF) and CLASP, this attributes to the benefits
gained by the utilization of specialized Unfounded and "aggregate" propagators by CLASP.
Yet, level ranking formulas seem to provide a viable alternative to Unfounded propagator
and open a door for utilization of SMT solvers for dealing with non-tight programs. This
gives us grounds to believe that the future work on extending constraint answer set solver

434

435

436

437

438

439

440

442

443

444

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

462

463

464

465

466

467

468

469

470

472

473

474

D. Shen and Y. Lierler

EZSMT to accept non-tight programs is a viable direction.

As we noted earlier SCC level rankings yield best performance among the four variants
of level rankings. Furthermore, Table 1 illustrates the following. The logic of SMT solvers
does not make an essential difference. Overall, CMODELS(DIFF)-YICES with Linear Integer
Arithmetic logic performs best within the presented CMODELS(DIFF) configurations. Obvi-
ously, utilizing better SMT solvers can improve the performance of CMODELS(DIFF) in the
future. Notably, this does not require modifications to CMODELS(DIFF), since SMT-LIB used
by CMODELS(DIFF) is a standard input language of SMT solvers.

7 Conclusion

In this paper we presents the CMODELS(DIFF) system that takes a logic program and translates
it into an sMT-LIB formula which is then solved by an SMT solver to find answer sets of the
given program. Our work parallels the efforts of an earlier answer set solver LP2DIFF [10]. The
CMODELS(DIFF) system allows richer syntax such as choice rules and aggregate expressions,
and enables computation of multiple solutions. (In this work we extended the theory of
level rankings to the case of programs with choice rules and denials.) We note that the
LP2NORMAL? tool can be used as a preprocessor for LP2DIFF in order to enable this system
to process logic programs with richer syntax. In the future, we will compare performance of
CMODELS(DIFF) and LP2DIFF experimentally. Yet, we do not expect to see great difference
in their performance when the same SMT solver is used as a backend. Also, we would like to
conduct more extensive experimental analysis to support our conjecture on the benefits of
specialized "aggregate" propagator and Unfounded propagator employed by CLASP.

The technique implemented by CMODELS(DIFF) for enumerating multiple answer sets of
a program is basic. In the future we would like to adopt the nontrivial methods for model
enumeration discussed in [8] to our settings. The theory developed in this paper provides
a foundation to extend the recent constraint answer set programming solver EZSMT [21] to
accept non-tight constraint answer set programs. The contributions of this work also open a
door to the development of a novel constraint-based method in processing logic programs
by producing intermediate output in MINIZINC [18] in place of sSMT-LIB. We believe our
work will boost the cross-fertilization between the three areas: SMT, constraint answer set
programming, and constraint programming.

Acknowledgements

We are grateful to Cesare Tinelli for valuable discussions on the subject of the paper and
for the insights on the cvc4 system. We are also thankful to Ben Susman. Da Shen was
supported by the 2017-FUSE (Fund for Undergraduate Scholarly Experiences) Grant from
the University of Nebraska at Omaha. Yuliya Lierler was partially supported by the NSF
1707371 grant.

—— References

1 Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Standard: Version 2.5.
Technical report, Department of Computer Science, The University of lowa, 2015.

2 Clark Barrett and Cesare Tinelli. Satisfiability modulo theories. In Edmund Clarke, Tom
Henzinger, and Helmut Veith, editors, Handbook of Model Checking. Springer, 2014.

9 https://research.ics.aalto.fi/software/asp/Ip2normal/

23:13

CVIT 2016

23:14

475

476

477

478

479

497

498

499

500

501

502

503

504

505

SMT-based Answer Set Solver CMODELS(DIFF) (System Description)

10

11

12

13

14

15

16

17

18

19

20

21

Keith Clark. Negation as failure. In Herve Gallaire and Jack Minker, editors, Logic and
Data Bases, pages 293—-322. Plenum Press, New York, 1978.

Esra Erdem and Vladimir Lifschitz. Fages’ theorem for programs with nested expressions.
In Proceedings of International Conference on Logic Programming (ICLP), pages 242-254,
2001.

Francois Fages. Consistency of Clark’s completion and existence of stable models. Journal
of Methods of Logic in Computer Science, 1:51-60, 1994.

Paolo Ferraris and Vladimir Lifschitz. Weight constraints as nested expressions. Theory
and Practice of Logic Programming, 5:45-74, 2005.

Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Javier Romero, and Torsten
Schaub. Progress in CLASP series 3. In Proceedings of the Thirteenth International Confer-
ence on Logic Programming and Nonmonotonic Reasoning (LPNMR’15), 2015.

Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten Schaub. Conflict-
driven answer set enumeration. In Proceedings of the 9th International Conference on
Logic Programming and Nonmonotonic Reasoning, LPNMR’07, pages 136148, Berlin, Hei-
delberg, 2007. Springer-Verlag. URL: http://dl.acm.org/citation.cfm?id=1758481.1758496.
Carla P. Gomes, Henry Kautz, Ashish Sabharwal, and Bart Selman. Satisfiability solvers. In
Frank van Harmelen, Vladimir Lifschitz, and Bruce Porter, editors, Handbook of Knowledge
Representation, pages 89-134. Elsevier, 2008.

Tomi Janhunen, Ilkka Niemeld, and Mark Sevalnev. Computing stable models via re-
ductions to difference logic. In Logic Programming and Nonmonotonic Reasoning, pages
142-154. Springer Berlin Heidelberg, 2009.

Yuliya Lierler. SAT-based Answer Set Programming. PhD thesis, University of Texas at
Austin, 2010.

Yuliya Lierler. What is answer set programming to propositional satisfiability. Con-
straints, pages 1-31, 2016. URL: http://dx.doi.org/10.1007/s10601-016-9257-7, doi:10.
1007/s10601-016-9257-7.

Yuliya Lierler and Benjamin Susman. On relation between constraint answer set pro-
gramming and satisfiability modulo theories. Theory and Practice of Logic Programming,
17(4):559-590, 2017.

Yuliya Lierler and Miroslaw Truszczynski. Transition systems for model generators — a
unifying approach. Theory and Practice of Logic Programming, 27th Int’l. Conference on
Logic Programming (ICLP) Special Issue, 11(4-5):629-646, 2011.

Vladimir Lifschitz, Lappoon R. Tang, and Hudson Turner. Nested expressions in logic
programs. Annals of Mathematics and Artificial Intelligence, 25:369-389, 1999.

Fangzhen Lin and Yuting Zhao. Assat: Computing answer sets of a logic program by sat
solvers. Artificial Intelligence, 157:115-137, 2004.

Kim Marriott and Peter J. Stuckey. Programming with Constraints: An Introduction. MIT
Press, 1998.

N. Nethercote, P.J. Stuckey, R. Becket, S. Brand, G.J. Duck, , and G. Tack. Minizinc:
Towards a standard cp modelling language. In Proceedings of the 13th International Con-
ference on Principles and Practice of Constraint Programming, page 529-543, 2007.

Ilkka Niemela. Stable models and difference logic. Annals of Mathematics and Artificial
Intelligence, 53:313-329, 2008.

Ilkka Niemeld and Patrik Simons. Extending the Smodels system with cardinality and
weight constraints. In Jack Minker, editor, Logic-Based Artificial Intelligence, pages 491—
521. Kluwer, 2000.

Benjamin Susman and Yuliya Lierler. SMT-Based Constraint Answer Set Solver EZSMT
(System Description). In Technical Communications of the 32nd International Conference
on Logic Programming (ICLP 2016), volume 52, pages 1:1-1:15, 2016.

