
SMT-based Answer Set Solver cmodels(diff)1

(System Description)2

Da Shen3

Department of Computer Science, University of Nebraska at Omaha4

[South 67th Street, Omaha, NE 68182, USA]5

dashen@unomaha.edu6

Yuliya Lierler7

Department of Computer Science, University of Nebraska at Omaha8

[South 67th Street, Omaha, NE 68182, USA]9

ylierler@unomaha.edu10

https://orcid.org/0000-0002-6146-623X11

Abstract12

Many answer set solvers utilize Satisfiability solvers for search. SMT solvers extend Satisfiability13

solvers. This paper presents the cmodels(diff) system that uses SMT solvers to find answer sets14

of a logic program. Its theoretical foundation is based on Niemala’s characterization of answer15

sets of a logic program via so called level rankings. The comparative experimental analysis16

demonstrates that cmodels(diff) is a viable answer set solver.17

2012 ACM Subject Classification Computing methodologies → Logic programming and answer18

set programming, Software and its engineering → Constraint and logic languages, Theory of19

computation → Constraint and logic programming20

Keywords and phrases answer set programming, satisfiability modulo theories, constraint satis-21

faction processing22

Digital Object Identifier 10.4230/OASIcs.CVIT.2016.2323

1 Introduction24

This paper describes a new answer set solver cmodels(diff). Its theoretical foundation lies25

on the generalizations of Niemela’s ideas. Niemela [19] characterized answer sets of a normal26

logic program as models of a propositional formula called program’s completion that satisfy27

"level ranking" requirements. In this sense, this system is a close relative of an earlier answer28

set solver lp2diff developed by Janhunen et al. [10]. Yet, lp2diff only accepts programs29

of a very restricted form. For example, neither choice rules nor aggregate expressions are30

allowed. Answer set solver cmodels(diff) permits such important modeling constructs in31

its input. Also, unlike lp2diff, the cmodels(diff) system is able to generate multiple32

solutions.33

The cmodels(diff) system follows the tradition of answer set solvers such as assat [16]34

and cmodels [11]. In place of designing specialized search procedures targeting logic35

programs, these tools compute a program’s completion and utilize Satisfiability solvers [9]36

– systems for finding satisfying assignments for propositional formulas – for search. Since37

not all models of a program’s completion are answer sets of a program, both assat and38

cmodels implement specialized procedures (based on loop formulas [16]) to weed out such39

models. Satisfiability Modulo Theory (SMT) solvers [2] extend Satisfiability solvers. They40

process formulas that go beyond propositional logic and may contain, for example, integer41

linear expressions. The cmodels(diff) system utilizes this fact and translates a logic42

© Da Shen and Yuliya Lierler;
licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:14

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

23:2 SMT-based Answer Set Solver cmodels(diff) (System Description)

program into an SMT formula so that any model of this formula corresponds to an answer43

set of the program. It then uses SMT solvers for search. Unlike cmodels or assat, the44

cmodels(diff) system does not need an additional step to weed out unwanted models. Also,45

it utilizes smt-lib – a standard input language of SMT solvers [1] – to interface with these46

systems. This makes its architecture open towards new developments in the realm of SMT47

solving. There is practically no effort involved in incorporating a new SMT system into the48

cmodels(diff) implementation.49

Creation of the cmodels(diff) system was inspired by the development of recent50

constraint answer set programming solver ezsmt [21] that utilizes SMT solvers for finding51

solutions for "tight" constraint answer set programs. On the one hand, cmodels(diff)52

restricts its attention to pure answer set programs. On the other hand, it goes beyond53

tight programs. In the future, we will extend cmodels(diff) to accept non-tight constraint54

answer set programs. The theory developed in this work paves the way for such an extension.55

Lierler and Susman [13] demonstrate that SMT formulas are strongly related to constraint56

programs [17]. Many efficient constraint solvers1 exist. Majority of these systems focus57

on finite-domain constraint problems. The theoretical contributions of this work provide a58

foundation for developing a novel constraint-solver-based method in processing logic programs.59

Currently, cmodels(diff) utilizes SMT-LIB to interface with SMT solvers. By producing60

output in minizinc – a standard input language of constraint solvers [18] – in place of61

smt-lib, cmodels(diff) will become a constraint-based answer set solver. This is another62

direction of future work.63

The outline of the paper is as follows. We start by reviewing the concepts of a logic64

program, a completion, tightness and an SMT logic smt(il). We then present a key concept65

of this work, namely, a level ranking; and state theoretical results. Section 4 presents66

transformations from logic programs to smt(il) by means of variants of level rankings.67

After that, we introduce the architecture of the cmodels(diff) system and conclude with68

comparative experimental analysis.69

2 Preliminaries70

A vocabulary is a finite set of propositional symbols also called atoms. As customary, a literal71

is an atom a or its negation, denoted ¬a. A (propositional) logic program, denoted by Π,72

over vocabulary σ is a finite set of rules of the form73

a ← b1, . . . , bℓ, not bℓ+1, . . . , not bm, not not bm+1, . . . , not not bn (1)74

where a is an atom over σ or ⊥, and each bi, 1 ≤ i ≤ n, is an atom or symbol ⊤ and ⊥ in σ.75

Sometimes we use the abbreviated form of rule (1)76

a ← B (2)77

where B stands for the right hand side of an arrow in (1) and is also called a body. We78

identify rule (1) with the propositional formula79

b1 ∧ . . . ∧ bℓ ∧ ¬bℓ+1 ∧ . . . ∧ ¬bm ∧ ¬¬bm+1 ∧ . . . ∧ ¬¬bn → a (3)80

and B with the propositional formula81

b1 ∧ . . . ∧ bℓ ∧ ¬bℓ+1 ∧ . . . ∧ ¬bm ∧ ¬¬bm+1 ∧ . . . ∧ ¬¬bn. (4)82

1 http://www.minizinc.org/

D. Shen and Y. Lierler 23:3

Note that (i) the order of terms in (4) is immaterial, (ii) not is replaced with classical83

negation (¬), and (iii) comma is replaced with conjunction (∧). When the body is empty it84

corresponds to the empty conjunction or ⊤. Expression b1 ∧ . . . ∧ bℓ in formula (4) is referred85

to as the positive part of the body and the remainder of (4) as the negative part of the body.86

The expression a is the head of the rule. When a is ⊥, we often omit it and say that the87

head is empty. We denote the set of nonempty heads of rules in Π by hd(Π). We call a rule88

whose body is empty a fact. In such cases, we drop the arrow. We sometimes may identify a89

set X of atoms with the set of facts {a. | a ∈ X}.90

We say that a set X of atoms satisfies a rule (1) if X satisfies a formula (3). The reduct91

Π
X of a program Π relative to a set X of atoms is obtained by first removing all rules (1)92

such that X does not satisfy its negative part ¬bℓ+1 ∧ . . . ∧ ¬bm ∧ ¬¬bm+1 ∧ . . . ∧ ¬¬bn and93

replacing all of its remaining rules with a ← b1, . . . , bℓ. A set X of atoms is an answer set, if94

it is a minimal set that satisfies all rules of Π
X [15].95

Ferraris and Lifschitz [6] show that a choice rule {a} ← B can be seen as an abbreviation96

for a rule a ← not not a, B. We adopt this abbreviation here. Choice rules were introduced97

in [20] and are commonly used in answer set programming languages.98

It is customary for a given vocabulary σ, to identify a set X of atoms over σ with (i)99

a complete and consistent set of literals over σ constructed as X ∪ {¬a | a ∈ σ \ X}, and100

respectively with (ii) an assignment function or interpretation that assigns truth value true101

to every atom in X and false to every atom in σ \ X.102

Consider sample programs listed in Figure 1. Program Π1 has two answer sets, namely,103

{a, c} and an empty set. Program Π2 has two answer sets: {a, b, c} and an empty set.104

Π1 Π2

{c}. {c}.

a ← c. a ← c.

a ← b.

b ← a.

Comp(Π1) Comp(Π2)

¬¬c → c. ¬¬c → c.

c → a. c → a.

c → ¬¬c. b → a.

a → c. a → b.

c → ¬¬c.

a → c ∨ b.

Figure 1 Sample programs and their completions.

Completion and Tightness105

Let σ be a vocabulary and Π be a program over σ. For every atom a in Π, by Bodies(Π, a)106

we denote the set composed of the bodies B appearing in the rules of the form a ← B in Π.107

The completion of Π [3], denoted by Comp(Π), is the set of classical formulas that consists of108

the rules (1) in Π (recall that we identify rule (1) with implication (3)) and the implications109

a →
∨

a←B∈Π

B (5)110

for all atoms a in σ. When set Bodies(Π, a) is empty, the implication (5) has the form111

a → ⊥. When a rule (2) is a fact a. , then we identify this rule with the unit clause a.112

For example, completions of programs Π1 and Π2 are presented in Figure 1.113

For the large class of logic programs, called tight, their answer sets coincide with models114

of their completion [5, 4]. This is the case for program Π1 (we illustrate that Π1 is tight,115

shortly). Yet, for non-tight programs, every answer set is a model of completion but not116

CVIT 2016

23:4 SMT-based Answer Set Solver cmodels(diff) (System Description)

necessarily the other way around. For instance, set {a, b} is a model of Comp(Π2), but not117

an answer set of Π2. It turns out that Π2 is not tight.118

Tightness is a syntactic condition on a program that can be verified by means of program’s119

dependency graph. The dependency graph of Π is the directed graph G such that120

the nodes of G are the atoms occurring in Π, and121

for every rule (1) in Π whose head is an atom, G has an edge from atom a to each atom122

b1, . . . , bℓ.123

A program is called tight if its dependency graph is acyclic.124

For example, the dependency graph of program Π1 consists of two nodes, namely, a and125

c, and a single edge from a to c . This graph is acyclic and hence Π1 is tight. On the other126

hand, it is easy to see that the graph of Π2 is not acyclic.127

Logic smt(il)128

We now introduce the notion of Satisfiability Modulo Theory (SMT) [2] for the case when129

Linear Integer Arithmetic is a considered theory. We denote this SMT instance by smt(il).130

Let σ be a vocabulary and χ be a finite set of integer variables. The set of atomic formulas131

of smt(il) consists of propositions in σ and linear constraints of the form132

a1x1 ± · · · ± anxn ⊲⊳ an+1 (6)133

where a1, . . . , an+1 are integers and x1, . . . , xn are variables in χ, ± stands for + or −, and ⊲⊳134

belongs to {<, >, ≤, ≥, =, �=}. When ai = 1 (1 ≤ i ≤ n) we may omit it from the expression.135

The set of smt(il) formulas is the smallest set that contains the atomic formulas and is136

closed under ¬ and conjunction ∧. Other connectives such as ⊤, ⊥, ∨, →, and ↔ can be137

defined in terms of ¬ and ∧ as customary.138

A valuation τ consists of a pair of functions139

τσ : σ → {true, false} and140

τχ : χ → Z, where Z is the set of integers.141

A valuation interprets all smt(il) formulas by defining142

τ(p) = τσ(p) when p ∈ σ,143

τ(a1x1 ± · · · ± anxn ⊲⊳ an+1) = true iff a1τχ(x1) ± · · · ± anτχ(xn) ⊲⊳ an+1 holds,144

and applying the usual rules for the Boolean connectives.145

We say that an smt(il) formula Φ is satisfied by a valuation τ when τ(Φ) = true. A set146

of smt(il) formulas is satisfied by a valuation when every formula in the set is satisfied by147

this valuation. We call a valuation that satisfies an smt(il) formula a model.148

3 Level Rankings149

Niemela [19] characterized answer sets of "normal" logic programs in terms of "level rankings."150

Normal programs consist of rules of the form (1), where n = m and a is an atom. Lierler and151

Susman [13] generalized the concept of level ranking to programs considered in this paper152

that include choice rules and denials (rules with empty head).153

By N we denote the set of natural numbers. For a rule (2), by B+ we denote its positive154

part and sometimes identify it with the set of atoms that occur in it, i.e., {b1, . . . , bl}. For a155

program Π, by At(Π) we denote the set of atoms occurring in it.156

◮ Definition 1. For a logic program Π and a set X of atoms over At(Π), a function lr:157

X → N is a level ranking of X for Π when for each a ∈ X, there is B in Bodies(Π, a) such158

that X satisfies B and for every b ∈ B+ it holds that lr(a) − 1 ≥ lr(b).159

D. Shen and Y. Lierler 23:5

Niemela [19] observed that for a normal logic program, a model X of its completion is also160

its answer set when there is a level ranking of X for the program. Lierler and Susman [13]161

generalized this result to programs with double negation not not:162

◮ Theorem 2 (Theorem 1 [13]). For a program Π and a set X of atoms that is a model of163

its completion Comp(Π), X is an answer set of Π if and only if there is a level ranking of X164

for Π.165

The nature of a level ranking is such that there is an infinite number of level rankings for166

the same answer set of a program. Theorem below illustrates that we can add a single linear167

constraint to limit the number of level rankings by utilizing the size of a program.168

◮ Theorem 3. For a logic program Π and its answer set X, we can always construct a level169

ranking of X for Π such that, for every a ∈ X, lr(a) ≤ |At(Π)|.170

Proof. Since there is an answer set X, by Theorem 2 there exists some level ranking lr′ of171

X for Π. Then, we can always use the level ranking lr′ to construct a level ranking lr of X172

for Π such that, for every a ∈ X, lr(a) ≤ |At(Π)|. Below we describe the method.173

For an integer y, by s(y) we denote the following set of atoms

{a | a ∈ X, lr′(a) = y}.

Let Y be the set of integers so that

{y | a ∈ X, lr′(a) = y}.

Let Y s denote the sorted list [y1, . . . , yk] constructed from all integers of Y , such that174

y1 < y2 < ... < yk. Note that yi > yj if and only if i > j. Obviously, |Y | ≤ |At(Π)|. Thus,175

k ≤ |At(Π)|. For every element yi in Y s and every atom a ∈ s(yi), we assign lr(a) = i.176

Consequently, lr(a) ≤ |At(Π)|.177

Now we prove that lr is indeed a level ranking. According to the definition of lr′, for each178

atom a ∈ X, there exists B in Bodies(Π, a) such that X satisfies B and for every b ∈ B+
179

it holds that lr′(a) − 1 ≥ lr′(b). We show that lr(a) − 1 ≥ lr(b) also holds for each b in this180

B+. Atoms a, b belong to some sets s(yka
) and s(ykb

) respectively, where ka, kb ≤ k. By181

the definition of s(·), yka
= lr′(a) and ykb

= lr′(b). Since lr′(a) > lr′(b), yka
> ykb

. Since182

for any i and j, yi > yj if and only if i > j, we derive that ka > kb. By the construction of183

lr, lr(a) = ka and lr(b) = kb. Consequently, lr(a) − 1 ≥ lr(b) also holds. Thus, lr is a level184

ranking by definition. ◭185

Strong level ranking186

Niemela [19] introduced the concept of a strong level ranking so that only one strong level187

ranking exists for an answer set. It is obviously stricter than the condition captured in188

Theorem 3. Yet, the number of linear constraints in formulating the conditions of strong189

level ranking is substantially greater. We now generalize the concept of a strong level ranking190

to the case of logic programs considered here and then state the formal result on the relation191

of answer sets and strong level rankings.192

◮ Definition 4. For a logic program Π and a set X of atoms over At(Π), a function lr:193

X → N is a strong level ranking of X for Π when lr is a level ranking and for each a ∈ X the194

following conditions hold:195

1. If there is B in Bodies(Π, a) such that X satisfies B and B+ is empty, then lr(a) = 1.196

CVIT 2016

23:6 SMT-based Answer Set Solver cmodels(diff) (System Description)

2. For every B in Bodies(Π, a) such that X satisfies B and B+ is not empty, there is at197

least one b ∈ B+ such that lr(b) + 1 ≥ lr(a).198

◮ Theorem 5. For a program Π and a set X of atoms that is a model of its completion199

Comp(Π), X is an answer set of Π if and only if there is a strong level ranking of X for Π.200

Proof. This proof follows the argument provided for Theorem 2 in [19], but respects the

terminology used here. We start by defining an operator TΠ(I) for a program Π and a set I

over At(Π) ∪ ⊥ as follows:

TΠ(I) = {a | a ← B ∈ Π, I satisfies B}.

For this operator we define

TΠ ↑ 0 = ∅,

and for i= 0,1,2, ...

TΠ ↑ (i + 1) = TΠ(TΠ ↑ i).

Left-to-right: Assume X is an answer set of Π. We can construct a strong level ranking lr201

of X for Π using the TΠX (·) operator. As X is an answer set of Π, we know that X = TΠX ↑ ω202

and for each a ∈ X there is a unique i such that a ∈ TΠX ↑ i, but a /∈ TΠX ↑ (i − 1). Let203

lr(a) = i. We now illustrate that lr is indeed a strong level ranking.204

First, we illustrate that lr is a level ranking. For a ∈ X there is a rule a ← B of the205

form (1) such that a ← b1, . . . , bl ∈ Π
X and TΠX ↑ (i − 1) satisfies b1 ∧ · · · ∧ bl. Consequently,206

for every bj in {b1, . . . , bl}, lr(bj) ≤ i − 1. Thus, lr(a) − 1 ≥ lr(bj). Also, from the way the207

reduct is constructed, it follows that X satisfies body B of rule a ← B.208

Second, we show that Condition 1 of the definition of strong level ranking holds for lr.209

If there is a ← B ∈ Π such that X satisfies B and B+ is empty, then a ← ⊤ is in Π
X . By210

definition of the TΠX (·) operator, a ∈ TΠX ↑ 1. Consequently, lr(a) = 1 holds.211

Third, we demonstrate that Condition 2 holds for lr. For a ∈ X, by the construction of lr212

using the TΠX (·) operator we know that there is a unique i such that lr(a) = i, a ∈ TΠX ↑ i,213

but a /∈ TΠX ↑ (i − 1). Proof by contradiction. Assume that there is a rule a ← B ∈ Π214

such that X satisfies B and B+ is not empty, but for all b ∈ B+, lr(b) + 1 < lr(a) holds.215

Then for all b ∈ B+, lr(b) < lr(a) − 1. Thus, lr(b) < i − 1. It follows that all b ∈ B+
216

belong to TΠX ↑ (i − 2). Hence, by the definition of TΠX (·) operator, a ∈ TΠX ↑ (i − 1),217

which contradicts that a /∈ TΠX ↑ (i − 1). Thus, there is at least one b ∈ B+ such that218

lr(b) + 1 ≥ lr(a).219

Right-to-left: Assume that there is a strong level ranking of X for Π. By the definition,220

it is also a level ranking. Recall that X is a model of Comp(Π). By Theorem 2, X is an221

answer set of Π. ◭222

SCC level ranking223

Niemela [19] illustrated how one can utilize the structure of the dependency graph correspond-224

ing to a normal program to reduce the number of linear constraints in capturing conditions225

similar to these of level ranking. We now generalize these results to logic programs with226

doubly negated atoms and denials.227

Recall that a strongly connected component of a directed graph is a maximal set V of228

nodes such that each pair of nodes in V is reachable from each other. We call a set of atoms229

in a program Π a strongly connected component (SCC) of Π when it is a strongly connected230

component in the dependency graph of Π. The SCC including an atom a is denoted by231

SCC(a). A non-trivial SCC is an SCC that consists of at least two atoms. We denote the232

set of atoms in all non-trivial SCCs of Π by NT (Π).233

D. Shen and Y. Lierler 23:7

◮ Definition 6. For a logic program Π and a set X of atoms over At(Π), a function lr:234

X ∩ NT (Π) → N is a SCC level ranking of X for Π when for each a ∈ X ∩ NT (Π), there235

is B in Bodies(Π, a) such that X satisfies B and for every b ∈ B+ ∩ SCC(a) it holds that236

lr(a) − 1 ≥ lr(b).237

The byproduct of the definition of SCC level rankings is that for tight programs SCC238

level ranking trivially exists since it is a function whose domain is empty. Thus no linear239

constraints are produced.240

◮ Theorem 7. For a program Π and a set X of atoms that is a model of its completion241

Comp(Π), X is an answer set of Π if and only if there is an SCC level ranking of X for Π.242

This is a generalization of Theorem 4 in [19]. Its proof follows the lines of the proof presented243

there with the reference to Theorem 2.244

◮ Theorem 8. For a satisfiable logic program Π and its answer set X, we can always245

construct an SCC level ranking of X for Π such that, for every a ∈ X, lr(a) ≤ |SCC(a)|.246

This theorem can be proved by applying the similar argument as in the proof of Theorem 3247

to each SCC. This result allows us to set minimal upper bounds for lr(a) in order to reduce248

search space.249

Further, Niemela [19] introduces the concept of strong SCC level ranking and states a250

similar result to Theorem 7 for that concept. It is straightforward to generalize these results251

to logic programs considered here.252

4 From Logic Programs to smt(il)253

In this section we present a mapping from a logic program to smt(il) such that the models254

of a constructed smt(il) theory are in one-to-one correspondence with answer sets of the255

program. Thus, any SMT solver capable of processing smt(il) expressions can be used to256

find answer sets of logic programs. The developed mappings generalize the ones presented by257

Niemela [19].258

For a rule a ← B of the form (1), the auxiliary atom βB , equivalent to its body, is defined259

as260

βB ↔ b1 ∧ . . . ∧ bℓ ∧ ¬bℓ+1 ∧ . . . ∧ ¬bm ∧ bm+1 ∧ . . . ∧ bn (7)261

When the body of a rule consist of a single element, no auxiliary atom is introduced (the262

single element itself serves the role of an auxiliary atom).263

Let Π be a program. We say that an atom a is a head atom in Π if it is the head of some264

rule. Any atom a in Π such that265

it is a head atom, or266

it occurs in some positive part of the body of some rule whose head is an atom,267

we associate with an integer variable denoted by lra. We call such variables level ranking268

variables. For each head atom a in Π, we construct an smt(il) formula269

a →
∨

a←B∈Π

(βB ∧
∧

b∈B+

lra − 1 ≥ lrb). (8)270

We call the conjunction of formulas (8) for the head atoms in program Π a level ranking271

formula of Π.272

For example, the level ranking formula of program Π2 in Figure 1 follows273

(

c → ¬¬c
)

∧
(

a → (c ∧ lra − 1 ≥ lrc) ∨ (b ∧ lra − 1 ≥ lrb)
)

∧
(

b → a ∧ lrb − 1 ≥ lra

)

. (9)274

CVIT 2016

23:8 SMT-based Answer Set Solver cmodels(diff) (System Description)

◮ Theorem 9. For a logic program Π and the set F of smt(il) formulas composed of275

Comp(Π) and a level ranking formula of Π276

1. If a set X of atoms is an answer set of Π, then there is a satisfying valuation τ for F277

such that X = {a | a ∈ At(Π) and τ(a) = true}.278

2. If valuation τ is satisfying for F , then the set {a | a ∈ At(Π) and τ(a) = true} is an279

answer set for Π.280

This is a generalization of Theorem 6 in [19]. Its proof follows the lines of the proof presented281

there with the reference to Theorem 2.282

SCC level ranking283

For each atom a in the set NT (Π), we introduce an auxiliary atom exta. If there exists some284

rule a ← B in Π such that B+ ∩ SCC(a) = ∅, then we construct an smt(il) formula285

exta ↔
∨

a←B∈Π and B+∩SCC(a)=∅

βB ; (10)286

otherwise, we construct a formula287

¬exta. (11)288

We also introduce an smt(il) formula:289

a → exta ∨
∨

a←B∈Π and B+∩SCC(a) �=∅

(βB ∧
∧

b∈B+∩SCC(a)

lra − 1 ≥ lrb). (12)290

We call the conjunction of formulas (10), (11) and (12) a SCC level ranking formula of Π.291

For instance, NT (Π1) is empty, so we introduce no SCC level ranking formula for program292

Π1. The SCC level ranking formula of program Π2 follows293

(

exta ↔ c
)

∧ ¬extb ∧
(

a → exta∨(b∧lra−1 ≥ lrb)
)

∧
(

b → extb∨(a∧lrb−1 ≥ lra)
)

. (13)294

The claim of Theorem 9 holds also when we replace a level ranking formula of Π with an295

SCC level ranking formula of Π in its statement.296

Strong level ranking297

For each rule a ← B in program Π we construct an smt(il) formula298

a ∧ βB → lra = 1 when B+ = ∅,

a ∧ βB →
∨

b∈B+

lrb + 1 ≥ lra otherwise. (14)299

We call the conjunction of formulas (8) and (14) a strong level ranking formula of Π.300

For example, the strong level ranking formula of program Π2 is a conjunction of formula (9)

and formula
(

c ∧ ¬¬c → lrc = 1
)

∧
(

a ∧ c → lrc + 1 ≥ lra

)

∧
(

a ∧ b → lrb + 1 ≥ lra

)

∧
(

b ∧ a → lra + 1 ≥ lrb

)

.

We now state a similar result to Theorem 9 that makes an additional claim on one-to-one301

correspondence between the models of a constructed smt(il) formula with the use of strong302

level ranking formula and answer sets of a program.303

D. Shen and Y. Lierler 23:9

◮ Theorem 10. For a logic program Π and the set F of smt(il) formulas composed of304

Comp(Π) and a strong level ranking formula of Π305

1. If a set X of atoms is an answer set of Π, then there is a satisfying valuation τ for F306

such that X = {a | a ∈ At(Π) and τ(a) = true}.307

2. If valuation τ is satisfying for F , then the set {a | a ∈ At(Π) and τ(a) = true} is an308

answer set for Π.309

3. If valuations τ and τ ′ satisfy F and are distinct, then

{a | a ∈ At(Π) and τ(a) = true} �= {a | a ∈ At(Π) and τ ′(a) = true}.

Strong SCC level ranking310

For each atom a ∈ NT (Π), we construct a formula311

exta → lra = 1, (15)312

and for each rule a ← B such that B+ ∩ SCC(a) �= ∅, we introduce a formula313

a ∧ βB →
∨

b∈B+∩SCC(a)

lrb + 1 ≥ lra. (16)314

We call the conjunction of formulas (10), (11), (12), (15) and (16) a strong SCC level ranking315

formulas of Π.316

For instance, NT (Π1) is empty, so we introduce no strong SCC level ranking formula

for program Π1. The strong SCC level ranking formula of program Π2 is a conjunction of

formula (13) and formula

(

exta → lra = 1
)

∧
(

extb → lrb = 1
)

∧
(

a ∧ b → lrb + 1 ≥ lra

)

∧
(

b ∧ a → lra + 1 ≥ lrb

)

.

The claim of Theorem 10 holds also when we replace a strong level ranking formula of Π317

with a strong SCC level ranking formula of Π in its statement.318

5 The cmodels(diff) system319

We are now ready to describe the the cmodels(diff)2 system in detail. It is an extension of320

the cmodels [11] system. Figure 2 illustrates the pipeline architecture of cmodels(diff).321

This system takes an arbitrary (tight or non-tight) logic program in the language supported322

by cmodels as an input. These logic programs may contain such features as choice rules323

and aggregate expressions. The rules with these features are translated by cmodels [11]324

into rules considered here. The cmodels(diff) system translates a logic program into325

smt(il) formulas, after which an SMT solver is called to find models of these formulas (that326

correspond to answer sets).327

2 cmodels(diff) is posted at https://www.unomaha.edu/college-of-information-science-and-
technology/natural-language-processing-and-knowledge-representation-lab/software/cmodels-diff.php

CVIT 2016

D. Shen and Y. Lierler 23:11

6 Experiments358

We benchmark cmodels(diff) on seven problems, to compare its performance with that of359

other ASP solvers, namely cmodels and clasp [7]. All considered benchmarks are non-tight360

programs. The first two benchmarks are Labyrinth and Connected Still Life, which are361

obtained from the Fifth Answer Set Programming Competition3. We note that the original362

encoding of Still Life is an optimization problem, and we turn it into a decision one. The next363

three benchmarks originate from Asparagus4. The selected problems are RandomNonTight,364

Hamiltonian Cycle and Wire Routing. We also consider five instances of Wire Routing365

from RST Construction5. Then, we use Bounded Models as the sixth benchmark6. Our366

last benchmark, Mutual Exclusion, comes from Synthesis Benchmarks7. We rewrite the367

seven encodings to fit the syntax of gringo 4, and call gringo v. 4.5.38 to produce ground368

programs serving as input to all benchmarked systems. All benchmarks are posted at the369

cmodels(diff) website provided at Footnote 2.370

All benchmarks are run on an Ubuntu 16.04.1 LTS (64-bit) system with an Intel core371

i5-4250U processor. The resource allocated for each benchmark is limited to one cpu core372

and 4GB RAM. We set a timeout of 1800 seconds. No problems are solved simultaneously.373

Numbers of instances are shown in parentheses after names of benchmarks. We present374

cumulative time of all instances for each benchmark with numbers of unsolved instances375

due to timeout or insufficient memory inside parentheses. All the steps involved, including376

grounding and transformation, are reported as parts of solving time.377

Five distinct solvers are benchmarked: (1) cmodels(diff) invoking SMT solver cvc4 v.378

1.4; (2) cmodels(diff) invoking SMT solver z3 v. 4.5.1; (3) cmodels(diff) invoking SMT379

solver yices v. 2.5.4; (4) clasp v. 3.1.3; (5) cmodels v. 3.86.1 with Satisfiability solver380

Minisat v. 2.0 beta. We use diff-cvc4, diff-z3, and diff-yices to denote three variants of381

cmodels(diff) used in the experiments.382

Table 1 Experimental Summary

Benchmark diff-cvc4 diff-z3 diff-yices diff-z3 diff-yices cmodels clasp

LIA LIA LIA DL DL

Still Life (26) 731 5423(1) 203 899 194 647 10.8

Ham. Cycl. (50) 15.39 9.78 4.54 6.61 3.57 1.19 0.53

Wire Rout. (10) 1378 562.36 1562 2983(1) 2089(1) 409 12.5

Bound. Mod. (8) 6.08 4.30 2.34 2.93 2.20 1.59 1.38

Labyrinth (30) 19543(8) 27794(12) 20425(10) 22023(9) 21836(9) 16408(7) 5826(2)

Rand. Nont. (20) 27.8 8.65 6.84 7.72 6.47 1.39 3.52

Mut. Excl. (5) 5.26 2.72 1.70 2.28 1.50 0.30 0.13

Table 1 summarizes main results. Under the name of variants of the cmodels(diff)383

systems, we state the configuration used for this solver. Namely, "LIA" and "DL" denote that384

the logic of SMT solvers is set to Linear Integer Arithmetic and Difference Logic, respectively.385

All diff systems in the table are invoked with flag -SCClevelRanking. Systems clasp386

3 https://www.mat.unical.it/aspcomp2014/
4 https://asp.haiti.cs.uni-potsdam.de/
5 http://people.sabanciuniv.edu/~esraerdem/ASP-benchmarks/rst-basic.html
6 http://users.ics.aalto.fi/~kepa/experiments/boundsmodels/
7 http://www2.informatik.uni-stuttgart.de/fmi/szs/research/projects/synthesis/benchmarks030923.html
8 http://potassco.sourceforge.net/

CVIT 2016

23:12 SMT-based Answer Set Solver cmodels(diff) (System Description)

and cmodels are run with default settings. We benchmarked cmodels(diff) with all387

eight possible configurations. Yet, we do not present all of the data here. cmodels(diff)388

invoked with -levelRanking and -levelRankingStrong flags shows worse performance389

than settings -SCClevelRanking and -SCClevelRankingStrong, respectively. That is why390

we avoid presenting the results on configurations -levelRanking and -levelRankingStrong.391

Also, adding constraints for strong level ranking typically slightly degrades the performance so392

we do not present the results for the -SCClevelRankingStrong configuration. We note that393

SMT solver cvc4 implements the same procedure for processing Difference Logic statement394

and Linear Integer Arithmetic statements.395

Observations396

We observe that system clasp almost always displays the best results. This is not surprising397

as this is one of the best native answer set solvers currently available. Its search method is398

attuned towards processing logic programs. Given that SMT solvers are agnostic towards399

specifics of logic programs it is remarkable how good the performance of cmodels(diff) is.400

In some cases it is comparable to that of clasp.401

It is the case that many Satisfiability solvers and answer set solvers share a lot in com-402

mon [12]. For example, answer set solver clasp starts by computing clausified programs403

completion and then later applies to it Unit propagator search technique stemming from404

Satisfiability solving. That is reminiscent of the process that system cmodels(diff) un-405

dertakes. It also computes program’s completion so that Unit propagator of SMT solvers is406

applicable to it.407

We conjecture that the greatest difference between cmodels(diff) and clasp lies in the408

fact that409

in cmodels(diff) integer linear constraints encode the conditions to weed out unwanted410

models of completion; SMT solvers implement search techniques/propagators to target411

these integer linear constraint;412

in clasp the structure of the program is taken into account by the so called Unfounded413

propagator for this task.414

In case of Still Life, Hamiltonian Cycle, Wire Routing, and Bounded Models benchmarks415

(marked in bold in Table 1) there is one more substantial difference. These encodings contain416

aggregates. clasp implements specialized search techniques to benefit from the compact417

representations that aggregates provide. System cmodels(diff) translates aggregates418

away, which often results in a bigger problem encoding that the system has to deal with.419

System cmodels also translates aggregates away. This is why we underline the solving420

times of cmodels, as it is insightful to compare the performance of cmodels to that421

of cmodels(diff) alone. Indeed, cmodels(diff) utilizes the routines of cmodels for422

eliminating aggregates and computing the completion of the resulting program. Thus, the423

only difference between these systems is in how they eliminate models of completion that are424

not answer sets. System cmodels(diff) utilizes level rankings for that. System cmodels425

implements a propagator in spirit of Unfounded propagator of clasp, but the propagator of426

cmodels is only used when a model of completion is found; clasp utilizes this propagator427

as frequently as it utilizes Unit propagator [14, Section 5]. We believe that when we observe428

a big difference in performance of cmodels(diff) and clasp, this attributes to the benefits429

gained by the utilization of specialized Unfounded and "aggregate" propagators by clasp.430

Yet, level ranking formulas seem to provide a viable alternative to Unfounded propagator431

and open a door for utilization of SMT solvers for dealing with non-tight programs. This432

gives us grounds to believe that the future work on extending constraint answer set solver433

D. Shen and Y. Lierler 23:13

ezsmt to accept non-tight programs is a viable direction.434

As we noted earlier SCC level rankings yield best performance among the four variants435

of level rankings. Furthermore, Table 1 illustrates the following. The logic of SMT solvers436

does not make an essential difference. Overall, cmodels(diff)-yices with Linear Integer437

Arithmetic logic performs best within the presented cmodels(diff) configurations. Obvi-438

ously, utilizing better SMT solvers can improve the performance of cmodels(diff) in the439

future. Notably, this does not require modifications to cmodels(diff), since smt-lib used440

by cmodels(diff) is a standard input language of SMT solvers.441

7 Conclusion442

In this paper we presents the cmodels(diff) system that takes a logic program and translates443

it into an smt-lib formula which is then solved by an SMT solver to find answer sets of the444

given program. Our work parallels the efforts of an earlier answer set solver lp2diff [10]. The445

cmodels(diff) system allows richer syntax such as choice rules and aggregate expressions,446

and enables computation of multiple solutions. (In this work we extended the theory of447

level rankings to the case of programs with choice rules and denials.) We note that the448

lp2normal9 tool can be used as a preprocessor for lp2diff in order to enable this system449

to process logic programs with richer syntax. In the future, we will compare performance of450

cmodels(diff) and lp2diff experimentally. Yet, we do not expect to see great difference451

in their performance when the same SMT solver is used as a backend. Also, we would like to452

conduct more extensive experimental analysis to support our conjecture on the benefits of453

specialized "aggregate" propagator and Unfounded propagator employed by clasp.454

The technique implemented by cmodels(diff) for enumerating multiple answer sets of455

a program is basic. In the future we would like to adopt the nontrivial methods for model456

enumeration discussed in [8] to our settings. The theory developed in this paper provides457

a foundation to extend the recent constraint answer set programming solver ezsmt [21] to458

accept non-tight constraint answer set programs. The contributions of this work also open a459

door to the development of a novel constraint-based method in processing logic programs460

by producing intermediate output in minizinc [18] in place of smt-lib. We believe our461

work will boost the cross-fertilization between the three areas: SMT, constraint answer set462

programming, and constraint programming.463

Acknowledgements464

We are grateful to Cesare Tinelli for valuable discussions on the subject of the paper and465

for the insights on the cvc4 system. We are also thankful to Ben Susman. Da Shen was466

supported by the 2017-FUSE (Fund for Undergraduate Scholarly Experiences) Grant from467

the University of Nebraska at Omaha. Yuliya Lierler was partially supported by the NSF468

1707371 grant.469

References470

1 Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Standard: Version 2.5.471

Technical report, Department of Computer Science, The University of Iowa, 2015.472

2 Clark Barrett and Cesare Tinelli. Satisfiability modulo theories. In Edmund Clarke, Tom473

Henzinger, and Helmut Veith, editors, Handbook of Model Checking. Springer, 2014.474

9 https://research.ics.aalto.fi/software/asp/lp2normal/

CVIT 2016

23:14 SMT-based Answer Set Solver cmodels(diff) (System Description)

3 Keith Clark. Negation as failure. In Herve Gallaire and Jack Minker, editors, Logic and475

Data Bases, pages 293–322. Plenum Press, New York, 1978.476

4 Esra Erdem and Vladimir Lifschitz. Fages’ theorem for programs with nested expressions.477

In Proceedings of International Conference on Logic Programming (ICLP), pages 242–254,478

2001.479

5 François Fages. Consistency of Clark’s completion and existence of stable models. Journal480

of Methods of Logic in Computer Science, 1:51–60, 1994.481

6 Paolo Ferraris and Vladimir Lifschitz. Weight constraints as nested expressions. Theory482

and Practice of Logic Programming, 5:45–74, 2005.483

7 Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Javier Romero, and Torsten484

Schaub. Progress in clasp series 3. In Proceedings of the Thirteenth International Confer-485

ence on Logic Programming and Nonmonotonic Reasoning (LPNMR’15), 2015.486

8 Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten Schaub. Conflict-487

driven answer set enumeration. In Proceedings of the 9th International Conference on488

Logic Programming and Nonmonotonic Reasoning, LPNMR’07, pages 136–148, Berlin, Hei-489

delberg, 2007. Springer-Verlag. URL: http://dl.acm.org/citation.cfm?id=1758481.1758496.490

9 Carla P. Gomes, Henry Kautz, Ashish Sabharwal, and Bart Selman. Satisfiability solvers. In491

Frank van Harmelen, Vladimir Lifschitz, and Bruce Porter, editors, Handbook of Knowledge492

Representation, pages 89–134. Elsevier, 2008.493

10 Tomi Janhunen, Ilkka Niemelä, and Mark Sevalnev. Computing stable models via re-494

ductions to difference logic. In Logic Programming and Nonmonotonic Reasoning, pages495

142–154. Springer Berlin Heidelberg, 2009.496

11 Yuliya Lierler. SAT-based Answer Set Programming. PhD thesis, University of Texas at497

Austin, 2010.498

12 Yuliya Lierler. What is answer set programming to propositional satisfiability. Con-499

straints, pages 1–31, 2016. URL: http://dx.doi.org/10.1007/s10601-016-9257-7, doi:10.500

1007/s10601-016-9257-7.501

13 Yuliya Lierler and Benjamin Susman. On relation between constraint answer set pro-502

gramming and satisfiability modulo theories. Theory and Practice of Logic Programming,503

17(4):559–590, 2017.504

14 Yuliya Lierler and Miroslaw Truszczyński. Transition systems for model generators — a505

unifying approach. Theory and Practice of Logic Programming, 27th Int’l. Conference on506

Logic Programming (ICLP) Special Issue, 11(4-5):629–646, 2011.507

15 Vladimir Lifschitz, Lappoon R. Tang, and Hudson Turner. Nested expressions in logic508

programs. Annals of Mathematics and Artificial Intelligence, 25:369–389, 1999.509

16 Fangzhen Lin and Yuting Zhao. Assat: Computing answer sets of a logic program by sat510

solvers. Artificial Intelligence, 157:115–137, 2004.511

17 Kim Marriott and Peter J. Stuckey. Programming with Constraints: An Introduction. MIT512

Press, 1998.513

18 N. Nethercote, P.J. Stuckey, R. Becket, S. Brand, G.J. Duck, , and G. Tack. Minizinc:514

Towards a standard cp modelling language. In Proceedings of the 13th International Con-515

ference on Principles and Practice of Constraint Programming, page 529–543, 2007.516

19 Ilkka Niemela. Stable models and difference logic. Annals of Mathematics and Artificial517

Intelligence, 53:313–329, 2008.518

20 Ilkka Niemelä and Patrik Simons. Extending the Smodels system with cardinality and519

weight constraints. In Jack Minker, editor, Logic-Based Artificial Intelligence, pages 491–520

521. Kluwer, 2000.521

21 Benjamin Susman and Yuliya Lierler. SMT-Based Constraint Answer Set Solver EZSMT522

(System Description). In Technical Communications of the 32nd International Conference523

on Logic Programming (ICLP 2016), volume 52, pages 1:1–1:15, 2016.524

