Strong Equivalence and Program’s Structure in
Arguing Essential Equivalence between
First-Order Logic Programs

Yuliya Lierler

Abstract. Answer set programming is a prominent declarative programming
paradigm used in formulating combinatorial search problems and implementing
distinct knowledge representation formalisms. It is common that several related
and yet substantially different answer set programs exist for a given problem.
Sometimes these encodings may display significantly different performance. Un-
covering precise formal links between these programs is often important and yet
far from trivial. This paper claims the correctness of a number of interesting pro-
gram rewritings. Notably, they assume programs with variables and such impor-
tant language features as choice, disjunction, and aggregates.

Introduction

Answer set programming (ASP) is a prominent knowledge representation paradigm
with roots in logic programming [2]. It is frequently used for addressing combinatorial
search problems. It has also been used to provide implementations and/or translational
semantics to other knowledge representation formalisms such as action languages in-
cluding language «7.% [13, Section 8]. In ASP, when a software engineer tackles a
problem domain it is a common practice to first develop a/some solution/encoding to a
problem and then rewrite this solution/encoding iteratively using, for example, a projec-
tion technique to gain a better performing encoding [3]. These common processes bring
a question to light: What are the formal means to argue the correctness of renewed for-
mulations of the original encoding to a problem or, in other words, to argue that these
distinct formulations are essentially the same — in a sense that they capture solutions
to the same problem.

It has been long recognized that studying various notions of equivalence between
programs under the answer set semantics is of crucial importance. Researchers pro-
posed and studied strong equivalence [18,19], uniform equivalence [4], relativized strong
and uniform equivalences [23]. Also, equivalences relative to specified signatures [6,15]
were considered. In most of the cases the programs considered for studying the distinct



forms of equivalence are propositional. Works [5,7,19,22,15] are exceptions. These au-
thors consider programs with variables (or, first-order programs). Yet, it is first-order
programs that ASP knowledge engineers develop. Thus, theories on equivalence be-
tween programs with variables are especially important as they can lead to more direct
arguments about properties of programs used in practice. On the one hand, this work
can be seen as a continuation of work by Eiter et al. [5], were we consider common
program rewritings using more complex dialect of logic programs. On the other hand,
it grounds the concept of program’s synonymity studied by Pearce and Valverde [22]
in a number of practical examples. Namely, we illustrate how formal results on strong
equivalence developed earlier and in this work help us to construct precise claims about
programs in practice.

In this paper, we systematically study some common rewritings on first-order pro-
grams utilized by ASP practitioners. As a running and motivating example that grounds
general theoretical presentation of this work into specific context, we consider two for-
malizations of a planning module given in [13, Section 9]. Namely,

1. a Plan-choice formalization that utilizes choice rules and aggregate expressions,

2. a Plan-disj formalization that utilizes disjunctive rules.
Such a planning module is meant to be augmented with an ASP representation of a dy-
namic system description expressed in action language <7 % . In [13], Gelfond and Kahl
formally state in Proposition 9.1.1 that the answer sets of program Plan-disj augmented
with a given system description encode all the “histories/plans” of a specified length
in the transition system captured by the system description. Although both Plan-choice
and Plan-disj programs intuitively encode the same knowledge the exact connection
between them is not immediate. In fact, these programs (i) do not share the same sig-
nature; (ii) use distinct syntactic constructs such as choice, disjunction, aggregates in
the specification of a problem. Here, we establish a one-to-one correspondence between
the answer sets of these programs on their properties. Thus, the aforementioned formal
claim about Plan-disj translates into the same claim for Plan-choice. It is due to remark
that although in [13], Gelfond and Kahl use the word “module” when formalizing a
planning domain they utilize this term only informally to refer to a collection of rules
responsible for formalizing “planning”.

In this paper we use a dialect of ASP language called RASPL-1 [17]. Notably, this
language combines choice, aggregate, and disjunction constructs. Its semantics is given
in terms of the SM operator, which exemplifies the approach to the semantics of first-
order programs that bypasses grounding. Relying on SM-based semantics allows us to
refer to earlier work that study the formal properties of first-order programs [9,10] us-
ing this operator. We state a sequence of formal results on programs rewritings and/or
programs’ properties. Some discussed rewritings are well known and frequently used
in practice. Often, their correctness is an immediate consequence of well known prop-
erties about logic programs (e.g., relation between intuitionistically provable first-order
formulas and strongly equivalent programs viewed as such formulas). Other discussed
rewritings are far less straightforward and require elaborations on previous theoretical
findings about the operator SM. It is well known that propositional head-cycle-free dis-
junctive programs [1] can be rewritten to nondisjunctive programs by means of simple
syntactic transformation. Here we not only generalize this result to the case of first-
order programs, but also illustrate that at times we can remove disjunction from parts



of a program even though the program is not head-cycle-free. This result is relevant to

local shifting and component-wise shifting discussed in [5] and [16] respectively. We

also generalize so called Completion Lemma and Lemma on Explicit Definitions stated
in [8,11] for the case of propositional theories and propositional logic programs. These
generalizations are applicable to first-order programs.

Summary. We view this paper as an important step towards bringing theories about

program’s equivalence to providing practical solutions in the realm of ASP as it is used

by knowledge engineers. A portfolio of formal results on program rewritings stated in
this paper can serve as a solid theoretical basis for

— a software system that may automatically produce new variants of logic programs
(some of these encodings will often exhibit better performance) by utilizing studied
rewritings;

— aproof technique for arguing the correctness of a logic program. This proof technique
assumes the existence of a “gold standard” logic program formalizing a problem at
hand, in a sense that this gold standard is trusted to produce correct results. A proper
portfolio of known program rewritings and their properties equips ASP practitioners
with powerful tools to argue that another encoding is essentially the same to the gold
standard.

Paper Outline. We start this paper by presenting the Plan-choice and Plan-disj pro-

grams. We then introduce a logic program language called RASPL-1 [17]. The seman-

tics of this language is given in terms of the SM operator. We then proceed to the
statement of a sequence of formal results on program’s rewritings.

Running Example and Observations

This section presents two ASP formalizations of a domain independent planning mod-
ule given in [13, Section 9]. Such planning module is meant to be augmented with a
logic program encoding a system description expressed in action language <7 % that
represents a domain of interest (in Section 8 of their book [13], Gelfond and Kahl
present a sample Blocks World domain representation). Two formalizations of a plan-
ning module are stated here almost verbatim. Predicate names o and sthHpd intuitively
stand for occurs and something_happend, respectively. We eliminate classical negation
symbol by (i) utilizing auxiliary predicates non_o in place of —o; and (ii) introducing
rule < o(A,I),non_o(A,I). This is a standard practice and ASP systems perform the
same procedure when processing classical negation symbol — occurring in programs
(in other words, symbol — is treated as a syntactic sugar).
The first formalization called Plan-choice follows:

success < goal(I), step(I).

<— not success.

«— o(A,I),non_o(A,I) (1)
non_o(A,I) < action(A), step(I), not o(A,I) (2)
{0(A,I)} + action(A), SG(I) 3)
— 2 <#tcount{A:0(A,I)}, SG(I). 4)

+ not 1 < #count{A : 0(A,I)}, SG(I) 3



where

SG(I) abbreviates step(I), not goal(I), I # n,
where n is some integer specifying a limit on a length of an allowed plan. One more
remark is in order. In [13], Gelfond and Kahl list only a single rule

1{o(A,I) : action(A)}1 «+ SG(I)

in place of rules (3-5). Note that this single rule is an abbreviation for rules (3-5) [12].
The second formalization that we call a Plan-disj encoding is obtained from Plan-
choice by replacing rules (3-5) with the following:

o(A,I) | non-o(A,I) < action(A), SG(I) (6)
+—o(A,I), o(A',I), action(A), action(A’), A # A’ @)
sthHpd(I) < o(A,I) (8)
+ not sthHpd(I), SG(I). )

It is important to note several facts about the considered planning module encod-
ings. These planning modules are meant to be used with logic programs that capture (i) a
domain of interest originally stated as a system description in the action language <7 .Z;
(i1) a specification of an initial configuration; (iii) a specification of a goal configura-
tion. The process of encoding (i-iii) as a logic program, which we call a Plan-instance
encoding, follows a strict procedure. As a consequence, some important properties hold
about any Plan-instance. To state these it is convenient to recall a notion of a simple
rule and define a “terminal” predicate.

A signature is a set of function and predicate symbols/constants. A function sym-
bol of arity O is an object constant. A term is an object constant, an object variable,
or an expression of the form f(¢1,...,4,), where f is a function symbol of arity m
and each f; is a term. An afom is an expression of the form p(ty,...,t,) or t; = ta,
where p is an n-ary predicate symbol and each ¢; is a term. A simple body has the form
ai,...,am, NOt Apm1,..., NOt a, where a; is an atom and n is possible 0. Expression
ai,...,a, forms positive part of a body. A simple rule has a form h; | --- | hy < Body
or {h } < Body where h; is an atom and Body is a simple body. We now state a recur-
sive definition of a terminal predicate with respect to a program. Let i be a nonnegative
integer. A predicate that occurs only in rules whose body is empty is called 0-terminal.
We call a predicate i + 1-terminal when it occurs only in the heads of simple rules (left
hand side of an arrow), furthermore (i) in these rules all predicates occurring in their
positive parts of the bodies must be at most i-terminal and (ii) at least one of these rules
is such that some predicate occurring in its positive part of the body is i-ferminal . We
call any x-terminal predicate terminal. For example, in program

block(b0). block(b1).
loc(X) < block(X).  loc(table).

block is a O-terminal predicate, loc is a 1-terminal predicate; and both predicates are
terminal.

We are now ready to state important Facts about any possible Plan-instance and,
consequently, about the considered planning modules



—_

Predicate o never occurs in the heads of rules in Plan-instance.
2. Predicates action and step are terminal in Plan-instance as well as in Plan-instance
augmented by either Plan-choice or Plan-disj.
3. By Facts 1 and 2, predicate o is terminal in Plan-instance augmented by either
Plan-choice or Plan-disj.
4. Predicate sthHpd never occurs in the heads of the rules in Plan-instance.
In the remainder of the paper we will ground considered theoretical results by illustrat-
ing how they formally support the following Observations:
1. In the presence of rule (2) it is safe to add a rule

non_o(A,I) < not o(A,I), action(A), SG(I) (10)

into an arbitrary program. By “safe to add/replace” we understand that the resulting
program has the same answer sets as the original one.
2. Itis safe to replace rule (4) with rule

—o(A,D), o(A'.I), SG(I), A#A (11)

within an arbitrary program.
3. In the presence of rules (1) and (2), it is safe to replace rule (3) with rule

0(A,I) < not non_o(A,I), action(A), SG(I) (12)

within an arbitrary program.

4. Given the syntactic features of the Plan-choice encoding and any Plan-instance en-
coding, it is safe to replace rule (3) with rule (6). The argument utilizes Observations 1
and 3. Fact 4 forms an essential syntactic feature.

5. Given the syntactic features of the Plan-choice encoding and any Plan-instance
encoding, it is safe to replace rule (4) with rule (7). The argument utilizes Observa-
tion 2, i.e., it is safe to replace rule (4) with rule (11). An essential syntactic feature
relies on Fact 1, and the facts that (i) rule (3) is the only one in Plan-choice, where
predicate o occurs in the head; and (ii) rule (7) differs from (11) only in atoms that
are part of the body of (3).

6. By Fact 4 and the fact that sthHpd does not occur in any other rule but (9) in Plan-
disj, the answer sets of the program obtained by replacing rule (5) with rules (8)
and (9) are in one-to-one correspondence with the answer sets of the program Plan-
disj extended with Plan-instance.

Essential Equivalence Between Two Planning Modules: These Observations are suf-
ficient to claim that the answer sets of the Plan-choice and Plan-disj programs (extended
with any Plan-instance) are in one-to-one correspondence. We can capture the sim-
ple relation between the answer sets of these programs by observing that dropping the
atoms whose predicate symbol is sthHpd from an answer set of the Plan-disj program
results in an answer set of the Plan-choice program.

Preliminaries: RASPL-1 Logic Programs, Operator SM, Strong
Equivalence

We now review a logic programming language RASPL-1 [17]. This language is suffi-
cient to capture choice, aggregate, and disjunction constructs (as used in Plan-choice



and Plan-disj). There are distinct and not entirely compatible semantics for aggregate
expressions in the literature. We refer the interested reader to the discussion by Lee et
al. in [17] on the roots of semantics of aggregates considered in RASPL-1.

An aggregate expression is an expression of the form

b <#count{x:Ly,...,L} (13)

(k > 1), where b is a positive integer (bound), X is a list of variables (possibly empty),
and each L; is an atom possibly preceded by not. This expression states that there are at
least b values of x such that conditions Li,...,L; hold.

A body is an expression of the form

€l,...,em, N0t eyi1,...,N0t ey, (14)

(n > m > 0) where each e; is an aggregate expression or an atom. A rule is an expression
of either of the forms

aj |-+ | a; < Body (15)
{a1} + Body (16)

(I > 0) where each g; is an atom, and Body is the body in the form (14). When [ = 0,
we identify the head of (15) with symbol | and call such a rule a denial. When [ =1,
we call rule (15) a defining rule. We call rule (16) a choice rule. A (logic) program is a
set of rules. An atom of the form not t; =, is abbreviated by t; # 1.

It is easy to see that rules in the Plan-choice and Plan-disj encodings are in the
RASPL-1 language.

Operator SM

Typically, the semantics of logic programs with variables is given by stating that these
rules are an abbreviation for a possibly infinite set of propositional rules. Then the se-
mantics of propositional programs is considered. The SM operator introduced by Fer-
raris et al. in [9] gives a definition for the semantics of first-order programs bypassing
grounding. It is an operator that takes a first-order sentence F and a tuple p of predicate
symbols and produces the second order sentence that we denote by SM [F].

We now review the operator SM. The symbols L, A,V,—, V, and 3 are viewed
as primitives. The formulas —=F and T are abbreviations for F — 1 and L — L, re-
spectively. If p and g are predicate symbols of arity n then p < g is an abbreviation
for the formula Vx(p(x) — ¢(x)), where x is a tuple of variables of length n. If p and
q are tuples p1,...,p, and qy,...,q, of predicate symbols then p < q is an abbrevia-
tion for the conjunction (p; < g1)A---A(pn < ¢n), and p < q is an abbreviation for
(p < q) A—(q < p). We apply the same notation to tuples of predicate variables in
second-order logic formulas. If p is a tuple of predicate symbols py,...,p, (not in-
cluding equality), and F is a first-order sentence then SMy[F] denotes the second-order
sentence

FA—=3u(u<p)AF*(u),

where u is a tuple of distinct predicate variables uy,...,u,, and F*(u) is defined recur-
sively:



i(t)* is u;(t) for any tuple t of terms;

- F*is F for any atomic formula F that does not contain members of p;'

(FAG)" is F* AG*,

(FVG)"is F*V G*,

(F=G)*is (F* = G )AN(F = G);

(VxF)* is VxF*,

(IxF)* is IxF*.

Note that if p is the empty tuple then SM, [F] is equivalent to F. For intuitions regarding
the definition of the SM operator we direct the reader to [9, Sections 2.3, 2.4].

By o(F) we denote the set of all function and predicate constants occurring in
first-order formula F (not including equality). We will call this the signature of F. An
interpretation / over o(F) is a p-stable model of F if it satisfies SMp[F|, where p is a
tuple of predicates from o (F). We note that a p-stable model of F is also a model of F.

By nt(F) we denote the set of all predicate constants (excluding equality) occurring
in a formula F. Let F be a first-order sentence that contains at least one object con-
stant. We call an Herbrand interpretation of o(F) that is a 7(F')-stable model of F' an
answer set.2 Theorem 1 from [9] illustrates in which sense this definition can be seen
as a generalization of a classical definition of an answer set (via grounding and reduct)
for typical logic programs whose syntax is more restricted than syntax of programs
considered here.

|
=

Semantics of Logic Programs

From this point on, we view logic program rules as alternative notation for particular
types of first-order sentences. We now define a procedure that turns every aggregate,
every rule, and every program into a formula of first-order logic, called its FOL repre-
sentation. First, we identify the logical connectives A, V, and — with their counterparts
used in logic programs, namely, the comma, the disjunction symbol |, and connective
not. This allows us to treat Ly,...,L; in (13) as a conjunction of literals. The FOL
representation of an aggregate expressions of the form b < #count{x : F(x)} follows

E|x1~~-xb[ A FOOA A ﬁ(xi:xj)]7 a7
1<i<b 1<i< j<b
where x! - - -xP are lists of new variables of the same length as x. The FOL representa-
tions of logic rules of the form (15) and (16) are formulas

V(Body —a;V---Va;) and V(=-a; ABody — ay),

where each aggregate expression in Body is replaced by its FOL representation. Sym-
bol V denotes universal closure.

! This includes equality statements and the formula L.

2 An Herbrand interpretation of a signature ¢ (containing at least one object constant) is such
that its universe is the set of all ground terms of ¢, and every ground term represents itself. An
Herbrand interpretation can be identified with the set of ground atoms (not containing equality)
to which it assigns the value true.



For example, expression SG(I) stands for formula step(I) A —goal(I) A—I = n and
rules (3) and (5) in the Plan-choice encoding have the FOL representation:

V(=—0(A,I) ASG(I) Aaction(A) — o(A,1)) (18)
VI(—3A[0(A,1)] ASG(I) — L) (19)
The FOL representation of rule (4) is the universal closure of the following implication
(3AA" (o(A, 1) No(A', ) N\=A =A") ASG(I)) — L.

We define a concept of an answer set for logic programs that contain at least one
object constant. This is inessential restriction as typical logic programs without object
constants are in a sense trivial. In such programs, whose semantics is given via ground-
ing, rules with variables are eliminated during grounding. Let IT be a logic program
with at least one object constant. (In the sequel we often omit expression “with at least
one object constant”.) By IT we denote its FOL representation. (Similarly, for a body
Body or arule R, by @y or R we denote their FOL representations.) An answer set of
IT is an answer set of its FOL LepresentationA I1. In other words, _an answer set of Il is
an Herbrand interpretation of IT that is a (Il )-stable model of IT, i.e., a model of

SMn(ﬁ) [IT]. (20)
Sometimes, it is convenient to identify a logic program II with its semantic counter-
part (20) so that formal results stated in terms of SM operator immediately translate
into the results for logic programs.

Review: Strong Equivalence

We restate the definition of strong equivalence given in [9] and recall some of its prop-
erties. First-order formulas F and G are strongly equivalent if for any formula H, any
occurrence of F in H, and any tuple p of distinct predicate constants, SMp[H] is equiv-
alent to SMp[H'], where H’ is obtained from H by replacing F by G. Trivially, any
strongly equivalent formulas are such that their stable models coincide (relative to any
tuple of predicate constants). In [19], Ferraris et al. show that first-order formulas F
and G are strongly equivalent if they are equivalent in SQHT ™ logic — an intermediate
logic between classical and intuitionistic logics. We recall that every formula provable
in the natural deduction system without the law of the excluded middle (F V —F) is a
theorem in intuitionistic logic. Also, every formula provable using natural deduction,
where the axiom of the law of the excluded middle (F V —F) is replaced by the weak
law of the excluded middle (—F V ——F), is a theorem of SQHT™=.

The definition of strong equivalence between first-order formulas paves the way to
a definition of strong equivalence for logic programs. A logic program IT; is strongly
equivalent to logic program I'l, when for any program I1,

SMn( o) [ITUII,] is equivalent to SME( HUTh) [ITUIL).

It immediately follows that logic programs ITj and I, are strongly equivalent if first-
order formulas I/T\l and I/T\z are equivalent in logic of SQHT ™.

We now review an important result about properties of denials.



Theorem 1 (Theorem 3 [9]). For any first-order formulas F and G and arbitrary tu-
ple p of predicate constants, SMp[F N\ —G] is equivalent to SMy[F| A —G.

As a consequence, p-stable models of F A =G can be characterized as the p-stable
models of F that satisfy first-order logic formula —~G. Consider any denial <— Body. Its
FOL representation has the form Q(Body — 1) that is intuitionistically equivalent to
formula —éBody. Thus, Theorem 1 tells us that given any denial of a program it is safe
to compute answer sets of a program without this denial and a posteriori verify that the
FOL representation of a denial is satisfied.

Corollary 1. Tio denials are strongly equivalent if their FOL representations are clas-
sically equivalent.

This corollary is also an immediate consequence of the Replacement Theorem for intu-
itionistic logic [21, Section 13.1] stated below.

Replacement Theorem. If F is a first-order formula containing a subformula G
and F' is the result of replacing that subformula by G' then V(G < G') intuitionisti-
cally implies F < F'.

Rewritings
Rewritings via Pure Strong Equivalence

Strong equivalence can be used to argue the correctness of some program rewritings
practiced by ASP software engineers. Here we state several theorems about strong
equivalence between programs. Observations 1, 2, and 3 are consequences of these
results.

We say that body Body subsumes body Body' when Body' has the form Body, Body"
(note that an order of expressions in a body is immaterial) . We say that a rule R sub-
sumes rule R’ when heads of R and R’ coincide while body of R subsumes body of R’.
For example, rule (2) subsumes rule (10).

Subsumption Rewriting: Let R’ denote a set of rules subsumed by rule R. It is
easy to see that formulas Rand RAR are intuitionistically equivalent. Thus, program
composed of rule R and program {R} UR’ are strongly equivalent. It immediately fol-
lows that Observation 1 holds. Indeed, rule (2) is strongly equivalent to the set of rules
composed of itself and (10). Indeed, rule (2) subsumes rule (10).

Removing Aggregates: The following theorem is an immediate consequence of the
Replacement Theorem for intuitionistic logic.

Proposition 1. Program
H + b <#count{x:F(x)}, G (21)
is strongly equivalent to program

H« , Fx) , xX#x, G (22)
1<i<b 1<i<j<b

where G and H have no occurrences of variables in x! (1<i<b).



10

Proposition 1 shows us that Observation 2 is a special case of a more general fact.
Indeed, take rules (4) and (11) to be the instances of rules (21) and (22) respectively.

We note that the Replacement Theorem for intuitionistic logic also allows us to
immediately conclude the following.

Corollary 2. Program H < G is strongly equivalent to program H < G’ when
V(G <+ G).

Proposition 1 is a special case of this corollary. We could use Corollary 2 to illustrate
the correctness of Observation 2. Yet, the utility of Proposition 1 is that it can guide
syntactic analysis of a program with a goal of equivalent rewriting (for instance, for
the sake of performance or clarity). In contrast, Corollary 2 equips us with a general
semantic condition that can be utilized in proving the syntactic properties of programs
in spirit of Proposition 1.

Replacing Choice Rule by Defining Rule: Theorem 2 shows us that Observation 3
is an instance of a more general fact.

Theorem 2. Program

+ p(x), q(x) (23)
q(x) < not p(x),F (24)
(P} A, B (25)

is strongly equivalent to program composed of rules (23), (24) and rule
p(x) < not q(x), Fi, I (26)

Indeed, we can derive the former program (its FOL representation) from the latter in-
tuitionistically; and we can derive the later from the former in logic SQHT™. For the
second direction, De Morgan’s law —(F A G) — —F V =G (provable in logic SQHT=,
but not valid intuitionistically) is essential.

To illustrate the correctness of Observation 3 by Theorem 2: (i) take rules (1), (2),
(3) be the instances of rules (23), (24), (25) respectively, and (ii) rule (12) be the instance
of rule (26).

Useful Rewritings using Structure

In this section, we study rewritings on a program that rely on its structure. We review
the concept of a dependency graph used in posing structural conditions on rewritings.

Review: Predicate Dependency Graph We present the concept of the predicate de-
pendency graph of a formula following the lines of [10]. An occurrence of a predicate
constant, or any other subexpression, in a formula is called positive if the number of
implications containing that occurrence in the antecedent is even, and strictly positive
if that number is 0. We say that an occurrence of a predicate constant is negated if it
belongs to a subformula of the form —F (an abbreviation for F — 1), and nonnegated
otherwise.



11

For instance, in formula (18), predicate constant o has a strictly positive occurrence
in the consequence of the implication; whereas the same symbol o has a negated positive
occurrence in the antecedent

—=0(A,I) Astep(I) A —goal(I) AN—I = n Aaction(A) 27

of (18). Predicate symbol action has a strictly positive non-negated occurrence in (27).
The occurrence of predicate symbol goal is negated and not positive in (27). The oc-
currence of predicate symbol goal is negated and positive in (18).

An FOL rule of a first-order formula F is a strictly positive occurrence of an impli-
cation in F'. For instance, in a conjunction of two formulas (18) and (19) the FOL rules
are as follows

—=0(A,I) ASG(I) Naction(A) — o(A,I) (28)
~3A[o(A, D] ASG(I) — L. (29)

For any first-order formula F, the (predicate) dependency graph of F relative to

the tuple p of predicate symbols (excluding =) is the directed graph that (i) has all
predicates in p as its vertices, and (ii) has an edge from p to g if for some FOL rule
G—HofF
— p has a strictly positive occurrence in H, and
— g has a positive nonnegated occurrence in G.
We denote such a graph by DGy, [F]. For instance, the dependence graph of a conjunction
of formulas (18) and (19) relative to all its predicate symbols contains four vertices,
namely, o, action, step, and goal, and two edges: one from vertex o to vertex action
and the other one from o to step. Indeed, consider the only two FOL rules (28) and (29)
stemming from this conjunction. Predicate constant o has a strictly positive occurrence
in the consequent o(A,I) of the implication (28), whereas action and step are the only
predicate constants in the antecedent =—0(A,I) A SG(I) A action(A) of (28) that have
positive and nonnegated occurrence in this antecedent. It is easy to see that a FOL rule
of the form G — L, e.g., FOL rule (29), does not contribute edges to any dependency
graph.

For any logic program IT, the dependency graph of I, denoted DGIII], is a directed
graph of I relative to the predicates occurring in I1. For example, let IT be composed
of two rules (3) and (5). The conjunction of formulas (18) and (19) forms its FOL
representation.

Shifting We call a logic program disjunctive if all its rules have the form (15), where
Body only contains atoms possibly preceded by not. We say that a disjunctive program
is normal when it does not contain disjunction connective |. In [14], Gelfond et al. de-
fined a mapping from a propositional disjunctive program IT to a propositional normal
program by replacing each rule (15) with / > 1 in II by / new rules

a; < Body, not ay,...not a;_1,not aj;1,...not a;.

They showed that every answer set of the constructed program is also an answer set
of I1. Although the converse does not hold in general, in [1] Ben-Eliyahu and Dechter



12

showed that the converse holds if IT is “head-cycle-free”. In [20], Linke et al. illus-
trated how this property holds about programs with nested expressions that capture
choice rules, for instance. Here we generalize these findings further. First, we show that
shifting is applicable to first-order programs (that also allow choice rules and aggregates
in addition to disjunction). Second, we illustrate that under certain syntactic/structural
conditions on a program we may apply shifting “locally” to some rules with disjunction
and not others.

For an atom a, by a” we denote its predicate constant. For example o(A,1)° = o.
Let R be a rule of the form (15) with / > 1. By shift, (R) (where p is a tuple of distinct
predicates excluding =) we denote the rule

a; < Body ) not a;. 30)
1<i<lLdep 1<j<lal¢p

Let C be the set of strongly connected components in the dependency graph of II.
By shift(R) we denote the new rules shift,(R) for every s € C where s has a predicate
symbol that occurs in the head of R. Consider a sample program I, composed of
two rules with disjunction

alb|c+ d|c+

and three defining rules
a<b b+a e(1). 3D

The strongly connected components of program Iy, are {{a,b},{c},{d},{e(1)}}.
Expression shift(a | b | ¢ <) denotes rules a | b+ not ¢ and ¢  not a,not b.

Theorem 3. Let II be a logic program, R be a set of rules in I1 of the form (15) with
1 > 1. A program constructed from II by replacing each rule R € R with shift(R) has
the same answer sets as I1.

This theorem tells us, for example, that the answer sets of the sample program Iy,
coincide with the answer sets of three distinct programs composed of rules in (31) and
rules in any of the following columns:

al b+ notc a|b<notc alb|c+
c < not a,not b | ¢ < not a,not b

d + not ¢ d|c+ d + not c
c<notd c+notd

To obtain the rules in the first column take R to consist of the first two rules of Ilyp.
To obtain the second column take R to consist of the first rule of Ily,,,. To obtain the
last column take R to consist of the second rule of Ilsg).

We now use Theorem 3 to argue the correctness of Observation 4. Let Plan-choice'
denote a program constructed from the Plan-choice encoding by replacing (3) with (6).
Let Plan-choice” denote a program constructed from the Plan-choice, by (i) replacing
(3) with (12) and (ii) adding rule (10). Theorem 3 tells us that programs Plan-choice’
and Plan-choice” have the same answer sets. Indeed,



1. take R to consist of rule (6) and
2. recall Facts 1, 2, and 3. Given any Plan-instance intended to use with Plan-choice
a program obtained from the union of Plan-instance and Plan-choice' is such that
o is terminal. It is easy to see that any terminal predicate in a program occurs only
in the singleton strongly connected components of a program’s dependency graph.
Due to Observations 1 and 3, the Plan-choice encoding has the same answer sets as
Plan-choice” and consequently the same answer sets as Plan-choice’. This argument
accounts for the proof of Observation 4.

Completion We now proceed at stating formal results about first-order formulas and
their stable models. The fact that we identify logic programs with their FOL represen-
tations translates these results to the case of the RASPL-1 programs.

About a first-order formula F' we say that it is in Clark normal form [9] relative to
the tuple/set p of predicate symbols if it is a conjunction of formulas of the form

Vx(G — p(x)) (32)

one for each predicate p € p, where X is a tuple of distinct object variables. We refer
the reader to Section 6.1 in [9] for the description of the intuitionistically equivalent
transformations that can convert a first-order formula, which is a FOL representation
for a RASPL-1 program (without disjunction and denials), into Clark normal form.

The completion of a formula F in Clark normal form relative to predicate symbols p,
denoted by Compp[F], is obtained from F by replacing each conjunctive term of the
form (32) with Vx(G <> p(x)).

The following Corollary is an immediate consequence of Theorem 10 in [9], Theo-
rem 1, and the fact that formula of the form V(Body — ) is intuitionistically equivalent
to formula ﬂiBody.

Corollary 3. For any formula G N H such that (i) formula G is in Clark normal form
relative to p and H is a conjunction of formulas of the form V(K — L), the implication

SMp |G ANH] — Compp|G] NH
is logically valid.

To illustrate the utility of this result we now construct an argument for the correct-
ness of Observation 5. This argument finds one more formal result of use:

Proposition 2. For a program I1, a first-order formula F such that every answer set
of I satisfies F, and any two denials R and R’ such that F — (R > R’) the answer sets
of programs ITU{R} and ITU{R'} coincide.

Consider the Plan-choice encoding without denial (4) extended with any Plan-
instance. We can partition it into two parts: one that contains the denials, denoted
by Iy, and the remainder, denoted by Il;. Recall Fact 1. Following the steps described
by Ferraris et al. in [9, Section 6.1], formula I/Iz; turned into Clark normal form rel-
ative to the predicate symbols occurring in Iy U Il; contains implication (18). The
completion of this formula contains equivalence

V(——0(A,I) ASG(I) Aaction(A) <> o(A,I)). (33)



14

By Corollary 3 it follows that any answer set of Iy U Il satisfies formula (33). It is
easy to see that an interpretation satisfies (33) and the FOL representation of (11) if and
only if it satisfies (33) and the FOL representation of denial (7). Thus, by Proposition 2
program Iy U Il; extended with (11) and program ITy U Il; extended with (7) have
the same answer sets. Recall Observation 2 claiming that it is safe to replace denial (4)
with denial (11) within an arbitrary program. It follows that program Iy U Il; extended
with (7) have the same answer sets Iy U Il extended with (4). This concludes the
argument for the claim of Observation 5.

We now state the last formal results of this paper. The Completion Lemma stated
next is essential in proving the Lemma on Explicit Definitions. Observation 6 follows
immediately from the latter lemma.

Theorem 4 (Completion Lemma). Let F be a first-order formula and q be a set of
predicate constants that do not have positive, nonnegated occurrences in any FOL rule
of F. Let p be a set of predicates in F disjoint from q. Let D be a formula in Clark
normal form relative to q so that in every conjunctive term (32) of D no occurrence
of an element in q occurs in G as positive and nonnegated. Formula SMyq[F N\ D] is
equivalent to formulas

SMpq[F AD] AComp|D], (34)

SMy[F] ACompl|D], and (35)

SMpq[F A\ Vx(=—q(x) = g(x))] ACompl[D]. (36)
q€{q}

For an interpretation / over signature X, by /| we denote the interpretation over
o C X constructed from 7 so that every function or predicate symbol in ¢ is assigned
the same value in both I and I);. We call formula G in (32) a definition of p(x).

Theorem 5 (Lemma on Explicit Definitions). Let F' be a first-order formula, q be a

set of predicate constants that do not occur in F, and p be an arbitrary set of predicate

constants in F. Let D be a formula in Clark normal form relative to q so that in every

conjunctive term (32) of D there is no occurrence of an element in q in G. Then

i M — Mgy is a I-1 correspondence between the models of SMyq[F A\ D] and the
models SMp|F), and

ii SMpq[F AD] and SMyq[F A\ D] are equivalent, where we understand F4 as a formula
obtained from F by replacing occurrences of the definitions of q(x) in D with g(x).

We note that Splitting Theorem from [10], Theorem 2 and Theorem 11 from [9]
provide sufficient grounds to carry out the argument for Theorem 4. The proof of item
(i) in Theorem 5 relies on Theorem 4 and the fact that the completion of considered
formula D in Theorem 5 corresponds to so called explicit definitions in classical logic.
The proof of item (ii) utilizes the Replacement Theorem for intuitionistic logic.

It is easy to see that program composed of a single rule

p(y) < 1 <#count{x: F(x,y)}

and program p(y) < F(x,y) are strongly equivalent. Thus, we can identify rule (8) in
the Plan-disj encoding with the rule

sthHpd(I) + 1 < #count{A :o(A,I)}. 37



15

Using this fact and Theorem 5 allows us to support Observation 6. Take F to be the
FOL representation of Plan-choice encoding extended with any Plan-instance and D
be the FOL representation of (37), q be composed of a single predicate sthHpd and p
be composed of all the predicates in Plan-choice and Plan-instance.

Conclusions This paper lifts several important theoretical results for propositional pro-
grams to the case of first-order logic programs. These new formal findings allow us to
argue a number of first-order program rewritings to be safe. We illustrate the useful-
ness of these findings by utilizing them in constructing an argument which shows that
the sample programs Plan-choice and Plan-disj are essentially the same. We believe
that these results provide a strong building block for a portfolio of safe rewritings that
can be used in creating an automatic tool for carrying these rewritings during program
performance optimization phase discussed in Introduction.

Acknowledgements We are grateful to Vladimir Lifschitz and Miroslaw Truszczynski
for valuable discussions on the subject of this paper. Yuliya Lierler was partially sup-
ported by the NSF 1707371 grant.

References

1. Ben-Eliyahu, R., Dechter, R.: Propositional semantics for disjunctive logic programs. Annals
of Mathematics and Artificial Intelligence 12, 53-87 (1994)

2. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Communica-
tions of the ACM 54(12), 92-103 (2011)

3. Buddenhagen, M., Lierler, Y.: Performance tuning in answer set programming. In: Proceed-
ings of the Thirteenth International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR) (2015)

4. Eiter, T., Fink, M.: Uniform equivalence of logic programs under the stable model seman-
tics. In: Palamidessi, C. (ed.) Logic Programming. pp. 224-238. Springer Berlin Heidelberg,
Berlin, Heidelberg (2003)

5. Eiter, T., Fink, M., Tompits, H., Traxler, P., Woltran, S.: Replacements in non-ground answer-
set programming. In: Proceedings of International Conference on Principles of Knowledge
Representation and Reasoning (KR) (2006)

6. Eiter, T., Tompits, H., Woltran, S.: On solution correspondences in answer-set programming.
In: Proceedings of International Joint Conference on Artificial Intelligence (IJCAI). pp. 97—
102 (2005)

7. Eiter, T., Traxler, P, Woltran, S.: An implementation for recognizing rule replacements in
non-ground answer-set programs. In: Proceedings of European Conference On Logics In
Artificial Intelligence (JELIA) (2006)

8. Ferraris, P.: Answer sets for propositional theories. In: Proceedings of International Confer-
ence on Logic Programming and Nonmonotonic Reasoning (LPNMR). pp. 119-131 (2005)

9. Ferraris, P, Lee, J., Lifschitz, V.: Stable models and circumscription. Artificial Intelligence
175, 236-263 (2011)

10. Ferraris, P, Lee, J., Lifschitz, V., Palla, R.: Symmetric splitting in the general theory of stable
models. In: Proceedings of International Joint Conference on Artificial Intelligence (IICAI).
pp. 797-803. IJCAI press (2009)

11. Ferraris, P., Lifschitz, V.: Weight constraints as nested expressions. Theory and Practice of
Logic Programming 5, 45-74 (2005)



16

12.

13.

14.

15.

16.

17.

18.

20.

21.
22.

23.

Gebser, M., Harrison, A., Kaminski, R., Lifschitz, V., Schaub, T.. Abstract
gringo. Theory and Practice of Logic Programming 15, 449-463 (7 2015).
https://doi.org/10.1017/S1471068415000150, http://journals.cambridge.
org/article_S1471068415000150

Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning, and the Design of Intelligent
Agents: The Answer-Set Programming Approach. Cambridge University Press (2014)
Gelfond, M., Lifschitz, V., Przymusinska, H., Truszczynski, M.: Disjunctive defaults. In:
Allen, J., Fikes, R., Sandewall, E. (eds.) Proceedings of International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR). pp. 230-237 (1991)

Harrison, A., Lierler, Y.: First-order modular logic programs and their conservative exten-
sions. Theory and Practice of Logic programming, 32nd Int’l. Conference on Logic Pro-
gramming (ICLP) Special Issue (2016)

Janhunen, T., Oikarinen, E., Tompits, H., Woltran, S.: Modularity aspects of disjunctive sta-
ble models. In: Procedings of International Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR). pp. 175-187 (2007)

Lee, J., Lifschitz, V., Palla, R.: A reductive semantics for counting and choice in answer set
programming. In: Proceedings of the AAAI Conference on Atrtificial Intelligence (AAAI).
pp- 472-479 (2008)

Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Transac-
tions on Computational Logic 2, 526-541 (2001)

. Lifschitz, V., Pearce, D., Valverde, A.: A characterization of strong equivalence for logic

programs with variables. In: Procedings of International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR). pp. 188-200 (2007)

Linke, T., Tompits, H., Woltran, S.: On acyclic and head-cycle free nested logic programs. In:
Proceedings of 19th International Conference on Logic Programming (ICLP). pp. 225-239
(2004)

Mints, G.: A Short Introduction to Intuitionistic Logic. Kluwer (2000)

Pearce, D., Valverde, A.: Synonymous theories and knowledge representations in
answer set programming. Journal of Computer and System Sciences 78(1), 86 —
104 (2012). https://doi.org/https://doi.org/10.1016/j.jcss.2011.02.013, http://www.
sciencedirect.com/science/article/pii/S0022000011000420, jCSS
Knowledge Representation and Reasoning

Woltran, S.: Characterizations for relativized notions of equivalence in answer set program-
ming. In: Alferes, J.J., Leite, J. (eds.) Logics in Artificial Intelligence. pp. 161-173. Springer
Berlin Heidelberg, Berlin, Heidelberg (2004)



