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Abstract

Constraint answer set programming integrates answer
set programming with constraint processing. System
EZSMT" is a constraint answer set programming tool
that utilizes satisfiability modulo theory solvers for
search. The truly unique feature of EzsmT™ is its capa-
bility to process linear as well as nonlinear constraints
simultaneously containing integer and real variables.

Introduction

Answer set programming (ASP) is a declarative pro-
gramming paradigm for solving difficult combinatorial
search problems (Brewka, Eiter, and Truszczyniski 2011).
Constraint answer set programming (CASP) is a recent
development, which integrates ASP with constraint pro-
cessing. Often, this integration allows one to tackle
a challenge posed by grounding bottleneck. Originally,
systems that processed CASP programs relied on com-
bining algorithms/solvers employed in ASP and con-
straint processing (Gebser, Ostrowski, and Schaub 2009;
Balduccini and Lierler 2017). Lee and Meng; Susman
and Lierler; Lierler and Susman (2013; 2016; 2017) pro-
posed an alternative approach that utilizes satisfiability
modulo theory (SMT) solvers (Barrett and Tinelli 2014)
in design of CASP systems.

System EZSMT (Susman and Lierler 2016) is a repre-
sentative of an SMT-based approach for tackling CASP
programs. Yet, it has several limitations. For instance,
it is unable to process a large class of logic programs
called non-tight (Fages 1994). This restriction does not
allow users, for example, to express succinctly transitive
closure. System EZSMT is also unable to enumerate mul-
tiple solutions to a problem. In this work, we extend
EZSMT so that the described limitations are eliminated.
We call the new system EzsMT™.

Preliminaries

CASP extends the language of logic programs by special-
ized atoms that are linked to "(primitive) constraints"
(Marriott and Stuckey 1998, Section 1.1). Intuitively,
to establish whether a set X of atoms forms an answer
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set — a solution — of a CASP program two steps are re-
quired: (1) verifying that X is an answer set of a CASP
program understood as a traditional logic program and
(2) inspecting whether X has a solution by forming a
constraint satisfaction problem based on the occurrence
of special atoms in X. We now make these ideas precise.

Logic Programs. A vocabularyis a set of propositional
symbols also called atoms. A literal is an atom a or
its negation —a. A (propositional) logic program over
vocabulary o is a set of rules of the form

a < by,..., by, not bpy1,..., not by, (1)
not not by,41,..., not not b,

where a is an atom in ¢ or L, and each b;, where 1 <
i < n, is an atom in o. We will use the abbreviated
form for rule (1), i.e., a + B, where B stands for the
right hand side of the arrow in (1) and is also called
a body. By BT we denote the positive part of body B,
ie., by,...,bs. We sometimes identify body B with the
propositional formula by A... Abg A=bpy1 Ao A—by, A
==41 A .. A—by,, and rule (1) with the propositional
formula B — a. The expression a is the head of the rule.
A rule whose head is symbol L is called a denial. For a
logic program II (a propositional formula F'), by A¢(IT)
(by At(F)) we denote the set of atoms occurring in IT
(in F).

For the definition of an input answer set relative to a
vocabulary we refer to (Lierler and Susman 2017, Defi-
nition 3). This concept is used in defining semantics of
constraint answer set programs below.

Constraints. Lierler and Susman (2017) illustrated
that the notion of a constraint syntactically coincides
with ground literals of SMT. Furthermore, a constraint
satisfaction problem (CSP) can be identified with the
conjunction of ground literals, which is evaluated by
means of first-order logic interpretations/structures rep-
resentative of a particular "uniform" SMT-logic (Lierler
and Susman 2017). Uniform SMT-logics are defined
via interpretations/structures whose domain, interpreta-
tion of predicates, and "interpreted" function symbols
are fixed. In practice, special forms of constraints are
commonly used. Integer linear constraints are examples
of these special cases. For instance, 2z + 3y > 0 is a
common abbreviation for an integer linear constraint



> (+(x(2,x), X(3,¥)),0), where we assume SMT-logic
called Integer Linear Arithmetic (ILA). This logic is
defined by interpretations, whose domain is the set of
integers, predicate > is interpreted as an arithmetic
greater relation/predicate symbol; function symbols +
and X are interpreted as usual in arithmetic; O-arity
function symbols 2, 3, and 0 are interpreted by mapping
these into respective domain elements (identified with
the same symbol). Constraint 2z + 3y > 0 contains
un-interpreted O-arity function symbols = and y that are
frequently referred to as object constants (in logic liter-
ature) or variables (in constraint processing literature).
We call an interpretation satisfying a CSP its solutions.
We identify this interpretation with a function called
valuation that provides a mapping for uninterpreted
function symbols to domain elements. For example, one
of the solutions to CSP composed of a single constraint
2z + 3y > 0 within ILA-logic is valuation that maps x
to 0 and y to 1.

Constraint Answer Set Programs. Let o, and o;
be two disjoint vocabularies. We refer to their elements
as regular and irregular atoms, respectively.

Definition 1. Let 0 = o, U o; be a vocabulary so that
or and o; are disjoint; B be a set of constraints; v be
an injective function from the set of irreqular literals
over o; to B.

We call a triple P = (I, B,v) an EZ program over
vocabulary o,.Uo;, when Il is a logic program over o,Ug;
such that any rule that contains atoms in o; is a rule
with symbol L in its head.

A set X C At(I) of atoms is an answer set of P if

(a) X is an inpul answer sel of I relative to o;, and

(b) the following CSP has a solution:
{rla)la e XNoi}U{y(-a)lac o\ X} (2)
A pair (X,v) is an extended answer set of P if X is
an answer set of P and valuation v is a solution to the
CSP constructed in (b).
We call a triple F = {F,B,~) an SMT formula over
vocabulary o, when F is a propositional formula over o.
A set X C AL(F) is a model of SMT formula F if
(a) X is a model of F, and
(b) the CSP (2) has a solution.
A pair (X, v) is an extended model of F if X a model
of F and v is a solution to the CSP constructed in (b).

Lierler and Susman (2017) illustrated that for an EZ
program over integer linear arithmetic one can construct
an SMT formula so that its models/extended models
coincide with the answer sets/extended answer sets of
the given program. The generalizations of concepts of
completion and level ranking (originally introduced in
(Clark 1978) and (Niemela 2008) respectively) are essen-
tial in the construction of such an SMT formula. Here
we provide the translation presented in (Lierler and Sus-
man 2017). We utilize vertical bars to mark the irregular
atoms (introduced within the translation) that have intu-
itive mappings into respective integer linear constraints.
For instance, expression |lr, — 1 > Ir,| introduces an

irregular atom that is mapped into lr, — 1 > lr,, where
Ir, and Iry are variables over integers. Let P = (II, B, )
be an EZ program over ¢, Ug;. For every atom a in o,
that occurs in II we introduce an integer variable [r,.
The SMT formula ¥ = (F¥, BY 4} is constructed as
follows (i) its F'¥" is a conjunction of the following

e implications corresponding to rules (1) in IT;

e the implications a — \/ B for all atoms a in o,;
a+—Be€ll
e for each atom a € o, the implication

a— \/ (BA N ra—1>1n))
a+Bell beBH\o;

(ii) its BY and v extend B and v in intuitive way to
accommodate irregular atoms such as |lry, — 1 > Ir,|.

Niemela (2008) introduced strong level rankings and
also illustrated how strongly connected components of a
dependency graph of a normal program can be used to
enhance the transformation from a normal program to
an SMT formula. Shen and Lierler (2018) generalized
these results to logic programs whose rules are of the
form (1). They also showed that bounds of an integer
variable [r, can be safely set as 0 and the size of the
strongly connected component containing atom a. These
ideas are applicable within EZ programs and are utilized
in the implementation of EzSMT™.

EZSMT' Architecture and Experiments

We start by discussing some unique features of the
EZSMT™T system. It utilizes SMT solvers as its search
backend. Thus, EZSMT™" can use the variety of offered
SMT-logics that go beyond ILA. For example, logic
AUFLIRA (Tinelli and Barrett 2015) enables us to
state linear constraints that may simultaneously contain
integer and real variables. Logic AUFNIRA permits
nonlinear constraints, too. System EzZSMT™T accepts pro-
grams written in the fragment of EZ language supported
by the solver EZCSP and best documented in (Balduc-
cini and Lierler 2017). We extend this language by
several directives that allow us to specify a domain for
a constraint variable.

preprocessed EZ program

{1. grounding (GRINGO), computing completion (CMODELS(DIFF))}

if non-tight

if tight [ 2. computing four variants of level rankings (CMODELS(DIFF)) ]

clausified completion and level ranking
formulas in semi-dimacs format

3. EZSMT transformer J

SMT-LIB file | ]

computing

[ 4. SMT solver J multiple
answer sets

answer sets

Figure 1: EZSMT' Architecture



Figure 1 illustrates the alirchitecture of EzsMT™!.

This system takes an arbitrary (tight or non-tight)
CASP program preprocessed by EzZCSP (Balduccini and
Lierler 2017) as an input. It then utilizes grounder
GRINGO (Gebser et al. 2011) for eliminating ASP vari-
ables. Routines of system CMODELS(DIFF) (Shen and
Lierler 2018) are used to compute completion and level
rankings of the program. Then, EZSMT™T system trans-
lates the completion augmented with level rankings into
SMT formulas, after which an SMT solver is called to
find models of these formulas (that correspond to answer
sets).
(1) Computing completion; (2) Computing level
ranking formulas and clausification The EzZSMT™
system utilizes CMODELS(DIFF) (Shen and Lierler 2018)
to compute a program’s completion. During this step,
we also determine whether the program is tight or not. If
the program is not tight, the corresponding level ranking
formula will be added.

A procedure used by EzsMTT to perform this task
is identical to that of CMODELS(DIFF) (Shen and Lier-
ler 2018). Just as in the case of CMODELS(DIFF), we
can instruct EZSMTT to construct different kinds of
level ranking formulas using flags —levelRanking,
-levelRankingStrong, —SCClevelRanking, and
—-SCClevelRankingStrong. Default behavior of sys-
tem EzSMT™ is captured by —~SCClevelRanking. By
default, we set upper bounds for a level ranking variable
as the number of atoms inside the strongly connected
component containing the atom corresponding to this
variable. We provide an option to set a bigger up-
per bound as the total number of ground atoms when
EZSMT™ is called with the flag ~-biggerUpperBound.
Finally, the resulting formulas are clausified to produce
an output in semi-Dimacs format (Susman and Lierler
2016).

(3) Transformation The semi-Dimacs output from
step (2) is transformed into SMT-LIB syntax (a stan-
dard input language for SMT solvers (Barrett, Fontaine,
and Tinelli 2015)) using an EZSMT procedure de-
scribed in (Susman and Lierler 2016). We extend
the transformer of EzSMT v1.0. to allow the con-
straint variables be of different domains in the same
program, i.e., integers and reals. This feature is
invoked when the input program contains the spe-
cial/directive atom cspdomain(mized). Special atoms
of the form cspvardomain(xvar _namex,int) instruct
the transformer to declare a variable whose name is
xvar_namex as a variable over integers. By default,
the variables are assumed to be over reals.

(4) Solving Finally, one of the SMT solvers cvc4 (Bar-
rett et al. 2011), z3 (De Moura and Bjgrner 2008), or
YICES (Dutertre 2017) is called to compute models. In
fact, any other SMT solver supporting SMT-LIB can be
utilized easily.

"https:/ /www.unomaha.edu/college-of-information-
science-and-technology /natural-language-processing-and-
knowledge-representation-lab/software /ezsmt.php

The EzSMTT system allows us to compute multiple
(extended) answer sets. It utilizes ideas exploited in
the implementation of CMODELS(DIFF) (Shen and Lier-
ler 2018, Section 5). In summary, after computing an
(extended) answer set X of a program it invokes an
SMT solver again by adding formulas encoding the fact
that newly computed model should be different from X.
This process is repeated until the pre-specified number
of solutions is enumerated or it has been established
that no more solutions exist.

We benchmark EzSMTT to compare its per-
formance with the state-of-the-art CASP solvers
ingcCLINGCON (Banbara et al. 2017; Ostrowski 2018)
and Ezcsp. The benchmarks are posted at the EzsMT™
website (see Footnote 1).

Three benchmarks, namely, Reverse Folding (RF),
Incremental Scheduling (IS), and Weighted Sequence
(WS), come from the Third Answer Set Programming
Competition (Calimeri et al. 2011). We include a bench-
mark called Blending (BL) problem (Biavaschi 2017)
and extend it to BL*, which contains variables over
both integers and reals. Also, we use Bouncing Ball
(BB) domain (Bartholomew 2016). It is important to re-
mark that the encoding for BB domain results in a tight
program. This domain uses nonlinear constraints over
real numbers. In such a case EZSMTT is unable to han-
dle nontight programs. Yet, it can process (non-)tight
programs with integer nonlinear constraints (utilizing
z3 or YICES) or (non-)tight programs with linear con-
straints over real or mixed domain (using z3 or cvc4).
Three more benchmarks, namely, RoutingMin (RMin),
RoutingMax (RMax), and Travelling Salesperson (TS)
are obtained from Liu, Janhunen, and Niemela (2012).
The original TS benchmark is an optimization problem,
and we turn it into a decision one. The Labyrinth (LB)
benchmark is extended from the domain presented in
the Fifth Answer Set Programming Competition (Cal-
imeri et al. 2016). This extension allows us to add
integer linear constraints into the problem encoding.
Next benchmark, Robotics (RB), comes from Young,
Balduccini, and Israney (2017). Also, we present re-
sults on two benchmarks from Balduccini et al. (2017),
namely, Car and Generator (GN).

All benchmarks are run on an Ubuntu 16.04.1 LTS
(64-bit) system with an Intel core i5-4250U processor.
The resource allocated for each benchmark is limited to
one cpu core and 4GB RAM. We set a timeout of 1800
seconds. No problems are solved simultaneously.

Systems that we use to compare the performance of
variants of EZSMT™T (invoking SMT solver cvcd v. 1.4;
z3 v. 4.5.1; YICES v. 2.5.4) are CLINGCON v. 3.3.0 and
the variants of Ezcsp v. 2.0.0 (invoking ASP solvers
CLASP v. 3.2.0 or CMODELS v. 3.86.1; and constraint
solver Bprolog v. 7.5, SwWiprolog v. 7.4.1, or MINIZ-
INC v. 2.0.2). System GRINGO v. 4.5.3 is used as
grounder for EzSMTV and EzCSP with one exception:
GRINGO v. 3.0.5 is utilized for EZCsP for the Reverse
Folding benchmark (due to some incompatibility issues).

Figure 2 summarizes main results. In this figure, we



Category | Benchmark CLINGCON EzsMT T (23) EzsMT T (YICES) EZCSP EZCSP
SCC SCCStrong SCC SCCStrong CLASP-SWI CLASP-MZN
RMin (100) 4.68 8.76 11.8 5.81 7.57 126007(70) 126002(70)
NT-IL RMax (100) 3144 459 22.4 5190 5945 180000(100) 180000(100)
TS (30) 455 7347(4)  43620(24)  1881(1) 75.2 14.3 54000(30)
LB (22) 3002(1) | 9510(1) 10089(2)  4399(2) 5512(2) 12558(6) 12638(6)
RF (50) 326 6058(2) 27840(14) 101 7218(4)
T-IL IS (30) 54000(30) 9200(5) 9098 (5) 41446(21) 39458(21)
WS (30) 52.5 29.2 5.23 54000(30) 54000(30)
TINL | Car(8) | / | 0.32 0.25 [ 10.1 2.34
BL (30) / 88.4 47.4 18322(9) /
T-RL GN (8) / 0.58 0.48 5641(3) /
RB (8) / 0.4 0.39 2.04 /
TRNL [ BB(5) | / | 3663(2) 0.98 [ 9000(5) /
T-ML [ BL* (30) | / | 5573(2) / [ / /

Figure 2: Summary of Experimental Data

use EZSMTT (cvcd), EzsMT T (z3), and EZSMT™ (YICES)
to denote three variants of EZSMT'. Acronym EZCSP-
CLASP-SWI (EZCSP-CLASP-MZN) stands for a variant of
EZCSP, where CLASP is utilized as the answer set solver
and swiprolog (MINIZINC, respectively) is utilized as a
constraint solver. We note that EzsMTt(cvcd) com-
pares worse or at most compatible with other variants
of EZSMT™ except on BL*. For the lack of space, we do
not present the results for this configuration. Yet, we
make all the experimental data available at the EzsMT™
website (see Footnote 1). Also, variants of EZCSP uti-
lizing CMODELS as an answer set solver and/or Bprolog
as a constraint solver are consistently outperformed by
EZCSP-CLASP-SWI and EZCSP-CLASP-MZN on our bench-
marks. Thus, we do not show these results here.

In Figure 2, we present cumulative time of all instances
for each benchmark with numbers of unsolved instances
due to timeout or insufficient memory inside parenthe-
ses. The "/" sign indicates that this solver or its variant
does not support the kinds of constraints occurring in
the encoding. For example, CLINGCON does not support
constraints over real numbers or nonlinear constraints.
Total number of used instances is shown in parenthe-
ses after a benchmark name. All the steps involved,
including grounding and transformation, are reported
as parts of solving time. The benchmarks are divided
into categories by double separations. The acronyms T
and NT, in the names of the categories, indicate that
the programs are tight and non-tight, respectively. The
letters I and R indicate that the constraints are over
integer and real numbers, respectively. The letter M
says that the constraints are over mixed real and inte-
ger variables. The acronyms L and NL state that the
constraints are linear and nonlinear, respectively.

Systems CLINGCON, EZCSP-CLASP-SWI, and EZCSP-
CLASP-MZN are run in their default settings. We bench-
marked non-tight programs with the three variants of
EZSMTT using several configurations. For non-tight
benchmarks, EzsMT™ invoked with —levelRanking
and —levelRankingStrong flags shows substantially
worse performance than settings —SCClevelRanking
and —SCClevelRankingStrong, respectively.

Among the latter two configurations, one cannot
point at a definite winner. Thus, we present both
of them and label them as SCC and SCCStrong,
respectively.  Choosing minimal upper bounds for
level ranking variables tends to help EzsMT perform
better. We do not show the results for the non-default
-biggerUpperBound configuration.

In summary, we observe that CLINGCON, EZSMT T (23)
and EZCSP-CLASP-SWI wins in two benchmarks, respec-
tively, while EZSMT ™ (YICES) ranks first in seven bench-
marks. Variants of the EzSMTT systems display the
best overall results. Utilizing different SMT solvers may
improve the performance of EzSMT™ in the future.

The results show that EzsMT™ is a viable tool for

finding answer sets of CASP programs, and can solve
some difficult instances where its peers time out. Also,
it provides new capabilities towards utilizing declara-
tive answer set programming paradigm for problems
containing a wide variety of constraints including linear
constraints over real numbers, mixed integer and real
numbers, as well as nonlinear constraints.
Related and Future Work Recent CASP solver
CLINGO|[LP] (Janhunen et al. 2017) handles linear con-
straints over integers or reals and permits optimization
statements. The experimental analysis presented in
(Janhunen et al. 2017) only considers programs with
constraints over integers. On these benchmarks, CLING-
CON outperforms CLINGO[LP]. The other related CASP
systems are solvers MINGO (Liu, Janhunen, and Niemela
2012) and ASPMT2SMT (Bartholomew and Lee 2014).
Susman and Lierler (2016) compare the performance of
MINGO and EZSMT on tight programs. The later consis-
tently has better performance. The ASPMT2SMT system
is a close relative of EZSMT™ in the sense that it utilizes
SMT solver z3 for search. Solver ASPMT2SMT is re-
stricted to tight programs. We expect that EzsMTT (z3)
times mimic these of ASPMT2SMT on tight programs.

In the future, we will perform more extensive experi-
mental analysis to compare EZSMT™T to the mentioned
CASP systems. We envision an extension of EZSMT™ to
allow processing of optimization statements and more
sophisticated enumeration of solutions.
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