
STAMPEDE: A Discrete-Optimization Method for Solving
Pathwise-Inverse Kinematics

Daniel Rakita, Bilge Mutlu, Michael Gleicher
Department of Computer Sciences, University of Wisconsin–Madison

{rakita,bilge,gleicher}@cs.wisc.edu

Abstract— We present a discrete-optimization technique for
finding feasible robot arm trajectories that pass through pro-
vided 6-DOF Cartesian-space end-effector paths with high accu-
racy, a problem called pathwise-inverse kinematics. The output
from our method consists of a path function of joint-angles
that best follows the provided end-effector path function, given
some definition of “best”. Our method, called Stampede, casts
the robot motion translation problem as a discrete-space graph-
search problem where the nodes in the graph are individually
solved for using non-linear optimization; framing the problem
in such a way gives rise to a well-structured graph that affords
an effective best path calculation using an efficient dynamic-
programming algorithm. We present techniques for sampling
configuration space, such as diversity sampling and adaptive
sampling, to construct the search-space in the graph. Through
an evaluation, we show that our approach performs well in
finding smooth, feasible, collision-free robot motions that match
the input end-effector trace with very high accuracy, while
alternative approaches, such as a state-of-the-art per-frame
inverse kinematics solver and a global non-linear trajectory-
optimization approach, performed unfavorably.

I. INTRODUCTION

In order to complete tasks, robots need to consistently
actuate their joints such that their end-effectors pass through
the correct position, with the correct orientation, at the
correct time. While the problem of converting from a single
end-effector pose goal to a robot joint-state as quickly
and accurately as possible at a single time-point has been
extensively investigated (this process is traditionally called
inverse kinematics), finding a path of feasible joint angles
that accurately match a path of end-effector pose goals
over time has remained a difficult and elusive problem.
To illustrate, prior work has showed that naı̈vely using a
standard IK solver at each update to match a series of end-
effector pose goals results in infeasible motion qualities,
such as self-collisions, kinematic singularities, and joint-
space discontinuities [1].

In this work, we propose a method for solving the
pathwise-inverse kinematics problem, i.e., the process of
calculating a best path of feasible and continuous joint angles
that match a path of end-effector pose goals with high
accuracy. Our method to solve this problem, called Stampede,
casts the Cartesian-space to joint-space mapping problem as
a discrete-space graph-search problem. This process runs on

*This research was supported by the National Science Foundation under
award 1830242 and the University of Wisconsin–Madison Office of the
Vice Chancellor for Research and Graduate Education with funding from
the Wisconsin Alumni Research Foundation.

Stampede

closeups: High accuracy while
maintaining feasible
robot arm motions

Errors induced by
trying to maintain
feasible motion

Prior Method

Fig. 1. In this work, we present a method for generating feasible robot arm
motions that accurately follows an input end-effector path. This figure shows
a Sawyer robot tracing the word “ICRA” (the purple curve is ground truth,
green curve is the robot’s end effector path). Our method (right) achieves
greater accuracy than RelaxedIK (left) when finding a feasible robot motion
that traces the input Cartesian path.

a solution graph, outlined in §IV-A, where layers in the graph
represent discretized time-points in the input motion. Each
layer is comprised of many nodes that represent candidate IK
solutions at their respective time in the motion, and edges be-
tween adjacent layers encode feasible joint motion between
nodes over the given time interval. Thus, traversals over
edges through the layers in the solution graph characterize
feasible robot motions that match the desired end-effector
pose goals at each time point. The goal of the method is
then to find the best traversal through the whole graph to
build a trajectory, if such a legal traversal exists.

Using this graph construction, an optimal path can be
found through an efficient dynamic programming algorithm
that runs in time linear with respect to the number of time-
points. Because the graph search finds the optimal motion
restricted to the provided samples, our work addresses the
challenge of effectively sampling configurations at each time-
step that will elicit accurate and feasible motion outputs.
We provide various sampling techniques, outlined in §IV,
that sample from the space of IK solutions per time-step,
such that each layer covers a wide breadth of the space and
adaptively proliferates promising nodes during the search
process to make sufficient forward progress in the motion.
In practice, these methods provide sufficient samples that

reliably build up feasible paths that meet accuracy goals,
without resorting to exhaustive search.

Through an evaluation in §V, we show that our method
performs well at finding smooth, feasible, collision-free robot
motions that match a series of end-effector pose goals with
high accuracy, while alternative approaches, such as a state-
of-the-art per-frame inverse kinematics solver and trajectory
optimization approach, performed unfavorably. We show the
generalizability of our method by evaluating on three robot
platforms, ranging from 6-DOF to 8-DOF, on five separate
tasks. We discuss the implications of our findings as well as
the prospects of the use of our method in domains such as
teaching by demonstration, policy transfer through robot-to-
robot motion retargeting, or traditional motion planning.

We provide open-source code that imple-
ments the methods discussed in this work at
https://github.com/uwgraphics/stampede.

II. RELATED WORKS

The pathwise-IK method described in this work draws
inspiration from much previous work. In this section, we
outline related works in the areas of robot motion planning,
trajectory optimization, and inverse kinematics.

Motion Planning— The problem statement for motion
planning is generally to find a feasible path from an initial
state qinit to a goal state qgoal, subject to a set of constraints
(for a full review on motion planning, see the work by
Latombe [2]). Motion planning problems are often posed as
graph search problems, such that robot configurations serve
as nodes in the graph and edges define feasible, traversable
motion in configuration-space [3], [4]. Our method draws on
this rich tradition in robot motion planning of discretizing
paths in configuration-space by sampling from this space,
organizing the samples into a graphical structure, and finding
a sufficient solution using search strategies on the graph.
For a full description on graph search strategies for robot
motion planning problems, see Chapter 2 of Lavalle [5].
We particularly highlight motion planning work that uses
dynamic programming to solve for robot motions [6], [7], as
we use similar variants of dynamic motion planning to find
optimal paths in an efficient manner.

Our method solves a similar problem to standard mo-
tion planning approaches, however, we address the specific
problem of matching the end-effector path over an entire
trajectory. Most planners consider only point goals.

Trajectory Optimization— Trajectory optimization is a
framework for optimizing motions to match desired motion
qualities (see Betts [8] for a review). In this framework, con-
straints allow defining the requirements of the motion, while
the choice of objective allows defining desired properties of
the movement. Objectives typically define movements that
are efficient and collision-free [9] [10], are similar to other
motions [11] [12], or are minimal in energy [13].

Prior work by Luo and Hauser [12] use trajectory opti-
mization techniques to match a sketch-input in Cartesian-
space using a robot’s end-effector. While our method
achieves similar effects, such as matching the timing and

geometry of an input Cartesian-space path, we also include
orientation matching of the end-effector and self-collision
avoidance. Including these features in a large non-linear
optimization problem would be difficult, as global conver-
gence would be difficult to achieve given the non-linearities
involved. We show this effect in our evaluation.

Inverse Kinematics— The process of calculating joint
values on articulated chains that produce desired pose goals
of end-effectors, called inverse kinematics (IK), has been
extensively studied in robotics and animation (see Aristidou
[14] for a full review). While 6-DOF chains have only a
discrete set of solutions to fully constrained position and
orientation IK problems, prior work has attempted to take
advantage of joint redundancy, if present, in order to achieve
secondary goals by regularizing solutions—often called task-
priority IK [15]–[18].

Prior work has reasoned about IK along a path. Work
by Oriolo et al. considers searching through IK solutions
organized in a graphical structure between a start and goal
configuration using RRT-like search strategies [19]. Our work
is inspired by this work, though our emphasis is on finding
a best trajectory from any start configuration to any end
configuration along an end-effector path. Holladay et al.
present a solution that iteratively minimizes the Frecehet
error in task-space along the input Cartesian path [20]. We
believe the graph sampling and search strategies presented
in our work would integrate well with the loss function
presented by Holladay et al. Praveena et al. present a solution
that finds a set of approximate candidate paths, each with
its own set of trade-offs, and affords users the option to
provide sparse input to select a path that would be most
fitting given the task at hand [21]. Our current work focuses
on finding highly accurate pathwise-IK solutions, if such a
solution exists; however, if our approach deems that such
a solution does not exist, the method by Praveena et al.
provides an effective way to find a close-as-possible solution
with desirable trade-offs.

Work by Hauser and Emmons has formalized the space
of redundancy resolution along end-effector paths [22]. The
authors present a solution for global redundancy resolution,
which is a desirable motion quality where the pseudo-inverse
from end-effector space to joint-space along a path is the
same forward and backward. Our work draws from many of
the formalisms presented in this work, especially in regards
to pathwise redundancy resolution.

A method called RelaxedIK proposed by Rakita et al. is
able to solve a sequence of per-frame inverse kinematics
problems that elicit feasible and accurate robot motion in
real-time, even with no look-ahead information about the
input path [1]. This approach uses a weighted-sum non-
linear optimization formulation in order make trade-offs
between many, potentially competing objectives, such that
certain features are automatically relaxed if other features
are deemed to be more important at a given time. The
method has been shown to be effective for real-time human-
motion to robot arm motion retargeting [23], blending motion
policies in a shared-control motor task training scenario

https://github.com/uwgraphics/stampede

Fig. 2. Illustration of four robot configurations that exhibit the same end-
effector pose. The solution graph proposed in this work subsamples from
this space of possible solution at each time-step, and motions are generated
by following paths through this graph.

a

b

Q
e

E
Eb

EEHS(e)
f -1

f -1

Qp Ep
e(u)

u

EEHS(e(u))

Fig. 3. Depictions of the mathematical spaces being reasoned about in this
work. (a) Pointwise IK considers inversions at a single time. (b) Pathwise-
IK inverts from an end-effector path function over time (here, the temporal
dimension is represented by the circles being extruded to cylinders).

[24], and driving a camera in a remote environment for
optimal viewpoint selection [25]. Our work is inspired by
the overall motivation of creating smooth and feasible robot
arm motions; our goal is to extend this work to a non-online
setting and utilize the look-ahead information afforded by
having the whole input end-effector path prior to run-time in
order to provide improved accuracy and robustness.

III. PROBLEM OVERVIEW

In this section, we review prerequisite terminology and
notation used throughout the work and formalize our problem
statement, leaving specific algorithmic details for §IV.

A. Kinematics Preliminaries & Notation

Suppose Q ⊂ Rn is a set such that q ∈ Q denotes a robot
configuration in joint-state (for an n-dimensional robot arm)
and E ⊂ SE(3) is a set such that e ∈ E denotes a robot’s
tool-space coordinates. The forward kinematics model maps
inputs from Q to E: f(q) = e. Forward kinematics is
generally considered a straight-forward process.

The inverse kinematics (IK) problem involves inverting
the forward kinematics function to find f−1, such that
f(f−1(e)) = e and f−1(f(q)) = q. When n > 6, the
inverse of f becomes underdetermined, inducing potentially
infinitely many valid inverses for a single end-effector pose
goal (Figure 2). These infinite inverse solutions are organized
into a finite set of self-motion manifolds for a given end-
effector pose [26].

In this work, we also consider the case of inverting
end-effector poses e ∈ E that have an allowable error
hyperellipse around them, i.e., sets Eb ⊂ E where eb ∈
Eb := e + b, ∀b ∈ R6 s.t. bi < εi, i = 1, 2, ...6. Here,
εi defines an allowable error along one end-effector space
dimension centered at a point e ∈ E. Given this view of error
hyperellipses around end-effector pose goals, even robot
manipulators where n ≤ 6 have redundancy on the inverse
mapping. We extend the notion of self-motion manifolds to
include this error hyperellipse, and call the spaces of the
infinite joint-space mappings in Q that exhibit allowable
end-effector poses in Eb as Error-hyperellipse self-motion
subspaces (or EHSS for short). The infinite set of joint-space
configurations in Q that are in any EHSS corresponding to
end-effector pose goal e will be denoted as EHSS(e).

B. Problem Statement

Because pathwise-IK reasons about motions rather than
solutions at a point, our problem maps from the function
space Ep to the function space Qp. Elements in Ep and
Qp are parametric functions of the forms e(u) and q(u),
respectively, where u is a time parameter over the unit inter-
val [0, 1]. Elements in Ep are end-effector pose paths over
time, and elements in Qp are robot joint-space trajectories
over time. We can also extend pointwise EHSS to curves; we
denote EHSS(e(u)) as the set of all joint-space functions in
Qp that elicit the end-effector path e(u) within some error-
hyperellipse bound ε around e at every instant u ∈ [0, 1].

In this work, our goal is to find an optimal feasible robot
motion path, q∗(u), from the set EHSS(e(u)) given an
input end-effector path e(u), an error radius ε, as well as a
pathwise objective function to define “optimal”. It is possible
that the set EHSS(e(u)) is the empty set ∅ for a given e(u),
in which case, q∗(u) will not exist.

By feasible robot trajectories, we are referring to elements
q(u) ∈ Qp that do not exhibit self-collisions, kinematic
singularities, or joint-space discontinuities at any time point
u ∈ [0, 1]. This aligns with the notion of robot motion
feasibility formalized in previous work [1].

In practice, input end-effector paths and output joint-
space paths will be represented in a discretized manner.
We formalize this concept by representing e(u) and q(u)

into discrete elements {e[0], e[1/T], e[2/T], ..., e[1]} and
{q[0],q[1/T],q[2/T], ...,q[1]}, respectively (we use square
brackets to index at a discrete point u). We assume that the
time between waypoints 1/T will be short enough in input
paths such that our desired feasibility and accuracy outcomes
in the output motion will still be achieved in practice.

The central challenges in this work include:
1.) Guaranteeing that motions are always in the set

EHSS(e(u)) (i.e., the end-effector follows the given path
e(u) under an error ε throughout the motion).

2.) Guaranteeing feasibility throughout the motion q∗(u).
3.) Representing the space EHSS(e(u)) in a manageable

way such that finding an output motion is tractable.

IV. TECHNICAL DETAILS

In §III, we gave an abstract overview of pathwise-IK.
In this section, we outline algorithmic details behind our
method to solve pathwise-IK.

A. Solution Graph

Our method casts the pathwise-IK problem as a discrete-
space graph-search problem. This process runs on a solution
graph, where layers in the graph represent time-points u in
the input path, each consisting of many nodes from the error-
hyperellipse self-motion subspaces at time u: EHSS(e[u]).
The graph is organized such that walks through the graph
only along allowable directed edges are guaranteed to exhibit
pointwise feasibility and legal motion between configura-
tions. A best robot trajectory is found by evaluating and
comparing the quality of paths that make it through all
temporal layers of the graph.

Solution Graph Nodes— Nodes in the solution graph
represent joint-space configurations q ∈ Q. We add nodes
to the graph at various layers, where each layer represents
a single time-point u in the input path. We only consider
adding nodes to the graph at layer u that have configurations
that are in EHSS(e(u)).

To ensure motion feasibility, we further constrain the
configurations added to the solution graph at layer u using
the following criteria: 1.) No degree of freedom in an output
robot configuration q[u] should exceed its joint position
limits; 2.) An output robot configuration q[u] should be
sufficiently far from a collision state; and 3.) An output robot
configuration q[u] in layer u should be sufficiently far from a
kinematic singularity. This distance is approximated by look-
ing at the condition number of the robot’s Jacobian matrix at
q[u], a technique used in prior work [1]. Configurations must
be sufficiently far from collision and singularity conditions
that the direct interpolation between adjacent configurations
will avoid such problems.

Solution Graph Edge Propagation— So far, the solution
graph outlined above only has static nodes in each layer
and does not define what is considered temporally feasible
motion from one layer to the next. We add temporal feasi-
bility by only adding in directed edges between nodes u and
u+∆ that will elicit legal joint velocities over the given time
window ∆. Now, when a walk is taken through the solution

u=0

...

u

...

u+1/T

...

u+2/T

...

u+3/T

...

u=1/T u=2/T

�e �rst layer samples based
on clusters of joint states

Inactive
nodes

... ...

a b

...

Fig. 4. Illustration of our two main sampling approaches. (a) Our method
samples many possible IK solutions at the first frame, and groups these into
clusters (illustrated by colors at u = 0). The next layer bases their local
IK optimizations based on the cluster centroids. (b) Our method adaptively
adds in new samples at the next layer (depicted as blue nodes in the graph)
that initialize their IK optimizations around active nodes within the past few
layers. This encourages forward progress along promising, active paths.

graph only along these traversable directed edges, we are
guaranteed to have legal motion between configurations.

B. Best Path Calculation

To find a best robot motion output, we assign edge-weights
on all edges in the solution graph, each encoding some
sort of “score” between nodes, such as joint-velocity or
end-effector pose error, and consider the “best” path as the
shortest path over edge weights from a start node to an end
node in the graph. The shortest path through this graph can
be found efficiently using a standard dynamic programming
algorithm. At a high level, a dynamic programming view
allows us to approach the shortest-path problem by solving
a sequence of smaller problems at each layer, while still
carrying global, pathwise optimality information forward.

We use the value iteration dynamic programming algo-
rithm to find the shortest path (algorithmic details outlined
in [5]). This algorithm scale linearly with the number of
timepoints in the graph, meaning our method will scale well
even with long motions. Because our graph is directed and
acyclic, and the “score” along edges are positive values, the
value iteration algorithm is guaranteed to find the shortest
path through the solution graph, from the nodes that are
placed in the graph.

C. Node Sampling

The shortest path algorithm finds the best trajectory
through the configurations included in the graph. Thus, the
quality of our results is dependent on our ability to effectively
sample the space of point-wise feasible solutions at each
timestep. We provide three sampling strategies in this work:

1.) We first sample legal IK solutions at each time layer
u by starting a non-linear optimization-based IK solver with
an initial condition sampled from a uniform distribution (our
IK solver regularizes solutions by minimizing velocity from
the initial state). In our prototype implementation, we add
250 solutions to each layer using this approach.

2.) We place emphasis on sampling a well-diversified set
of starting options. Our premise is, because there is a discrete
set of self-motion manifolds at the first frame, diversity

sampling will help seed most of these C-space islands with
nodes and capture a breadth of motion options going forward
in the graph-search. To achieve this effect, we take many
samples at the first time-point (e.g., our prototype system
takes 5,000 random samples at the first frame), and cluster
the resulting states using k-means clustering, where k is the
number of nodes in layer two. Then, when the search process
is at layer two, the nodes start their local IK optimizations
with the cluster centroids from the first layer.

3.) Because the value iteration is quadratic in the number
of samples per time step, there is incentive to keep the
number of samples down. Therefore, we use an adaptive
strategy to achieve diverse coverage of the space with a
concise set. When the dynamic programming front is at layer
u, we add M new nodes to the graph at layer u + ∆ that
initialize their local optimizations around a randomly chosen
active node from the previous three layers (active nodes are
ones that have predecessors in the graph). We also add a
small amount of noise to the initial condition states before
starting the local IK optimizations, such that new valleys in
the space may be discovered.

V. EVALUATION

In this section, we will discuss the evaluation used to
showcase the efficacy of the methods discussed throughout
this work. In our evaluation, we compared our motion com-
piler method to two alternative motion synthesis approaches
on three real-world motion tasks.

A. Implementation Details

Our evaluation used a prototype implementation of the
methods discussed throughout this work. Our prototype is
capable of finding highly accurate trajectories along input
paths over several hundred time steps long.

To solve for individual IK solution nodes in our solution
graph, we used a hybrid IK method that combines two
optimization-based numerical IK solvers. Specifically, we
used Trac-IK [27] to quickly find candidate solutions under
a given error tolerance, which passed the configuration to
RelaxedIK [1] to quickly filter out illegal configurations, such
as those too close to collisions or kinematic-singularities.
This per-frame IK approach is sensitive to an initial condition
(i.e., it will regularize solutions by minimizing velocities
from a given initial state). We use this feature during the
sampling phase, where a diversity of initial conditions can be
used to seed IK solutions in different regions of joint-space.
We used allowable error epsilon values of 1 nanometer and
1 nanoradian for IK solution samples.

For the evaluation curves explained below, we hand-
animated Cartesian paths in a computer animation environ-
ment. The output end-effector position and rotation paths
were specified at a rate of 30Hz.

The robots evaluated in this work were a Universal Robots
UR51 (6-DOF), a Rethink Robotics Sawyer2 (7-DOF), and a

1https://www.universal-robots.com/products/ur5-robot/
2http://www.rethinkrobotics.com/sawyer/

Rainbow Robotics DRC-Hubo+ arm3 (8-DOF). The 8-degree
of freedom kinematic chain on the Hubo+ consisted of seven
DOFs for the right arm and one DOF for waist rotation. All
tests were done in simulation, though the motions would
generalize to the physical robot platforms.

B. Evaluation Paths

We used five paths in our evaluation: circle tracing, square
tracing, spiral tracing, isolated rotations, and writing. The
results in Figure 5 present aggregated or worst-case results
from all five paths. The circle tracing and square tracing
paths involved the robot tracing the respective geometric
shapes in front of the robot. The robot’s end-effector main-
tained the same orientation throughout these tracing tasks.
The spiral tracing path involved the robot following a spiral
path upwards, with rotations of the end-effector included.
This motion is longer than the standard tracing tasks, and the
inclusion of the rotations made it technically more challeng-
ing to follow. The isolated rotations path involved the robot
randomly rotating its end-effector, while maintaining a static
end-effector position in space. This task was included to see
how well the evaluated methods work when only rotations
are involved in the input Cartesian path. Lastly, the writing
path involved the robot writing the word “ICRA” in cursive
(as seen in Figure 1).

C. Comparisons

We compared our pathwise-IK method to four alternatives:
Spacetime optimization, RelaxedIK, Trac-IK, and Only Uni-
form Sampling (Graph-OUS, for short).

For Spacetime optimization, (explained in §II), we at-
tempted to optimize a trajectory that matches the input
end-effector position and rotation, minimizes velocity, and
avoids collisions. End-effector pose matching was included
in the objective function, while collision avoidance was a
hard-constraint. We included this comparison to see how
a non-linear constrained optimization approach handles the
pathwise-IK problem. Our implementation is similar to the
work by Luo and Hauser, while also considering self-
collision avoidance and orientation matching [12].

For our comparison with, RelaxedIK [1], we used the
open-source implementation provided by Rakita et al. In
contrast to Spacetime Optimization, RelaxedIK does not
consider all trajectory variables at once, and instead just
optimizes over one time point at a time. Thus, the method
does not have any look-ahead information about the input
path, so the method may move the robot into a suboptimal
corner of configuration space given what lies ahead in the
motion. We include this comparison in our evaluation to
see how RelaxedIK performs compared to our method, even
without any look-ahead information.

Our third comparison, Trac-IK is an optimization-based
inverse kinematics solver that is known for being accurate,
reliable, and fast [27]. We include this comparison to evaluate
how a per-frame inverse kinematics solver that does not take

3http://www.rainbow-robotics.com/products humanoid

https://www.universal-robots.com/products/ur5-robot/
http://www.rethinkrobotics.com/sawyer/
http://www.rainbow-robotics.com/products_humanoid

Stampede
Graph-OUS
RelaxedIK

Trac-IK

MaxPE MaxRE TPE TRE MV MA MJ TNC TND Avg. Time (s)
U
R5

Sa
w
ye
r

H
ub

o+

Stampede
Graph-OUS
RelaxedIK

Trac-IK
Stampede

Graph-OUS
RelaxedIK

Trac-IK

9.46e-09

9.84e-09

5.33e-09 7.14e-09
6.49e-09* 7.55e-09*

9.78e-09
9.83e-09* 9.49e-09*

9.68e-09 3.54e-06 5.11e-06 0 181.2

12.2
1.31

176.1*

189.4*

13.6
1.99

156.9*

186.3

14.9
2.04

194.3*

0*
0
0

0
0*
0
14

0
0*
0
64

0
0*
0
27

0
0*
0
518

0
0*
0
7

10.84
13.57

12.31 0.002 0.001 0.001

0.002 0.001 0.001
0.093 0.162 0.231

0.079 0.133 0.201

0.071 0.103 0.192

0.023 0.092 0.134
0.029* 0.108* 0.149*

0.063 0.102 0.211
0.091* 0.103* 0.230*

0.038 0.140 0.211
0.041* 0.145* 0.225*
0.002 0.001 0.001

20.36

16.74
19.58

34.81
37.14

15.11
21.64

13.46
34.95

7.46e-06 6.24e-06

1.93e-06 3.78e-06

9.71e-09*
0.017
0.135 0.216

0.283 0.313

0.141 0.338

0.024

0.021 0.039

0.018 0.034

9.56e-09* DNF DNF

DNF DNF

DNF DNF

Fig. 5. Results from our evaluation. Our reported metrics are maximum position error (MaxPE, in meters), maximum rotation error (MaxRE, in radians),
total position error (TPE, in meters), total rotation error (TRE, in radians), mean joint velocity (MV, in rad/s), mean joint acceleration (MA, in rad/s2),
mean joint jerk (MJ, in rad/s3), total number of self-collisions (TNC), total number of joint-space discontinuities (TND), and average runtime. The ∗

indicates partial results, as Graph-OUS only found solutions for two of the five paths, even though Stampede found solutions for all paths. DNF stands
for “did not finish”, meaning all paths were not successfully found in order to aggregate a total.

look-ahead information or motion feasibility into account
performs in pathwise-IK tasks.

Our last comparison, Graph-OUS is our discrete-graph
search method presented in this work without the use of
our clustering and adaptive sampling techniques presented
in §IV. In other words, each layer only utilizes uniform
sampling of feasible IK solutions at time u. We included this
comparison to assess whether these clustering techniques are
important additions to our proposed method.

D. Results

Our results can be seen summarized in Figure 5. At
a high level, our pathwise-IK method outperformed the
alternative approaches in path accuracy, while also matching
the feasibility benefits of RelaxedIK. Spacetime optimization
did not successfully converge on a solution for any path
(thus, was not included in the table). We believe it did not
converge because of the high-dimensionality and unwieldy
non-linearities of the space. Trac-IK featured high accuracy
when results were found per-frame, but the solver exhibited
deficits when a result was not found or infeasible motion
qualities, such as self-collisions or kinematic singularities,
occurred. This effect matched the results presented in prior
work by Rakita et al. [1]. The high maximum position and
rotation errors reported with Trac-IK were caused when the
solver failed to find a solution, and the robot paused at the
previously found solution as errors accumulated. Our method
also outperformed Graph-OUS, where solution paths were
commonly not found, even when Stampede indicated that
such paths existed. This result indicates that our diversity
sampling and adaptive sampling methods are integral parts
of the improved performance observed from our method.

While RelaxedIK featured trajectories with lower jerk and
acceleration signatures, as well as always featuring feasible
motion qualities, these benefits were achieved by inducing
small errors in following the end-effector path. This effect
can be seen illustrated in Figure 1. Because RelaxedIK does
not take any look-ahead information into account, as its main

use is for real-time motion synthesis, it does not know how
to take optimal steps forward in order to match the input
path with high accuracy. Conversely, Stampede featured the
same level of feasibility, while also matching the input path
under a given error threshold throughout.

VI. DISCUSSION

In this work, we presented a method for solving pathwise-
IK, the process of finding a feasible robot arm path where
the robot’s end-effector passes through a provided end-
effector path. We believe that our work has the potential
to be used in various robotics domains. For example, our
method could be used for teaching-by-demonstration, where
a user’s hand motion is remapped to a feasible robot path
that matches what the user’s hand did with high accuracy.
Also, our method could be used to retarget motions between
different robots. Because robots have vastly different scales
and capabilities in joint-space, having a method that provides
a correspondence between robot arms in a common end-
effector space can serve as a bridge to compile motions and
actions between robots.

Limitations— Our work has limitations that suggest many
extensions. First, while our method runs reasonably fast for
a global optimization method, it is still slower than local,
greedy methods. We will explore ways to speed up our
method such that planning feasible and accurate motions
in end-effector space can be incorporated as a sub-process
in larger frameworks. Also, the current framing of the
pathwise-IK problem only considers static input paths. We
will investigate ways to accommodate adaptations on the
fly using incremental path search algorithms that patch an
efficient solution by branching in both directions from the
point of modification. Lastly, our work does not consider
dynamics, but we could combine our method with a time-
scaling approach to accommodate these features.

REFERENCES

[1] D. Rakita, B. Mutlu, and M. Gleicher, “RelaxedIK: Real-time Synthe-
sis of Accurate and Feasible Robot Arm Motion,” in Proceedings of
Robotics: Science and Systems, Pittsburgh, Pennsylvania, June 2018.

[2] J.-C. Latombe, Robot motion planning. Springer Science & Business
Media, 2012, vol. 124.

[3] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach
to single-query path planning,” in IEEE International Conference on
Robotics and Automation (ICRA), vol. 2. IEEE, 2000, pp. 995–1001.

[4] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, 1996.

[5] S. M. LaValle, Planning algorithms. Cambridge university press,
2006.

[6] M. K. Jouaneh, Z. Wang, and D. A. Dornfeld, “Trajectory planning
for coordinated motion of a robot and a positioning table. i. path
specification,” IEEE Transactions on Robotics and Automation, vol. 6,
no. 6, pp. 735–745, 1990.

[7] K. Shin and N. McKay, “A dynamic programming approach to
trajectory planning of robotic manipulators,” IEEE Transactions on
Automatic Control, vol. 31, no. 6, pp. 491–500, 1986.

[8] J. T. Betts, “Survey of numerical methods for trajectory optimization,”
Journal of Guidance control and dynamics, vol. 21, no. 2, pp. 193–
207, 1998.

[9] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “Chomp:
Gradient optimization techniques for efficient motion planning,” in
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2009, pp. 489–494.

[10] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,
“Stomp: Stochastic trajectory optimization for motion planning,” in
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2011, pp. 4569–4574.

[11] M. Gleicher, “Retargetting motion to new characters,” in Proceedings
of the 25th annual conference on Computer graphics and interactive
techniques. ACM, 1998, pp. 33–42.

[12] J. Luo and K. Hauser, “Interactive generation of dynamically feasible
robot trajectories from sketches using temporal mimicking,” in IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2012, pp. 3665–3670.

[13] A. Witkin and M. Kass, “Spacetime constraints,” ACM Siggraph
Computer Graphics, vol. 22, no. 4, pp. 159–168, 1988.

[14] A. Aristidou, J. Lasenby, Y. Chrysanthou, and A. Shamir, “Inverse
kinematics techniques in computer graphics: A survey,” in Computer
Graphics Forum, vol. 37, no. 6. Wiley Online Library, 2018, pp.
35–58.

[15] Y. Nakamura, Advanced robotics: redundancy and optimization.
Addison-Wesley Longman Publishing Co., Inc., 1990.

[16] S. Chiaverini, “Singularity-robust task-priority redundancy resolution
for real-time kinematic control of robot manipulators,” IEEE Transac-
tions on Robotics and Automation, vol. 13, no. 3, pp. 398–410, 1997.

[17] B. Siciliano, “Kinematic control of redundant robot manipulators: A
tutorial,” Journal of Intelligent & Robotic Systems, vol. 3, no. 3, pp.
201–212, 1990.

[18] P. Chiacchio, S. Chiaverini, L. Sciavicco, and B. Siciliano, “Closed-
loop inverse kinematics schemes for constrained redundant manipu-
lators with task space augmentation and task priority strategy,” The
International Journal of Robotics Research, vol. 10, no. 4, pp. 410–
425, 1991.

[19] G. Oriolo, M. Ottavi, and M. Vendittelli, “Probabilistic motion plan-
ning for redundant robots along given end-effector paths,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, vol. 2.
IEEE, 2002, pp. 1657–1662.

[20] R. Holladay, O. Salzman, and S. Srinivasa, “Minimizing task-space
frechet error via efficient incremental graph search,” IEEE Robotics
and Automation Letters, 2019.

[21] P. Praveena, D. Rakita, B. Mutlu, and M. Gleicher, “User-guided
offline synthesis of robot arm motion from 6-dof paths,” in IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2019.

[22] K. Hauser and S. Emmons, “Global redundancy resolution via contin-
uous pseudoinversion of the forward kinematic map,” IEEE Transac-
tions on Automation Science and Engineering, 2018.

[23] D. Rakita, B. Mutlu, and M. Gleicher, “A motion retargeting method
for effective mimicry-based teleoperation of robot arms,” in Proceed-
ings of the 2017 ACM/IEEE International Conference on Human-
Robot Interaction. ACM, 2017, pp. 361–370.

[24] D. Rakita, B. Mutlu, M. Gleicher, and L. M. Hiatt, “Shared dynamic
curves: A shared-control telemanipulation method for motor task train-
ing,” in Proceedings of the 2018 ACM/IEEE International Conference
on Human-Robot Interaction. ACM, 2018, pp. 23–31.

[25] D. Rakita, B. Mutlu, and M. Gleicher, “An autonomous dynamic
camera method for effective remote teleoperation,” in Proceedings
of the 2018 ACM/IEEE International Conference on Human-Robot
Interaction. ACM, 2018, pp. 325–333.

[26] J. W. Burdick, “On the inverse kinematics of redundant manipulators:
Characterization of the self-motion manifolds,” in Advanced Robotics:
1989. Springer, 1989, pp. 25–34.

[27] P. Beeson and B. Ames, “Trac-ik: An open-source library for improved
solving of generic inverse kinematics,” in 2015 IEEE-RAS 15th Inter-
national Conference on Humanoid Robots (Humanoids). IEEE, 2015,
pp. 928–935.

	Introduction
	Related Works
	Problem Overview
	Kinematics Preliminaries & Notation
	Problem Statement

	Technical Details
	Solution Graph
	Best Path Calculation
	Node Sampling

	Evaluation
	Implementation Details
	Evaluation Paths
	Comparisons
	Results

	Discussion
	References

