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Practitioner Notes

What is already known about this topic

Many immersive educational technologies, such as digital games and simulations, enable students
to take consequential action in a realistic context and to interact with peers, mentors, and
pedagogical agents. Such technologies help students to be active-in-thinking: engaging deeply
with, reflecting on, and otherwise making meaning of their learning experience.

There are now many immersive educational technologies with integrated authoring tools that
enable teachers to customize the learning experience with relative ease, reducing barriers to
adoption and improving the student learning.

Educational technologies that support learning-in-action typically contain student models that
operate in real time to control the behavior of pedagogical agents, deliver just-in-time
interventions, select appropriate content, or otherwise measure and promote active thinking, but
these student models may not work appropriately if teachers customize the learning experience.
Much as there are authoring tools that allow teachers to customize the curriculum of a given
learning technology, there is a need for authoring tools that allow teachers to customize the
associated student models as well.

What this paper adds

This paper presents a novel, rubric-based approach to developing automated student models for
new activities that teachers develop in digital learning environments that promote active thinking.
Our approach combines machine learning techniques with teacher expertise, allowing teachers to
participate in the design of automated student models of active thinking that with further
development could be scaled by leveraging their skills in rubric development.

Our results show that a rubric-based approach can outperform a machine learning approach in this
context. More importantly, in some cases a rubric-based approach can produce reliable automated
models based on information that a teacher can easily provide.

Implications for practice and/or policy

If integreated into authoring tools, the rubric-based approach could allow teachers to participate
in the design of automated models for educational technologies customized to their instructional
needs.

Through this design process, teachers could develop a better understanding of how the automated
modeling system works, which in turn could increase the adoption of educational technologies
that promote active thinking.

Because the rubric-based approach enables teachers to indentify key connections among concepts
relevant to the pedagogical context, rather than general concepts or linguistic features, it is more
likely to facilitate targeted feedback to help promote the development of active thinking.



Learning-in-action depends on interactions with learning content, peers, and real-world
problems. However, effective learning-in-action also depends on the extent to which
students are active-in-thinking, making meaning of their learning experience. A critical
component of any technology to support active thinking is the ability to ascertain whether
(or to what extent) students have succeeded in internalizing the disciplinary strategies,
norms of thinking, discourse practices, and habits of mind that characterize deep
understanding in a domain. This presents what we call a dilemma of modeling-in-context:
Teachers routinely analyze this kind of thinking for small numbers of students in
activities they create or customize for the needs of their students; however, doing so at
scale and in real time requires some automated process for modeling student work.
Current techniques for developing models that reflect specific pedagogical activities and
learning objectives that a teacher might create require either more expertise or more time
than teachers have. In this paper, we examine a theoretical approach to addressing the
problem of modeling active thinking in its pedagogical context that uses teacher-created
rubrics to generate models of student work. The results of this examination show how
appropriately constructed learning technologies can enable teachers to develop custom
automated rubrics for modeling active thinking and meaning-making from records of
students’ dialogic work.

Introduction

Many immersive educational technologies, such as digital games and simulations, enable students to take
consequential action in a realistic context and to interact with peers, mentors, and pedagogical agents.
However, the extent to which such learning-in-action is effective depends on the extent to which students
are active-in-thinking: engaging deeply with, reflecting on, and otherwise making meaning of their
learning experience. While much work has been done developing technologies and theories of learning to
promote learning-in-action, a critical component of such technologies is the ability to ascertain whether
(or to what extent) students have succeeded in internalizing the disciplinary strategies, norms of thinking,
discourse practices, and habits of mind that characterize deep understanding in a domain.

Many educational technologies that support learning-in-action contain student models that operate in real
time to control the behavior of pedagogical agents, deliver just-in-time interventions, select appropriate
content, or otherwise measure and promote active thinking (see, e.g., Graesser et al., 2018; Sottilare,
Graesser, Hu, & Holden, 2013). Critically, these models are developed and validated for specific
pedagogical contexts, and thus they cannot reliably be used in other settings. This presents what we have
characterized as a dilemma of modeling-in-context.

The use of educational technologies requires automated assessment processes to provide
real-time feedback and assessment at scale, but to be effective, such assessments need to
reflect the specific pedagogical context, including the learning objectives and student
population (Swiecki, Shaffer, & Misfeldt, 2017).

This dilemma is even more pronounced when teachers customize educational technologies to meet the
needs of different student populations or to align the activities with changing standards or learning
objectives. Once the “holy grail” of educational technology design (Aleven, McLaren, Sewall, &
Koedinger, 2009), there are now many immersive digital learning environments with integrated authoring
tools that enable teachers to make such changes with relative ease, reducing barriers to adoption and
improving the learning experience (see, e.g., Cubillo, Martin, Castro, & Boticki, 2015; Mehm, Gobel,
Radke, & Steinmetz, 2009; Nye, Graesser, & Hu, 2015; Ososky, Brawner, Goldberg, & Sottilare, 2016;
Sottilare, Graesser, Hu, & Brawner, 2015; Swiecki, Shaffer, & Misfeldt, 2017). However, when teachers
modify the content or structure of an educational technology, the integrated models may not reflect the



new pedagogical context. That is, adapting the curriculum may invalidate the original models (Gautam,
Swiecki, Shaffer, Graesser, & Rus, 2017).

While teachers routinely analyze active thinking for small numbers of students, doing so at scale and in
real time requires some kind of automated student model. Because most teachers do not have the ability to
develop such processes unassisted, systems need to be designed that enable teachers to develop custom
models of active thinking. In other words, much as there are authoring tools that allow teachers to
customize the curriculum of a given learning technology, there is a need for authoring tools that allow
teachers to customize the associated student models as well.!

In this paper, we examine a theoretical approach to addressing the problem of modeling active thinking in
its pedagogical context. Specifically, we describe an approach to developing automated student models
that combines machine learning techniques with the pedagogical and domain expertise of teachers, and
demonstrate its utility by comparing it to a more traditional machine learning approach. The results of this
examination show how appropriately constructed learning technologies can enable teachers to develop
custom automated processes for modeling active thinking and meaning-making from records of student’s
dialogic work.

Theory

The structure of automated student models

Automated student models have been used to promote and assess active thinking in a variety of
technology-mediated environments. While there are many such environments (see, ¢.g., McNamara,
O’Reilly, Best, & Ozuru, 2006; Rowe, Shores, Mott, & Lester, 2011; Rus, Niraula, & Banjade, 2015),
two prominent examples are AutoTutor and virtual internships. AutoTutor uses dialogues with
pedagogical agents to facilitate active thinking in domains such as physics. During these dialogues,
automated student models are used to assess student understanding of the domain and select appropriate
pedagogical support (Graesser, 2016). In virtual internships, students collaborate to solve complex
problems in domains such as engineering and urban planning. During the simulated internship, automated
student models are used to facilitate reflective discussions (Saucerman, Ruis, & Shaffer, 2017), assess
student work (Rus, Gautam, Swiecki, Shaffer, & Graesser, 2016), and provide real-time feedback to
instructors (Shaffer, 2017).

The student models built into such educational technologies generally have three key components
(Shermis & Burstein, 2013): (1) responses, such as scores, written responses, or other feedback that can
be assigned to student discourse, including actions, communication, and submitted work; (2) one or more
classifiers that automatically assign the appropriate response to student discourse; and (3) features of
student discourse that classifiers use to assign responses. For example, the AutoTutor system uses
automated classifiers based on two kinds of features—semantic similarity and pattern-matching—to
model student dialogues with conversational agents and generate pedagogical actions (Graesser,
Chipman, Haynes, & Olney, 2005).

Development of automated student models typically follows one of two approaches. 4 priori approaches
involve specifying the classification rules that determine how responses are assigned based on features of
student discourse. For example, to develop a model of written work, one could specify a word count
threshold, key terms that need to be present, or other more complex criteria, such as adherence to a topic
or the presence of a claim. To create a priori classification rules that accurately model student work thus
requires both pedagogical content knowledge and the ability to compose such rules in a form that an

! Student models are often used for assessment. However, in the context of active thinking, they are more often part
of the process of providing generative feedback to students. Such feedback can come from a teacher, who uses
student models to better understand students’ work; from displays or visualizations of work presented to students; or
from characters, agents, or other sources within the system.



automated classification system can implement. Most teachers have the former but not the latter, making
it difficult to express a model of active thinking as a set of rules without appropriate scaffolding (Cai,
Graesser, & Hu, 2015; Simko, 2011; Zapata-Rivera, Jackson, & Katz, 2015).

Inductive approaches, such as machine learning, provide an alternate process for developing classification
rules. Machine learning involves training algorithms on large amounts of human-assessed student
discourse from the domain. This data is then used to induce relationships between features of the
discourse and the human-generated responses. For example, a simple inductive classification approach
may involve training a machine learning algorithm to model student writing based on features such as
word count, frequency of key terms, ratio of uppercase to lowercase letters, and number of errors in
spelling or grammar. The model would learn the thresholds for each feature that best distinguishes among
the different human responses. Such thresholds can then be used to automatically model new essays.
However, while inductive approaches can be automated, thus reducing the need for expertise in classifier
development, they require large amounts of human-assessed data from a representative pedagogical
context. Because such data are not available when teachers customize digital learning environments—by
definition a customized environment is different from any other environment where data was previously
collected—inductive approaches cannot typically be used to develop automated models for new curricula.

To address the lack of a suitable approach to the dilemma of modeling-in-context when teachers
customize educational technologies, we propose an approach that leverages teachers’ skills in assessing
active thinking for small numbers of students to generate student models that are both scalable and
sensitive to the complexities of active thinking in its pedagogical context. That is, we elicit from teachers
the kind of work they already do well and explore a method for converting that work into an automated
process. Specifically, we propose an approach to developing automated student models based on a
scaffolded process of rubric development.

A rubric-based approach to automated student models

When teachers assess students’ active thinking in dialogic work, such as writing, they often do so by
creating a rubric. In many pedagogical contexts, Montgomery (2000) argues, teachers develop rubrics by
(a) identifying key concepts and (b) indicating how those key concepts should be expressed and
integrated in student work. Each assessment is characterized by the extent to which those criteria are met.
In addition, teachers typically include (c) concrete exemplars to model the kind of work associated with
each assessment (for more on rubric development, see Glass, 2004; National Research Council, 2012;
Reddy & Andrade, 2010).

Importantly, when teachers construct rubrics, they are providing content that can seed both a priori and
inductive approaches to automated model development. By specifying key concepts and how they are
expressed and integrated for each response, teachers are providing classification rules, but those rules are
not written in a way that a machine can implement. By specifying exemplars for each model, teachers are
providing the kind of data that machine learning algorithms operate on, but they can only reasonably
provide a small number of such examples, and far fewer than such approaches typically require.

Studies show that teachers are able to modify and author learning technologies when an appropriate set of
authoring tools are available (see, e.g., Dag, Durdu, & Gerdan, 2014). Therefore, to enable teachers to
produce rubrics in a way that is familiar to them but can also serve as the basis for the construction of
automated models, we developed and tested an approach to scaffolded rubric construction based on
theories of connectivity.

There is a considerable body of research that construes active thinking not as the mere possession of
particular bits of knowledge or the demonstration of skills in isolation, but as a process of integrating
them to frame, investigate, and solve complex problems (see, e.g., DiSessa, 1988; Linn, Eylon, & Davis,
2004; Madani et al., 2017; Shaffer, 2012). The theory of epistemic frames (Shaffer, 2012), for example,
suggests that active thinking consists of the cognitive connections that people make among the
knowledge, skills, values, and ways of making decisions characteristic of some domain. An epistemic



frame, however, is not simply the set of concepts, actions, and other elements of a domain; rather, it is the
particular configuration of linkages among those elements. In other words, active thinking involves
acquiring the epistemic frame of a domain, and an epistemic frame is a particular set of cognitive
connections that are revealed through the actions and interactions of an individual engaged in authentic
tasks (or simulations of authentic tasks). The development of an epistemic frame, and by extension of
active thinking, can be modeled in pedagogical context by measuring the connections learners make
among the frame elements.

A rubric-based approach to developing automated student models thus introduces an additional level of
modeling to the classification process. Instead of attempting to develop a classifier that operates directly
on features to determine the appropriate response, as in the examples given above, this approach involves
a two-level classification. First, features are classified into Codes: concepts, actions, or other elements
that are meaningful in some domain (for an in-depth discussion of Codes, see Shaffer, 2017). These
Codes, which are the elements of a domain’s epistemic frame, are thus more specific than overall models
of student discourse, but unlike raw features, they have particular meanings or interpretations in the
context of the domain. Because active thinking involves integrating Codes into an epistemic frame, the
second classification step is to give the appropriate response based on how the Codes are connected in
student work. Research has shown that co-occurrence of Codes within some window of discourse (e.g.,
within some number of sentences in written work, or within some span of time in conversation) is a good
indicator of cognitive connections (Dyke, Kumar, Ai, & Rosé, 2012; i Cancho & Solé, 2001; Lund &
Burgess, 1996; Ruis, Siebert-Evenstone, Pozen, Eagan, & Shaffer, 2019; Siebert-Evenstone et al., 2017).
This co-occurrence structure can then be used to assign the appropriate response. For example, Swiecki
and colleagues (in press) used automated classifiers to identify the Codes present in discourse data
collected from military teams during training, and used connections between these Codes to model active
thinking in various training scenarios.

To seed the development of an automated model based on connectivity, teachers would need to provide
three components: (a) the Codes relevant to the pedagogical context, (b) the relationships among those
Codes that are associated with particular models, and (c) a small number of exemplars in which the
teacher has labeled the portions in which the Codes are expressed. These are, in effect, the components
that teachers already provide in rubrics: key concepts (i.e., Codes), information about how those concepts
are integrated (i.e., connections), and exemplars that illustrate the key concepts as they would appear in
student work.

Thus, we argue that with appropriate scaffolding, teachers could produce rubrics that provide the material
necessary to develop effective automated models of students’ active thinking. This rubric-based approach
is similar to inductive models in the sense that a set of exemplars are used to generate a classifier.
However, because Codes are more specific than a general model of student discourse, Code classifiers
can be induced from a small number of teacher-provided exemplars. The rubric-based approach is also
similar to a priori models, in the sense that there are specific rules that define what combinations of Codes
produce a particular model. But again, because Codes are meaningful in some domain, it is easier for
teachers to specify rules for how they should connect that can easily be translated into rules that an
automated classification system can implement.

In this study, we evaluated a rubric-based approach to developing automated student models. This
approach utilizes rubrics composed by a teacher that indicate the Codes and key connections, and that
provide exemplars with the relevant portions annotated for the presence of those Codes. We compare this
method with a machine learning approach operating on a comparable number of exemplars composed by
a teacher. We hypothesize that, for a small set of data, (a) automated classifiers with Cohen’s kappa
statistically significantly above the customary level of 0.65 to identify Codes from features of student
work can be developed using inductive techniques on a small number of teacher-composed exemplars in
which the portions of text that indicate the presence of a given Code are annotated; and (b) automated
classifiers for assigning the appropriate response to student work based on connectivity among Codes (as



defined a priori by teachers) will have Cohen’s kappa values that are statistically significantly higher than
classifiers induced from a comparable number of exemplars.

To test these hypotheses, we designed a study to answer the following research questions:

RQ1. How reliable are different inductive techniques for developing Code classifiers based on a small
number of teacher-composed and labeled exemplars?

RQ2. Do rubric-based approaches to automated student modeling, which combine inductive and a priori
approaches, model student discourse more reliably than purely inductive approaches with small amounts
of student data?

We address these research questions with a small set of data collected in the context of one specific
educational technology that includes an integrated suite of authoring tools. We chose to use a small set of
data because while it is well understood that inductive techniques perform relatively well in developing
classifiers using large amounts of data, our purpose here is to explore the efficacy of a rubric-based
approach for small sets of data.

Methods

Data

We conducted this study using data collected from the virtual internship Land Science (Bagley & Shaffer,
2009; Nash & Shaffer, 2011; Shaffer, 2007). In Land Science, students play the role of interns at a
fictitious urban planning firm tasked with developing a land-use plan for the city of Lowell,
Massachusetts. To do this, students conduct background research, design land-use plans, and respond to
stakeholder feedback. For example, designing land-use plans involves using a geographic information
system (GIS) tool to change the land-use designations of different parcels and explore the impact of these
changes on socioeconomic and environmental indicators.

Virtual internships like Land Science give students the opportunity to develop the epistemic frame of a
particular profession through interactions with learning content, peers, and real-world problems. In other
words, Land Science is a good example of a technological environment designed to promote active
thinking in a dialogic context.

After completing each activity in the virtual internship, students submit online notebook entries that
document their work. Once submitted, notebooks sections are scored by human raters with the help of
algorithms that automatically check for commonly made errors. Raters score each notebook entry on a
four-item scale ranging from 0 (poor) to 3 (excellent). These notebooks are thus representations of the
conclusions students draw from their active thinking about land-use issues.

To address our research questions, we developed automated models for two activities in Land Science. In
Activity 1 (Recommendations), students document their proposed land-use changes by describing where
in the city they made changes using the GIS tool, the current land uses of those locations, and their
proposed changes. In Activity 2 (Plan Justifications), students justify their proposed land-use changes on
economic or environmental grounds, or in relation to certain stakeholder requirements.

Rubric-based approach

To create automated models using the Rubric-based approach, a teacher with experience using Land
Science developed rubrics for both activities. Each rubric had three main components. First, the teacher
defined the Codes, or relevant concepts for the pedagogical context.? Next, she wrote short lists of
keywords associated with each Code and a small number of exemplars in which she labeled the sentences

2 The teacher was permitted to use the same Codes for different activities, and it was permissible for Codes to
overlap—that is, for a single excerpt to contain multiple Codes, or for two Codes to share exemplar keywords.



or phrases (selections) that expressed the Codes (see Table 1). Finally, she defined the relationships—or
connections—among the Codes associated with particular level of student work (see Table 2).

Table 1: Codes with exemplar teacher selections for Activity 1 (Recommendations).

Code Name Exemplar Selections Exemplar Keywords

I decided to change most of the land
Recommended Land . . . L .
Use around the river that was industrial to commercial, industrial, open-space

wetlands
Original Land Use I changed open space and commercial commercial, industrial, open-space
Location land around the river river, north, south, east, west
Indicator Change Oriole count and the turtle nesting sites ‘l‘{uno.ff, pl}osl’),horous, housing,

went up nesting sites
Stakeholder Natalie’s wish to decrease runoff into Nelghborhood Protecthn .

. Organization, Community Action
Concerns rivers
Group

Table 2: Rubric showing relationships among Codes and the associated levels of student work for
Activity 1 (Recommendations).

0 (Poor) 1 (Baseline) 2 (Acceptable) 3 (Excellent)

No sentences include

At least one sentence

At least half of the

All sentences that include

Recommended Land includes sentences that include | Recommended Land Use
Use or Original Land Recommended Land | Recommended Land | also include Original
Use Use or Original Land | Use also include Land Use
Use Original Land Use.
OR AND

No sentences include
Recommended Land
Use and at least one
sentence includes
Indicator Change OR
Stakeholder Concerns

At least one sentence that
includes Recommended
Land Use also includes
Location.

We did not give specific instructions as to how many exemplars the teacher should write or how long the
exemplars should be. Instead, we asked the teacher to write only as many exemplars as needed to provide
at least three exemplar texts for each Code. The teacher wrote eight exemplar entries for Activity 1, one to
three sentences in length, for a total of 15 sentences.® She wrote 14 exemplar entries for Activity 2, one to
eight sentences in length, for a total of 28 sentences.

Because automated modeling using the teacher-defined rubrics involves two levels of classification—
identifying the Codes and identifying the connections among Codes—the first step was to create inductive
classifiers for each Code. We tested four kinds of Code classifier which used Latent Semantic Analysis
(LSA), regular expression (RGX) matching, or combinations of the two in order to identify Codes in
student notebook entries. Because the sentences or phrases written by the teacher for a given Code were a
maximum of one sentence in length, prior to classification we segmented each student notebook entry into
sentences.

3 A single exemplar could (and often did) contain more than one Code.



Code classifiers.
LSA. As described above, each Code has a corresponding set of texts—that is, a set of sentences and
phrases—composed by the teacher. For a given student notebook entry, the LSA classifier calculated the
semantic similarity between the set of texts for each Code and each sentence in the entry. For a given
Code, if the maximum similarity value was above a threshold, the sentence was classified as containing
the Code.* Semantic similarity was calculated using the SEMILAR toolkit (Rus, Lintean, Banjade,
Niraula, & Stefanescu, 2013) and an LSA space built using the Touchstone Applied Science Associates
(TASA) corpus (Landauer, Foltz, & Laham, 1998).

RGX. The RGX classifiers were developed using the teacher-specified keywords for each Code. After
converting the keywords to regular expressions, the RGX classifiers used regular expression matching to
identify the presence or absence of Codes in each sentence of a given notebook entry.

AND. The AND classifier classified the sentences of each notebook entry as containing a given Code if
both the LSA and RGX classifiers classified the sentence as having the Code.

OR. The OR classifier classified the sentences of each notebook entry as containing a given Code if either
the LSA or the RGX classifier classified the sentence as having the Code.

Rubric classifiers.
Next, we used an a priori approach to developed classifiers that model notebook entries based on the
connections among Codes defined in the rubrics for each activity.

The rubric classifiers use a moving window to identify connections among Codes in notebook entries—
that is, Codes that co-occur within the window are considered connected. In this study, we used a window
size of one sentence, which represents the most conservative definition of connectivity. Relevant
connections among Codes were defined using the criteria present in the rubric (see Table 2). For a given
Activity, once all criteria had been checked, the classifiers assigned the Aighest level with matching
criteria. Thus, a notebook entry may meet the criteria for levels one, two, and three, but the classifier
would assign a score of three. We developed and tested four Rubric classifiers for both activities, each
using one of the Code classification approaches described above.

Inductive approach

To develop automated classifiers using an inductive approach, we asked the same teacher to write three
exemplar notebook entries for each level—that is, three exemplars with a level of 0, three with a level of
1, and so on—for a total of 12 exemplars per section (see Table 3). We did not give the teacher specific
guidelines for exemplar length. Exemplars for Activity 1 ranged from one to three sentences in length, for
a total of 29 sentences (compared with 15 for the rubric-based approach). Exemplars for Activity 2 ranged
from one to eight sentences, for a total of 46 sentences (compared with 28 for the rubric-based approach).

Table 3: Sample exemplars for Activity 1 (Recommendations).

Level | Exemplar

The only thing I needed to change was the CO in the air. My
0 housing, nesting, jobs, sales, birds was already good for my
stakeholders.

I recommended increasing housing options near commercial
areas, in addition to limiting the bird population.

4 For each Code, the threshold was defined as the average semantic similarity between the texts of the
Code minus one standard deviation. For some Codes, this resulted in thresholds that were very low (i.e.,
less than 0.2 on a scale from 0 to 1). In these cases, we set the threshold to 0.5 to control for Type I errors.



I changed the industrial zones to open space. Then I changed

2 the current open space to commercial space. I also changed
residential space to commercial space.

The changes me and my group made was we moved industrial
zones from the river and changed it to wetlands or open space.

3 Also I moved industrial zones closer to the residents and change
some industrial zones to commercial. These plans decrease
carbon monoxide levels and keep jobs around the area.

The inductive classifier used LSA to calculate the semantic similarity between a given student notebook
entry and the exemplar text for each level, assigning the level whose text is most similar to the notebook
entry. As with the rubric-based approach, semantic similarity was calculated using the SEMILAR toolkit
and an LSA space built using the TASA corpus.

Evaluation of classifier performance

To evaluate the performance of the rubric-based and inductive classifiers, we used notebook entries
collected from previous implementations of Land Science. We randomly selected 50 entries from Activity
1 and 50 entries from Activity 2.

To address our first research question, we evaluated the reliability of the Code classifiers used in the
Rubric approach. Two raters used social moderation (Frederiksen, Sipusic, Sherin, & Wolfe, 1998;
Herrenkohl & Cornelius, 2013; Shaffer, 2017) to code each sentence of each notebook entry for the
presence or absence of each Code, which resulted in complete agreement between the raters for all Codes.
We then compared the human and automated classifications using Cohen’s k (kappa) with an agreement
threshold of 0.65. We modeled the generalizability of these kappa values using Shaffer’s p (rho), which
tests whether an achieved level of agreement generalizes to data collected under similar conditions
(Eagan, Rogers, Pozen, Marquart, & Shaffer, 2016). Rho is interpreted in the same way as a p-value in
standard hypothesis testing. By setting an alpha (acceptable Type I error) level of 0.05, a rho value less
than 0.05 suggests that the achieved level of agreement generalizes.

To address our second research question, we compared the performance of the rubric-based and inductive
classifiers in terms of their agreement with human assessments. Specifically, the student entries from both
activities were modeled by all the automated classifiers and also manually assessed by the teacher as
described above. To test whether the automated classifiers could make the basic distinction between
entries that were poor and those that were not, we combined levels 1 through 3 such that each entry was
modeled either as poor (0) or acceptable (1).

We modeled the performance of the automated classifiers for each activity by (a) testing whether any of
the automated classifiers achieved acceptable agreement with the human classifier (i.e., the teacher), and
(b) testing whether any differences in the level of agreement achieved by different automated classifiers
were statistically significant. To perform the first test, we computed kappa between each automated
classifier and the teacher to determine the level of agreement, and we computed rho to determine whether
the level of agreement was statistically significantly greater than 0.65. To perform the second test, we
computed the difference in kappa values between each unique pair of automated classifiers. We then
computed rho to determine whether the larger of the two kappa values was statistically significantly
greater than a kappa threshold defined by the smaller of the two kappa values.’

3> The null hypothesis for a test using rho is that the data modeled by two classifiers is sampled from a larger pool of
modeled data whose kappa is less than a pre-defined threshold. A rho of less than 0.05 means that the kappa
observed on the sample is greater than 95 percent of the kappa values in the null hypothesis distribution. This allows
us to reject the null hypothesis that the true rate of agreement between the two classifiers is below threshold,
supporting the hypothesis that the true rate of agreement is above threshold. Thus, we can say that classifiers with
rho values below 0.05 perform significantly better than classifiers with kappa values less than or equal to the set



Results

RQ1: How reliable are different inductive techniques for developing Code classifiers based
on a small number of teacher-composed and labeled exemplars?

Activity 1(Recommendations).
As shown in Table 4, the RGX approach performed best overall for Activity 1, followed by the AND
approach. Both approaches had two Code classifiers (Location and Stakeholder Concerns) with kappa
values greater than or equal to 0.65. However, only for the RGX approach were both kappa values
statistically significant. The LSA and OR approaches did not have any kappa values greater than or equal
to 0.65.

Table 4: Kappa values for Activity 1 (Recommendations) Code classifiers.

Recommended | Original Land Location Indicator | Stakeholder
Land Use Use Change Concerns
LSA 0.54 0.41 0.20 0.29 0.004
RGX 0.55 0.47 0.73* 0.63 0.80*
AND 0.47 0.51 0.75* 0.37 0.67
OR 0.61 0.37 0.20 0.54 0.06

Note. Bold indicates k > 0.65; * indicates p(0.65) < 0.05.

Activity 2 (Plan Justifications).
As shown in Table 5, the OR approach performed best overall for Activity 2. This approach had four
Code classifiers (Runoff, Jobs, Land Use Decisions, and Carbon Monoxide) with kappa values greater
than or equal to 0.65. However, the kappa value for Carbon Monoxide was not statistically significant.
The LSA and RGX approaches had the next best performance. Both had two Code classifiers with
statistically significant kappa values (Jobs and Land-Use Decisions for LSA, and Jobs and Runoff for

RGX).

Table 5: Kappa values for Activity 2 (Plan Justifications) Code classifiers.
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LSA | 0.51 0.33 0.59 0.55 0.14 | 0.83* | 0.50 0.32 | 0.67* | 0.35 0.08
RGX | 0.72* | 0.62 0.60 0.04 0.32 | 0.83* | —0.01 | 0.65 0.58 0.51 0.06
AND | 0.51 0.33 0.58 0.05 0.20 | 0.83* | 0.00 0.32 0.53 0.35 0.12
OR | 0.72*% | 0.62 0.61 0.49 0.21 | 0.83* | 0.48 0.65 | 0.73* | 0.49 0.06

Note. Bold indicates k > 0.65; * indicates p(0.65) < 0.05

Overall, as shown in Figure 1, 65% of the Codes had at least one classifier whose kappa value was greater
than or equal to 0.50, but only 35% of the Codes had at least one kappa value greater than or equal to
0.65. Together, these results suggest that no single approach to Code classification is best across the two

threshold. In other words, for two competing classifiers, we can test for statistical differences in their agreement
with the teacher by setting the kappa of the null hypothesis distribution equal to the kappa of the classifier with
lower performance. If the rho value of the subsequent test is less than 0.05, we can conclude that the performance of
the other classifier is significantly better.



activities. Performance across Codes for each of the four classification approaches was relatively low, and
no approach resulted in statistically significant kappa values for all—or even a majority—of the Codes.
However, it is unclear to what extent the performance of the Code classifiers affects the performance of
the rubric-based final models, as kappa greater than or equal to 0.65 is an arbitrary (though widely used)
threshold. To evaluate the performance of the rubric-based approach, we compared it to an inductive
approach operating on a similar number of exemplars.
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Figure 1. Percentage of Codes with classifier reliability greater than or equal to a given kappa value.

RQ2: Do rubric-based approaches to automated student modeling, which combine
inductive and a prior approaches, model student discourse more reliably than purely
inductive approaches?

Activity 1(Recommendations).
As shown in Table 6, all rubric-based classifiers performed significantly better than the inductive
classifier, which had a kappa value of 0.26. Among the rubric-based classifiers, the RGX classifier
performed best, being the only approach with a kappa value (0.84) that was statistically significantly
above the kappa threshold of 0.65. That is, the RGX classifier was the only approach that achieved
acceptable agreement with the teacher. Moreover, the RGX classifier performed statistically significantly
better than all others tested.

Table 6: Classifier kappa, kappa difference, and rho comparisons for Activity 1(Recommendations)

Difference in Kappas

Model Kappa||| Inductive LSA AND OR
Inductive 0.26
Rubric-LSA 0.59 +0.33*




Rubric-AND 0.63 +0.37%* +0.04
Rubric-OR 0.65 +0.39* +0.07 +0.02
Rubric-RGX | 0.848 +0.58* +0.25* +0.21%* +0.19*

Note. Bold indicates k > 0.65; § indicates p(0.65) < 0.05; * indicates p < 0.05
for the difference in kappas

Activity 2 (Plan Justifications).
As shown in Table 7, all rubric-based classifiers performed statistically significantly better than the
inductive classifier. Among the rubric-based classifiers, the OR approach performed significantly better
all others; however, its kappa value was not statistically significant.

Table 7: Classifier kappa, kappa difference, and rho comparisons for Activity 2 (Plan Justifications)

Difference in Kappas
Model Kappa Holistic AND RGX LSA
Inductive 0.08
Rubric-AND 0.33 +0.25%
Rubric-RGX 0.47 +0.39%* +0.14*
Rubric-LSA 0.53 +0.45% +0.20* +0.06%*
Rubric-OR 0.60 +0.52%* +0.27%* +0.13%* +0.07%*

Note. Bold indicates k > 0.65; * indicates p < 0.05 for the difference in kappas

Together, these results suggest that rubric-based approaches can significantly outperform inductive
approaches when only small numbers of exemplars are available. Interestingly, our results also suggest
that rubric-based classifiers perform well even when the reliability of the Code classification is not
especially high. For example, there were only two Code classifiers for Activity 1 that had statistically
significant kappa values at a threshold of 0.65 using the RGX approach; however, the Rubric-RGX
classifier had a statistically significant kappa value of 0.84.

Discussion

This paper presents a novel, rubric-based approach to developing automated student models for new
activities that teachers develop in digital learning environments that promote active thinking. We
compared this approach to a more traditional inductive approach implemented under similar constraints.
While such an inductive approach would not normally be used when large amounts of modeled student
data are not available, it provides a useful baseline for comparison. Our results show that a rubric-based
approach can outperform an inductive approach in this context. More importantly, in some cases a rubric-
based approach can produce reliable automated models based on information that a teacher can easily
provide.

Our results thus suggest a new approach to the dilemma of modeling-in-context: that the use of
educational technologies requires automated models to provide real-time feedback at scale, but to be
effective, such models need to reflect the specific pedagogical context. While many extant educational
technologies employ automated student models, these models are typically developed without
customization in mind and through a collaboration between domain and computational experts that does
not directly involve teachers in the modeling process. In contrast, our approach combines machine
learning techniques with teacher expertise, allowing teachers to participate in the design of automated
student models of active thinking that with further work might be implemented at scale by leveraging
their skills in rubric development—identifying the key concepts, connections between concepts, and
exemplars associated with modeling in a particular pedagogical context.



This approach to automated model development is useful because it leverages existing teacher expertise,
but also because it operates on specific elements of an epistemic frame (i.e., Codes) and their connections,
rather than general features of student discourse. This feature constrains the machine learning problem,
and these constraints, we argue, explain why the rubric-based approach was able to outperform the
inductive approach using a small dataset.

This having been said, the failure of the rubric-based approach to accurately classify student responses in
Activity 2 shows that more work is clearly needed before this approach could be implemented, and to
more completely understand the conditions under which it is most effective. Thus, while these results
suggest that appropriately constructed learning technologies can elicit from teachers the information
needed to develop custom automated rubrics for modeling active thinking, this study has several
important limitations.

First, we only developed and tested the rubric-based approach in one pedagogical context with a small
amount of data, and only on data from student written work, as opposed to discourse or other records of
students’ thinking. However, while the particular Code classifiers we used were domain specific, the
overall approach is domain agnostic; that is, the approach is applicable to any context in which the goal is
to model active thinking and the data to be modeled are in the form of text (or are convertible to text).
Because many educational technologies meet these criteria, we expect the approach to be effective across
a range of contexts. Moreover, the two activities in this study reflect qualitatively different thinking:
solutions themselves and their justifications. Further studies could explore whether and how the nature of
student activities influence the accuracy of a rubric-based model of student work.

Second, our method for evaluating the performance of the rubric-based approach collapsed the original
four levels of student work to a binary classification. This decision likely occluded some classification
errors. However, we made this decision to examine whether the approach could make the basic distinction
between those notebook entries that were low quality—and thus more likely to need feedback or
intervention from a teacher—and those that met a minimum standard for acceptability. Future work will
evaluate the performance of the rubric-based approach for finer-grained classifications.

Third, it is possible that several improvements could be made to the rubric-based approach. For example,
inductive classification techniques different from those used here, such as neural networks, could yield
better results. While our prior work on data from the same pedagogical context suggests that neural
networks have similar performance to LSA and RGX (Gautam et al., 2017), future work will continue to
test different inductive techniques. Moreover, the rubric-based approach tested here used the same
inductive clasification techniques for all Codes. Because the classifers performed differently for a given
Code, it it possible that the approach could be improved by using the Code classifier that performed the
best for each Code in the final automated modeling. Our future work will test this hypothesis. Similarly,
further work could compare this rubric-based approach to a wider range of inductive methods, although
we note that because inductive methods are, in general, designed to work with large sets of coded
exemplars, it seems likely that we would achieve similar results.

Fourth, the rubric-based approach described here requires researcher expertise to translate teacher
provided information into student models. However, this translation could be easily automated. The
primary challenge would be to develop a system that scaffolds teachers’ rubric construction so as to elicit
the type and amount of information needed to develop a reliable model. For example, it was clear from
our work on this study that teachers are more likely to say things like “The student explains how their
recommended land uses are different from the original land uses” rather than “All sentences that include
Recommended Land Use also include Original Land Use.” How to best help teachers identify Codes
explicitly and describe their role in the rubric in precise terms requires further research before the method
we describe would be scaleable. In the pedagogical context we used for this study, there exists an
integrated suite of authoring tools designed to help teachers customize the educational technology. Using
this existing infrastructure, new authoring tools could be designed to scaffold teachers’ design of the



rubrics and use this information to automatically generate student models. In theory, this should be
possible for other educational technologies designed to promote active thinking that have associated
authoring tools.

Fifth, this study did not directly address the question of what additional expertise might be needed to
create sound rubrics, such as the expertise of multiple teachers, possibly in collaboration with domain
experts. While additional domain or pedagogical expertise could be useful in creating better rubrics, the
issue we are addressing in this pilot study is whether a rubric could be generated from exemplars—and
how such a rubric would perform. The question of what the right constellation of expertise in creating a
rubric might be is an important topic for future study, but as we argue above, given that teachers often
customize activities for their students, we believe that it will be important to be able to develop a method
for generating rubrics that a single teacher could use. It is possible, of course, that bias could be
introduced by the particular pedagogical aims of the teacher, or that the act of reframing rubrics in more
formal terms could introduce systematic bias, but this question is beyond the scope of the current study.

Despite these limitations, our results provide proof of concept for teacher-generated automated models of
active thinking at scale for small data sets. As such, they have important implications for educational
technologies that promote active thinking. If integreated into authoring tools, the rubric-based approach
could allow teachers to participate in the design of automated models for educational technologies
customized to their instructional needs. Through this design process, teachers could develop a better
understanding of how the automated modeling system works, which in turn could increase the adoption of
educational technologies that promote active thinking. Moreover, because the rubric-based approach
operationalizes the indentification of connections among domain-specific semantic concepts, rather than
general concepts or lexical/syntactic features, it is more likely to facilitate targeted feedback to help
promote the development of active thinking.
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