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Practitioner Notes 
 
What is already known about this topic 

• Many immersive educational technologies, such as digital games and simulations, enable students 
to take consequential action in a realistic context and to interact with peers, mentors, and 
pedagogical agents. Such technologies help students to be active-in-thinking: engaging deeply 
with, reflecting on, and otherwise making meaning of their learning experience. 

• There are now many immersive educational technologies with integrated authoring tools that 
enable teachers to customize the learning experience with relative ease, reducing barriers to 
adoption and improving the student learning. 

• Educational technologies that support learning-in-action typically contain student models that 
operate in real time to control the behavior of pedagogical agents, deliver just-in-time 
interventions, select appropriate content, or otherwise measure and promote active thinking, but 
these student models may not work appropriately if teachers customize the learning experience. 

• Much as there are authoring tools that allow teachers to customize the curriculum of a given 
learning technology, there is a need for authoring tools that allow teachers to customize the 
associated student models as well. 

 
What this paper adds 

• This paper presents a novel, rubric-based approach to developing automated student models for 
new activities that teachers develop in digital learning environments that promote active thinking. 

• Our approach combines machine learning techniques with teacher expertise, allowing teachers to 
participate in the design of automated student models of active thinking that with further 
development could be scaled by leveraging their skills in rubric development. 

• Our results show that a rubric-based approach can outperform a machine learning approach in this 
context. More importantly, in some cases a rubric-based approach can produce reliable automated 
models based on information that a teacher can easily provide. 

 
Implications for practice and/or policy 

• If integreated into authoring tools, the rubric-based approach could allow teachers to participate 
in the design of automated models for educational technologies customized to their instructional 
needs. 

• Through this design process, teachers could develop a better understanding of how the automated 
modeling system works, which in turn could increase the adoption of educational technologies 
that promote active thinking. 

• Because the rubric-based approach enables teachers to indentify key connections among concepts 
relevant to the pedagogical context, rather than general concepts or linguistic features, it is more 
likely to facilitate targeted feedback to help promote the development of active thinking. 
  



 

Learning-in-action depends on interactions with learning content, peers, and real-world 
problems. However, effective learning-in-action also depends on the extent to which 
students are active-in-thinking, making meaning of their learning experience. A critical 
component of any technology to support active thinking is the ability to ascertain whether 
(or to what extent) students have succeeded in internalizing the disciplinary strategies, 
norms of thinking, discourse practices, and habits of mind that characterize deep 
understanding in a domain. This presents what we call a dilemma of modeling-in-context: 
Teachers routinely analyze this kind of thinking for small numbers of students in 
activities they create or customize for the needs of their students; however, doing so at 
scale and in real time requires some automated process for modeling student work. 
Current techniques for developing models that reflect specific pedagogical activities and 
learning objectives that a teacher might create require either more expertise or more time 
than teachers have. In this paper, we examine a theoretical approach to addressing the 
problem of modeling active thinking in its pedagogical context that uses teacher-created 
rubrics to generate models of student work. The results of this examination show how 
appropriately constructed learning technologies can enable teachers to develop custom 
automated rubrics for modeling active thinking and meaning-making from records of 
students’ dialogic work. 

Introduction 
Many immersive educational technologies, such as digital games and simulations, enable students to take 
consequential action in a realistic context and to interact with peers, mentors, and pedagogical agents. 
However, the extent to which such learning-in-action is effective depends on the extent to which students 
are active-in-thinking: engaging deeply with, reflecting on, and otherwise making meaning of their 
learning experience. While much work has been done developing technologies and theories of learning to 
promote learning-in-action, a critical component of such technologies is the ability to ascertain whether 
(or to what extent) students have succeeded in internalizing the disciplinary strategies, norms of thinking, 
discourse practices, and habits of mind that characterize deep understanding in a domain. 

Many educational technologies that support learning-in-action contain student models that operate in real 
time to control the behavior of pedagogical agents, deliver just-in-time interventions, select appropriate 
content, or otherwise measure and promote active thinking (see, e.g., Graesser et al., 2018; Sottilare, 
Graesser, Hu, & Holden, 2013). Critically, these models are developed and validated for specific 
pedagogical contexts, and thus they cannot reliably be used in other settings. This presents what we have 
characterized as a dilemma of modeling-in-context:  

The use of educational technologies requires automated assessment processes to provide 
real-time feedback and assessment at scale, but to be effective, such assessments need to 
reflect the specific pedagogical context, including the learning objectives and student 
population (Swiecki, Shaffer, & Misfeldt, 2017). 

This dilemma is even more pronounced when teachers customize educational technologies to meet the 
needs of different student populations or to align the activities with changing standards or learning 
objectives. Once the “holy grail” of educational technology design (Aleven, McLaren, Sewall, & 
Koedinger, 2009), there are now many immersive digital learning environments with integrated authoring 
tools that enable teachers to make such changes with relative ease, reducing barriers to adoption and 
improving the learning experience (see, e.g., Cubillo, Martin, Castro, & Boticki, 2015; Mehm, Göbel, 
Radke, & Steinmetz, 2009; Nye, Graesser, & Hu, 2015; Ososky, Brawner, Goldberg, & Sottilare, 2016; 
Sottilare, Graesser, Hu, & Brawner, 2015; Swiecki, Shaffer, & Misfeldt, 2017). However, when teachers 
modify the content or structure of an educational technology, the integrated models may not reflect the 



new pedagogical context. That is, adapting the curriculum may invalidate the original models (Gautam, 
Swiecki, Shaffer, Graesser, & Rus, 2017). 

While teachers routinely analyze active thinking for small numbers of students, doing so at scale and in 
real time requires some kind of automated student model. Because most teachers do not have the ability to 
develop such processes unassisted, systems need to be designed that enable teachers to develop custom 
models of active thinking. In other words, much as there are authoring tools that allow teachers to 
customize the curriculum of a given learning technology, there is a need for authoring tools that allow 
teachers to customize the associated student models as well.1 

In this paper, we examine a theoretical approach to addressing the problem of modeling active thinking in 
its pedagogical context. Specifically, we describe an approach to developing automated student models 
that combines machine learning techniques with the pedagogical and domain expertise of teachers, and 
demonstrate its utility by comparing it to a more traditional machine learning approach. The results of this 
examination show how appropriately constructed learning technologies can enable teachers to develop 
custom automated processes for modeling active thinking and meaning-making from records of student’s 
dialogic work. 

Theory 
The structure of automated student models 
Automated student models have been used to promote and assess active thinking in a variety of 
technology-mediated environments. While there are many such environments (see, e.g., McNamara, 
O’Reilly, Best, & Ozuru, 2006; Rowe, Shores, Mott, & Lester, 2011; Rus, Niraula, & Banjade, 2015), 
two prominent examples are AutoTutor and virtual internships. AutoTutor uses dialogues with 
pedagogical agents to facilitate active thinking in domains such as physics. During these dialogues, 
automated student models are used to assess student understanding of the domain and select appropriate 
pedagogical support (Graesser, 2016). In virtual internships, students collaborate to solve complex 
problems in domains such as engineering and urban planning. During the simulated internship, automated 
student models are used to facilitate reflective discussions (Saucerman, Ruis, & Shaffer, 2017), assess 
student work (Rus, Gautam, Swiecki, Shaffer, & Graesser, 2016), and provide real-time feedback to 
instructors (Shaffer, 2017). 
 
The student models built into such educational technologies generally have three key components 
(Shermis & Burstein, 2013): (1) responses, such as scores, written responses, or other feedback that can 
be assigned to student discourse, including actions, communication, and submitted work; (2) one or more 
classifiers that automatically assign the appropriate response to student discourse; and (3) features of 
student discourse that classifiers use to assign responses. For example, the AutoTutor system uses 
automated classifiers based on two kinds of features—semantic similarity and pattern-matching—to 
model student dialogues with conversational agents and generate pedagogical actions (Graesser, 
Chipman, Haynes, & Olney, 2005). 

Development of automated student models typically follows one of two approaches. A priori approaches 
involve specifying the classification rules that determine how responses are assigned based on features of 
student discourse. For example, to develop a model of written work, one could specify a word count 
threshold, key terms that need to be present, or other more complex criteria, such as adherence to a topic 
or the presence of a claim. To create a priori classification rules that accurately model student work thus 
requires both pedagogical content knowledge and the ability to compose such rules in a form that an 
                                                      
1 Student models are often used for assessment. However, in the context of active thinking, they are more often part 
of the process of providing generative feedback to students. Such feedback can come from a teacher, who uses 
student models to better understand students’ work; from displays or visualizations of work presented to students; or 
from characters, agents, or other sources within the system. 



automated classification system can implement. Most teachers have the former but not the latter, making 
it difficult to express a model of active thinking as a set of rules without appropriate scaffolding (Cai, 
Graesser, & Hu, 2015; Šimko, 2011; Zapata-Rivera, Jackson, & Katz, 2015). 

Inductive approaches, such as machine learning, provide an alternate process for developing classification 
rules. Machine learning involves training algorithms on large amounts of human-assessed student 
discourse from the domain. This data is then used to induce relationships between features of the 
discourse and the human-generated responses. For example, a simple inductive classification approach 
may involve training a machine learning algorithm to model student writing based on features such as 
word count, frequency of key terms, ratio of uppercase to lowercase letters, and number of errors in 
spelling or grammar. The model would learn the thresholds for each feature that best distinguishes among 
the different human responses. Such thresholds can then be used to automatically model new essays. 
However, while inductive approaches can be automated, thus reducing the need for expertise in classifier 
development, they require large amounts of human-assessed data from a representative pedagogical 
context. Because such data are not available when teachers customize digital learning environments—by 
definition a customized environment is different from any other environment where data was previously 
collected—inductive approaches cannot typically be used to develop automated models for new curricula. 

To address the lack of a suitable approach to the dilemma of modeling-in-context when teachers 
customize educational technologies, we propose an approach that leverages teachers’ skills in assessing 
active thinking for small numbers of students to generate student models that are both scalable and 
sensitive to the complexities of active thinking in its pedagogical context. That is, we elicit from teachers 
the kind of work they already do well and explore a method for converting that work into an automated 
process. Specifically, we propose an approach to developing automated student models based on a 
scaffolded process of rubric development. 

A rubric-based approach to automated student models 
When teachers assess students’ active thinking in dialogic work, such as writing, they often do so by 
creating a rubric. In many pedagogical contexts, Montgomery (2000) argues, teachers develop rubrics by 
(a) identifying key concepts and (b) indicating how those key concepts should be expressed and 
integrated in student work. Each assessment is characterized by the extent to which those criteria are met. 
In addition, teachers typically include (c) concrete exemplars to model the kind of work associated with 
each assessment (for more on rubric development, see Glass, 2004; National Research Council, 2012; 
Reddy & Andrade, 2010). 

Importantly, when teachers construct rubrics, they are providing content that can seed both a priori and 
inductive approaches to automated model development. By specifying key concepts and how they are 
expressed and integrated for each response, teachers are providing classification rules, but those rules are 
not written in a way that a machine can implement. By specifying exemplars for each model, teachers are 
providing the kind of data that machine learning algorithms operate on, but they can only reasonably 
provide a small number of such examples, and far fewer than such approaches typically require. 

Studies show that teachers are able to modify and author learning technologies when an appropriate set of 
authoring tools are available (see, e.g., Dağ, Durdu, & Gerdan, 2014). Therefore, to enable teachers to 
produce rubrics in a way that is familiar to them but can also serve as the basis for the construction of 
automated models, we developed and tested an approach to scaffolded rubric construction based on 
theories of connectivity. 

There is a considerable body of research that construes active thinking not as the mere possession of 
particular bits of knowledge or the demonstration of skills in isolation, but as a process of integrating 
them to frame, investigate, and solve complex problems (see, e.g., DiSessa, 1988; Linn, Eylon, & Davis, 
2004; Madani et al., 2017; Shaffer, 2012). The theory of epistemic frames (Shaffer, 2012), for example, 
suggests that active thinking consists of the cognitive connections that people make among the 
knowledge, skills, values, and ways of making decisions characteristic of some domain. An epistemic 



frame, however, is not simply the set of concepts, actions, and other elements of a domain; rather, it is the 
particular configuration of linkages among those elements. In other words, active thinking involves 
acquiring the epistemic frame of a domain, and an epistemic frame is a particular set of cognitive 
connections that are revealed through the actions and interactions of an individual engaged in authentic 
tasks (or simulations of authentic tasks). The development of an epistemic frame, and by extension of 
active thinking, can be modeled in pedagogical context by measuring the connections learners make 
among the frame elements. 

A rubric-based approach to developing automated student models thus introduces an additional level of 
modeling to the classification process. Instead of attempting to develop a classifier that operates directly 
on features to determine the appropriate response, as in the examples given above, this approach involves 
a two-level classification. First, features are classified into Codes: concepts, actions, or other elements 
that are meaningful in some domain (for an in-depth discussion of Codes, see Shaffer, 2017). These 
Codes, which are the elements of a domain’s epistemic frame, are thus more specific than overall models 
of student discourse, but unlike raw features, they have particular meanings or interpretations in the 
context of the domain. Because active thinking involves integrating Codes into an epistemic frame, the 
second classification step is to give the appropriate response based on how the Codes are connected in 
student work. Research has shown that co-occurrence of Codes within some window of discourse (e.g., 
within some number of sentences in written work, or within some span of time in conversation) is a good 
indicator of cognitive connections (Dyke, Kumar, Ai, & Rosé, 2012; i Cancho & Solé, 2001; Lund & 
Burgess, 1996; Ruis, Siebert-Evenstone, Pozen, Eagan, & Shaffer, 2019; Siebert-Evenstone et al., 2017). 
This co-occurrence structure can then be used to assign the appropriate response. For example, Swiecki 
and colleagues (in press) used automated classifiers to identify the Codes present in discourse data 
collected from military teams during training, and used connections between these Codes to model active 
thinking in various training scenarios. 

To seed the development of an automated model based on connectivity, teachers would need to provide 
three components: (a) the Codes relevant to the pedagogical context, (b) the relationships among those 
Codes that are associated with particular models, and (c) a small number of exemplars in which the 
teacher has labeled the portions in which the Codes are expressed. These are, in effect, the components 
that teachers already provide in rubrics: key concepts (i.e., Codes), information about how those concepts 
are integrated (i.e., connections), and exemplars that illustrate the key concepts as they would appear in 
student work. 

Thus, we argue that with appropriate scaffolding, teachers could produce rubrics that provide the material 
necessary to develop effective automated models of students’ active thinking. This rubric-based approach 
is similar to inductive models in the sense that a set of exemplars are used to generate a classifier. 
However, because Codes are more specific than a general model of student discourse, Code classifiers 
can be induced from a small number of teacher-provided exemplars. The rubric-based approach is also 
similar to a priori models, in the sense that there are specific rules that define what combinations of Codes 
produce a particular model. But again, because Codes are meaningful in some domain, it is easier for 
teachers to specify rules for how they should connect that can easily be translated into rules that an 
automated classification system can implement. 

In this study, we evaluated a rubric-based approach to developing automated student models. This 
approach utilizes rubrics composed by a teacher that indicate the Codes and key connections, and that 
provide exemplars with the relevant portions annotated for the presence of those Codes. We compare this 
method with a machine learning approach operating on a comparable number of exemplars composed by 
a teacher. We hypothesize that, for a small set of data, (a) automated classifiers with Cohen’s kappa 
statistically significantly above the customary level of 0.65 to identify Codes from features of student 
work can be developed using inductive techniques on a small number of teacher-composed exemplars in 
which the portions of text that indicate the presence of a given Code are annotated; and (b) automated 
classifiers for assigning the appropriate response to student work based on connectivity among Codes (as 



defined a priori by teachers) will have Cohen’s kappa values that are statistically significantly higher than 
classifiers induced from a comparable number of exemplars. 

To test these hypotheses, we designed a study to answer the following research questions: 

RQ1. How reliable are different inductive techniques for developing Code classifiers based on a small 
number of teacher-composed and labeled exemplars? 

RQ2. Do rubric-based approaches to automated student modeling, which combine inductive and a priori 
approaches, model student discourse more reliably than purely inductive approaches with small amounts 
of student data? 

We address these research questions with a small set of data collected in the context of one specific 
educational technology that includes an integrated suite of authoring tools. We chose to use a small set of 
data because while it is well understood that inductive techniques perform relatively well in developing 
classifiers using large amounts of data, our purpose here is to explore the efficacy of a rubric-based 
approach for small sets of data. 

Methods 
Data 
We conducted this study using data collected from the virtual internship Land Science (Bagley & Shaffer, 
2009; Nash & Shaffer, 2011; Shaffer, 2007). In Land Science, students play the role of interns at a 
fictitious urban planning firm tasked with developing a land-use plan for the city of Lowell, 
Massachusetts. To do this, students conduct background research, design land-use plans, and respond to 
stakeholder feedback. For example, designing land-use plans involves using a geographic information 
system (GIS) tool to change the land-use designations of different parcels and explore the impact of these 
changes on socioeconomic and environmental indicators.  

Virtual internships like Land Science give students the opportunity to develop the epistemic frame of a 
particular profession through interactions with learning content, peers, and real-world problems. In other 
words, Land Science is a good example of a technological environment designed to promote active 
thinking in a dialogic context.  

After completing each activity in the virtual internship, students submit online notebook entries that 
document their work. Once submitted, notebooks sections are scored by human raters with the help of 
algorithms that automatically check for commonly made errors. Raters score each notebook entry on a 
four-item scale ranging from 0 (poor) to 3 (excellent). These notebooks are thus representations of the 
conclusions students draw from their active thinking about land-use issues. 

To address our research questions, we developed automated models for two activities in Land Science. In 
Activity 1 (Recommendations), students document their proposed land-use changes by describing where 
in the city they made changes using the GIS tool, the current land uses of those locations, and their 
proposed changes. In Activity 2 (Plan Justifications), students justify their proposed land-use changes on 
economic or environmental grounds, or in relation to certain stakeholder requirements.   

Rubric-based approach 
To create automated models using the Rubric-based approach, a teacher with experience using Land 
Science developed rubrics for both activities. Each rubric had three main components. First, the teacher 
defined the Codes, or relevant concepts for the pedagogical context.2 Next, she wrote short lists of 
keywords associated with each Code and a small number of exemplars in which she labeled the sentences 

                                                      
2 The teacher was permitted to use the same Codes for different activities, and it was permissible for Codes to 
overlap—that is, for a single excerpt to contain multiple Codes, or for two Codes to share exemplar keywords. 



or phrases (selections) that expressed the Codes (see Table 1). Finally, she defined the relationships—or 
connections—among the Codes associated with particular level of student work (see Table 2). 

Table 1: Codes with exemplar teacher selections for Activity 1 (Recommendations).  
 

Code Name Exemplar Selections Exemplar Keywords 

Recommended Land 
Use 

I decided to change most of the land 
around the river that was industrial to 
wetlands 

commercial, industrial, open-space 

Original Land Use I changed open space and commercial commercial, industrial, open-space 
Location land around the river river, north, south, east, west 

Indicator Change Oriole count and the turtle nesting sites 
went up 

Runoff, phosphorous, housing, 
“nesting sites” 

Stakeholder 
Concerns 

Natalie’s wish to decrease runoff into 
rivers 

Neighborhood Protection 
Organization, Community Action 
Group 

 
Table 2: Rubric showing relationships among Codes and the associated levels of student work for 
Activity 1 (Recommendations).  
  

0 (Poor) 1 (Baseline) 2 (Acceptable) 3 (Excellent) 
No sentences include 
Recommended Land 
Use or Original Land 
Use  

OR 

No sentences include 
Recommended Land 
Use and at least one 
sentence includes 
Indicator Change OR 
Stakeholder Concerns 

At least one sentence 
includes 
Recommended Land 
Use or Original Land 
Use 
 
  

At least half of the 
sentences that include 
Recommended Land 
Use also include 
Original Land Use.   

All sentences that include 
Recommended Land Use 
also include Original 
Land Use  
 
AND 
 
At least one sentence that 
includes Recommended 
Land Use also includes  
Location.  
 

 

We did not give specific instructions as to how many exemplars the teacher should write or how long the 
exemplars should be. Instead, we asked the teacher to write only as many exemplars as needed to provide 
at least three exemplar texts for each Code. The teacher wrote eight exemplar entries for Activity 1, one to 
three sentences in length, for a total of 15 sentences.3 She wrote 14 exemplar entries for Activity 2, one to 
eight sentences in length, for a total of 28 sentences.  

Because automated modeling using the teacher-defined rubrics involves two levels of classification—
identifying the Codes and identifying the connections among Codes—the first step was to create inductive 
classifiers for each Code. We tested four kinds of Code classifier which used Latent Semantic Analysis 
(LSA), regular expression (RGX) matching, or combinations of the two in order to identify Codes in 
student notebook entries. Because the sentences or phrases written by the teacher for a given Code were a 
maximum of one sentence in length, prior to classification we segmented each student notebook entry into 
sentences.   

                                                      
3 A single exemplar could (and often did) contain more than one Code. 



Code classifiers. 
LSA. As described above, each Code has a corresponding set of texts—that is, a set of sentences and 
phrases—composed by the teacher. For a given student notebook entry, the LSA classifier calculated the 
semantic similarity between the set of texts for each Code and each sentence in the entry. For a given 
Code, if the maximum similarity value was above a threshold, the sentence was classified as containing 
the Code.4 Semantic similarity was calculated using the SEMILAR toolkit (Rus, Lintean, Banjade, 
Niraula, & Stefanescu, 2013) and an LSA space built using the Touchstone Applied Science Associates 
(TASA) corpus (Landauer, Foltz, & Laham, 1998). 

RGX. The RGX classifiers were developed using the teacher-specified keywords for each Code. After 
converting the keywords to regular expressions, the RGX classifiers used regular expression matching to 
identify the presence or absence of Codes in each sentence of a given notebook entry.  

AND. The AND classifier classified the sentences of each notebook entry as containing a given Code if 
both the LSA and RGX classifiers classified the sentence as having the Code.  

OR. The OR classifier classified the sentences of each notebook entry as containing a given Code if either 
the LSA or the RGX classifier classified the sentence as having the Code. 

Rubric classifiers. 
Next, we used an a priori approach to developed classifiers that model notebook entries based on the 
connections among Codes defined in the rubrics for each activity. 

The rubric classifiers use a moving window to identify connections among Codes in notebook entries—
that is, Codes that co-occur within the window are considered connected. In this study, we used a window 
size of one sentence, which represents the most conservative definition of connectivity. Relevant 
connections among Codes were defined using the criteria present in the rubric (see Table 2). For a given 
Activity, once all criteria had been checked, the classifiers assigned the highest level with matching 
criteria. Thus, a notebook entry may meet the criteria for levels one, two, and three, but the classifier 
would assign a score of three. We developed and tested four Rubric classifiers for both activities, each 
using one of the Code classification approaches described above.   

Inductive approach 
To develop automated classifiers using an inductive approach, we asked the same teacher to write three 
exemplar notebook entries for each level—that is, three exemplars with a level of 0, three with a level of 
1, and so on—for a total of 12 exemplars per section (see Table 3). We did not give the teacher specific 
guidelines for exemplar length. Exemplars for Activity 1 ranged from one to three sentences in length, for 
a total of 29 sentences (compared with 15 for the rubric-based approach). Exemplars for Activity 2 ranged 
from one to eight sentences, for a total of 46 sentences (compared with 28 for the rubric-based approach).  

Table 3: Sample exemplars for Activity 1 (Recommendations).  
 

Level Exemplar 

0 
The only thing I needed to change was the CO in the air. My 
housing, nesting, jobs, sales, birds was already good for my 
stakeholders. 

1 I recommended increasing housing options near commercial 
areas, in addition to limiting the bird population. 

                                                      
4 For each Code, the threshold was defined as the average semantic similarity between the texts of the 
Code minus one standard deviation. For some Codes, this resulted in thresholds that were very low (i.e., 
less than 0.2 on a scale from 0 to 1). In these cases, we set the threshold to 0.5 to control for Type I errors.  
 



2 
I changed the industrial zones to open space. Then I changed 
the current open space to commercial space. I also changed 
residential space to commercial space. 

3 

The changes me and my group made was we moved industrial 
zones from the river and changed it to wetlands or open space. 
Also I moved industrial zones closer to the residents and change 
some industrial zones to commercial. These plans decrease 
carbon monoxide levels and keep jobs around the area. 

 
The inductive classifier used LSA to calculate the semantic similarity between a given student notebook 
entry and the exemplar text for each level, assigning the level whose text is most similar to the notebook 
entry. As with the rubric-based approach, semantic similarity was calculated using the SEMILAR toolkit 
and an LSA space built using the TASA corpus. 

Evaluation of classifier performance 
To evaluate the performance of the rubric-based and inductive classifiers, we used notebook entries 
collected from previous implementations of Land Science. We randomly selected 50 entries from Activity 
1 and 50 entries from Activity 2.  

To address our first research question, we evaluated the reliability of the Code classifiers used in the 
Rubric approach. Two raters used social moderation (Frederiksen, Sipusic, Sherin, & Wolfe, 1998; 
Herrenkohl & Cornelius, 2013; Shaffer, 2017) to code each sentence of each notebook entry for the 
presence or absence of each Code, which resulted in complete agreement between the raters for all Codes. 
We then compared the human and automated classifications using Cohen’s κ (kappa) with an agreement 
threshold of 0.65. We modeled the generalizability of these kappa values using Shaffer’s ρ (rho), which 
tests whether an achieved level of agreement generalizes to data collected under similar conditions 
(Eagan, Rogers, Pozen, Marquart, & Shaffer, 2016). Rho is interpreted in the same way as a p-value in 
standard hypothesis testing. By setting an alpha (acceptable Type I error) level of 0.05, a rho value less 
than 0.05 suggests that the achieved level of agreement generalizes.  

To address our second research question, we compared the performance of the rubric-based and inductive 
classifiers in terms of their agreement with human assessments. Specifically, the student entries from both 
activities were modeled by all the automated classifiers and also manually assessed by the teacher as 
described above. To test whether the automated classifiers could make the basic distinction between 
entries that were poor and those that were not, we combined levels 1 through 3 such that each entry was 
modeled either as poor (0) or acceptable (1).   

We modeled the performance of the automated classifiers for each activity by (a) testing whether any of 
the automated classifiers achieved acceptable agreement with the human classifier (i.e., the teacher), and 
(b) testing whether any differences in the level of agreement achieved by different automated classifiers 
were statistically significant. To perform the first test, we computed kappa between each automated 
classifier and the teacher to determine the level of agreement, and we computed rho to determine whether 
the level of agreement was statistically significantly greater than 0.65. To perform the second test, we 
computed the difference in kappa values between each unique pair of automated classifiers. We then 
computed rho to determine whether the larger of the two kappa values was statistically significantly 
greater than a kappa threshold defined by the smaller of the two kappa values.5 

                                                      
5 The null hypothesis for a test using rho is that the data modeled by two classifiers is sampled from a larger pool of 
modeled data whose kappa is less than a pre-defined threshold. A rho of less than 0.05 means that the kappa 
observed on the sample is greater than 95 percent of the kappa values in the null hypothesis distribution. This allows 
us to reject the null hypothesis that the true rate of agreement between the two classifiers is below threshold, 
supporting the hypothesis that the true rate of agreement is above threshold. Thus, we can say that classifiers with 
rho values below 0.05 perform significantly better than classifiers with kappa values less than or equal to the set 



Results 
RQ1: How reliable are different inductive techniques for developing Code classifiers based 
on a small number of teacher-composed and labeled exemplars? 

Activity 1(Recommendations). 
As shown in Table 4, the RGX approach performed best overall for Activity 1, followed by the AND 
approach. Both approaches had two Code classifiers (Location and Stakeholder Concerns) with kappa 
values greater than or equal to 0.65. However, only for the RGX approach were both kappa values 
statistically significant. The LSA and OR approaches did not have any kappa values greater than or equal 
to 0.65. 
 
Table 4: Kappa values for Activity 1 (Recommendations) Code classifiers. 
 

 Recommended 
Land Use 

Original Land 
Use Location Indicator 

Change 
Stakeholder 

Concerns 
LSA 0.54 0.41 0.20 0.29 0.004 
RGX 0.55  0.47 0.73* 0.63 0.80* 
AND 0.47  0.51 0.75* 0.37 0.67 
OR 0.61  0.37 0.20 0.54 0.06 

Note. Bold indicates κ ≥ 0.65; * indicates ρ(0.65) < 0.05. 

 
Activity 2 (Plan Justifications).  

As shown in Table 5, the OR approach performed best overall for Activity 2. This approach had four 
Code classifiers (Runoff, Jobs, Land Use Decisions, and Carbon Monoxide) with kappa values greater 
than or equal to 0.65. However, the kappa value for Carbon Monoxide was not statistically significant. 
The LSA and RGX approaches had the next best performance. Both had two Code classifiers with 
statistically significant kappa values (Jobs and Land-Use Decisions for LSA, and Jobs and Runoff for 
RGX).  
 
Table 5: Kappa values for Activity 2 (Plan Justifications) Code classifiers.  
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LSA 0.51 0.33 0.59 0.55 0.14 0.83* 0.50 0.32 0.67* 0.35 0.08 
RGX 0.72* 0.62 0.60 0.04 0.32 0.83* –0.01 0.65 0.58 0.51 0.06 
AND 0.51 0.33 0.58 0.05 0.20 0.83* 0.00 0.32 0.53 0.35 0.12 
OR 0.72* 0.62 0.61 0.49 0.21 0.83* 0.48 0.65 0.73* 0.49 0.06 

Note. Bold indicates κ ≥ 0.65; * indicates ρ(0.65) < 0.05 

Overall, as shown in Figure 1, 65% of the Codes had at least one classifier whose kappa value was greater 
than or equal to 0.50, but only 35% of the Codes had at least one kappa value greater than or equal to 
0.65. Together, these results suggest that no single approach to Code classification is best across the two 

                                                      
threshold. In other words, for two competing classifiers, we can test for statistical differences in their agreement 
with the teacher by setting the kappa of the null hypothesis distribution equal to the kappa of the classifier with 
lower performance. If the rho value of the subsequent test is less than 0.05, we can conclude that the performance of 
the other classifier is significantly better. 



activities. Performance across Codes for each of the four classification approaches was relatively low, and 
no approach resulted in statistically significant kappa values for all—or even a majority—of the Codes. 
However, it is unclear to what extent the performance of the Code classifiers affects the performance of 
the rubric-based final models, as kappa greater than or equal to 0.65 is an arbitrary (though widely used) 
threshold. To evaluate the performance of the rubric-based approach, we compared it to an inductive 
approach operating on a similar number of exemplars. 

 

 
Figure 1. Percentage of Codes with classifier reliability greater than or equal to a given kappa value.  

 

RQ2: Do rubric-based approaches to automated student modeling, which combine 
inductive and a prior approaches, model student discourse more reliably than purely 
inductive approaches? 

Activity 1(Recommendations). 
As shown in Table 6, all rubric-based classifiers performed significantly better than the inductive 
classifier, which had a kappa value of 0.26. Among the rubric-based classifiers, the RGX classifier 
performed best, being the only approach with a kappa value (0.84) that was statistically significantly 
above the kappa threshold of 0.65. That is, the RGX classifier was the only approach that achieved 
acceptable agreement with the teacher. Moreover, the RGX classifier performed statistically significantly 
better than all others tested. 

Table 6: Classifier kappa, kappa difference, and rho comparisons for Activity 1(Recommendations)  
 

 Difference in Kappas 
Model Kappa Inductive LSA AND OR 
Inductive 0.26 

 
   

Rubric-LSA 0.59 +0.33*    



 

 

 
Note. Bold indicates κ ≥ 0.65; § indicates ρ(0.65) < 0.05; * indicates ρ < 0.05 
for the difference in kappas 

Activity 2 (Plan Justifications). 
As shown in Table 7, all rubric-based classifiers performed statistically significantly better than the 
inductive classifier. Among the rubric-based classifiers, the OR approach performed significantly better 
all others; however, its kappa value was not statistically significant. 
 
Table 7: Classifier kappa, kappa difference, and rho comparisons for Activity 2 (Plan Justifications)  

 

 

 

 

 

 

Note. Bold indicates κ ≥ 0.65; * indicates ρ < 0.05 for the difference in kappas 

Together, these results suggest that rubric-based approaches can significantly outperform inductive 
approaches when only small numbers of exemplars are available. Interestingly, our results also suggest 
that rubric-based classifiers perform well even when the reliability of the Code classification is not 
especially high. For example, there were only two Code classifiers for Activity 1 that had statistically 
significant kappa values at a threshold of 0.65 using the RGX approach; however, the Rubric-RGX 
classifier had a statistically significant kappa value of 0.84. 

Discussion 
This paper presents a novel, rubric-based approach to developing automated student models for new 
activities that teachers develop in digital learning environments that promote active thinking. We 
compared this approach to a more traditional inductive approach implemented under similar constraints. 
While such an inductive approach would not normally be used when large amounts of modeled student 
data are not available, it provides a useful baseline for comparison. Our results show that a rubric-based 
approach can outperform an inductive approach in this context. More importantly, in some cases a rubric-
based approach can produce reliable automated models based on information that a teacher can easily 
provide.  

Our results thus suggest a new approach to the dilemma of modeling-in-context: that the use of 
educational technologies requires automated models to provide real-time feedback at scale, but to be 
effective, such models need to reflect the specific pedagogical context. While many extant educational 
technologies employ automated student models, these models are typically developed without 
customization in mind and through a collaboration between domain and computational experts that does 
not directly involve teachers in the modeling process. In contrast, our approach combines machine 
learning techniques with teacher expertise, allowing teachers to participate in the design of automated 
student models of active thinking that with further work might be implemented at scale by leveraging 
their skills in rubric development—identifying the key concepts, connections between concepts, and 
exemplars associated with modeling in a particular pedagogical context. 

Rubric-AND 0.63 +0.37* +0.04   
Rubric-OR 0.65 +0.39* +0.07 +0.02  
Rubric-RGX 0.84§ +0.58* +0.25* +0.21* +0.19* 

 Difference in Kappas 
Model Kappa Holistic AND RGX LSA 
Inductive 0.08 

 
   

Rubric-AND 0.33 +0.25*    
Rubric-RGX 0.47 +0.39* +0.14*   
Rubric-LSA 0.53 +0.45* +0.20* +0.06*  
Rubric-OR 0.60 +0.52* +0.27* +0.13* +0.07* 



This approach to automated model development is useful because it leverages existing teacher expertise, 
but also because it operates on specific elements of an epistemic frame (i.e., Codes) and their connections, 
rather than general features of student discourse. This feature constrains the machine learning problem, 
and these constraints, we argue, explain why the rubric-based approach was able to outperform the 
inductive approach using a small dataset.  

This having been said, the failure of the rubric-based approach to accurately classify student responses in 
Activity 2 shows that more work is clearly needed before this approach could be implemented, and to 
more completely understand the conditions under which it is most effective. Thus, while these results 
suggest that appropriately constructed learning technologies can elicit from teachers the information 
needed to develop custom automated rubrics for modeling active thinking, this study has several 
important limitations.  

First, we only developed and tested the rubric-based approach in one pedagogical context with a small 
amount of data, and only on data from student written work, as opposed to discourse or other records of 
students’ thinking. However, while the particular Code classifiers we used were domain specific, the 
overall approach is domain agnostic; that is, the approach is applicable to any context in which the goal is 
to model active thinking and the data to be modeled are in the form of text (or are convertible to text). 
Because many educational technologies meet these criteria, we expect the approach to be effective across 
a range of contexts. Moreover, the two activities in this study reflect qualitatively different thinking: 
solutions themselves and their justifications. Further studies could explore whether and how the nature of 
student activities influence the accuracy of a rubric-based model of student work. 

Second, our method for evaluating the performance of the rubric-based approach collapsed the original 
four levels of student work to a binary classification. This decision likely occluded some classification 
errors. However, we made this decision to examine whether the approach could make the basic distinction 
between those notebook entries that were low quality—and thus more likely to need feedback or 
intervention from a teacher—and those that met a minimum standard for acceptability. Future work will 
evaluate the performance of the rubric-based approach for finer-grained classifications.  

Third, it is possible that several improvements could be made to the rubric-based approach. For example, 
inductive classification techniques different from those used here, such as neural networks, could yield 
better results. While our prior work on data from the same pedagogical context suggests that neural 
networks have similar performance to LSA and RGX (Gautam et al., 2017), future work will continue to 
test different inductive techniques. Moreover, the rubric-based approach tested here used the same 
inductive clasification techniques for all Codes. Because the classifers performed differently for a given 
Code, it it possible that the approach could be improved by using the Code classifier that performed the 
best for each Code in the final automated modeling. Our future work will test this hypothesis. Similarly, 
further work could compare this rubric-based approach to a wider range of inductive methods, although 
we note that because inductive methods are, in general, designed to work with large sets of coded 
exemplars, it seems likely that we would achieve similar results. 

Fourth, the rubric-based approach described here requires researcher expertise to translate teacher 
provided information into student models. However, this translation could be easily automated. The 
primary challenge would be to develop a system that scaffolds teachers’ rubric construction so as to elicit 
the type and amount of information needed to develop a reliable model. For example, it was clear from 
our work on this study that teachers are more likely to say things like “The student explains how their 
recommended land uses are different from the original land uses” rather than “All sentences that include 
Recommended Land Use also include Original Land Use.” How to best help teachers identify Codes 
explicitly and describe their role in the rubric in precise terms requires further research before the method 
we describe would be scaleable. In the pedagogical context we used for this study, there exists an 
integrated suite of authoring tools designed to help teachers customize the educational technology. Using 
this existing infrastructure, new authoring tools could be designed to scaffold teachers’ design of the 



rubrics and use this information to automatically generate student models. In theory, this should be 
possible for other educational technologies designed to promote active thinking that have associated 
authoring tools.  

Fifth, this study did not directly address the question of what additional expertise might be needed to 
create sound rubrics, such as the expertise of multiple teachers, possibly in collaboration with domain 
experts. While additional domain or pedagogical expertise could be useful in creating better rubrics, the 
issue we are addressing in this pilot study is whether a rubric could be generated from exemplars—and 
how such a rubric would perform. The question of what the right constellation of expertise in creating a 
rubric might be is an important topic for future study, but as we argue above, given that teachers often 
customize activities for their students, we believe that it will be important to be able to develop a method 
for generating rubrics that a single teacher could use. It is possible, of course, that bias could be 
introduced by the particular pedagogical aims of the teacher, or that the act of reframing rubrics in more 
formal terms could introduce systematic bias, but this question is beyond the scope of the current study. 

Despite these limitations, our results provide proof of concept for teacher-generated automated models of 
active thinking at scale for small data sets. As such, they have important implications for educational 
technologies that promote active thinking. If integreated into authoring tools, the rubric-based approach 
could allow teachers to participate in the design of automated models for educational technologies 
customized to their instructional needs. Through this design process, teachers could develop a better 
understanding of how the automated modeling system works, which in turn could increase the adoption of 
educational technologies that promote active thinking. Moreover, because the rubric-based approach 
operationalizes the indentification of connections among domain-specific semantic concepts, rather than 
general concepts or lexical/syntactic features, it is more likely to facilitate targeted feedback to help 
promote the development of active thinking. 
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