
Active Learning for Non-Parametric Regression
Using Purely Random Trees

Jack Goetz Ambuj Tewari
University of Michigan
Ann Arbor, MI 48109

{jrgoetz, tewaria, paulzim}@umich.edu

Paul Zimmerman

Abstract

Active learning is the task of using labelled data to select additional points to
label, with the goal of fitting the most accurate model with a fixed budget of la-
belled points. In binary classification active learning is known to produce faster
rates than passive learning for a broad range of settings. However in regression
restrictive structure and tailored methods were previously needed to obtain theo-
retically superior performance. In this paper we propose an intuitive tree based ac-
tive learning algorithm for non-parametric regression with provable improvement
over random sampling. When implemented with Mondrian Trees our algorithm is
tuning parameter free, consistent and minimax optimal for Lipschitz functions.

1 Introduction

In this paper we study active learning for regression in the pool setting. In our setup we are given
a pool of unlabelled data points and want to build the best model with a fixed number of samples,
allowing selection of new points to use labels already obtained. Active learning is motivated by
scenarios where the experimenter has control over the data labelling process and where unlabelled
points are cheap but labels are expensive.

Our primary motivation comes from computational chemistry, where chemical properties of inter-
est can be computed by solving approximations to the Schrödinger equation. One key property to
chemists, the rate of chemical reaction, can be quantified via the activation energy, which controls
the rate of reaction as a function of temperature [9]. While calculating the activation energy is
expensive, there are a small number of readily available features of the reaction that influence the
activation energy. This incentivizes building a metamodel for the activation energy to avoid exces-
sive analysis of undesirable (high activation energy) reactions. Since we are restricted in the number
of simulations used to build our metamodel, we want to use the most informative data points. Be-
cause chemical reactions are discrete entities, we are restricted to a finite (but often large) pool of
reactions, thus requiring pool setting active learning even though we are selecting simulations.

Active learning methods are usually built on top of existing prediction algorithms. Decision trees
and forests are a popular class of such predictors due to their simplicity, expressiveness, state-of-
the-art performance and tuning parameter free nature. In this paper we focus our attention on purely
random trees [4], decision trees built independently of any data, due to their amenability to theo-
retical analysis. We use a recently proposed version called Mondrian Trees [17], which have been
shown to produce trees with many attractive properties such as consistency and minimax optimal
rate of convergence for Lipschitz functions [19].

As in some previous work [7], our active learning algorithm will be developed in two stages. First
we introduce a simple and intuitive oracle querying algorithm for purely random trees which is
optimal among a natural class of sampling schemes which includes random sampling (Theorem

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

4.4). This algorithm is not active but uses statistics of the true joint distribution which are generally
unknown. Second we propose an active learning scheme where we first sample passively to estimate
the required statistics, and then use those estimates to approximate the oracle algorithm. We show
this algorithm is consistent for the oracle algorithm (Theorem 5.1) and behaves well when our labels
are normally distributed (Theorem 5.4). Finally we examine the empirical performance of our active
learning algorithm to show that benefits, though sometimes modest, can be significant.

2 Setting and background

We begin by describing the pool based active learning setting, as well as introducing purely
random and Mondrian trees. We have a pool of m data points {Xi}m1 , with Xi ∈
[0, 1]d (rescaling our X as needed) and Xi ∼ pX , which are always available to the algorithm. For
each Xi we have a corresponding label Yi ∈ R with the relationship Yi = f(Xi) + σ(Xi)εi with
εi ∼ pε iid, εi ⊥ Xj ∀ j, E(εi) = 0,Var(εi) = 1, σ(Xi) : [0, 1]d → R+, meaning our noise is the
product of a function of X with an independent random variable. We assume the (Xi, Yi) = Di

have been drawn iid from a joint distribution pX,Y . We will assume that f(x) and σ(x) are bounded.

Initially none of these Yi are known to the algorithm. Instead we have the ability to gain access to
any of the Yi, and the task is to select n � m labels with the goal of building a model with the
lowest quadratic risk E

[
(f̂(X)−f(X))2

]
, where the expectation is taken over our test pointX , the

random process which builds our tree and the labelled data we select. Throughout we will assume
that our pool is arbitrarily large; in particular we will assume that the marginal density pX is known,
and that there is enough unlabelled data to implement any sampling scheme for selecting n points.
We use active sampling (or learning) to describe any sampling scheme which samples in multiple
batches and uses both X ′is as well as known Y ′i s from previous batches when picking points for
the next batch. We use passive sampling to denote any sampling scheme which only uses the Xi to
pick points, and we use random sampling to denote picking the points uniformly at random from
our pool (which is the same as sampling from pX,Y).

Our active learning method is for purely random trees [4], which are decision trees (or partitions
of the space) built using a random process that is independent of the data. We will interchangeably
discuss the partition of the space generated by the tree and the leaves of the tree. Let Ik ∈ I
enumerate the leaves of a tree (partitions of the space), where k ∈ {1...K}. We will abuse notation
slightly and use the set of partitions I to denote our tree. These partitions can be used to build
regressograms, which make predictions using the average of labelled points within the partition of
the test point. With the partitions fixed, the best (in L2) approximation to f which is piece-wise
constant on each partition predicts the conditional mean on that partition [14]. We will denote true
values and estimates of this approximation using "tilde" and "hat" notation as shown below.

True best approximation Estimate of best approximation

f̃I(x) =

K∑
k=1

1(x ∈ Ik)β̃k f̂I(x) =
K∑
k=1

1(x ∈ Ik)β̂k

β̃k = EpX,Y [Y |X ∈ Ik] β̂k =
1∑

1(Xi ∈ Ik)

∑
Xi∈Ik

Yi

Our experiments and some results will use particular purely random trees built using the Mondrian
Process [17]. The Mondrian Process is a stochastic process for partitioning a hypercube in Rd, a
single realization of this process gives a Mondrian Tree. The Mondrian Process iteratively splits
existing partitions, and the number of partitions is controlled by a parameter λ which, since the
Mondrian Process is a generalization of a Poisson Process, is referred to as the lifetime parameter.
As this parameter increases the number of partitions increases, and the rate at which the number
of partitions increase depends on the dimension and size of the hypercube. We will use Mondrian
Trees on a fixed domain [0, 1]d with varying lifetime as in [19], which describes how these random
partitions are built.

2

3 Related work on Active Learning

The majority of theoretical work in active learning has taken place in binary classification, and
there are many approaches which have been studied (see, e.g. [13], [10], [24], [16], [3], [2]). These
algorithms are studied under fairly nonrestrictive assumptions (except occasionally requiring a linear
classification boundary). It has been shown that for a variety of realistic noise conditions active
learning provides a better minimax learning rate than passive learning ([15]).

In contrast the theory for active learning in regression is less well developed. A negative result [25]
showed that for a Lipschitz regression function and constant noise variance, the minimax learning
rate for active learning was the same as that for passive (up to a constant). Additional assumptions
are required to obtain better rates. Such structure includes assumptions of piece-wise constantness of
regression function [25], approximation of a non-linear model by a linear one [22], locally varying
smoothness [6], well-specified parametric model [8] or heteroskedasticity [11], [7].

While many of these regression methods are able to provide provably better learning rates in terms of
n, d, they are often tailored for their specific assumptions and may perform poorly if the assumptions
do not hold. As a recent summary [18] of numerous flexible but guarantee free methods shows, there
is great demand for active learning methods without such stringent conditions. Our active learning
algorithm will make very mild assumptions, but the improvement will not be in rates in n, d (since
it is known this is not always possible). Rather we will adopt the approach [13] of comparing the
sampling generated by our algorithm to an optimal sampling scheme, as well as to random sampling.

4 Oracle label querying algorithm

We first describe a simple family of querying algorithms for a fixed purely random tree I which are
not active. In the first two subsections below, we will be implicitly conditioning on the tree I, but
will suppress this in the notation.

4.1 Generic algorithm

In our generic algorithm family, the tree is built without using any data. So we build the tree first
and query based on the tree’s structure. We call it an "oracle" algorithm since it requires pX,Y .

Algorithm 1: Generic "oracle" querying algorithm
Input: Leaves of our tree I, pool of data points {Xi}mi=1, label budget n and joint distribution pX,Y
Output: The set of points to label
foreach Ik ∈ I do

Calculate qk the proportion of points to select from leaf Ik, using I, {Xi}mi=1, n, pX,Y . ;
Select nk = n · qk points uniformly at random from the pool of unlabelled points in that leaf. ;

end

The algorithm is described as picking nk deterministically for simplification of notation in proofs.
However it is clear that if the nk are random then it is easy (in principle) to discuss the probabilistic
properties of the algorithm, and the details of the risk under random versions of Algorithm 1 are
discussed in the proof for Corollary 4.6. The pool marginal distribution pX and the proportion in
each leaf qk from the querying algorithm above induce a marginal distribution p′X , as well as a joint
distribution p′X,Y = pY |Xp

′
X . The scheme is very general, and it is worth noting that random sam-

pling is a (randomized) version of Algorithm 1. But this is enough structure to produce a somewhat
obvious but very important property of our sampling distribution restricted to each leaf.
Proposition 4.1. Fix a tree structure I, pool marginal density pX and version of Algorithm 1, giving
us an induced marginal density p′X . Let p′X(X|Ik) = p′X(X|X ∈ Ik) denote the induced marginal
density conditioned on X ∈ Ik. Then as long as qk 6= 0, p′X(X|Ik) = pX(X|Ik) for any version of
Algorithm 1.

One important property this gives us is that Ep′X,Y [β̂k] = β̃k (as long as Ik has at least 1 labelled

point to estimate β̂k), meaning our sampling scheme produces unbiased estimates of the optimal
regressogram for this tree. It also allows for a bias-variance decomposition of the risk of the tree.

3

This decomposition was already known [12] under the assumption of independence between tree
structure and the data. We relax this assumption slightly as the distribution of the data depends on
the structure of the tree, but still permits this decomposition.

Corollary 4.2. For a fixed tree structure I, under any sampling distribution generated by Algorithm
1 we have the following bias-variance decomposition of our risk:

E
[
(f̂I(X)− f(X))2

]
= E

[
(f̃I(X)− f(X))2

]
+ E

[
(f̂I(X)− f̃I(X))2

]
.

We will refer to these as the risk bias term and risk variance term. The risk bias term depends only
on the structure of the tree, which does not depend our sampling scheme. We thus focus on the risk
variance term. Again using Proposition 4.1 we show this term for a single leaf takes a simple form.

Lemma 4.3. For a fixed tree structure I, under any sampling distribution generated by Algorithm
1 we have that the variance error term on the leaf Ik is:

E
[
(f̂I(X)− f̃I(X))2|X ∈ Ik

]
=

1

nk

(
bias2k + σ2

ε,k

)
=

1

nk
Var(Y |X ∈ Ik),

bias2k := EpX,Y

[
(f(X)− β̃k)2|X ∈ Ik

]
, σ2

ε,k := EpX,Y

[
(σ(X)ε)2|X ∈ Ik

]
.

4.2 Optimal algorithm

In the above lemma we have emphasized that the terms bias2k and σ2
ε,k have expectations taken with

respect to the data generating distribution pX,Y and do not depend on the induced distribution p′X,Y .
Thus the only way our sampling distribution affects the variance term is through nk. Averaging out
over the contribution of each leaf we get that our overall variance error term is.

E
[
(f̂I(X)− f̃I(X))2

]
=
∑
k

P (X ∈ Ik)
1

nk

(
bias2k + σ2

ε,k

)
. (1)

Let pk = P (X ∈ Ik) under the pool marginal distribution and σ2
Y,k = bias2k + σ2

ε,k. Now we are
given a budget of n data points, and we want to minimize our variance error term subject to this
budget. This gives us the following optimization problem which can be easily solved:

minimize
nk

∑
k

1
nk
pkσ

2
Y,k

subject to
∑
k

nk = n
→ n∗k = n

√
pkσ2

Y,k∑
k′

√
pk′σ2

Y,k′

The proportions are very intuitive; cells with high bias and/or noise, or high (test) marginal density
will get more samples. These results are summarized in the following theorem:

Theorem 4.4. Let Yi = f(Xi) + σ(Xi)εi and fix the partitions I of our tree. The risk minimizing
oracle querying algorithm out of the family of algorithms described by Algorithm 1 is the one with
the following nk and error

n∗k = n

√
pkσ2

Y,k∑
k′

√
pk′σ2

Y,k′

, E
[
(f̂I(X)− f̃I(X))2

]
=

1

n
(
∑
k

√
pkσ2

Y,k)2.

Definition 4.5. The distribution induced by the sampling in Theorem 4.4 will be referred to as p∗X .

Remark. This has a similar flavour to uncertainty sampling methods from classification in that
regions with greater variation will get more samples. However whereas in classification sampling
can focus locally near the decision boundary, in regression sampling must remain global.

Random sampling is a randomized version of Algorithm 1, so the risk under random sampling is
the bias term plus a weighted average of the variance terms for different (n1, ..., nK). The sampling

4

scheme from Theorem 4.4 has the same bias term, but minimizes the variance term meaning our
optimal sampling scheme is better than any randomized version of Algorithm 1 (as long as m > n),
including random sampling.
Corollary 4.6. For a fixed tree structure I, the risk from any randomized version of Algorithm 1
is greater than the risk from sampling according to p∗X unless P (n∗1, ..., n

∗
K) = 1. In particular

sampling according to p∗X is strictly better than random sampling.

We can also calculate the excess error if we use the incorrect values of σ2
Y,k. Let σ̃2

Y,k = akσ
2
Y,k, so

ak is a multiplicative error (we will see that our errors will be multiplicative). Given fixed leaf errors
a1, ..., aK we can calculate the additional risk generated by using σ̃2

Y,k in our optimal algorithm
instead of the true σ2

Y,k

Lemma 4.7. For a fixed tree structure I, if nk = n

√
pkσ̃2

Y,k∑
k′

√
pk′ σ̃

2
Y,k′

and the variance error term for

each leaf is as in Lemma 4.3, then our risk variance is:

E
[
(f̂I(X)− f̃I(X))2

]
=

1

n
(
∑
k

√
pkσ2

Y,k)2 +
1

n

∑
k<l

(

√
ak√
al

+

√
al√
ak
− 2)

√
pkplσ2

Y,kσ
2
Y,l

:= OPT + EXCESS.

This also lets us get a sense for the suboptimality of random sampling. If we let ak = pk
σ2
Y,k

then we
get nk = npk which is the expected number of samples per leaf under random sampling, and so for
large n the calculated EXCESS term will be close to the excess risk under random sampling. This
gives us the following excess error, which can be small (or even zero) as expected since random
sampling can be near-optimal. But if there is varying Y variance across the space this can be large:
Corollary 4.8. For a fixed tree structure I let ak = pk

σ2
Y,k

. Then our excess error is:

EXCESS =
1

n

∑
k<l

(
√
pkσ2

Y,l −
√
plσ2

Y,k)2 ≤ K

n
max
k

σ2
Y,k.

4.3 Additional results using Mondrian Trees

The above results hold for any purely random tree. We will now not assume that I is fixed, but is
randomly built using the Mondrian Process and will take expectation over the tree building process
as well. Mondrian Trees trained using random sampling are minimax optimal for Lipschitz regres-
sion functions when the sequence of lifetime parameters satisfy λn � n1/(d+2) and Var(Y) < ∞
[19]. Additionally Mondrian Trees with random sampling are weakly universally consistent under
the same lifetime sequence and variance assumption. Since the optimal oracle algorithm has smaller
risk we immediately get minimax optimal rates in terms of n, d under the same assumptions lifetime
sequence by Proposition 4 in [19] and Theorem 4.4, and weak consistency under Theorem 1 in [20].
Corollary 4.9. Let our purely random trees be Mondrian Trees with lifetime parameters λn �
n1/(d+2), and let Y = f(X) + σ(X)ε, Var(Y) < ∞. If our training data is sampled according
to p∗X then the resulting regressogram has (as n,m → ∞) minimax optimal rates, in terms of n, d,

over Lipschitz functions with E
[
(f̂(X)− f(X))2

]
= O(n

−2
2+d) and is weakly consistent.

5 Active learning algorithm

The oracle querying algorithm has many appealing qualities. However it requires knowledge of
the σ2

Y,k which are never known in practice. In this section we propose a two stage active "oracle
estimating" algorithm to remedy this deficiency. In our first stage we sample n(1) points according
to Algorithm 1 and use those samples to calculate estimates σ̂2

Y,k of σ2
Y,k, which in turn produce

estimates n̂k of n∗k. In the second stage we sample n(2) = n−n(1) points such that the total number
of samples in each leaf are n̂k. We analyze the consequences of using these estimates, and show that
in the case when Y are normal, our trees are Mondrian Trees, and our Stage 1 samples equally in
each leaf, our active algorithm is eventually near optimal with high probability. We also show that

5

in general this algorithm’s estimates n̂k are consistent for n∗k. Below we give the active algorithm.
By using this algorithm we have introduced two complications: One is the estimates will have errors
from using estimates σ̂2

Y,k. The other comes from reusing the data from Stage 1 in our estimates
of β̂k. Since active learning is used exactly when data is difficult to label, to make an algorithm
which is practically appealing it is important to make the most out of any labelled data. However
this introduces dependency between β̂k and n̂k. These issues will each be addressed separately.

Algorithm 2: Active "oracle estimating" algorithm
Input: Leaves of our tree I, pool of data points {Xi}mi=1, and label budgets

n(1), n(2), n = n(1) + n(2).
Output: The set of labelled points.
Stage 1 ;
Query n(1) data points using a version of Algorithm 1. ;
Use those samples (Xi, Yi) to estimate σ̂2

Y,k = 1
n(1),k−1

∑
Xi∈Ik

(β̂(1),k − Yi)2 for each leaf. ;

Stage 2 ;
foreach Ik ∈ I do

Calculate n̂k = n

√
pkσ̂2

Y,k∑
k′

√
pk′ σ̂

2
Y,k′

the number of points in the leaf to sample. ;

Select uniformly at random n(2),k points to query from the leaf so the number of points is n̂k. ;
end

5.1 Using estimates of n∗k

First we analyze (as n increases) the effect of using the estimates σ̂2
Y,k. Let us fix a sequence of

trees I(n), |I(n)| = Kn. Typically our trees will contain more partitions as we get more data. For
a given tree we can estimate the required leaf variances unbiasedly using the standard unbiased

sample variance on each leaf σ̂2
Y,k. Therefore as long as our leaf kurtosis κY,k =

σ4
Y,k

(σ2
Y,k)

2 (and thus
the variance of our sample variance) are all finite, and asymptotically our sample variances on each
leaf are consistent for the true variances on each leaf, our estimates n̂k → n∗k. We require strong
consistency of our variance estimates as a function of both our partitioning method and Stage 1
sampling method, which gives us n̂k → n∗k almost surely. If our trees are grown according to a
random process then this strong consistency may be depend on attributes of the tree which my only
be true in probability, and in this case we get n̂k → n∗k in probability. Both cases are covered in the
below theorem, where generally the bn denote statistics of the tree and B is either 0 or∞.
Theorem 5.1. Assume κY,k < ∞ ∀ k, n, and our sequence of trees I(n) and Stage 1 sampling
algorithm is strongly consistent for estimating the conditional variance E[(Y − f(X))2|X = x] as
some statistic bn → B. Then if bn → B almost surely our estimates n̂k → n∗k almost surely and if
bn → B in probability our estimates n̂k → n∗k in probability.
Remark. Note that the condition κY,k <∞∀ k, n is met if f, σ(X) are bounded and κε <∞.

Now let our sequence of trees be randomly built Mondrian Trees. If we again use λn � n1/(d+2),
as long as n(1) increases linearly with n, these conditions are met when our first round of sampling
entails sampling equally in each leaf.
Corollary 5.2. Let our purely random trees be Mondrian Trees with lifetime parameter sequence
λn � n1/(d+2) and let n(1) = cn, c ∈ (0, 1) a constant. Additionally let Stage 1 query by n(1),k =
n(1)

Kn
∀k. If κY,k <∞∀k, n and pX is bounded away from 0 and∞ on it’s support, so when pX > 0

there exists c, C s.t. c ≤ pX ≤ C, then our estimates n̂k → n∗k in probability.

Even with consistency our finite sample estimates will give us some error in n̂k. The variance of our
sample variance is Var(σ̂2

Y,k) = 1
nk

(σ4
Y,k− (σ2

Y,k)2) +O(1
n2
k

) ≈ 1
nk

(κY,k−1)(σ2
Y,k)2, so our errors

will scale multiplicatively with σ2
Y,k when our kurtosis κY,k are bounded. This allows us to use

Lemma 4.7 to bound our excess error given bounds on the (multiplicative) error ak = σ̂2
Y,k/σ

2
Y,k.

6

5.2 Reusing data

Since we are using the data in Stage 1 both to estimate n̂k as well as in our estimator β̂k, we have
introduced dependence between the estimated optimal leaf sample size n̂k and leaf mean estimate
contribution from Stage 1. To understand the effects of this dependence we will break up our es-

timates of the leaf mean as β̂k =
n(1),kβ̂(1),k+n(2),kβ̂(2),k

n(1),k+n(2),k
, where n(i),k, β̂(i),k are the number and

mean estimate during sampling round i ∈ {1, 2}. By writing our final mean estimate in terms of our
stage-wise mean estimates we can find an expression for this dependence.

Lemma 5.3. For a fixed tree structure I, under Algorithm 2 the risk variance term becomes:

E[(β̂k − β̃k)2] = En(2),k

[n2(1),k

(n(1),k + n(2),k)2
ED1:n(1)

[
(β̂(1),k − β̃k)2|n(2),k

]
+

n(2),kσ
2
Y,k

(n(1),k + n(2),k)2

]
.

The term ED1:n(1)

[
(β̂(1),k − β̃k)2|n(2),k

]
quantifies the dependency introduced by reusing the

samples from n(1). The dependency is between the variance of part of our mean estimators
(β̂(1),1, ..., β̂(1),k) and (n(2),1, ..., n(2),K) = g(σ̂2

Y,1, ..., σ̂
2
Y,K). When β̂(1),k ⊥ n(2),k we get back

our risk variance term from Lemma 4.3. However when there is dependence we no longer have that
the n∗k from Theorem 4.4 are optimal over algorithms with an active stage as in Algorithm 2, since
the optimal nk will depend on the sampling during Stage 1. This dependency can be complex and
is generally unknown, though as long as the effect is not too large the n∗k will still provide a very
good solution, and the n∗k are still better than random sampling. It is worth noting that our active
algorithm can take advantage of this dependency in some cases to outperform Algorithm 1, and we
informally discuss this in the appendix.

5.3 The Normal case

The complications above depend on the distribution of ak =
σ̂2
Y,k

σ2
Y,k

and the function g, which in

general are extremely complicated and hard to analyze for arbitrary f, pε, pX . However in the case
where Y are normally distributed these become tractable.

Theorem 5.4. Let Y ∼ N(µ(X), σ2(X)) and X queried according to Algorithm 2 for a fixed tree
I. Then the risk variance term for a leaf is as in Lemma 4.3 and we have that with probability at

least 1−
K∑
k=1

e−
(n(1),k−1)α2

8 the excess error is bounded by:

EXCESS ≤ 1

n

∑
k<l

[(1 + α

1− α
)1/4 − (1− α

1 + α

)1/4]2√
pkplσ2

Y,kσ
2
Y,l .

Additionally if our trees are a sequence of Mondrian Trees with lifetime parameter sequence λn �
n1/(d+2) and our Stage 1 sampling procedure is to sample equally in each leaf with n(1) = cn, c ∈
(0, 1) a constant, then the above bound occurs with probability at least 1− δ1 − δ2 where

δ1 =
(1 + n1/(d+2))d

n(d+1)/(d+2)
δ2 = n(d+1)/(d+2) exp

(−α2

8
((cn)1/(d+2))− 1

)
.

First, note that a larger n allows us to choose a smaller α and the bound on excess error goes to 0 as
α → 0. Second, even for the normal case, d large requires a very large n before we get any control
on the error probability δ2. This is consistent with the empirical observation that Mondrian Trees
struggle with large d.

Finally we also note that there are many reasons why in practice it is impossible to use the exact
n∗k. These include the fact that usually n∗k will be fractional, a leaf may not have n∗k points in it, or
when using the active algorithm n(1),k > n̂k. These issues will be less significant as n → ∞ and
we discuss how each is dealt with in the appendix.

7

6 Simulations and experiments

We now examine the benefits of active learning on both simulated and real world data. We sim-
ulate 2 data sets, one with differing noise variance (our σ2

ε,k term), the other with differing func-

tion complexity (our bias2k term), in different regions of [0, 1]d. We also examine performance
on the Wine quality data set from UCI and a data set of activation energies of Claisen rear-
rangement reactions (Cl). We compare the performance of selecting points to label using ran-
dom sampling, our active algorithm, and a naive uncertainty sampling version of our active al-
gorithm, where each leaf nk is proportional its variance. In all experiments n(1) = n

2 and Mon-

drian Trees are grown using λn = n
2

2+d − 1, which is theoretically motivated, but corrected
so when n = 1, λn = 0. We use both Mondrian and Breiman Trees [5] as our final regres-
sor. Details of the data sets are in the appendix, which also contains forest versions of these ex-
periments. Additionally all code and experiments (as well as other experiments) are available at
https://github.com/jackrgoetz/Mondrian_Tree_AL.

When using Mondrian Trees as the final regressor, the active learning method always provides some
improvement, and in the simulations this improvement persists when using Breiman Trees. Addi-
tionally the uncertainty sampling method sometimes produces worse sampling than random sam-
pling, which is common for direct translations of classification active learning methods. In the
real data our benefits are less pronounced, with active learning even being slightly harmful when
used with Breiman Trees (although with forests the active learning is beneficial). We believe this
performance drop may be due to the inability of the Mondrian Tree to adapt to differing variable
importance. It is also possible that our assumptions that Y has changing variance does not hold, and
even here the active algorithm is not harmful, where as the naive uncertainty sampling algorithm can
be detrimental.

Figure 1: Active learning experiments

8

7 Conclusion and further directions

In this paper we provide a theoretically justified active learning method for non-parametric regres-
sion which can take advantage of beneficial structure when present without being detrimental when
such structure is absent. When used with Mondrian Trees the method requires no tuning param-
eters (which are difficult to tune while actively sampling [1]), is asymptotically minimax optimal
for Lipschitz regression functions, and is consistent. Although the improvement for active learning
in regression is often restricted to constant factor improvements, these constant improvements are
important in real world applications.

Despite technical theoretical arguments needed for the theory, the method itself is simple, leading
to many interesting avenues for further exploration. One direction would be extending theory to
ensembles of trees, or developing tools to deal with high dimensions. Another possibility is to
exploit the online nature of Mondrian Trees to develop a parallel theory for streaming based active
learning. Finally it may be possible to extend the ideas here to non tree based active learning for
regression.

Acknowledgements

JG acknowledges the support of NSF via grant DMS-1646108. AT acknowledges the support of a
Sloan Research Fellowship.

References
[1] Attenberg, J. and Provost, F. (2011). Inactive learning?: difficulties employing active learning

in practice. ACM SIGKDD Explorations Newsletter, 12(2):36–41.

[2] Awasthi, P., Balcan, M. F., and Long, P. M. (2014). The power of localization for efficiently
learning linear separators with noise. In Proceedings of the forty-sixth annual ACM symposium
on Theory of computing, pages 449–458. ACM.

[3] Balcan, M.-F., Beygelzimer, A., and Langford, J. (2009). Agnostic active learning. Journal of
Computer and System Sciences, 75(1):78–89.

[4] Breiman, L. (2000). Some infinity theory for predictor ensembles. Technical report, Technical
Report 579, Statistics Dept. UCB.

[5] Breiman, L. (2017). Classification and regression trees. Routledge.

[6] Bull, A. D. (2013). Spatially-adaptive sensing in nonparametric regression. The Annals of
Statistics, 41(1):41–62.

[7] Chaudhuri, K., Jain, P., and Natarajan, N. (2017). Active heteroscedastic regression. In Inter-
national Conference on Machine Learning, pages 694–702.

[8] Chaudhuri, K., Kakade, S. M., Netrapalli, P., and Sanghavi, S. (2015). Convergence rates of ac-
tive learning for maximum likelihood estimation. In Advances in Neural Information Processing
Systems, pages 1090–1098.

[9] Cramer, C. J. (2013). Essentials of computational chemistry: theories and models. John Wiley
& Sons.

[10] Dasgupta, S., Hsu, D. J., and Monteleoni, C. (2008). A general agnostic active learning algo-
rithm. In Advances in neural information processing systems, pages 353–360.

[11] Efromovich, S. (2008). Optimal sequential design in a controlled non-parametric regression.
Scandinavian Journal of Statistics, 35(2):266–285.

[12] Genuer, R. (2012). Variance reduction in purely random forests. Journal of Nonparametric
Statistics, 24(3):543–562.

9

[13] Golovin, D. and Krause, A. (2011). Adaptive submodularity: Theory and applications in active
learning and stochastic optimization. Journal of Artificial Intelligence Research, 42:427–486.

[14] Györfi, L., Kohler, M., Krzyzak, A., and Walk, H. (2006). A distribution-free theory of non-
parametric regression. Springer Science & Business Media.

[15] Hanneke, S. and Yang, L. (2015). Minimax analysis of active learning. Journal of Machine
Learning Research, 16(12):3487–3602.

[16] Hoang, T. N., Low, B. K. H., Jaillet, P., and Kankanhalli, M. (2014). Nonmyopic ε-bayes-
optimal active learning of gaussian processes. In Proceedings of the 31st International Confer-
ence on Machine Learning, volume 32 of Proceedings of Machine Learning Research, pages
739–747.

[17] Lakshminarayanan, B., Roy, D. M., and Teh, Y. W. (2014). Mondrian forests: Efficient online
random forests. In Advances in neural information processing systems, pages 3140–3148.

[18] Liu, H., Ong, Y.-S., and Cai, J. (2017). A survey of adaptive sampling for global metamodeling
in support of simulation-based complex engineering design. Structural and Multidisciplinary
Optimization, pages 1–24.

[19] Mourtada, J., Gaïffas, S., and Scornet, E. (2017). Universal consistency and minimax rates for
online mondrian forests. In Advances in Neural Information Processing Systems, pages 3761–
3770.

[20] Mourtada, J., Gaïffas, S., and Scornet, E. (2018). Minimax optimal rates for mondrian trees
and forests. arXiv preprint arXiv:1803.05784.

[21] Resnick, S. I. (2013). A probability path. Springer Science & Business Media.

[22] Sabato, S. and Munos, R. (2014). Active regression by stratification. In Advances in Neural
Information Processing Systems, pages 469–477.

[23] Sen, A. (2012). On the interrelation between the sample mean and the sample variance. The
American Statistician, 66(2):112–117.

[24] Sourati, J., Akcakaya, M., Leen, T. K., Erdogmus, D., and Dy, J. G. (2017). Asymptotic
analysis of objectives based on fisher information in active learning. Journal of Machine Learning
Research, 18(34):1–41.

[25] Willett, R., Nowak, R., and Castro, R. M. (2006). Faster rates in regression via active learning.
In Advances in Neural Information Processing Systems, pages 179–186.

10

8 Appendix

8.1 Proof of Proposition 4.1

This results is nothing more than the fact that a random subsample of size n < m from an initial
sample of sizerm has the same distribution as a sample of size n from that original distribution. The
only issue here is if qk = 0, in which case p′X(x) = 0 ∀ x ∈ Ik, where as pX(x) may be non-zero
on a set of positive measure.

8.2 Proof of Corollary 4.2

We start by confirming that Ep′X,Y [β̂k] = β̃k. Let us fix I, k with n labelled points and let nk =
n∑
i=1

1(Xi ∈ Ik). By assumption nk > 0 otherwise β̂k = 1∑
1(Xi∈Ik)

∑
Xi∈Ik

Yi is undefined. Since

Algorithm 1 is not active we have that Y |X ∈ Ik ⊥ nk.

Ep′X,Y [β̂k] = EnkEp′X,Y
[1∑

1(Xi ∈ Ik)

n∑
i=1

Yi1(Xi ∈ Ik)|nk
]

= Enk
1

nk

n∑
i=1

Ep′X,Y
[
Yi1(Xi ∈ Ik)|nk

]
= Enk

1

nk

n∑
i=1

P (Xi ∈ Ik|nk)Ep′X,Y
[
Yi|nk, Xi ∈ Ik

]
= Enk

1

nk
EpX,Y

[
Y |X ∈ Ik

] n∑
i=1

P (Xi ∈ Ik|nk)

= EnkEpX,Y
[
Y |X ∈ Ik

]
= EpX,Y

[
Y |X ∈ Ik

]
.

Now we use this to derive the decomposition in the standard way.

E
[
(f̂I(X)− f(x))2

]
= E

[
(f̂I(X)− f̃I(X))2

]
+ E

[
(f̃I(X)− f(X))2

]
+ 2E

[
(f̂I(X)− f̃I(X))(f̃I(X)− f(X))

]
.

E
[
(f̂I(X)− f̃I(X))(f̃I(X)− f(X))

]
=

E[f̂I(X)]f̃I(X)−E[f̂I(X)]f(X)− f̃I(X)2 + f̃I(X)f(X) = 0.

8.3 Proof of Lemma 4.3

We fix nk. Given X ∈ Ik we know that f̂I(X) = β̂k and f̃I(X) = β̃k. Let us reorder the data D1:n

so that the first nk are in the leaf k for ease of notation. Then use Proposition 4.1, where the cross
term disappears since εi ⊥ Xi under pX,Y by assumption.

11

Ep′X,Y

[
(f̂I(X)− f̃I(X))2|X ∈ Ik

]
=

1

n2k

(nk∑
i=1

Ep′X,Y

[
(f(Xi)− β̃k)2|Xi ∈ Ik

]
+

nk∑
i=1

Ep′X,Y

[
(σ(Xi)εi)

2|Xi ∈ Ik
]

+ 2

nk∑
i=1

Ep′X,Y

[
(f(Xi)− β̃k)σ(Xi)εi|Xi ∈ Ik

])
=

1

n2k

(nk∑
i=1

EpX,Y

[
(f(Xi)− β̃k)2|Xi ∈ Ik

]
+

nk∑
i=1

EpX,Y

[
(σ(Xi)εi)

2|Xi ∈ Ik
]

=
1

nk

(
bias2k + σ2

ε,k

)
.

8.4 Proof of Corollary 4.6

The proof involves looking at the expected risk under a random version of Algorithm 1. For-
mally allow Algorithm 1 to generate the qi in a randomized fashion (with the randomness inde-
pendent from all other sources of randomness), potentially using the other inputs to Algorithm 1
(I, {Xi}mi=1, n, pX,Y) as parameters. Thus (q1, ..., qK) are drawn from a distribution, which in turn
for all (n1, ..., nK) ∈ NK s.t.

∑
nk = n generates P (n1, ..., nK) the probability of the algorithm

sampling (n1, ..., nK) points from each of the tree leaves. Let Risk(n1, ..., nK) denote the risk
when our by leaf samples sizes are n1, ..., nk, with RiskBias and RiskV ar(n1, ..., nK) being the
bias and variance terms of the decomposition. The RiskBias does not depend on n1, ..., nK since
the risk bias term does not depend on how we sample. Then the risk of the randomized version of
Algorithm 1 is

Risk =
∑

(n1,...,nK)

P (n1, ..., nK)Risk(n1, ..., nK)

= RiskBias+
∑

(n1,...,nK)

P (n1, ..., nK)RiskV ar(n1, ..., nK).

If n∗1, ..., n
∗
K is our optimal solution then by Theorem 4.4 RiskV ar(n∗1, ..., n

∗
K) ≤

RiskV ar(n1, ..., nK) ∀ (n1, ..., nK) ∈ NK s.t.
∑
nk = n. For random sampling, unless

P (n∗1, ..., n
∗
K) = 1 the Risk will clearly be greater than (or equal to) that of the optimal since

the probability weighted average is greater than (or equal to) the min term of the sum.

8.5 Proof of Lemma 4.7

This is all algebra. By Equation 1

E
[
(f̂I(X)− f̃I(X))2

]
=

1

n

K∑
k=1

√
ak

√
pkσ2

Y,k ×
K∑
l=1

1
√
al

√
plσ2

Y,l

=
1

n

(∑
k

pkσ
2
Y,k +

∑
k 6=l

√
ak√
al

√
pkplσ2

Y,kσ
2
Y,l

)
=

1

n

(∑
k

pkσ
2
Y,k +

∑
k<l

(

√
ak√
al

+

√
ak√
al

)
√
pkplσ2

Y,kσ
2
Y,l

)
=

1

n
(
∑
k

√
pkσ2

Y,k)2 +
1

n

∑
k<l

(

√
ak√
al

+

√
al√
ak
− 2)

√
pkplσ2

Y,kσ
2
Y,l

= OPT + ERROR.

12

8.6 Proof of Corollary 4.8

Again, this is just algebra.

1

n

∑
k<l

(

√
pkσ2

Y,l√
plσ2

Y,k

+

√
plσ2

Y,k√
pkσ2

Y,l

− 2)
√
pkplσ2

Y,kσ
2
Y,l =

1

n

∑
k<l

(
√
pkσ2

Y,l −
√
plσ2

Y,k)2

≤ 1

n

∑
k<l

(2pkσ
2
Y,l + 2plσ

2
Y,k) ≤ 1

n
max
k

σ2
Y,k

∑
k 6=l

(pk + pl) ≤
K

n
max
k

σ2
Y,k.

8.7 Proof of Theorem 5.1

By the assumption that our sequence of trees I(n) and Stage 1 sampling algorithm is strongly con-
sistent for estimating the conditional variance E[(Y − f(X))2|X = x] as some statistic bn → B
we have that σ̂2

1,k → σ2
k a.s. as bn → B. To see this let σ̂2

1,k(x) = σ̂2
1,k for x ∈ Ik,

σ2
k(x) = σ2

k for x ∈ Ik and let σ2(x) = E[(Y − f(X))2|X = x]. Then |σ̂2
1,k(x) − σ2

k(x)| ≤
|σ̂2

1,k(x)− σ2(x)|+ |σ2
k(x)− σ2(x)| → 0, where the first term disappears due to the strong consis-

tency, and the second term disappears due to the size of the partitions shrinking.

If σ̂2
1,k → σ2

k a.s. then
Kn∑
k=1

√
pkσ̂2

1,k →
Kn∑
k=1

√
pkσ2

k a.s. as bn → B. So if bn → B a.s. then

n̂k → n∗k almost surely.

Now assume bn → B in probability as n→∞ and want to show that these implies
Kn∑
k=1

√
pkσ̂2

1,k →
Kn∑
k=1

√
pkσ2

k in probability n→∞. We will use Lemma 6.3.1.b from [21] which states:

Lemma (6.3.1.b in [21]). Xn → X in probability iff for each subsequence {Xnk}, nk → ∞ there
exists a further subsubsequence {Xnkt

}, nkt →∞ which converges a.s. to X .

(The nk here are unrelated to the nk in our trees).

Let Yn = |
Kn∑
k=1

√
pkσ̂2

1,k −
Kn∑
k=1

√
pkσ2

k|, so Yn → 0 a.s. if bn → B. Thus we have a subset of the

overall probability space Ω which is

Ω ⊃ Ω∗ = {ω ∈ Ω : lim bn(ω) 6= B or Yn(ω)→ 0}

where P (Ω∗) = 1. Now take a subsequence nk → ∞ of n. By bn → B in probability ∃nkt → ∞
such that bnkt → B a.s. as nkt →∞. This gives us a second subset of Ω

Ω ⊃ Ω′ = {ω ∈ Ω : bnkt (ω)→ B}

where again P (Ω′) = 1. On the intersection of these we get

Ω∗ ∩ Ω′ ⊂ {ω ∈ Ω : Ynkt (ω)(ω)→ 0}

where P (Ω∗ ∩ Ω′) = 1. nk was an arbitrary subsequence of n and so by using Lemma 6.3.1.b in
the reverse direction we get that Yn → 0 in probability.

8.8 Proof of Corollary 5.2

Here our bn = Kn

n
d+1
d+2

and B = 0. Since E[Kn] = (1+n
1
d+2)d by Markov Kn

n
d+1
d+2

→ 0 in probability.

13

Now we need to show that if we assume Kn

n
d+1
d+2

→ 0 we get strong consistency of our conditional

variance function estimation. By Theorem 23.3 in [14] we get that our tree is strongly consistent for
estimating the mean function, since Kn log(n)

n → 0 so eventually every partition will have more than
log(n) samples in the leaf, and the augmented estimator in Theorem 23.3 is the same as the usual
estimator. (The augmented estimator in Theorem 23.3 is the usual decision tree estimator if there
are more than log(n) data points in the partition and 0 otherwise). Finally we need the pX bounded
since Theorem 23.3 assumes that our test X density is the same as our training one, but since pX is
bounded the Radon Nikodym derivative is bounded and so we get strong consistency even with the
different test density.

So our tree and Stage 1 sampling scheme are strongly consistent for estimating the mean function
f(x) = E[Y |X = x]. Now assume we had access to a new set of random variables Zi = (Yi =
f(Xi))

2. Because of the bounded kurtosis our tree would also be strongly consistent for estimating
the mean function of the Zi which we will call fZ(x) = E[(Y − f(X))2|X = x]. So if we
had access to the Zi we could use them to estimate our Y conditional variance function using
f̂Z(x) =

∑
Zi1Xi∈I(x)∑
1Xi∈I(x)

.

We don’t have these Zi but we do have Z̃i = (Yi − f̂(Xi))
2, and it’s easy to show that∑

Z̃i1Xi∈I(x)∑
1Xi∈I(x)−1

→
∑
Zi1Xi∈I(x)∑
1Xi∈I(x)

by adding and subtracting f(x) inside the square. This gives us
a strongly consistent estimator of our conditional variance as required.

8.9 Proof of Lemma 5.3

Since the Stage 1 sampling uses Algorithm 1 our n(1),k are fixed (though this could be extended
to randomized version of Algorithm 1). The proof is mostly algebra, using the fact that β̂(1),k is
conditionally independent of β̂(2),k given n(2),k.

E[(β̂k − β̃k)2] = E
[(n(1)(β̂(1),k − β̃k)

n(1),k + n(2),k
+
n(2)(β̂(2),k − β̃k)

n(1),k + n(2),k

)2]
= En(2),k

[n2(1),k

(n(1),k + n(2),k)2
ED1:n(1)

(
(β̂(1),k − β̃k)2|n(2),k

)
+ 2

n(1),kn(2),k

(n(1),k + n(2),k)2
ED1:n(1)

(
(β̂(1),k − β̃k)|n(2),k

)
EDn(1)+1:n

(
(β̂(2),k − β̃k)|n(2),k

)
+

n2(2),k

(n(1),k + n(2),k)2
EDn(1)+1:n

(
(β̂(2),k − β̃k)2|n(2),k

)]
.

We have that

EDn(1)+1:n

(
(β̂(2),k − β̃k)|n(2),k

)
= 0, EDn(1)+1:n

(
(β̂(2),k − β̃k)2|n(2),k

)
=

σ2
Y,k

n(2),k

which gives us the desired result.

8.10 Proof of Theorem 5.4

By assumption we have that Yi’s are Normally distributed. We first deal with the dependence
ED1:n1

(
(β̂(1),k − β̃(1),k)2|n(2),k

)
. A well known property of the Normal distribution [23] is that

the estimate of the mean β̂(1),k and the estimate of the variance σ̂2
Y,k are independent. This imme-

diately gives that ED1:n1

(
(β̂(1),k − β̃(1),k)2|n(2),k

)
= ED1:n1

(
(β̂(1),k − β̃(1),k)2

)
=

σ2
Y,k

n(1),k
as there

is no dependence between β̂(1),k and n(2),k. Thus we get that the risk variance for that leaf is just as
from Lemma 4.3.

14

Now we want to bound the probability n̂k above is far away from n∗k. We will do this by bounding the

ak. Another well known property of the normal distribution is
(nk−1)S2

Y,k

σ2
Y,k

= (nk−1)ak ∼ χ2
(nk−1).

By characterization of sub-exponential random variables:

P ((nk − 1)|ak − (n− 1)| >
√

2(nk − 1)t+ 2t) ≤ e−t

P (|ak − 1| >
√

2t√
(nk − 1)

+
2t

(nk − 1)
) ≤ e−t

√
2t√

(nk − 1)
+

2t

(nk − 1)
∈ (0, 1) =⇒ 2t

(nk − 1)
≤ 1 =⇒ 2t

(nk − 1)
<

√
2t√

(nk − 1)

=⇒ P (|ak − 1| > 2
√

2t√
(nk − 1)

) ≤ P (|ak − 1| >
√

2t√
(nk − 1)

+
2t

(nk − 1)
) ≤ e−t

∀ α ∈ (0, 1)

P (|ak − 1| > α) ≤ e−
(nk−1)α2

8

P (∃k s.t. |ak − 1| > α) ≤
K∑
k=1

e−
(nk−1)α2

8 .

And now we apply Lemma 4.7 to bound the excess. Now we assume our purely random tree is a
Mondrian Tree with the above assumptions, so nk = cn

K . By Markov inequality and Proposition 2
in [20] we have that:

P (Kn − 1 > n
d+ε
d+2) ≤ E[Kn]

n
d+ε
d+2

=
(1 + n

1
2+d)d

n
d+ε
d+2

= δ1

P (∃k s.t. |ak − 1| > α|Kn ≤ n
d+ε
d+2) ≤ n

d+ε
d+2 e−

α2

8 ((cn)
2−ε
d+2−1) = δ2

By setting ε = 1 and using the union bound we get the result.
Remark. It is worth noting that in the above proof we have only used the property that χ2 are
subexponetial. A slightly stronger (in terms of n, α) inequality is possible using Chernoff Bounds
and exploiting the structure of χ2 random variables.

8.11 Dependence in non-normal case

We are interested in the question of when is ED1:n(1)

[
(β̂(1),k − β̃k)2|n(2),k < n∗(2),k

]
<

ED1:n(1)

[
(β̂(1),k − β̃k)2

]
. Unfortunately n(2),k is a function not only of σ̂2

(1),k but of all other σ̂2
(1),l.

Let us start with a more simple and general question of whenE
[
(µ̂−µ)2|σ̂2 < σ2

]
< E

[
(µ̂−µ)2

]
.

We present no formal arguments here but rather share our findings and conjectures which we con-
sider both interesting in their own right as well as excellent candidates for further study. The first
observation is that far from this being an unusual property this seems to be a fairly common prop-
erty. In fact for symmetric distributions the relationship appears to be well behaved. From [23]
the sample mean and sample variance are asymptotically MVN (multivariate normal) with cross
correlation equal to the skew, so when our distribution is symmetric the sample mean and sample
variance are independent in the limit. For the finite sample case the relationship between σ̂2

1,k−σ2
1,k

and E
[
(µ̂ − µ)2|σ̂2 − σ2

]
− E

[
(µ̂ − µ)2

]
appear to be monotonic and to go through the origin

(so when the sample variance is the true variance, the conditional variance of the sample mean is
the unconditioned variance, which is what we would hope is the case). In fact it appears both the
magnitude and parity of this relationship depends on the excess kurtosis κ − 3. If κ − 3 < 0 this
relationship is negative and if κ− 3 > 0 this relationship is positive, with the magnitude increasing
as you move further away from zero.

If these observations are true for all symmetric distributions it would be quite fortuitous, since large
values of κ imply that the estimates of our variances will be more noisy, but those are exactly

15

the cases where actively fitting to the sample variance of our first stage is beneficial: If our sample
variance is larger than the population variance, then the variance of our β̂(1),k is larger than expected,
so it is beneficial to use more points in the second stage than the optimal passive sampling would
have assigned. Meanwhile when a smaller sample variance implies the variance of our β̂(1),k is
larger than expected, κ is small and so our sample variance will itself have small variance. We have
not yet been able to prove this relationship, and things become much more complicated in the more
realistic case where our distribution is skewed. However these results give us confidence that things
are unlikely to go too badly wrong when our labels are not normally distributed.

8.12 Experimental data set info

For both simulations our marginalX distribution was uniform over the space [0, 1]10. Heteroskedas-
tic simulation had constant regression function and Gaussian noise, with space split into high vari-
ance region (25) and low variance region (1). Varying complexity had sinusodial regression function
f(x) = C sin(2π

d∗F ∗
∑
xi) and Gaussian noise with constant (1) variance. It was split into high

variation region (C = 20, F = 0.05) and low variation region (C = 5, F = 0.1). For both sets
[0.1, 1]10 were the high areas, with everything else a low area.

8.13 Practitioners guide

Here we compile information related to actually using this active learning method in practice.

8.13.1 Heuristics to deal with difference between theory n∗k and possible values

There are many reason why you may not actually be able to sample according to your estimates of
the optimal n∗k. For a start our n∗k will almost always be fractional. Additionally there may be less
than n∗k points in a leaf. These issues are fairly minor and become less influential as sample sizes
increase. However a more consistent issue that occurs when using the approximating algorithm is
when a leaf is oversampled during stage 1, so that n(1),k > n∗k. This means that some other leaf will
get fewer than it is optimal number of samples. Although this again can be dealt with asymptotically
by making our stage 1 a small fraction of the total number of samples, in practice this is a problem
which often occurs when our sample size is not large.

In our code we implemented heuristics to deal with these mismatches. We emphasize that these
heuristics are subjective and one could easily use or argue for others. After calculating our n̂k we
immediately floor them all. We then set n̂k = max(min(n̂k, ηk), n1,k) (where ηk is the total number
of points in leaf k). It is possible that

∑
n̂k 6= n after these adjustments. If we have too many points,

we reduce the largest n̂k until we achieve the correct total. If we have too few points we increase
the n̂k by 1 each, starting with the smallest, and starting over once we have increased them all by 1.
This asymmetry is because increasing small values can have a large reduction on the variance of the
estimate, but decreasing large ones leads to a small increase in variance.

8.13.2 Lifetime parameter sequence

We have found that the best general form for the lifetime parameter sequence is λn = 1
γ (n

2
2+d − 1).

The γ can be fairly freely chosen with γ = 1 a reasonable default (and is what is used in all
simulations and experiments in this paper), but the −1 is very important; it ensures that we do not
start with a lifetime = 1 for n = 1, ∀ d as when d is large this can result in a very large number of
leaves early on.

8.13.3 Sampling method during stage 1

During stage one our theory assumed that n1 = cn and then each leaf received the same fraction of
points, as this gives important asymptotic properties. In practice if c is too large this can result in
putting too many samples in certain small leaves during stage 1, so that n1,k > n∗k, meaning that we
have oversampled this leaf and will have to reduce other sampling elsewhere. One way of avoiding
this is by making c small, but this risks getting bad leaf estimates and suboptimal stage 2 sampling
unless n is large, where the n required increases as d increases. Another is to sample passively. We
have found that generally if c = 0.5 then sampling passively tends to produce pretty good results

16

unless your function has massive amounts of variation. Another option is to use a hybrid sampling
scheme in stage 1, where each leaf is given a small number of samples, and then the rest of the
samples are distributed randomly, but empirically this seems to be worse than random sampling for
small values of n.

8.13.4 Final regression model

As shown in our experiments, although most the theory assumes that you are using the same tree
for your active learning as you are for your final predictions, you also get good results doing active
learning with Mondrian Forests, and then taking that data and fitting your final model with a more
data adaptive model, although not always.

8.13.5 Forests

Just as with Breiman decision trees you can ensemble purely random trees into forests. These forests
show improved performance at the cost of increased computational cost since they average out the
random process used to build the trees. We also have an intuitive (though theory free) extension
of our active learning method to utilize the power of multiple Mondrian Trees. The idea is each
tree determines the optimal number of samples per leaf in the usual way, and then gives data points
weights such that the expected number of points sampled from each leaf is the optimal number.
These probabilities are then averaged out over all the trees in the forest and the new points are
sampled using these averaged probabilities. The formal algorithm is given below:

Algorithm 3: Forest version of oracle approximation algorithm
Input: Leaves of our T trees I1...IT , pool of data points {Xi}mi=1, and label budgets

n(1), n(2), n = n(1) + n(2).
Output: The set of labelled points.
Stage 1: ;
Sample n(1) data points (possibly according to the structure of the trees It) using a version of
algorithm 1. ;

foreach t do
Use those samples (Xi, Yi) to estimate σ̂2

Y,k,t for each leaf. ;
end
Stage 2: ;
foreach t do

foreach Ik,t ∈ It do

Calculate n̂k,t = n

√
pk,tσ̂2

Y,k,t∑
k′

√
pk′,tσ̂

2
Y,k′,t

the number of points in the leaf to sample. ;

Count mk,t the number of unlabelled points in leaf Ik,t ;
foreach Unlabelled Xi ∈ Ik,t do

Assign weight Wi,t =
n̂k,t−n(1),k,t

n2∗mk,t . ;
end

end
end
foreach Unlabelled Xi do

Final weight Wi = 1
T

∑
Wi,t. ;

end
Sample n(2) points with weights Wi.

Below we show the results of using Mondrian Forests for our active learning, and both Mondrian
Forests and Random Forests as our final regression model. Here we see some benefit using Mondrian
Forest for active learning and then Random Forests for our final regressor (although in fact the naive
uncertainty sampling method outperforms ours). Although the benefit on the real data appears to be
a small constant factor, the actively learned models provide similar accuracy with 10s of fewer data
points, which can be significant.

17

Figure 2: Mondrian Forest active learning simulations

8.13.6 Using more than 2 stages

It is of course possible to do more than 2 stages, updating your estimates of the leaf variances during
each stage to guide sampling during the next stage. We found that in practice the benefits of doing
this are generally fairly small. Of course the first stage should still be sufficiently large that you get
decent initial estimates for the leaf variances. Much of the theory could be extended to increasing
number of stages as long that the number is not increasing with n without much work. Increasing
the number of stages as n increases may require additional care and effort.

18

Figure 3: Mondrian Forest active learning experiments

8.13.7 Additional experimental results

19

Figure 4: Additional active learning experiments on UCI data with Mondrian Trees

20

