Combinatorics of exceptional sequences in type A

Alexander Garver*

Laboratoire de Combinatoire et d’Informatique Mathématique
Université du Québec a Montréal
Montréal, Canada

alexander.garver@lacim.ca

Kiyoshi Igusa' Jacob P. Matherne!
Department of Mathematics School of Mathematics
Brandeis University Institute for Advanced Study
Waltham, U.S.A. Princeton, U.S.A.
igusa@brandeis.edu matherne@math.ias.edu

Jonah Ostroff

Department of Mathematics
University of Washington
Seattle, U.S.A.

ostroff@math.washington.edu

Submitted: Jun 27, 2016; Accepted: Dec 5, 2018; Published: Feb 8, 2019
© The authors. Released under the CC BY-ND license (International 4.0).

Abstract

Exceptional sequences are certain sequences of quiver representations. We intro-
duce a class of objects called strand diagrams and use these to classify exceptional
sequences of representations of a quiver whose underlying graph is a type A,, Dynkin
diagram. We also use variations of these objects to classify c-matrices of such quiv-
ers, to interpret exceptional sequences as linear extensions of explicitly constructed
posets, and to give a simple bijection between exceptional sequences and certain
saturated chains in the lattice of noncrossing partitions.
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1 Introduction

Exceptional sequences are certain sequences of quiver representations with strong ho-
mological properties. They were first considered by Crawley-Boevey [CB93] and Ringel
[Rin94]. Crawley-Boevey showed that the braid group acts transitively on the set of com-
plete exceptional sequences (i.e., exceptional sequences of maximal length) [CB93]. This
result was generalized to hereditary Artin algebras by Ringel [Rin94]. Since that time,
they have been studied by Meltzer for weighted projective lines [Mel04], and by Araya for
Cohen—Macaulay modules over one-dimensional graded Gorenstein rings with a simple
singularity [Ara99]. Exceptional sequences have also been connected to many other areas
of mathematics since their invention:

e chains in the lattice of noncrossing partitions [Bes03, HK16, IT09],
e c-matrices and cluster algebras [ST13],
e factorizations of Coxeter elements [IS10], and

e {-structures and derived categories [Bez03, BK89, Rud90].

Despite their ubiquity, very little work has been done to concretely describe exceptional
sequences, even for path algebras of Dynkin quivers [Aral3, GM15]. In this paper, we give
a concrete description of exceptional sequences for type A,, quivers with any orientation.
This work extends and elaborates on a classification of exceptional sequences for the
linearly-ordered quiver obtained in [GM15] by the first and third authors.

Exceptional sequences consist of indecomposable representations. For a quiver @) of
type A, the indecomposable representations are completely determined by their dimen-
sion vectors, which are of the form

0,...,0,1,...,1,0,...,0) €Z%,.
Let us denote such a representation by X7, where € is a vector that keeps track of the
orientation of the quiver, and ¢ 4+ 1 and j are the positions where the string of 1’s begins
and ends, respectively.

This simple description allows us to view exceptional sequences as combinatorial ob-
jects. Define a map ®. which associates to each indecomposable representation X{,; a
curve ®.(X7;) connecting two of n 4 1 points in R*. We will refer to such curves as
strands.!

As exceptional sequences are certain collections of representations, the map ®. allows one
to regard them as collections of strands.

The following lemma is the foundation for all of our results in this paper; it charac-
terizes the homological data encoded by a pair of strands and thus by a pair of repre-
sentations. A sequence of exceptional representations forms an exceptional sequence if

'The curves @ (X ;) will have some additional topological conditions (see Definition 5) that we omit
here.
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Figure 1: An example of the indecomposable representation X, on a type Ay quiver and
the corresponding strand ®.(X§ ;).

and only if each of its subsequences of length two is exceptional. We refer to such length
two exceptional sequences as exceptional pairs. Thus, Lemma 11, which we now state,
allows us to completely classify exceptional sequences using strand diagrams.

Lemma 11. Let (). be a type A Dynkin quiver. Fix two nonisomorphic indecomposable
representations U, V' € ind(rep, (Q.)).

a) The strands ®.(U) and ®.(V') intersect nontrivially if and only if neither (U, V') nor
(V,U) are exceptional pairs.

b) The strand ®.(U) is clockwise from ® (V') if and only if (U, V) is an exceptional
pair and (V,U) is not an exceptional pair.

c¢) The strands ®.(U) and ®.(V') do not intersect at any of their endpoints and they
do not intersect nontrivially if and only if (U, V) and (V,U) are both exceptional
pairs.

The paper is organized in the following way. In Section 2, we give the preliminaries
on quivers and their representations which are needed for the rest of the paper.

In Section 3.1, we introduce strand diagrams. We show that exceptional collections
(i.e., the underlying set of representations in an exceptional sequence) are classified by
strand diagrams (see Theorem 12). Later, we decorate our strand diagrams by adding
a label to each strand which endows the collection of strands with a linear order. We
then show that our labeled diagrams classify exceptional sequences (Theorem 16) where
the linear order on strands corresponds to the linear order on representations in the
exceptional sequence. Although Lemma 11 is the main tool that allows us to obtain these
results, we delay its proof until Section 3.2.

Next, we establish a connection between our work and c-matrices, which appear in the
theory of cluster algebras. A c-matrix is an integer matrix that is produced by performing
a sequence of quiver mutations on a certain type of ice quiver (see Section 2.1). The work
of Speyer and Thomas (see [ST13]) gives a bijection between certain complete exceptional
sequences of an arbitrary acyclic quiver and c-matrices arising from this quiver. In [Sei01],
the number of complete exceptional sequences in type A, is given (see also [ONA*13] for a
systematic approach for all valued Dynkin quivers), and there are more of these than there
are c-matrices. Thus, it is natural to ask which strand diagrams are describing c-matrices.
By establishing a bijection between the mixed cobinary trees of Igusa and Ostroff [I013]
and a certain collection of strand diagrams whose strands have an orientation, we give an
answer to this question in Section 4.
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The conditions defining an exceptional collection give rise to the data of a poset on
the representations in the exceptional collection. Moreover, the linear extensions of this
poset are in bijection with the exceptional sequences that can be formed from the same
exceptional collection. In Section 5, we characterize the family of posets defined by type
A exceptional collections.

In Section 6, we present some applications of the theory in type A. We give combina-
torial proofs that any two reddening sequences produce isomorphic ice quivers (see [Kell2]
for a general proof in all types using deep category-theoretic techniques) and that there
is a bijection between exceptional sequences and certain saturated chains in the lattice of
noncrossing partitions.

2 Preliminaries

We will be interested in the connection between exceptional sequences and the c-matrices
of an acyclic quiver (), so we begin by defining these. After that, we define quiver
representations and exceptional sequences. We conclude this section by explaining the
notation we will use to discuss exceptional representations of quivers that are orientations
of a type A,, Dynkin diagram.

2.1 Quiver mutation

A quiver @ is a directed graph. In other words, @ is a 4-tuple (Qo, @1, s,t), where
Qo = [m] :={1,2,...,m} is a set of vertices, (; is a set of arrows, and two functions
s,t: Q1 — Qo defined so that for every a € Qy, we have s(a) = t(a). An ice quiver is
a pair (@, F') with @ a quiver and F' C @)y a set of frozen vertices with the additional
restriction that there are no two vertices ¢, j € F' with an arrow of ) connecting them.
We refer to the elements of Qo\F as mutable vertices. By convention, we assume
Q\F =[n]and F=[n+1,m]:={n+1,n+2,...,m}. Any quiver () can be regarded
as an ice quiver by setting Q = (Q,0).

If @ has no loops and no 2-cycles, one may define mutation of an ice quiver (@, F') as
follows. The mutation of an ice quiver (Q, F') at mutable vertex k, denoted py, produces
a new ice quiver (u,Q, F') by the three-step process:

(1) For every 2-path i — k — j in @, adjoin a new arrow i — j.
(2) Reverse the direction of all arrows incident to k in Q.

(3) Remove a maximal collection of disjoint 2-cycles in the resulting quiver as well as
all of the arrows between two frozen vertices.

We show an example of mutation below, depicting the mutable (resp., frozen) vertices in
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black (resp., blue).

H2 2\
— 3 = (@, F)

From now on, we will only consider quivers and ice quivers without loops and without
2-cycles. The information of such quivers and ice quivers can be equivalently described
by its (skew-symmetric) exchange matrix. Given (Q,F), we define B = Bgp =
(bij) € Z™™ := {n x m integer matrices} by b;; := #{i = j € Q1} — #{j = i € Q1}.
Furthermore, ice quiver mutation can equivalently be defined as matrix mutation of the
corresponding exchange matrix. Given an exchange matrix B € Z™*"™, the mutation of
B at k € [n], also denoted p,, produces a new exchange matrix p;(B) = (b;) with entries

b/ L —b” . le:k‘orj:k
A bij + —'b"’“w’“j;bi’“‘b’”' . otherwise.

(@ F)

For example, the mutation of the ice quiver above (here m = 4 and n = 3) translates
into the following matrix mutation. Note that mutation of matrices (and of ice quivers)
is an involution (i.e., ug o up(B) = B).

0 2 -1/ 0 0 -2 1] 0
Bor = | -2 0 1] 0| & | 2 0 —=1| 0| = Buon
1 -1 0 |-1 -1 1 0 |-1

Given a quiver ), we define its framed (resp., coframed) quiver to be the ice quiver
Q = (Q,F) (resp., Q == (Q",F)) where Q) = Qo U F (= Q}), F = [n + 1,2n], and
Q= U{i > n+i:ie€n]} (resp,, Q == U{n+i—1i:i¢€[n]}) We
define the exchange tree of @, denoted ET(@), to be the graph whose vertices are ice
quivers obtained from @ by a finite sequence of mutations without consecutive repetitions
and with two vertices connected by an edge if and only if the corresponding quivers are
obtained from each other by a single mutation. Similarly, define the exchange graph of
@, denoted EG(@), to be the quotient of ET(@) where two vertices are identified if and
only if there is a frozen isomorphism of the corresponding quivers (i.e., an isomorphism
that fixes the frozen vertices). Such an isomorphism is equivalent to a simultaneous
permutation of the rows and columns of the corresponding exchange matrices.

Given Q we define the c-matrix C' = Cj (resp., C = Cg) of R € ET(Q) (resp.,
R € EG(Q)) to be the submatrix of Br where C' := (bjj)icin] jejnt1,2n (resp., C =
(bij)ictmljeimiion)- We let c-mat(Q) == {Cr : R € EG(Q)}. By definition, Bg (resp., C)
is only defined up to simultaneous permutations of its rows and first n columns (resp., up
to permutations of its rows) for any R € EG(Q).

A row vector of a c-matrix, ?, is known as a c-vector. The celebrated theorem of
Derksen, Weyman, and Zelevinsky [DWZ10, Theorem 1.7], known as sign-coherence of
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c-vectors, states that for any R € ET(Q) and i € [n] the c-vector ¢/ is a nonzero element
of Z%, or Z%,. In the former case, we say a c-vector is positive, and in the latter case,
we say a c-vector is negative.

2.2 Representations of quivers

A representation V' = ((Vi)icqy, (¢a)acq,) of a quiver @) is an assignment of a finite
dimensional k-vector space V; to each vertex i and a k-linear map ¢, : Vi) — Vi) to
each arrow a where k is a field. The dimension vector of V' is the vector dim(V') :=
(dim V;);eq,- The support of V' is the set supp(V) := {i € Qo : V; # 0}. Here is an
example of a representation, with dim(V') = (2,1, 3), of the mutable part of the quiver
depicted in Section 2.1.

k! [ 232
[—2 9] 5
[ 4*]1{3

k2 01 7
2 1 5

Let V. = (Vi)icgos (Pa)acq,) and W = ((W;)icqos (0a)acq,) be two representations of
a quiver (). A morphism 6 : V — W consists of a collection of linear maps 6; : V; — W;
that are compatible with each of the linear maps in V' and W. That is, for each arrow
a € Q1, we have Oyq) 0 p, = 04 © 05q)- An isomorphism of quiver representations is
a morphism 6 : V. — W where 6; is a k-vector space isomorphism for all 7 € QQg. We
define Ve W = (V,®W)icqos (Pa P 0a)acq, ) to be the direct sum of V' and W. We say
that a nonzero representation V is indecomposable if it is not isomorphic to a direct
sum of two nonzero representations. Note that the representations of a quiver () along
with morphisms between them form an abelian category, denoted by rep,(Q), with the
indecomposable representations forming a full subcategory, denoted by ind(rep,(Q)).

We remark that representations of () can equivalently be regarded as modules over the
path algebra k@. As such, one can define Ext;o(V, W) for s > 1 and Homyg(V, W) for
any representations V' and W, and Homyg(V, W) is isomorphic to the vector space of all
morphisms 6 : V' — W. We refer the reader to [ASS06] for more details on representations
of quivers.

An exceptional representation V; of () is a representation where Endyg(V}) is a
division algebra and Ext;o(V},V;) = 0 for all s > 1. Any exceptional representation is
indecomposable, but not all indecomposable representations are exceptional. For Dynkin
quivers, it is well-known that a representation is exceptional if and only if it is inde-
composable. An exceptional sequence ¢ = (V,...,V}) is a sequence of exceptional
representations satisfying Homyq(V, V;) = 0 and Extio(V;, V;) = 0 for all s > 1if i < j.
We use the term exceptional pair to mean an exceptional sequence consisting of exactly
two exceptional representations. We define an exceptional collection ¢ = {V;,...,V;}
to be a set of exceptional representations V; of ) that can be ordered in such a way
that they define an exceptional sequence. It was shown in [CB93] that the length &k of
an exceptional sequence ¢ satisfies k < n := #Qq; so when k = n, we say & (resp., &) is
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a complete exceptional sequence (CES) (resp., complete exceptional collection
(CEQ)).

The following result of Speyer and Thomas gives a beautiful connection between c-
matrices of an acyclic quiver () and CESs. It serves as motivation for our work. Before
stating it we remark that for any R € ET(Q) and any i € [n] where @ is an acyclic
quiver, the c-vector ¢ = F;(R) = +dim(V;) for some exceptional representation of )

(see [NC15] or [ST13]).

Notation 1. Let @ be a c-vector of an acyclic quiver (). Define

|7| . 7 o if s positive
N -7 if ¢ is negative.

Theorem 2 ([ST13]). Let C € c-mat(Q), let {Fz}ie[n] denote the c-vectors of C, and
let |07| = dim(V;) for some exceptional representation of Q). There exists a permutation
o € &, such that (Vyy, ..., Vom)) is a CES with the property that if there exist positive
c-vectors in C, then there exists k € [n] such that cf(:; is positive if and only if i € [k, n],
and Homyq(V;, V) = 0 for any c_;,c_f that have the same sign. Conversely, any set

of n wvectors c_f, e ,az having these properties defines a c-matrix whose row vectors are
%
{ & }ie[n] .

2.3 Quivers of type A,

For the purposes of this paper, we will only be concerned with quivers of type A,. We
say a quiver @ is of type A, if the underlying graph of @) is a Dynkin diagram of type
A,,. By convention, two vertices ¢ and j with ¢ < j in a type A,, quiver ) are connected
by an arrow if and only if j =i+ 1 and i € [n — 1].

It will be convenient to denote a given type A,, quiver () using the notation ()., which
we now define. Let € = (eg, €1,...,€,) € {+, —}" and for i € [n — 1] define a' € Q1 by

{i<—i+1 Lo = —

a;’ = o
1—1+1 € = +.

Then Q. := ((Qe)o := [n], (Qe)1 := {af }icp—1)) = Q. One observes that the values of ¢

and €, do not affect Q..

al as al a,
Example 3. Let n =5and e = (—, 4+, —,+, —, +) so that Q. =1 - 2+ 3 2 4+
5. Below we show its framed quiver @)..

QT forory

2 3 4 )

Let Q. be given where € = (eg, €1, ...,€6,) € {+,—}""1. Let 4,5 € [0,n] := {0,1,...,n}
where i < j and let X{; = ((Vo)ec(@.)o: (967 )ac(@o)i) € 1epy(Qc) be the indecomposable
representation defined by
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Vo k @ i4+1<0<y i 1 © a=qaf withi+1<k<j—1
e 0 : otherwise a 0 : otherwise.

The objects of ind(rep,(Q.)) are those of the form X, where 0 < i < j < n, up to
isomorphism.

Remark 4. If X, and X§ , are nonisomorphic indecomposables of repy (@), then we have

that Homyg, (X5 ;, X ,) = 0 or Homyg, (Xf ,, X;;) = 0. This follows from the well-known

fact that the Auslander—Reiten quiver of k@, is acyclic.

3 Strand diagrams

In this section, we define three different types of combinatorial objects: strand diagrams,
labeled strand diagrams, and oriented strand diagrams. We will use these objects to
classify exceptional collections, exceptional sequences, and c-matrices of a given type A,
quiver )., so we fix such a quiver Q..

3.1 Exceptional sequences and strand diagrams

Let S, := {(%0,0), (z1,0),...,(z,,0)} C R? be a collection of n + 1 points arranged on
the positive z-axis from left to right, ie., 0 < 29 < 21 < --- < x,, together with the
function € : S, — {+, —} sending (z;,0) — ¢;.

Definition 5. Let i, j € [0,n] where i # j. A strand c(i, j) = ¢(j,4) on S, is an isotopy
class of simple curves in R? where any v € c(i, j) satisfies:

a) the endpoints of v are (z;,0) and (x;,0),

b) as a subset of R?, v C {(x,y) € R?: Tmin(ij) < T < Tmax(ig) )\ (Th; 0) T Tmin(ig) <
T < xmax(i,j)}a

c) if min(é,j) < k < max(i,75) and € = + (resp., ¢ = —), then ~ is locally below
(resp., locally above) (xx,0).

By locally below (resp., locally above) (xx,0), we mean that for a given parameterization
of v = (v, ~®):]0,1] — R? there exists § € R where

1 .
0<d< émln{]xk — T 1|, |TE — Tpaa|}
such that v satisfies Y?(¢) < 0 if ¢, = + (resp., ¥Y?(t) > 0if ¢, = —) for all t € (0,1)
where YV (t) € (zy, — §, 7 + ).

There is a natural bijection ®. from the objects of ind(rep,(Q.)) to the set of strands
on S, given by @ (X7 ;) 1= c(i, j) where i < j.
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Y2

Y1 Y2 Y1 Y2
Y2 Y1 Y2 Y1 Y1 Y2

Y1
€k =+ € =+ €k = + €k = — € = — € = —
a)

k k
( b) (c (d) (e (f)

—

Figure 2: The six possible local configurations of strand c(is, jo) being clockwise from
strand c(i1, j1) near the shared endpoint (zy,0).

Remark 6. Tt is clear that any strand c(i, j) can be represented by a monotone curve
v € c(i, 7). That is, there exists a curve v € c(i, j) with a parameterization v = (v, ) :
[0,1] — R? such that if ¢,s € [0,1] and ¢ < s, then Y (¢) < vM)(5s).

We say that two strands c(iy, j1) and ¢(is, jo) intersect nontrivially if any two curves
Ye € c(ig, jo) with £ € {1,2} intersect in their interiors. Otherwise, we say that c(i1, j;)
and c(is, j2) do not intersect nontrivially. For example, in the case where n > 4,
c(1,3),¢(2,4) intersect nontrivially if and only if €3 = €3. If ¢(i1, j1) and c(iz, j2) do not
intersect nontrivially, we say that c(is, j2) is clockwise from c(iy, j;) (or, equivalently,
(i1, 71) is counterclockwise from c(is, j2)) if and only if some v; € ¢(iy,71) and v €
c(is, jo) share an endpoint (xy,0), do not intersect in their interiors, and locally appear
in one of the six configurations in Figure 2 preserving the property that v, € ¢(iy, j1) and
Yo € c(iz, Ja)-
Remark 7. Examination of these six diagrams in Figure 2 shows that the property of
c(ig, j2) being clockwise from c(iy, j1) (or, equivalently, ¢(iy,j1) being counterclockwise
from c(iz, ja)) is well-defined. In fact:

(1) If iy < j1 = iy < jo then c(iq, jo) is clockwise from c(iy, j1) if and only if ¢, = —
(Figure 2 (d) illustrates this, but Figure 2 (a) does not).

(2) If iy = iy < j1 < jo then c(ig, jo) is clockwise from c(iy, j1) if and only if €;, = +
(Figure 2 (b) and Figure 2 (f) both illustrate this).

(3) If 41 < iy < j1 = jo then c(iq, jo) is clockwise from c(i1, 1) if and only if ¢, = +.
(Figure 2 (c¢) and Figure 2 (e) both illustrate this).

A given collection of strands d = {c(ir, je) }eey With k < n, naturally defines a graph
with vertex set S, and edge set {{(zs,0), (x,0)} : ¢(s,t) € d}. We refer to this graph
as the graph determined by d.

Remark 8. Any monotone curve vy € c(i,j) is the graph of a continuous function f, :
[z;, ;] = R having the following properties:

L folw) = 0= fy(25),
2. fy(xy) < 0forall i <k < j with ¢ =+, and

3. fy(zg) >0 foralli <l <jwith ¢ = —.
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Conversely, any such continuous function is the graph of a monotone curve in ¢(i, j).

Definition 9. A strand diagram d = {c(iy, j¢) }ecr) on Spc where k < n is a collection
of strands on S, that satisfies the following conditions:

a) distinct strands do not intersect nontrivially, and

b) the graph determined by d is a forest (i.e., a disjoint union of trees).
Let Dy denote the set of strand diagrams on S, . with k strands, and let D, denote the
set of all strand diagrams on S, . This implies that

at a, at
Example 10. Let n =4 and € = (—, +, —, +, +) so that Q. =1 — 2 <+~ 3 —» 4. Then
we have that dy = {c(0,1),¢(0,2),¢(2,3),¢(2,4)} € Dy and dy = {c(0,4),¢(1,3),¢(2,4)}
€ D; .. We draw these strand diagrams below.

V70 U a7 U

The following technical lemma classifies when two nonisomorphic indecomposable rep-
resentations of (). define zero, one, or two exceptional pairs. Its proof appears in Sec-
tion 3.2.

Lemma 11. Let Q). be given. Fix two nonisomorphic indecomposable representations

U,V € ind(rep(Qc)).

a) The strands ®.(U) and (V') intersect nontrivially if and only if neither (U, V') nor
(V,U) are exceptional pairs.

b) The strand ®.(U) is clockwise from ®.(V) if and only if (U, V) is an exceptional
pair and (V,U) is not an exceptional pair.

c¢) The strands ®(U) and ®(V') do not intersect at any of their endpoints and they do
not intersect nontrivially if and only if (U, V') and (V,U) are both exceptional pairs.

Furthermore, there exist monotone curves v.(U) € ®(U) for all U € ind(rep,(Qe)) so
that ve(U), (V) have a unique crossing, have a common endpoint, or have no point of
intersection, respectively, if and only if U and V' satisfy a), b), or c), respectively.

Using Lemma 11 we obtain our first main result. The following theorem says that the
data of an exceptional collection is completely encoded in the strand diagram it defines.

Theorem 12. Let &, = {exceptional collections of Q.}. There is a bijection E. — D.
defined by

& ={X;, j, Yeew — {clie, jo) Yeep-
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Proof. It is enough to show that the image of £, under this map is a subset of D, and
this map has a well-defined inverse.
Let §, = {X j,}tew be an exceptional collection of Q.. Let { be an exceptional

sequence obtained from &_ by choosing a suitable ordering of its representations. Without
loss of generality, assume § = (X{, , )repr is an exceptional sequence. Thus, (X7, ;, X; ;)
is an exceptional pair for all £ and p satisfying ¢ < p. Lemma 11 a) implies that distinct
strands of {c(ig, j¢) }rew) do not intersect nontrivially. This implies that the curves v, =
Ye(X5, ;,) € clie, je) given in Lemma 11 will be pairwise nonintersecting.

Now we will show that {c(if,j¢)}wen has no cycles. Suppose that c(ig,, jg, ), -- -,
c(ie,, ji,) is a cycle of length p < k in {c(is, jo) }ecr- Since the cycle is embedded in
the plane, it encloses one region. Choose the orientation of the cycle so that it goes
clockwise around this region. Interpreting the indices cyclically, we have that c(i,,, jo,) is
clockwise from ¢(ig,, ,, je for all s € [p]. Therefore X, ; precedes Xfés+17jes+1 in the
exceptional sequence for all s € [p|, again interpreting the indices cyclically. But this is
impossible. This contradicts the fact that (X, ; ) is an exceptional sequence. Hence,
the graph determined by {c(ig, ji) }ecpy) is a tree. We have shown that {c(ir, jo) }repr] € Dhie-

Now let d = {c(i, je) }ocr) € Drye- Since c(ig, je) and c(iy,, jm) do not intersect non-
trivially, it follows that (@ (c(ig, J¢)), P2 (c(im, Jm))) OF (P7H(C(imy, Gm)), P2 (i, ) s
an exceptional pair for every ¢ # m. Notice that there exists c(iy,,js,) € d such that
(D1 (c(iey, 7e,)), D71 (c(ig, 4¢))) is an exceptional pair for every c(ig, j;) € d \ {c(ie,, Jo,) }-
This is true because if such c(iy,, js,) did not exist, then d must have a cycle. Set
Ey = ® Y (c(i¢,, jo,)). Now, choose c(ir,,js,) such that (®'(c(ie,,Jr,)), P, (clie, Je)))

€ ? €

s+1)

is an exceptional pair for every c(ir,j¢) € d\ {c(i¢,,Je,),- ., clie,, jo,)} inductively and
put E, = ®.(c(ie,,js,)). By construction, (Ei,..., Eg) is an exceptional sequence, as
desired. ]

Remark 13. This version of the argument in the third paragraph of the proof of Theo-
rem 12 above was communicated to us by the anonymous referee, to whom we are grateful.

Our next step is to add distinct integer labels to each strand in a given strand diagram
d. When these labels are a good labeling, they will describe exactly the order in which
to put the representations corresponding to strands of d so that the resulting sequence of
representations is an exceptional sequence.

Definition 14. A labeled diagram d = {(c(ie, je), s¢) Yeer) on Spe is a set of pairs
(c(i¢, Je), s¢) where c(ig, j¢) is a strand on S, and s, € [k]| such that d := {c(ir, jo) }eep
is a strand diagram on S, and s, # sp for any distinct ¢, ¢ € [k]. We refer to the pairs
(c(ig, jo), s¢) as labeled strands and to d as the underlying diagram of d. We define
the endpoints of a labeled strand (c(ig, j¢), s¢) to be the endpoints of ¢(iy, ji).

Let (x;,0) € S, and let ((¢(i,71),51),- ., (c(i, ), sr)) be the sequence of all labeled
strands of d that have (x;,0) as an endpoint, and assume that this sequence is ordered so
that strand ¢(4, ji,) is clockwise from ¢(i, ji) if k' < k. We say the strand labeling of d is
good if for each point (z;,0) € S, . that is the endpoint of at least one labeled strand of
d, one has s < --- < s,. Let 75;“ denote the set of labeled strand diagrams on S,  with
k strands and with good strand labelings.
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af ay al
Example 15. Let n = 4 and € = (—, 4, —,+,+) so that Q. = 1 — 2 2
Below we show the labeled diagrams dy = {(c(0,1),1), (¢(0,2),2), (¢(2,3),3), (c(

and d2 {( (074)71)7( (274)72)7( ( ) )}
AN MU 4 W
2 2

We have that dl € 15476, but 622 ¢ 153,5-

o W
1N

Theorem 16. Let k € [ | and let E. = {exceptional sequences of Q. of length k}. There
s a bijection D : E — Dke defined by

§e = (X5, ) eemy — {(clie, o), k + 1 —£) }oepn

Proof. Let & € &. By Lemma 11 a), &DE(&) has no strands that intersect nontrivially.
Let (V4,V3) be an exceptional pair appearing in & with V; corresponding to strand ¢; in
d . (&) for i = 1,2, where ¢; and c¢; intersect only at one of their endpoints. Note that by
the definition of @6, the strand label of ¢; is larger than that of ¢5. From Lemma 11 b),

strand ¢; is clockwise from ¢, in @ ¢(&). Thus the strand labeling of o (&) is good, so
@(ﬁ)eDkEforanyf €&
Let U, DkE — & be defined by {(c(ic, je), ) }ee — (X5 5, X o XS ).

%Jk’ Tk—1,Jk—1" 11,J1

We will show that \Ife( I) € & for any d € Dy and that U, = <I>6 I Let

lj[le({(c(le’jz)7 E)}ée[k]) = (X’Lk JK? X’fk 13Jk—17"" X’fl ]1)

Consider the pair (Xf ., X¢ . ) with s > §'. We will show that (X{ ., X¢ . ) is an

isnjs? Mg g isfs? Nigr
exceptional pair and thus conclude that @E({(C(ig,jg),€)}ge[k]) € & for any d € Dy,.
Clearly, c(is, js) and ¢(iy, js) do not intersect nontrivially. If ¢(is, js) and ¢(iy, js) do not
intersect at one of their endpoints, then by Lemma 11 ¢) (Xf ; , X ;) is exceptional.
Now suppose ¢(is, js) and c(iy, Js) intersect at one of their endpoints. Because the strand-
labeling of {(c(i¢, je), €) }ocp is good, c(is, js) is clockwise from c(iy, js). By Lemma 11
b), we have that (X¢ ., Xf . ) is exceptional.

’Ls]s llj/

To see that U, = (ID 1 observe that

EIV)E (EJE({(C(iZajZ%g”’%[’ﬂ)) = (I) <(XZEI€ Jk’X:k P Xlgl Jl))
{(C(Z€7jf)v k+1- (k +1- g))}fe[k]
= {(c(ie, je), €) beepny

Thus 2136 o \TIE =1p . Similarly, one shows that {IVJ6 o (f)g = 1lg.. Thus 56 is a bijection. [

The last combinatorial objects we discuss in this section are called oriented dia-
grams. These are strand diagrams whose strands have a direction.
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Definition 17. Let ?(z’g,jg) denote the data of the strand ¢(is, j;) on S, . and an orienta-
tion of each curve in ¢(ig, j¢) from (z;,,0) to (z;,,0). We refer to @ (i, j¢) as an oriented
strand on S, . and we define the endpoints of _C><Zg,jg> to be the endpoints of ¢(ig, j¢).
An oriented diagram j = {?(zg, Je) Yeer) on Sy ¢ is a collection of oriented strands on
Sn,e where d = {c(ig, ji) }eep is a strand diagram on S, . We refer to d as the underlying

diagram of

Remark 18. When it is clear from the context what the values of n and € are, we will often
refer to a strand diagram on S, simply as a diagram. Similarly, we will often refer to
labeled diagrams (resp., oriented diagrams) on S, . as labeled diagrams (resp., oriented
diagrams). Additionally, if we have two diagrams d; and dy (both on S, () where d; C do,
we say that d; is a subdiagram of d;. One analogously defines labeled subdiagrams
(resp., oriented subdiagrams) of a labeled diagram (resp., oriented diagram).

We now define a special subset of the oriented diagrams on S, .. As we will see, each

element in this subset of oriented diagrams, denoted Bm, will correspond to a unique
c-matrix C' € c-mat(Q.) and vice versa. Thus we obtain a diagrammatic classification of
c-matrices (see Theorem 22).

Definition 19. Let Bne denote the set of oriented diagrams j (u, Je) }eepm) on
Sy.e with the property that for each k£ € [0, n] there exist integers 21,22_,> J e%(] ,n] where

iy < k <igand j € [0,n]\{i1, k, iz} such that the oriented subdiagram dj, of

of the oriented strands of d with (z,0) as an endpoint is an oriented subdiagram of one
of the following two oriented diagrams on &, :

consisting

i) cﬁ = {7 (k,iy), @ (k,is), € (j, k)} where e, = + (shown in Figure 3 (left)) or
ii) d = {7 (i1, k), (i, k), € (k,j)} where ¢, = — (shown in Figure 3 (right)).

Note that to make sense of the local pictures in Figure 3, we must also choose represen-
tatives of the strands in dj which pairwise have no intersections in their interiors.

AN

€x = + €k = —
Figure 3: The oriented subdiagrams from Definition 19.

Lemma 20. Let {a)}ie[k] be a collection of c-vectors of Q. where k < n. Let o =

+dim (X, Z2) where the sign 1s determined by ¢!, There is an mjective map

{ noncrossing collections } { oriented diagrams }
of c-vectors {a’)}ie[k] d = {7(ie,jé)}ee[k]
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defined by
18 positive

B
a) 1S negative,

@ - { v

where {c?}ie[k] is a noncrossing collection of c-vectors if .(X; ;) and <1>6(Xf,1 i’z) do
not intersect nontrivially for any i, € [k|. In particular, each c-matriz C. € c-mat(Q.)

determines a unique oriented diagram denoted dg_ with n oriented strands.

+ - +

Example 21. Let n =4 and € = (+,+, —, 4+, —) so that Q. =1 048 3 B4 After
performing the mutation sequence s o s to the corresponding framed quiver, we have
the c-matrix with its oriented diagram.
1 0 0
0 1 0 W
-1 =1 0

1

0 0

o O O

The following theorem shows that oriented diagrams belonging to Bn,e are in bijection
with c-matrices of Q.. We delay its proof until Section 4 because it makes use of the
concept of a mixed cobinary tree.

Theorem 22. The map c-mat(Q.) — D, induced by the map defined in Lemma 20 is
a bijection.
3.2 Proof of Lemma 11

The proof of Lemma 11 requires some notions from representation theory of finite dimen-
sional algebras, which we now briefly review. For a more comprehensive treatment of the
following notions, we refer the reader to [ASS06].

Definition 23. Given a quiver () with #Qo = n, the Euler characteristic (of Q) is the
Z-bilinear (nonsymmetric) form Z" x Z" — Z defined by

(dim(V'), dim(W)) = > "(=1)" dim Extjo(V, W)

i>0
for every V,W € rep,(Q).

For hereditary algebras A (e.g., path algebras of acyclic quivers), Ext’(V, W) = 0 for
7 > 2 and the formula reduces to

(dim(V'), dim(W)) = dim Homyq(V, W) — dim Exty, (V, W).

The following lemma, which appears in [ASS06], gives a simple formula for the Euler
characteristic.
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Lemma 24. Given an acyclic quiver Q with #Qo = n and vectors x = (x1,x3,...,Ty,),
Y= (y1,Y2,--,Yn) € Z", the Euler characteristic of Q) has the form

T,y) = Z TiY; — Z Ts(a)Yt(e)
1€Qo acQ1

Next, we give a slight simplification of the previous formula. Recall that the support
of V' € rep,(Q) is the set supp(V') := {i € Qp : V; # 0}. Thus for quivers of the form @,
any indecomposable representation X7 ; € ind(repy (Q.)) has supp(X;;) = [i + 1, j].

Lemma 25. Let X} ,, X7 € ind(rep,(Q.)) and A := {a € (Qc)1 : s(a),t(a) € supp(Xj )N
supp(X5;)}. Then (dim(X} ), dim(Xf,)) is equal to

Xsupp(Xﬁyé)ﬂsupp(X;j) - # ({a € (Qe)l : S((Z) € SUPP(XIE,e)a t(a’) € SUpp(X,Z])}\A)
where X supp(x¢ nsupp(xg,) =1 if supp(Xg ) N supp(Xs;) # 0 and 0 otherwise.
Proof. We have that

<di_m(X1§,é)a di_m(XE Z dim (X}, e) dim (X )m Ki Z dim( X} E)S(a)dlm(XiE,j)t(a)

— 4 (supp(X£,) N supp(X¢,))
— #{a € (Qo)1 : s(a )Gsupp(X ¢); t(a) € supp(X;,)}
= # (supp(X{,) Nsupp(X(,)) — #A
—#{a € (Qo)1:s(a) € Supp(Xziz) t(a) € supp(X5;)H\A).

Observe that if supp(Xy ,) Nsupp(X;;) # 0, then #A = #(supp(Xg ;) Nsupp(X;;)) — 1.
Otherwise #A = 0. Thus (dim (X ,),dim(X;;)) is equal to

Xsupp(Xj, ,)Nsupp(Xf ;) — # ({a € (Qo)1 : s(a) € SUPP(XIE,Z)a t(a) € supp(Xf,j)}\A) -

Before presenting the lemmas that we will use in the proof of Lemma 11, we pro-
vide a conceptual formulation of their content, which describes when Homyg, (—, —) and
Extﬂng (—, —) vanish for a given type A, quiver Q..

Let X;e, X;; € ind(repy(Q.)) and let S = supp(X}, ,) Nsupp(X; ;). Then we have that
Homyg, (X”, X6 ,) # 0 if and only if

°« S#0,

e any a € (Q.); connecting a vertex p € supp(X;;)\S and a vertex ¢ € S has s(a) = ¢
and t(a) = p, and

e any a € (Q.); connecting a vertex p € supp(Xj ,)\S and a vertex ¢ € S has s(a) = p
and t(a) = q.

Similarly, Exty,, (X¢;, X5 ,) # 0 if and only if one of the following holds:

Z_]’
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° Hokae(X;’z,Xf)j) #0and S C supp(X,ié),supp(Xf’j), or
e S = () but there is an arrow a € (Q.); with s(a) € supp(X; ;) and t(a) € supp(Xj ,).

In the next four lemmas, we translate the conceptual formulation above into explicit
characterizations of when Homyg, (—, —) and Exty, (—, —) vanish. This characterization
is in terms of inequalities satisfied by the indices describing a pair of indecomposable
representations of (). and the entries of e. We will use these explicit lemmas to prove
Lemma 11. Since their proofs all use very similar techniques, we only prove Lemma 26.

Lemma 26. Let X} ,, X7 € ind(rep,(Q.)). Assume 0 <i <k < j <l<n
i) Homyq, (X5, Xi,) # 0 if and only if €, = — and ¢; =
i) Homyq, (X, Xi;) # 0 if and only if e, = + and ¢; =
1i1) Extﬂng (X5, XL, z) # 0 if and only if ¢, = + and €¢; = +

iv) Extﬂng (Xio X5;5) # 0 if and only if e, = — and ¢; = —
Proof. We only prove i) and iv) as the proof of i) is very similar to that of ), and the
proof of #ii) is very similar to that of iv). To prove i), first assume there is a nonzero
morphism 0 : X{, — Xf ,. Clearly, 0, = 0if s & [k +1,j]. If 6, # 0 for some s € [n], then
0, = A -idy for some nonzero A € k (i.e., 05 is a nonzero scalar transformation). As 6 is
a morphism of representations for any a € (Q.); the equality 0;q)¢h7 = 56, holds.
Thus for any a € {a;"'} '}, we have 0,4y = 05(4). As 6 is nonzero, this implies that

k,_,’_l,...,]l
0s = X\ -idg for any s € [k + 1, j]. Ifa—ak,thenwehave

9t(a)@2’j = wi’ées(a)
et(a) - O

Thus €; = —. Similarly, ¢; = —

Conversely, it is easy to see that if €, = ¢; = —, then 0 : X7, — X}, defined by 6, =0
if s € [k +1,7] and 65 = idy otherwise is a nonzero morphism.

Next, we prove iv). Observe that by Lemma 25 we have

dim Extyq, (X5, Xf;) = dimHomgg, (Xf,, X)) — (dim (X ), dim (X))
= dim Homyg, (XM,X6 )—1
+#({b € (Qc)1 : 5(b) € supp(Xf ), 1(b) € supp(X;;)}\A).

Note that # ({b € (Qe)1 : s(b) € supp(Xf,), t(b) € supp(X{,;)}\A) < 2 with equality if
and only if ¢, = ¢; = —.
Suppose €; = ¢; = —. By i), we have Homyq, (X7, X} ;) # 0so Homyq, (X} ,, X5;) = 0.
This means
dim Extlg, (Xg, X5) = #(1b € (Qr + 5(b) € supp(Xg,),1(b) € supp(X5,)}\A) — 1
= 1.

Conversely, suppose Exth (Xf X ) # 0. Thus, one checks that there is a nonsplit
extension
0— Xi; —>X6£@X,w —>XH—>O
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By Remark 4, this implies that Homyq, (X} ,, X;;) = 0, since the composition A : X EiN

Xio LS X} 1s nonzero. Using again that d1mExth (Xir X5;) # 0, the formula above
for its dimension tells us that € =€ = —. O

Lemma 27. Let X} ,, X7 € ind(rep,(Q.)). Assume 0 <i <k < £ <j<n
i) Homyq, (X;,, Xi,) # 0 if and only if e, = — and ¢, =
/1) Hoka (XH, ;) # 0 if and only if e, = + and ¢, =
i11) Exth (X5, Xio) # 0 if and only if e, = + and ¢, =
iv) Exth (Xio X5;) # 0 if and only if ¢, = — and ¢, = +

Lemma 28. Assume 0 < i< k < j<n. Then
Hokae(sz7ij> =0 and HOIIl]kQG(Xk],X ) = 0.
Exth (Xip, X5 ;) # 0 if and only if e, =

Exth (X Zk) # 0 if and only if ¢, = —

Homyq, (X5y, X5 ;) # 0 if and only if ¢, =

Homyg, (X5, X¥3) # 0 if and only if e, =

Exty,. (ka,X”) =0 and Exty, (X§;, X¢ ) 0.
Hokae( ky

~.
o~
S o=,
S S Sl o,
N

C S s
S S

: NS
— O N N N N N

X;i;) # 0 if and only if &, =
vidi) Homyq, (X, gj) # 0 if and only if e = —
iz) Exty, (Xf,, X¢;) =0 and Extyg (Xf;, X5,) = 0.

Lemma 29. Let X} ,, X7 € ind(rep,(Q.)). Assume 0 <i<j<k<{<n. Then
Z) HOIH]kQ ()(”,)(6 ) = 0, HOH]]kQ (ng,XE ) = 0,

i) Extyg, (X§;, X5, =0, Extﬂnge(ij,X’ )= 0.

lj’

We begin our proof of Lemma 11 by giving a formula for a good choice of representative
monotone curves v.(i,7) € ¢(i,7) for all strands c(i,j). Let ¢ : R — R be any fixed
smooth (C') function satisfying the equation ¢(zy) = ex\/z) for all (z3,0) € S, .. For
0<i<j<nlet f;:[x;,x;] = R be the smooth function:

—p(t) (1)

fii(t) = Ez‘\/x_i;]__

J
Note that the graph of the function f;; +¢ is a straight line from (z;, €;1/;) to (x;, €;,/Z;).

Lemma 30. The graph of the function f;; : [x;,x;] = R is a monotone curve (i, j) €
c(i, 7).

Proof. We follow Remark 8. For t = x;, f(;) = €;1/Z; — €;4/2; = 0. Similarly, f(x;) = 0.
Now, let i < k < j. Since the function y = y/z is concave down, the weighted average of

VZi, \/T; will be strictly smaller than /xy:
|fii (k) + o(an)| < vk

Since |p(xy)| = /Tk, the sign of f;;(x)) must be —e¢; as required by Remark 8. O
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Lemma 31. Let c(iy, j1) and c(ia, j2) be distinct strands on S, . that intersect nontrivially.
Then c(i1, j1) and c(is, jo) do not share an endpoint.

Proof. Suppose c(i1, j1) and c(iz, jo) share an endpoint. Then the linear functions f;,;, +¢
and f;,;, + ¢ agree at one endpoint and therefore must be disjoint at all other points. So,
fivin # finj» €xcept at an endpoint and c(iy, j1), c(i2, jo) cannot intersect nontrivially. [

Lemma 32. Two distinct strands c(iy, j1) and c(iz, j2) on S, ¢ intersect nontrivially if and
only if the representative monotone curves Y (i1, j1) and v(is, jo) have a unique crossing.

Proof. By the previous lemma we may assume that c(i1, j;) and ¢(is, jo) do not share an
endpoint.

If ~e(i1, 1) and 7.(is, j2) do not intersect then, by definition, ¢(i1,j1) and ¢(iq, jo) do
not intersect nontrivially. So, we may assume that (i1, j;1) and v.(i2, j2) intersect. Then
the linear functions f;, ;, + ¢, fi,;, + ¢ agree at one point. The slopes of these lines must be
different, otherwise one curve 7,(i1, j1) or 7.(ia, j2) would contain an endpoint of the other.
Therefore, v.(i1,j1) and 7.(is, j2) intersect transversely at one point. It remains to show
that (i1, j1) and c(is, j2) intersect nontrivially, i.e., that any other pair of representatives
will intersect in their interiors.

Assuming that one pair of transversely intersecting representative curves vy, € c(ig, Jx)
with k& € [2] meets an odd number of times, we will show that all of them do. This
will prove the lemma. Without loss of generality, we assume i; < i5. Since c(iy, j;) and
c(ig, j2) do not share a common endpoint there are two cases:

CL) 11 <1y < J1 < Jo
b) ’i1<i2<j2<j1.

Suppose that case a) holds. If ¢, = — (resp., €, = +), then 7, passes over (resp.,
underneath) 7o at its left endpoint (z;,,0). Since 71,72 cross an odd number of times, the
right hand endpoint of v, must lie under (resp., over) v,, i.e., €, = — (resp., €, = +).
In both subcases, €;, = €, and v; and 7, must switch vertical order between (z;,,0) and
(x;,,0). So, all choices of v1,7, must cross an odd number of times if the crossings are
transverse.

The proof in case b) is very similar. Again the monotone curves 7,7, must switch
their vertical order between (z;,,0) and (z,,,0) which, in case b) means that €, # €j,.
Then all choices of 71,72 will intersect an odd number of times if the intersections are
transverse. [

Remark 33. If ¢(i1, 71) and c(ia, j2) are two distinct strands on S, that do not intersect
nontrivially, then the representative monotone curves (i1, j1) and 7 (i2, j2) are noninter-
secting, except possibly at their endpoints.

We now arrive at the proof of Lemma 11. The proofs of a), b), and ¢) are a case-by-
case analysis where the cases are given in terms of the entries of ¢ and the inequalities
satisfied by the indices describing a pair of indecomposable representations of ).. The
representatives 7.(U) of U = X;, claimed by Lemma 11 are given by 7.(U) = 7.(i, )
which have the required properties by Lemma 32 and Remark 33 above.
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Proof of Lemma 11 a). Let X; = U and X, = V. Assume that the strands ®.(X; ;) and
® (X} ,) intersect nontrivially. By Lemma 31, we can assume without loss of generality
that either 0 <1 < k< j <l <nor0<i<k</l<j<n By Lemma 32, we
can represent ® (X7 j) and ®.(X /2!) by monotone curves ; ; and 7y, that have a unique
crossing. Furthermore, we can assume that this unique crossing occurs between (xy,0)
and (zj41,0). There are four possible cases:
i) €= €1 = —,

i) e = — and €y = +,

ZZZ) € — €k+1 = —|—,

i) €, =+ and €4 = —
We illustrate these cases up to isotopy in Figure 4. We see that in cases i) and ii) (resp.,
i11) and v)) vk lies

k1 =T+ e =+ 6k+1—+ e =+

€ = — 6k+1—* 6k+1—*

Figure 4: The four types of crossings.

above (resp., below) 7; ; inside of {(z,y) € R? : 2441 < & < Tminfej} }-
Suppose ¢ lies above 7, ; inside {(z,y) € R? : zp41 < @ < Zmingej3 b Then

{+ : min{¢,j} = ¢

Cmin{t.j} — : min{{,j} =
otherwise 7, and ; ; would have a nonunique crossing. If min{/, j} = ¢, we have 0 < i <
k<l<j<mn, e =—,and ¢ = +. Now by Lemma 27, we have that Homyg, (X7 ;, X} ,) #
0 and Exth (Xeo Xi;) # 0. I min{l,j} = j, then 0 <i <k <j<{l<n, g =—,and
¢; = —. Thus, by Lemma 26, we have that Homyg, (X, X[ ,) # 0 and Exty, (X, X¢,) #

0.
Similarly, if v, ; lies above 7y, inside {(z,y) € R? : zp41 < < Tmin{e,j} 1 it follows
that

€min{¢,j}

—  min{/,j} =/
{ + : min{/,j} =7j.
If min{/, j} = ¢, then Homyq, (Xf ,, X5;) # 0 and Extﬂng (X5, Xio) # 0 via Lemma 27. If
min{/, j} = j, then Lemma 26 implies Homyg, (X,jg, i) #0 and Exty, (Xf i ko) # 0.
Thus we conclude that neither (X, Xf ,) nor (X, X ¢ ;) are exceptional pairs.
Conversely, assume that neither (U V) nor (V, U ) are exceptional pairs where X7, = U
and Xy , = V. Then at least one of the following is true:
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a) Homyg, (X5;, Xi,) # 0 and Hokae(XM, Xi;) #0,
b) Homyg, (Xf;, X ,) # 0 and Exth (X X ) # 0,
c) Extung (XfJ,XH)#Oand HokaE(XH, u) £0,
d) Extlo (X(;, Xf,) # 0 and Extly (X[, X{;) # 0.

As X7, and X} , are indecomposable and nonisomorphic, we have Homyq, (X7 ;, X} ;) =
0 or Hoka (XM,X ) = 0 by Remark 4. Without loss of generality, assume that
Homyq, (X5 4, X5;) = O Thus b) or d) hold so Exty, (Xf,, Xf;) # 0. Then Lemma 28
andLemmaQQimplythatO<i<k<j<€<nor0<z<k<€<j<n.

If0<i<k<j<{<n,wehave e = ¢; = — by Lemma 26 as Homyq, (X5 ;, X} ,) # 0
and Exty, (X5 X5;) #0. Let vi; € ®(XF;) and 50 € P(Xf,). We can assume that
there exists 6(k:) > O such that v;; and 7, have no intersection inside {(z,y) € R? :
zr < o < 2 + 6(k)}. This implies that ~; ; lies above v, inside {(x,y) € R? : 7, < z <
x + 0(k)}. Similarly, we can assume there exists d(j) > 0 such that v; ; and v, have
no intersection inside {(z,y) € R?* : z; — 6(j) < « < x;}. Thus 7;; lies below v, inside
{(z,y) e R? : 2; — §(j) < x < x;}. This means 7; ; and 7, must have at least one point
of intersection. Thus ®.(Xf ;) and ®.(Xf ,) intersect nontrivially. An analogous argument
shows that if 0 <4 < k < ¢ < j < n, then ®.(X;,) and (X} ,) intersect nontrivially. [

Proof of Lemma 11 b). Assume that ®.(U) is clockwise from ®.(V'). Then we have that

one of the following holds:
a) Xi,;=Uand X;; =V forsome 0 <i<k <j<

b) ka—Uadee —Vforsome0<z<k<j<n

c) X —UandXik—VforsomeO<z<j<nand0<i<k<n

d) X{;=Uand X;; =V forsome0<i<j<nand0<k<j<n

In Case a), we have that ¢, = — since ®(Xj ;) is clockwise from ®.(Xf,). By

Lemma 28 4) and i), we have Homyg, (X, X} ;) = 0 and Extﬂnge(Xf,k,X,ij) = 0. Thus
(X X;}) is an exceptional pair. By Lemma 28 i77), we have that Extﬂng (X5, Xix) # 0.
Thus (X7, Xf ;) is not an exceptional pair.

In Case b), we have that ¢ = + since ®.(Xf,) is clockwise from ®.(X} ;). By
Lemma 28 4) and i), we have that Homyg, (X} ;, X;) = 0 and Extﬂnge(Xg’j,sz) = 0.
Thus (XF,, X ;) is an exceptional pair. By Lemma 28 ii), we have Extﬂngs(Xf’k, Xij) #0.
Thus (X} ;, Xf)) is not an exceptional pair.

In Case c), if j < k, it follows that ¢; = —. Indeed, since ®.(X7 ;) and ®.(X,) share
an endpoint, the two do not intersect nontrivially by Lemma 31. As & (X} j) is clockwise
from ®.(X;,), Remark 33 asserts that we can choose monotone curves v;;, € ®.(X7,)
and v;; € ®(X;;) such that v, lies strictly above v;; on {(z,y) € R?* : z; < x <
x;}. Thus ¢; = —. By Lemma 28 v) and vi), we have that Homyq, (X7, X;,) = 0 and
Exth (X5 X5;) = 0 so that (X, X{,) is an exceptional pair. By Lemma 28 iv), we

’L]7

have that Hoka (X, Xip) # 0. Thus (X5, X ; ) is not an exceptional pair.

Similarly, one ShO\i/‘S that if k < J, then ¢, = +. By Lemma 28 iv) and vi), we have
that Homyg, (X{,, X{;) = 0 and Exty,, (X£,, X ) = 0so that (Xf;, X7, ) is an exceptional
pair. By Lemma 28 v) we have that Homyg, (X”,Xlk) # 0. Thus (ka,,X6 ) is not an
exceptional pair. The proof in Case d) is completely analogous to the proof in Case ¢) so
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we omit it.
Conversely, let U = X7, and V = X , and assume that (X;,, X} ,) is an exceptional
pair and (Xf,, X;,) is not an exceptional pair. This implies that at least one of the

following holds:
1) HOIIle (Xk,g,XE ) = 0 EthQ (Xke,Xe ) = O, and HOIl’leE(Xf],XEE) # 0
2) Homyg, (XM,X ) = 0,Extlo (X, X£,) =0, and Extlo (X¢;, X5,) # 0.
By Lemma 29, we know that [z, j] N [k, ] # (. This implies that either
i) ®(Xf;) and ® (X} ,) share an endpoint,
i) 0<i<k<j<l<n,
i) 0<i<k</l<j<n,
w) 0<k<i<fl{<j<n,or
v) 0<k<i<ji<l<n.
We will show that ®.(Xf;) and ®. (X ,) share an endpoint.

Suppose 0 < i < k < j < £ < n. Since Homyg, (X ,, X ;) = O,Extungé(Xg,e,Xf’j) =0,
we have by Lemma 26 i) and iv) that either ¢, = — and ¢; = + or ¢, = + and ¢; = —.
However, as Homyq, (Xf;, X ,) # 0 or Extﬂng (X5, Xig) # 0, Lemma 26 i) and i)
assert that e, = €, = — or ¢, = ¢; = +. This is a contradiction. Thus, i, j,k,¢ do not
satisfy 0 < 7 < k < j < £ < n, and by a similar argument, they also do not satisfy
0<k<i<l<ji<n

Suppose 0 < i < k < £ < j < n. Since Homyg, (X ,, X¢;) = 0,Exty, (X5, X5,;) =0,

we have by Lemma 27 i7) and iv) that either ¢, = ¢, = + or ¢, = ¢, = —. However,
as Homyq, (X7, X} ,) # 0 or ExtﬂiQ (X5, Xig) # 0, Lemma 27 4) and iii) we have that
€, = —and ¢ =+ or ¢, =+ and ¢ = — . This is a contradiction. Thus, 1, 7, k, ¢ do not

satisfy 0 <7 < k < £ < j < n, and by an analogous argument, they also do not satisfy
0<k<i<j<l<n.

We conclude that ®.(U) and ®.(V') share an endpoint. Thus we have that one of the
following holds where we forget the previous roles played by ¢, 7, k:

a) Xi,;=Uand X{; =V for some 0 <i <k <j<n,

b) Xip=Uand Xi; =V forsome0<i<k<j<n,

c) Xi;=Uand Xj, =V forsome0<i<j<nand 0<i<k<n

d) Xi;j=Uand X;, =V forsome 0 <i<j<nand0<k<j<n

Suppose Case a) holds. We know that Extyq (Xf,, X5 ) = 0 since (U,V) is an ex-

ceptional pair. By Lemma 28 ii), we have that ¢, = —. Thus ®.(U) is clockwise from
o.(V).
Suppose Case b) holds. We know that Extﬂng (X% » Xix) = 0 since (U, V) is an ex-

ceptional pair. By Lemma 28 7ii), we have that ¢, = +. Thus ®.(U) is clockwise from
o (V).

Suppose Case ¢) holds. Assume k < j. Then Lemma 28 iv) and the fact that
Homyq, (X5, Xf;) = 0 imply that ¢, = +. Thus we have that ®.(U) = &(Xf,) is
clockwise from ®. (V) = ®.(Xf,). Now suppose j < k. Then Lemma 28 v) and
Homygq, (X5,, Xi;) = 0 imply that ¢; = —. Thus we have that ®.(U) = ®.(X;,) is
clockwise from @ (V') = ®.(X;,). The proof in Case d) is very similar so we omit it. [J
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Proof of Lemma 11 ¢). Observe that two strands c(iy, j1) and c¢(is2, j2) share an endpoint
if and only if one of the two strands is clockwise from the other. Thus Lemma 11 a) and
b) imply that ®.(U) and (V') do not intersect at any of their endpoints and they do not
intersect nontrivially if and only if both (U, V') and (V,U) are exceptional pairs. O

4 Mixed cobinary trees

We recall the definition of an e-mixed cobinary tree and construct a bijection between the
set of (isomorphism classes of)) such trees and the set of maximal oriented strand diagrams
on ..

Definition 34 ([I013]). Given a sign function € : [0,n] — {+, —}, an e-mixed cobinary
tree (MCT) is a tree T' embedded in R? with vertex set {(i,y;) : « € [0,n]} and edges
straight line segments and satisfying the following conditions:

a) None of the edges is horizontal.

b) If ¢, = 4 then y; > z for any (i,2) € T. So, the tree goes under (7, ;).
c) If ¢, = — then y; < z for any (i,2) € T. So, the tree goes over (i,y;).
d) 1If ¢, = + then there is at most one edge descending from (i, y;) and

at most two edges ascending from (7,7;) and not on the same side.
e) If ¢, = — then there is at most one edge ascending from (7, ;) and
at most two edges descending from (i,y;) and not on the same side.
Two MCTs T, 7" are isomorphic as MCTs if there is a graph isomorphism 7" = T’
which sends (7, y;) to (i,y;) and so that corresponding edges have the same sign of their
slopes.

Given a MCT T, there is a partial ordering on [0,n] given by i <r j if the unique
path from (4,y;) to (j,y;) in T is monotonically increasing. Isomorphic MCTs give the
same partial ordering by definition. Conversely, the partial ordering <, determines T’
uniquely up to isomorphism since 7" is the Hasse diagram of the partial ordering <. We
sometimes decorate MCTs with leaves at vertices so that the result is trivalent, i.e.,
with three edges incident to each vertex. See, e.g., Figure 6. The ends of these leaves are
not considered to be vertices. In that case, each vertex with e = + forms a “Y” and this
pattern is vertically inverted for e = —. The position of the leaves is uniquely determined.

In Figure 6, the four vertices have coordinates (0,yo), (1,21), (2, y2), (3,y3) where the
y; can be any real numbers such that yy < y; < y2 < y3. This inequality defines an open
subset of R* which is called the region of this tree T. More generally, for any MCT T,
the region of T, denoted R.(T), is the set of all points y € R""! with the property that
there exists a mixed cobinary tree T” which is isomorphic to T" so that the vertex set of

T is {(i,y;) : 1 € [0,n]}.

Theorem 35 ([I013]). Letn € Z>q and e : [0,n] — {4, —} be fized. Then, for every MCT
T, the region R(T) is convex and nonempty. Furthermore, every point y = (Yo, - -, Yn)
in R™ with distinct coordinates lies in R.(T) for a unique T (up to isomorphism). In
particular these regions are disjoint and their union is dense in R"*1,
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(4,1)
(0,0) (3,0)
(2a _1)
Figure 6: This MCT (in blue) has
Figure 5: A MCT with ¢, = ¢ = —, added green leaves showing that € =
€3 = + and any value for g, €. (= +,—,—)-

For a fixed n and € : [0,n] — {4+, —} we will construct a bijection between the set
T of isomorphism classes of mixed cobinary trees with sign function € and the set
defined i Deﬁmtlon 19.

Let i { (ig, je) boem) € Bn e and let 7} ~; be an element of the set ¢ (Zg,jg) of oriented
curves with ¢ € [n] so that each 77 is a monotone curve from i, to j, and so that the
oriented curves {%}ge[n} are pairwise nonintersecting in their interiors. Let p = (z,y) and
q = (z, z) be two distinct points on the union of these oriented curves where ¢ lies above p.
The oriented diagram d defines a unique sequence of oriented curves A, , ..., A;, joining

d ¢ wh VC_}orx_)CﬁassubsetsofRzand)T):_~>f0rallt€{2... k—1}
p and ¢ where \;, C ;] i C Yir i = Vi, ey
fo_)r some_(;ollection of oriented curves 7, ... 777;@ € {%}ge[n]. We study the sequence
i iy

iy - - -5 i, 10 the next lemma.

Lemma 36. In the notation of the previous paragraph, if p = (x,y) and ¢ = (x,z) are
two points on the union of the curves {%}}ge[n] where q lies above p, then the sequence
)\—;, ey )\—ZZ forms an oriented path that is oriented from p to q.

Proof. The proof will be by induction on the number m of internal vertices appearing in
the sequence \;,, ..., \;,. If m = 1 with internal vertex (z;,0) then p and ¢ are connected
by )\—Z: and \;, where the former connects p to (x;,0) and the latter connects (x;,0) back
to ¢g. Since the oriented curves {w }eem) are pairwise nonintersecting, the oriented curve
>\—“> lies below /\—12> Since d € D, ., we conclude that )\_“> (resp., /\—12> ) is oriented from p to
(x,0) (resp., from (z;,0) to q).

Now suppose that m > 2 _an the lemma holds for smaller m. There are two cases.
Case 1: the sequence \;,, . .. /\ lies entirely on one side of p and ¢ (as in the case m = 1).
Case 2: the sequence A, .. )\ has internal Vertlces on both sides of p and gq.

Case 1: Suppose by symmetry that the sequence )\“, cee )\—ZZ lies entirely to the left of
p and ¢. Let (x;,0) denote the 1nte£1>al vert_eic of /\—ii, ..., A, with the largest value of z;.
Thus all other internal vertices of /\“, ...y i, are weakly to the left of (z;,0) and p and

= —
q are to the right of (z;,0). Let /\m o N, (resp., A

_>
ivi1r- > Ny ) denote the sequence of
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oriented curves connecting p and (z;,0) (resp., (z;,0) and gq).

We claim that (z;,0) cannot be a local maximum of v with respect to the z-coordinate.

) — —
Assume by symmetry that ¢; = —. Then the curves determined by A;,...,\; and
Nigirs - - > Nig, Tespectively, are required to pass over (x;,0), say at points r = (z;,y;) and
s = (z;, z;), respectively. Here s lies above r. Since r and s both lie above (x;,0), by
induction on m we know that each of the two sequences of oriented curves joining (z;,0)

to r and (x;,0) to s form oriented paths oriented away from (x;,0). This contradicts the

definition of D, . since two oriented curves leaving a vertex to the left cannot both be
oriented away from that vertex.

Now, by the maximality of x;, we have that either )\“ connects (z;,0) and p or )\

connects (z;,0) and g. Without loss of generality, we assume that \;; connects (xj,O)
and p. By the maximality of z;, there is a unique point r = (z;,y;) on the oriented

curve \;, that lies dlrectly above (x;,0). In particular, this means ¢; = —. By abuse of
_)

notation, let A;,,.. /\ denote the sequence of orlented curves connecting (x;,0) to r.

By induction, we obtam that the sequence of curves )\,2, ..., A, forms an orlented path

going from (z;,0) to r. Now since 7 Bn ¢ and since €; = —, we have that )\ must be
oriented toward (z;,0). This completes Case 1.

—>
Case 2: Suppose that the sequence )\ iy hes on both sides of the vertical line

PR
containing p and ¢. This means the sequence J;,, .. )\ contains a third point r = (x, w)
from the vertical line containing p and ¢q. By abuse of notation, we let \;,...,\;, and
)TJ: ey >‘—w: , respectively, denote the unique sequences of curves connecting p to r and r
to g, respectively. There are the following three possible subcases:

a) the point r lies between p and g,
b) the point r lies below both p and ¢, and

c¢) the point r lies above both p and gq.

' — —
Suppose we are in subcase a). By induction, the sequence )\“, cos A, (respe, Ay -

XZ ) forms an oriented path that goes from p to r (resp., from r to ¢). This completes the
proof of subcase a).

We now prove subcase b), and we omit the proof of subcase ¢) as it is very similar. By
induction, the sequence )\_“> . )\_; (resp., Ay 1, ) forms an oriented path that goes
from r to p (resp., r to q). Since the oriented curves {ﬁg}ge [n] are pairwise nonintersecting
and since there are two oriented curves oriented away from 7, we must have that r =
(2;,0) € S, for some i. Moreover, since p and ¢ lie above r, we know that ¢, = —

However, this contradicts that 7 Bn,e. This completes that proof. O

Theorem 37. For cach d — {7(@,]'@)}[6[71] € Bn,e, let R(j) denote the set of all
y € R" so that y; < y; for any (i, j) in d. Then R(j) = R(T) for a uniquely
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determined mized cobinary tree T € T.. Furthermore, this gives a bijection
%
Dn,e = 7;

Pro;/. We first verify the existence of a mixed cobinary tree T' for every choice of y €
R(d). Since the strand diagram is a tree, the vector y is uniquely determined by yy € R
and y;, — v;, > 0, ¢ € [n], which are arbitrary. Given such a y, we claim that the
n line segments L, in R? connecting the pairs of points (ir, y;,), (je, yj,) meet only at
their endpoints. If not then two of these line segments, say L, L;, meet at some point
(a,b) € R2. This leads to a contradiction of Lemma 36 as follows. Let {%}ge[n] with
T € 7(2'@, Je) for all £ € [n] be monotone curves that are pairwise nonintersecting in their
interiors. Let p € 7: and q € %) be the points on those curves with x-coordinate a. By
symmetry assume p is below ¢q. Let A,,,..., A, denote the sequence of oriented curves
connecting p and ¢ so that w; = s and w, = t. By Lemma 36, these oriented curves
form an oriented path going from p to ¢. By definition of the vector y € R(j) we have
vi, <y, for each ¢ = wy,...,wy. Then b < y;, < y;, < b is a contradiction. So, T is a
linearly embedded tree. The lemma also implies that the tree T lies above all negative
vertices and below all positive vertices. The other parts of Definition 34 follow from the
definition of an oriented strand diagram. Therefore T' € 7.. Since this argument works
for every y € R(j), we see that R(j) = R(T) as claimed.

A description of the inverse mapping 7. — D, . is given as follows. Take any e-
MCT T and deform the tree by moving all vertices vertically to the subset [0,n] x 0 on
the z-axis and deforming the edges into curved arcs in such a way that they are always
embedded in the plane with no vertical tangents and so that their interiors do not meet.
The result is a collection of oriented curves representing an oriented strand diagram
with R(j) = R(T). An explicit formula for these curves can be given using a formula
similar to Equation 1.

It is clear that these are inverse mappings giving the desired bijection BM =7. 0O

Example 38. The MCTs in Figures 5 and 6 above give the oriented strand diagrams:

TNy NVAD

and the oriented strand diagram in Example 21 gives the MCT:
\mj — 7
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We now arrive at the proof of Theorem 22. This theorem follows from the fact that
oriented diagrams belonging to D,, . can be regarded as mixed cobinary trees by Theo-
rem 37.

Proof of Theorem 22. Let f be the map c-mat(Q.) — BM induced by the map defined

in Lemma 20, and let g be the bijective map 7. — BM defined in Theorem 37. We will
assert the existence of a map h : c-mat(Q.) — 7. which fits into the diagram

c-mat(Q.) h > T,
S Y
D,

The theorem will follow after verifying that h is a bijection and that f = g o h.

We will define two new notions of c-matrix, one for MCT's and one for oriented strand
diagrams. Let T' € 7. with internal edges ¢; having endpoints (i1, y;,) and (ia,v;,). For
each ¢;, define the ‘c-vector’ of ¢; to be ¢(T) := Zi1<j<i2 sgn(¢;)e;, where sgn(¢;) is
the sign of the slope of ¢;. Define ¢(T") to be the ‘c-matrix’ of 7" whose rows are the

c-vectors ¢;(T). Now, let d = {?(ig,jg)}ge[n} € ane. For each oriented strand ?(ig,jg),
define the ‘c-vector’ of ¢ (ig, j¢) to be

05(7) = {Zie<k<jzsgn( (ie, jo))er = ie < jo

ij<k<ie Sgn(7(iéaﬂ))ek Dol >

e

where sgn(7 (ig, j¢)) is positive if i, < j, and negative if i, > j,. Define 0(7) to be the
‘c-matrix’ of d whose rows are the c-vectors ¢,( d ).

It is known that the notion of c-matrix for MCTs coincides with the original notion
of c-matrix defined in Section 2.1, and that there is a bijection between c-mat(Q.) and
7. which preserves c-matrices (see [I013, Remarks 2 and 4] for details). Thus, we have a

bijective map h : c-mat(Q.) — 7T.. On the other hand, the bijection g : 7; — Bn’e defined
in Theorem 37 also preserves c-matrices. The map f : c-mat(Q.) — 7. This 7. should be

n.e Dreserves c-matrices by definition. Hence, we have f = goh and f is a bijection, as
desired. O

Remark 39. For linearly-ordered quivers (those with € = (+,...,4) or e = (—,...,—)),
this bijection was established by the first and third authors in [GM15] using a different
approach.

5 Exceptional sequences and linear extensions

In this section, we study CESs as linear extensions of certain posets. Our main result is
a complete classification of these posets.
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Definition 40. Given a strand diagram d, we define Py = ({c(i¢, j¢) }eem), <) to be the
poset whose elements are the strands of d and where c¢(k, ¢) covers c(i, j), denoted by
c(i,7) <c(k,?), if and only if the strand c(k, ¢) is clockwise from ¢(7, j) and there does not
exist another strand ¢(¢', j') distinct from ¢(7, j) and ¢(k, £) such that c(¢’, j') is clockwise
from ¢(i, ) and counterclockwise from c(k, ().

This construction defines a poset because any oriented cycle in the Hasse diagram of
P4 arises from a cycle in the graph determined by d. Since the graph determined by d is a
tree, it has no cycles. In Figure 7, we show a diagram d € D, where € := (+,+, —, 4+, —)
and its poset Pjy.

N N NA NS

e NN S

Figure 7: A diagram and its poset. Figure 8: Two diagrams with the

same poset.

In general, the map D, = Z(D,,) == {Ps:d € D, .} is not injective. For instance,
each of the two diagrams in Figure 8 have P; = 4 where 4 denotes the linearly-ordered
poset with 4 elements. It is thus natural to ask which posets are obtained from strand

diagrams.

Our next result describes the posets arising from diagrams in D,, . where e = (—, ..., —)
or € = (+,...,+). Before we state it, we remark that diagrams in D, . where € =
(—,...,—)ore=(+,...,+) can be regarded as chord diagrams.? Figure 9 gives an

example of this identification. Under this identification, the term strand is synonymous
with chord.

K\/\ —_— 1 3

Figure 9: The identification between strand diagrams and chord diagrams.

Let d € D, where € = (—,...,—) or € = (+,...,+). Let ¢(i,j) be a strand of
d. There is an obvious action of Z/(n + 1)Z on chord diagrams. Let 7 € Z/(n + 1)Z

2These noncrossing trees embedded in a disk with vertices lying on the boundary have been studied
by Araya in [Aral3], Goulden and Yong in [GY02], and the first and third authors in [GM15].
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denote a generator and define 7c(4,j) := c¢(i — 1,7 — 1) and 77 ¢(i,5) == c(i + 1,7 + 1)
where we consider i & 1 and j &1 mod n + 1. We also define 7d := {7c(i¢, o) }ocp
and 771d := {77 ¢(is, jo) }repn). The next lemma, which is easily verified, shows that the
order-theoretic properties of CECs are invariant under the action of 7+

Lemma 41. Let d € D, where € = (—,...,—) or € = (+,...,+). Then we have the
following isomorphisms of posets Py = Prq and Py = P,-14.

Remark 42. One may interpret the action of 7 as the Auslander—Reiten translation on the
orbit category D°(kQ.)/[1] where D°(kQ.) is the bounded derived category of the module
category of kQ.. A similar interpretation is given in [Aral3, Section 4].

Theorem 43. Let € = (—,...,—) orlet e = (+,...,+). Then a poset P € P(D,.) if
and only if
i) each x € P has at most two covers and covers at most two elements,
i1) the underlying graph of the Hasse diagram of P has no cycles,
iii) the Hasse diagram of P is connected.

We may equivalently define exceptional sequences and exceptional collections in terms
of the derived category. We use this alternative formulation and Theorem 43 to show that
the posets in #(D,, ) where € is any element of {+, —}"™! have the same classification
as those belonging to #(D,,.) where € = (—, ..., —).

We say that an object X € D°(kQ) is exceptlonal if Hom pe kg (X, X) = k and
Hom py ) (X [€], X) = 0 for any integer £ # 0. A sequence (Xi,Xs,...,X,) of ex-
ceptional objects of D°(kQ) is called an exceptional sequence if for each i < j one
has Hom pe kg (X;[], Xi) = 0 for all integers /. An exceptional collection is a set
{X1,Xs,..., X, } of exceptional objects that can be ordered in such a way that they
define an exceptional sequence.

It is known that for any indecomposable object £ € Db(kQ.), there is a unique
integer ¢ and a unique indecomposable k@Q.-module X such that X = E[¢]. Moreover, if
(X1, Xs,...,X,) is an exceptional sequence in D°(kQ.), then (X;[(], Xo[fs], ..., X, [(.])
is an exceptional sequence in D°(kQ,) for any integers £y, {s, ..., {,. Tt is also well-known
that for any two €,¢ € {+,—}"!, the derived categories D’(kQ.) and D*(kQ.) are
triangle-equivalent (see [Hap88]). Thus any exceptional sequence of Q). where € is any
element of {+,—}""! may be identified with an exceptional sequence of Q. where ¢ =
(—,...,—) € {+,—}""!. These facts were already observed in [Aral3, Remark 2.2]. We
obtain the following corollary of Theorem 43.

Corollary 44. Given any € € {+,—}"", a poset P € P (D,..) if and only if P satisfies
the conditions appearing in Theorem 43.

Proof of Theorem 43. Let Py € ZP(D,.). By definition, P, satisfies i) and 7). It is
also clear that the Hasse diagram of P, is connected since the graph determined by d is
connected.

To prove the converse, we proceed by induction on the number of elements of P where
P is a poset satisfying conditions i), i), 7i7). If #P = 1, then P is the unique poset with
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one element and P = P, where d is the unique chord diagram with a single chord in a disk
with exactly two boundary vertices. Assume that for any poset P satisfying conditions
i),11), 1) with #P = r for any positive integer r < n + 1 there exists a chord diagram d
such that P = P,;. Let Q be a poset satisfying the above conditions where #Q =n + 1,
and let z € O be a maximal element. We know x covers either one or two elements of Q.

Assume z covers two elements y, z € Q. Since the Hasse diagram of Q has no cycles,
we have that Q@ — {z} = Q; + Qs where y € 9y, z € Oy, and Q; satisfies i), 1), i7)
for i € [2]. By induction, there exist positive integers ki, ko satisfying k; + ko = n and
chord diagrams d; = {c;(is, je) }eejr) € Dy, v Where Q; = Py, for i € [2] and where
) € {+, —}**1 has all of its entries equal to the corresponding entries of €. In addition,
we know that y (resp., z) is covered by at most one element of Q; (resp., Q). This means
that the chord corresponding to y (resp., z) in d; (resp., ds) has an endpoint such that the
chord is not counterclockwise from any other chord in d; (resp., d2) about that endpoint.

By Lemma 41, we can assume that the chord corresponding to y € Q; (resp., z € Q5)
is ¢1(i(y), k1) € dy for some i(y) € [0,k — 1] and that ¢;(i(y), k1) is not counterclockwise
from any other chord of d; about ki (resp., c2(j(2), k) € dy for some j(z) € [0, ks — 1]
and that c3(j(y), ko) is not counterclockwise from any other chord of dy about ks). Define
dyUdy == {c'(i}, jy) }eepm) to be the chord diagram in the disk with n 42 boundary vertices
as follows (see Figure 10):

Cl(’i, ~/) - Cl(iz,je) il e [k’l]

0 0
1 6
1 3 U =
2 5
1 2
3 1
D)

Figure 10: An example of d; U dy with k; = 3 and ky = 2 so that n = k; + ky = 5.

Define ¢'(i), .1, jn41) = c(k1,n+ 1) and then d := {c/ (i}, j;) }ecpi1) satisfies ), i), 74i), and
Q =P,

Next, assume x covers only the element y € Q. In this case, the Hasse diagram
of @ — {x} is connected. By induction, the poset Q — {z} = P, for some diagram
d = {c(i¢, jo) }eepn) € Dn,c where we assume i, < jo. Let y = c(i(y), j(y)) € Q — {«} with
i(y) < j(y) denote the unique element that is covered by = in Q. Note that y is covered
by at most one element of @ — {x}. This means that by applying 7 sufficiently many
times to d and using Lemma 41, we can assume that there are no chords in d that are
clockwise from c(i(y), j(y)) about i(y).

We regard d as an element of D, by replacing it with d .= {1}, 30) Yeepn) € Dy
as follows (see Figure 11):
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clie, je+1) + ifip <i(y) and j(y) < Jo,
d(ig,go) = 7 lelinge) o ifiy) <
c(ig, Je) : otherwise.

Figure 11: An example of d with n = 6.

Here j,+1 is calculated mod n+2. Additionally, we are using that ¢, < j, in the definition
of d.

Now define ¢(i),1, ps1) i= c(i(y), i(y)+1) and put & = {(, 1) brciuery- As Q—{}
satisfies 7),47), and iii), it is clear that the resulting chord diagram d’ also satisfies i), i1),

and i7i), and that P = Py. O

Let P be a finite poset with m = #P. Let f : P — m be an injective, order-preserving
map (i.e., x < y implies f(z) < f(y) for all z,y € P) where m is the linearly-ordered
poset with m elements. We call f a linear extension of P. We denote the set of linear

extensions of P by Z(P).

Theorem 45. Let d = {C(ig,jg)}ge[n] € D, and let Ze denote the corresponding complete

exceptional collection. Let CES(E,) denote the set of CESs that can be formed using
only the representations appearing in .. Then the map x : CES(E,) — £(Py) defined

by (X5, 505 X5 ) 22 {(cie, 3o),n + 1 = Oliep = (Fclin,jo)) ==n+1—1) is a
bijection.

Proof. Let x2 : CES(E,) — Dy, be the restriction of the domain of the map ®, to

CES(&,). It follows that xo : CES(E,) — x2(CES(€,)) is a bijection by Theorem 16. Thus
it is enough to prove that x; : x2(CES(£,)) — Z(Py) is a bijection.

First, we show that x1(d) € Z(P,) for any d € y2(CES(E,)). Let d € x2(CES(E,)) and
let f := y1(d). Since the strand-labeling of d is good, if (¢y, ¢1) and (ca, £5) are two labeled
strands of d satisfying ¢; < ¢a, then f(c;) = €1 < ly = f(c3). Thus f is order-preserving.
As the strands of d are bijectively labeled by [n], we have that f is bijective so f € L (Py).

Next, define a map

g(Pd) T X2(CES(Ee))
o A(clie, jo), f(cliv, Je)) }eern)-

To see that ¢(f) € x2(CES(E,)) for any f € Z(Py), consider two labeled strands
(c1, f(c1)) and (ca, f(co)) belonging to ¢(f) where ¢; < co. Since f is order-preserving,
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fle1) < fley). Thus the strand-labeling of ¢(f) is good so ¢(f) € D,.. Moreover, it
is clear that the labeled diagram ¢(f) corresponds to a complete exceptional sequence
formed using exactly the representations from &.. Thus o(f) € x2(CES(E,)).

Lastly, we have that

x1(p(f)) = xa({(elie, ge), f(clie, jo))) eerm) = |

and
e(xa({(clie, jo), O }eem))) = o(f(clie, o)) := €) = {(c(ie, je), £) }eepn)

so ¢ = x;'. Thus y; is a bijection. O]

6 Applications

Here we showcase some interesting results that follow easily from our main theorems.

6.1 Reddening sequences

In [Kell2], Keller proves that for any quiver (), any two reddening mutation sequences
applied to @ produce isomorphic ice quivers. As mentioned in [Kell3], his proof is
highly dependent on representation theory and geometry, but the statement is purely
combinatorial-—we give a combinatorial proof of this result for type A, quivers ..

Let R € EG(Q). A mutable vertex i € Ry is called green if there are no arrows j — i
in R with j € [n+1,m]. Otherwise, i is called red. A sequence of mutations y;, o---opu;
is reddening if all mutable vertices of the quiver y;, o - -- o y;, (Q) are red?. Recall that
an isomorphism of quivers that fixes the frozen vertices is called a frozen isomorphism.
We now state the theorem.

Theorem 46. If ji; o---op;, and ; o---op; are two reddemng sequences of Q6 for some
€ € {+, =", then there is a frozen Zsomorphzsm fi, 0+ 0 i, (Qo) = fj, O -0 ,uh(Q ).

Proof. Let p;, -0 i1;, be any reddening sequence. Denote by C the c—matrlx of p;,

.0 ,uil(Qg). By Theorem 22, C' corresponds to an oriented strand diagram dc BM
Wlth all strands of the form ?( i) for some 7 and j satisfying 7 < j. Since all strands
of dc are oriented to the left and since d satisfies Definition 19, we conclude that dc =
{_>( ;i — 1) }iep) and C = —1I,. Since c-matrices are in bijection with ice quivers in
EG(Q.) and since Q. is an ice quiver in EG(Q.) whose c-matrix is —I,, we obtain the

desired result. ]

6.2 Noncrossing partitions and exceptional sequences

In this section, we give a combinatorial proof of Ingalls” and Thomas’ result that complete
exceptional sequences are in bijection with maximal chains in the lattice of noncrossing

3By abuse of notation, we write p; o ---o u;, (@) to denote (p1;, 0+ 0, (Q'), F)
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partitions [IT09]. We remark that their result is more general than that which we present
here. Throughout this section, we assume that Q). has e = (—,..., —) and we regard the
strand diagrams of (). as chord diagrams.

A partition of [n] is a collection m = {Bgy}aer € 2" of subsets of [n] called blocks
that are nonempty, pairwise disjoint, and whose union is [n|. We denote the lattice of set
partitions of [n], ordered by refinement, by II,,. A set partition 7 = {By}aesr € II,, is
called noncrossing if for any i < 7 < k < ¢ where ¢,k € B,, and 3,/ € B,,, one has
Be, = Ba,. We denote the lattice of noncrossing partitions of [n] by NC*(n).

Label the vertices of a convex n-gon S with elements of [n] so that reading the vertices
of & counterclockwise determines an increasing sequence mod n. We can thus regard
7 = {Ba}acr € NC®(n) as a collection of convex hulls B, of vertices of S where B, has
empty intersection with any other block B,.

Let n = 5. The following partitions all belong to IIs, but only my, 79, 13 € NC(5).

™ = {{1}7 {2747 5}7 {3}}7 Ty = {{174}7 {273}7 {5}}7
T3 = {{17 2’3}’ {475}}7 Ty = {{17374}7 {2’ 5}}

Below we represent the partitions mq, ..., 74 as convex hulls of sets of vertices of a convex
pentagon. We see from this representation that m, ¢ NC*(5).

1 1 1 1
3 4 3 4 3 4 3 4

Theorem 47. Let k € [n]. There is a bijection between ﬁk,e and the following chains in
NCA(n +1)

{m = ey o) s ™ B B U 1B DB

In particular, when k = n, there is a bijection between 15”,6 and maximal chains in
NC™(n +1). We remark that each chain described above is saturated (i.c., each in-
equality appearing in {{i}}icpny1) <™ < -+ <7 s a covering relation).

Proof. Let d = {(c(iey jo), €)}oepy € Dpe. Define 741 = {{i}}bicpt1) € Ilnsa. Next, define
To = (mi \{{ir + 1}, {n + 11} U {{in + 1,51 + 1}}. Now assume that 7;  has been
defined for some s € [k]. Define 7 dg.si1 b0 be the partition obtained by merging the blocks
of m;, containing is + 1 and j; + 1. Now define f(cZ) = (7((2’1, o ’Wd,kﬂ)-

It is clear that f(d) is a chain in IT,,; with the desired property as my < my in IL,,4; if
and only if s is obtained from 7; by merging exactly two distinct blocks of 7;. To see that
each m; € N C*(n+ 1), suppose a crossing of two blocks occurs in a partition appearing
in f(d). Let m; , be the smallest partition of f(d) (with respect to the partial order on set
partitions) with two blocks, B; and Bs, crossing. Without loss of generality, we assume
that B, € Tis is obtained by merging the blocks B,,,, B,, € T containing i5_1 + 1 and
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Js—1 + 1, respectively. This means that c(is_1, js—1) € d and c(is—1,Js—1) crosses at least
one other chord of d. This contradicts that d € Dy,. Thus f(d) is a chain in NC*(n +1)
with the desired property.

Next, we define a map g that is the inverse of f. Let

C = (m = {{i}biepmr1s T2, Tht1) € (NC*(n+ 1))+

be a chain where each partition in C satisfies 7; = (m;_1\{Ba, Bs}) U{Ba U Bg} for some
By # Bgin mj_y. As my = (m\{{s1},{t:}}) U{{s1,t1}} for some s1,t; € [n + 1], define
c(iy,j1) = c(s1 — 1,61 — 1) where we consider s; — 1 and t; — 1 mod n + 1. Now for
r > 2, let By, By € m,._1 be the blocks that one merges to obtain 7, and assume that
min By < min By. Define sy := max{i € By : i < min By} € By and t; := max By € Bs.
Let c(iy_1, jr—1) := c(s1 — 1,t; — 1). Finally, put ¢g(C) := {(c(i¢, jo), £) : £ € [k]}.

We claim that ¢g(C) has no crossing chords. Suppose (c(s;,t;),7) and (c(s;,t;), ) are
crossing chords in ¢(C) with i < j and 4, j € [k]. We further assume that

j=min{j’ € [i+ 1,k : (c(sj,tj), ") crosses (c(s;,t;),i) in g(C)}.

We observe that s; + 1,¢; +1 € B; for some block By € 7; and that s; +1,¢t; +1 € By
for some block By € mj1;. We further observe that s; + 1,¢; +1 ¢ B; otherwise, by
the definition of the map g, the chords (c(s;,¢;),) and (¢(s;,;), ) would be noncrossing.
Thus By, By € ;41 are distinct blocks that cross so 741 € NC*(n + 1). We conclude
that ¢(C) has no crossing chords.

Lastly, we show that g(C) has a good labeling. Suppose c(i,j) and c(i,j') are two
chords of g(C) where ¢(4, j') is clockwise from ¢(i, j). By the definition of g, chord ¢(i, j")
was added after chord c(i, j) so the label of chord c(i, j) is greater than that of c(i, j).
Thus ¢(C) € Dy...

To complete the proof, we show that go f = 113&6. The proof that f o g is the identity

map is similar. Let de f)kﬁ. Then f(cZ) = (m = {{i} }iepn+1), T2, - - -, Thq1) Where for any
s € [k] we have
s = (7s-1\{Ba, Bs}) U{Ba, Bs}

where i,_; +1 € B, and j,_1 +1 € Bg. Then we have g(f(d)) = {c((ie+1) =1, (jo+1) —

1), 0) beew) = {(c(ies Jo), €) Yeen- O

Corollary 48. Ife = (—,...,—) ore = (+,...,4), then the exceptional sequences of Q.
are in bijection with saturated chains in NC*(n + 1) of the form

{ (71 :{{i}}ie[n+1]7772:-'-,7Tk+1) : " (W] 1\{BQ’B’B})U{B UBB} }

for some B, # Bg in mj_;

Example 49. In Figure 12, we give two examples of the bijection from Theorem 47 with
k= 4.
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0

1 1 1 1 1
1 4 ¢ ¢
— 2 .5§2 .5§2 2°5§2 5§2 5
\ 3 4
9 3 3 *4 3 4 3 4 3 4 3 4

Figure 12: Two labeled strand diagrams and their corresponding maximal chains in
NCA(5).
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