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Abstract

Exceptional sequences are certain sequences of quiver representations. We intro-
duce a class of objects called strand diagrams and use these to classify exceptional
sequences of representations of a quiver whose underlying graph is a type An Dynkin
diagram. We also use variations of these objects to classify c-matrices of such quiv-
ers, to interpret exceptional sequences as linear extensions of explicitly constructed
posets, and to give a simple bijection between exceptional sequences and certain
saturated chains in the lattice of noncrossing partitions.

Mathematics Subject Classifications: 16G20, 05E10, 13F60

∗The first author was supported by a Research Training Group, RTG Grant DMS-1148634.
†The second author was supported by National Security Agency Grant H98230-13-1-0247.
‡The third author was supported by GAANN Grant P200A120001, an LSU Dissertation Year Fellow-

ship, NSF Grant DMS-1638352, and the Association of Members of the Institute for Advanced Study
(AMIAS).

the electronic journal of combinatorics 26(1) (2019), #P1.20 1



1 Introduction

Exceptional sequences are certain sequences of quiver representations with strong ho-
mological properties. They were first considered by Crawley-Boevey [CB93] and Ringel
[Rin94]. Crawley-Boevey showed that the braid group acts transitively on the set of com-
plete exceptional sequences (i.e., exceptional sequences of maximal length) [CB93]. This
result was generalized to hereditary Artin algebras by Ringel [Rin94]. Since that time,
they have been studied by Meltzer for weighted projective lines [Mel04], and by Araya for
Cohen–Macaulay modules over one-dimensional graded Gorenstein rings with a simple
singularity [Ara99]. Exceptional sequences have also been connected to many other areas
of mathematics since their invention:

• chains in the lattice of noncrossing partitions [Bes03, HK16, IT09],

• c-matrices and cluster algebras [ST13],

• factorizations of Coxeter elements [IS10], and

• t-structures and derived categories [Bez03, BK89, Rud90].

Despite their ubiquity, very little work has been done to concretely describe exceptional
sequences, even for path algebras of Dynkin quivers [Ara13, GM15]. In this paper, we give
a concrete description of exceptional sequences for type An quivers with any orientation.
This work extends and elaborates on a classification of exceptional sequences for the
linearly-ordered quiver obtained in [GM15] by the first and third authors.

Exceptional sequences consist of indecomposable representations. For a quiver Q of
type An, the indecomposable representations are completely determined by their dimen-
sion vectors, which are of the form

(0, . . . , 0, 1, . . . , 1, 0, . . . , 0) ∈ Zn>0.

Let us denote such a representation by Xε
i,j, where ε is a vector that keeps track of the

orientation of the quiver, and i+ 1 and j are the positions where the string of 1’s begins
and ends, respectively.

This simple description allows us to view exceptional sequences as combinatorial ob-
jects. Define a map Φε which associates to each indecomposable representation Xε

i,j a
curve Φε(X

ε
i,j) connecting two of n + 1 points in R2. We will refer to such curves as

strands.1

As exceptional sequences are certain collections of representations, the map Φε allows one
to regard them as collections of strands.

The following lemma is the foundation for all of our results in this paper; it charac-
terizes the homological data encoded by a pair of strands and thus by a pair of repre-
sentations. A sequence of exceptional representations forms an exceptional sequence if

1The curves Φε(X
ε
i,j) will have some additional topological conditions (see Definition 5) that we omit

here.
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Figure 1: An example of the indecomposable representation Xε
0,1 on a type A2 quiver and

the corresponding strand Φε(X
ε
0,1).

and only if each of its subsequences of length two is exceptional. We refer to such length
two exceptional sequences as exceptional pairs. Thus, Lemma 11, which we now state,
allows us to completely classify exceptional sequences using strand diagrams.

Lemma 11. Let Qε be a type A Dynkin quiver. Fix two nonisomorphic indecomposable
representations U, V ∈ ind(repk(Qε)).

a) The strands Φε(U) and Φε(V ) intersect nontrivially if and only if neither (U, V ) nor
(V, U) are exceptional pairs.

b) The strand Φε(U) is clockwise from Φε(V ) if and only if (U, V ) is an exceptional
pair and (V, U) is not an exceptional pair.

c) The strands Φε(U) and Φε(V ) do not intersect at any of their endpoints and they
do not intersect nontrivially if and only if (U, V ) and (V, U) are both exceptional
pairs.

The paper is organized in the following way. In Section 2, we give the preliminaries
on quivers and their representations which are needed for the rest of the paper.

In Section 3.1, we introduce strand diagrams. We show that exceptional collections
(i.e., the underlying set of representations in an exceptional sequence) are classified by
strand diagrams (see Theorem 12). Later, we decorate our strand diagrams by adding
a label to each strand which endows the collection of strands with a linear order. We
then show that our labeled diagrams classify exceptional sequences (Theorem 16) where
the linear order on strands corresponds to the linear order on representations in the
exceptional sequence. Although Lemma 11 is the main tool that allows us to obtain these
results, we delay its proof until Section 3.2.

Next, we establish a connection between our work and c-matrices, which appear in the
theory of cluster algebras. A c-matrix is an integer matrix that is produced by performing
a sequence of quiver mutations on a certain type of ice quiver (see Section 2.1). The work
of Speyer and Thomas (see [ST13]) gives a bijection between certain complete exceptional
sequences of an arbitrary acyclic quiver and c-matrices arising from this quiver. In [Sei01],
the number of complete exceptional sequences in type An is given (see also [ONA+13] for a
systematic approach for all valued Dynkin quivers), and there are more of these than there
are c-matrices. Thus, it is natural to ask which strand diagrams are describing c-matrices.
By establishing a bijection between the mixed cobinary trees of Igusa and Ostroff [IO13]
and a certain collection of strand diagrams whose strands have an orientation, we give an
answer to this question in Section 4.
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The conditions defining an exceptional collection give rise to the data of a poset on
the representations in the exceptional collection. Moreover, the linear extensions of this
poset are in bijection with the exceptional sequences that can be formed from the same
exceptional collection. In Section 5, we characterize the family of posets defined by type
A exceptional collections.

In Section 6, we present some applications of the theory in type A. We give combina-
torial proofs that any two reddening sequences produce isomorphic ice quivers (see [Kel12]
for a general proof in all types using deep category-theoretic techniques) and that there
is a bijection between exceptional sequences and certain saturated chains in the lattice of
noncrossing partitions.

2 Preliminaries

We will be interested in the connection between exceptional sequences and the c-matrices
of an acyclic quiver Q, so we begin by defining these. After that, we define quiver
representations and exceptional sequences. We conclude this section by explaining the
notation we will use to discuss exceptional representations of quivers that are orientations
of a type An Dynkin diagram.

2.1 Quiver mutation

A quiver Q is a directed graph. In other words, Q is a 4-tuple (Q0, Q1, s, t), where
Q0 = [m] := {1, 2, . . . ,m} is a set of vertices, Q1 is a set of arrows, and two functions
s, t : Q1 → Q0 defined so that for every a ∈ Q1, we have s(a)

a−→ t(a). An ice quiver is
a pair (Q,F ) with Q a quiver and F ⊂ Q0 a set of frozen vertices with the additional
restriction that there are no two vertices i, j ∈ F with an arrow of Q connecting them.
We refer to the elements of Q0\F as mutable vertices. By convention, we assume
Q0\F = [n] and F = [n + 1,m] := {n + 1, n + 2, . . . ,m}. Any quiver Q can be regarded
as an ice quiver by setting Q = (Q, ∅).

If Q has no loops and no 2-cycles, one may define mutation of an ice quiver (Q,F ) as
follows. The mutation of an ice quiver (Q,F ) at mutable vertex k, denoted µk, produces
a new ice quiver (µkQ,F ) by the three-step process:

(1) For every 2-path i→ k → j in Q, adjoin a new arrow i→ j.

(2) Reverse the direction of all arrows incident to k in Q.

(3) Remove a maximal collection of disjoint 2-cycles in the resulting quiver as well as
all of the arrows between two frozen vertices.

We show an example of mutation below, depicting the mutable (resp., frozen) vertices in
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black (resp., blue).

(Q,F ) =
1

2

3

4

μ2�−→
1

2

3

4

= (μ2Q,F )

From now on, we will only consider quivers and ice quivers without loops and without
2-cycles. The information of such quivers and ice quivers can be equivalently described
by its (skew-symmetric) exchange matrix. Given (Q,F ), we define B = B(Q,F ) =

(bij) ∈ Zn×m := {n × m integer matrices} by bij := #{i a→ j ∈ Q1} − #{j a→ i ∈ Q1}.
Furthermore, ice quiver mutation can equivalently be defined as matrix mutation of the
corresponding exchange matrix. Given an exchange matrix B ∈ Zn×m, the mutation of
B at k ∈ [n], also denoted μk, produces a new exchange matrix μk(B) = (b′ij) with entries

b′ij :=
{ −bij : if i = k or j = k

bij +
|bik|bkj+bik|bkj |

2
: otherwise.

For example, the mutation of the ice quiver above (here m = 4 and n = 3) translates
into the following matrix mutation. Note that mutation of matrices (and of ice quivers)
is an involution (i.e., μk ◦ μk(B) = B).

B(Q,F ) =

⎡
⎣ 0 2 −1 0

−2 0 1 0
1 −1 0 −1

⎤
⎦ μ2�−→

⎡
⎣ 0 −2 1 0

2 0 −1 0
−1 1 0 −1

⎤
⎦ = B(μ2Q,F ).

Given a quiver Q, we define its framed (resp., coframed) quiver to be the ice quiver

Q̂ := (Q′, F ) (resp., qQ := (Q′′, F )) where Q′
0 = Q0 
 F (= Q′′

0), F = [n + 1, 2n], and
Q′

1 := Q1 
 {i → n + i : i ∈ [n]} (resp., Q′′
1 := Q1 
 {n + i → i : i ∈ [n]}). We

define the exchange tree of Q̂, denoted ET (Q̂), to be the graph whose vertices are ice

quivers obtained from Q̂ by a finite sequence of mutations without consecutive repetitions
and with two vertices connected by an edge if and only if the corresponding quivers are
obtained from each other by a single mutation. Similarly, define the exchange graph of
Q̂, denoted EG(Q̂), to be the quotient of ET (Q̂) where two vertices are identified if and
only if there is a frozen isomorphism of the corresponding quivers (i.e., an isomorphism
that fixes the frozen vertices). Such an isomorphism is equivalent to a simultaneous
permutation of the rows and columns of the corresponding exchange matrices.

Given Q̂, we define the c-matrix C = CR (resp., C = CR) of R ∈ ET (Q̂) (resp.,

R ∈ EG(Q̂)) to be the submatrix of BR where C := (bij)i∈[n],j∈[n+1,2n] (resp., C :=

(bij)i∈[n],j∈[n+1,2n]). We let c-mat(Q) := {CR : R ∈ EG(Q̂)}. By definition, BR (resp., C)
is only defined up to simultaneous permutations of its rows and first n columns (resp., up

to permutations of its rows) for any R ∈ EG(Q̂).
A row vector of a c-matrix, −→c , is known as a c-vector. The celebrated theorem of

Derksen, Weyman, and Zelevinsky [DWZ10, Theorem 1.7], known as sign-coherence of
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c-vectors, states that for any R ∈ ET (Q̂) and i ∈ [n] the c-vector −→ci is a nonzero element
of Zn>0 or Zn60. In the former case, we say a c-vector is positive, and in the latter case,
we say a c-vector is negative.

2.2 Representations of quivers

A representation V = ((Vi)i∈Q0 , (ϕa)a∈Q1) of a quiver Q is an assignment of a finite
dimensional k-vector space Vi to each vertex i and a k-linear map ϕa : Vs(a) → Vt(a) to
each arrow a where k is a field. The dimension vector of V is the vector dim(V ) :=
(dimVi)i∈Q0 . The support of V is the set supp(V ) := {i ∈ Q0 : Vi 6= 0}. Here is an
example of a representation, with dim(V ) = (2, 1, 3), of the mutable part of the quiver
depicted in Section 2.1.

[
−2 9

]

k2

k1

k3

[
0 1 7
2 1 5

]

 3
22
5


[
4 −1

]

Let V = ((Vi)i∈Q0 , (ϕa)a∈Q1) and W = ((Wi)i∈Q0 , (%a)a∈Q1) be two representations of
a quiver Q. A morphism θ : V → W consists of a collection of linear maps θi : Vi → Wi

that are compatible with each of the linear maps in V and W. That is, for each arrow
a ∈ Q1, we have θt(a) ◦ ϕa = %a ◦ θs(a). An isomorphism of quiver representations is
a morphism θ : V → W where θi is a k-vector space isomorphism for all i ∈ Q0. We
define V ⊕W := ((Vi⊕Wi)i∈Q0 , (ϕa⊕%a)a∈Q1) to be the direct sum of V and W. We say
that a nonzero representation V is indecomposable if it is not isomorphic to a direct
sum of two nonzero representations. Note that the representations of a quiver Q along
with morphisms between them form an abelian category, denoted by repk(Q), with the
indecomposable representations forming a full subcategory, denoted by ind(repk(Q)).

We remark that representations of Q can equivalently be regarded as modules over the
path algebra kQ. As such, one can define ExtskQ(V,W ) for s > 1 and HomkQ(V,W ) for
any representations V and W, and HomkQ(V,W ) is isomorphic to the vector space of all
morphisms θ : V → W. We refer the reader to [ASS06] for more details on representations
of quivers.

An exceptional representation Vj of Q is a representation where EndkQ(Vj) is a
division algebra and ExtskQ(Vj, Vj) = 0 for all s > 1. Any exceptional representation is
indecomposable, but not all indecomposable representations are exceptional. For Dynkin
quivers, it is well-known that a representation is exceptional if and only if it is inde-
composable. An exceptional sequence ξ = (V1, . . . , Vk) is a sequence of exceptional
representations satisfying HomkQ(Vj, Vi) = 0 and ExtskQ(Vj, Vi) = 0 for all s > 1 if i < j.
We use the term exceptional pair to mean an exceptional sequence consisting of exactly
two exceptional representations. We define an exceptional collection ξ = {V1, . . . , Vk}
to be a set of exceptional representations Vj of Q that can be ordered in such a way
that they define an exceptional sequence. It was shown in [CB93] that the length k of
an exceptional sequence ξ satisfies k 6 n := #Q0; so when k = n, we say ξ (resp., ξ) is
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a complete exceptional sequence (CES) (resp., complete exceptional collection
(CEC)).

The following result of Speyer and Thomas gives a beautiful connection between c-
matrices of an acyclic quiver Q and CESs. It serves as motivation for our work. Before
stating it we remark that for any R ∈ ET (Q̂) and any i ∈ [n] where Q is an acyclic
quiver, the c-vector −→ci = −→ci (R) = ±dim(Vi) for some exceptional representation of Q
(see [NC15] or [ST13]).

Notation 1. Let −→c be a c-vector of an acyclic quiver Q. Define

|−→c | :=

{ −→c : if −→c is positive
−−→c : if −→c is negative.

Theorem 2 ([ST13]). Let C ∈ c-mat(Q), let {−→ci }i∈[n] denote the c-vectors of C, and
let |−→ci | = dim(Vi) for some exceptional representation of Q. There exists a permutation
σ ∈ Sn such that (Vσ(1), . . . , Vσ(n)) is a CES with the property that if there exist positive
c-vectors in C, then there exists k ∈ [n] such that −−→cσ(i) is positive if and only if i ∈ [k, n],
and HomkQ(Vj, Vj′) = 0 for any −→cj ,−→cj′ that have the same sign. Conversely, any set
of n vectors −→c1 , . . . ,−→cn having these properties defines a c-matrix whose row vectors are
{−→ci }i∈[n].

2.3 Quivers of type An

For the purposes of this paper, we will only be concerned with quivers of type An. We
say a quiver Q is of type An if the underlying graph of Q is a Dynkin diagram of type
An. By convention, two vertices i and j with i < j in a type An quiver Q are connected
by an arrow if and only if j = i+ 1 and i ∈ [n− 1].

It will be convenient to denote a given type An quiver Q using the notation Qε, which
we now define. Let ε = (ε0, ε1, . . . , εn) ∈ {+,−}n+1 and for i ∈ [n− 1] define aεii ∈ Q1 by

aεii :=

{
i← i+ 1 : εi = −
i→ i+ 1 : εi = +.

Then Qε := ((Qε)0 := [n], (Qε)1 := {aεii }i∈[n−1]) = Q. One observes that the values of ε0
and εn do not affect Qε.

Example 3. Let n = 5 and ε = (−,+,−,+,−,+) so that Qε = 1
a+1−→ 2

a−2←− 3
a+3−→ 4

a−4←−
5. Below we show its framed quiver Q̂ε.

Q̂ε =
1 2 3 4 5

6 7 8 9 10

//

OO

oo

OO

// oo

OO OOOO

Let Qε be given where ε = (ε0, ε1, . . . , εn) ∈ {+,−}n+1. Let i, j ∈ [0, n] := {0, 1, . . . , n}
where i < j and let Xε

i,j = ((V`)`∈(Qε)0 , (ϕ
i,j
a )a∈(Qε)1) ∈ repk(Qε) be the indecomposable

representation defined by
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V` :=

{
k : i+ 1 6 ` 6 j
0 : otherwise

ϕi,ja :=

{
1 : a = aεkk with i+ 1 6 k 6 j − 1
0 : otherwise.

The objects of ind(repk(Qε)) are those of the form Xε
i,j where 0 6 i < j 6 n, up to

isomorphism.

Remark 4. If Xε
i,j and Xε

k,` are nonisomorphic indecomposables of repk(Qε), then we have
that HomkQε(X

ε
i,j, X

ε
k,`) = 0 or HomkQε(X

ε
k,`, X

ε
i,j) = 0. This follows from the well-known

fact that the Auslander–Reiten quiver of kQε is acyclic.

3 Strand diagrams

In this section, we define three different types of combinatorial objects: strand diagrams,
labeled strand diagrams, and oriented strand diagrams. We will use these objects to
classify exceptional collections, exceptional sequences, and c-matrices of a given type An

quiver Qε, so we fix such a quiver Qε.

3.1 Exceptional sequences and strand diagrams

Let Sn,ε := {(x0, 0), (x1, 0), . . . , (xn, 0)} ⊂ R2 be a collection of n + 1 points arranged on
the positive x-axis from left to right, i.e., 0 < x0 < x1 < · · · < xn, together with the
function ε : Sn,ε → {+,−} sending (xi, 0) 7→ εi.

Definition 5. Let i, j ∈ [0, n] where i 6= j. A strand c(i, j) = c(j, i) on Sn,ε is an isotopy
class of simple curves in R2 where any γ ∈ c(i, j) satisfies:

a) the endpoints of γ are (xi, 0) and (xj, 0),

b) as a subset of R2, γ ⊂ {(x, y) ∈ R2 : xmin(i,j) 6 x 6 xmax(i,j)}\{(xk, 0) : xmin(i,j) <
xk < xmax(i,j)},

c) if min(i, j) 6 k 6 max(i, j) and εk = + (resp., εk = −), then γ is locally below
(resp., locally above) (xk, 0).

By locally below (resp., locally above) (xk, 0), we mean that for a given parameterization
of γ = (γ(1), γ(2)) : [0, 1]→ R2 there exists δ ∈ R where

0 < δ <
1

2
min{|xk − xk−1|, |xk − xk+1|}

such that γ satisfies γ(2)(t) < 0 if εk = + (resp., γ(2)(t) > 0 if εk = −) for all t ∈ (0, 1)
where γ(1)(t) ∈ (xk − δ, xk + δ).

There is a natural bijection Φε from the objects of ind(repk(Qε)) to the set of strands
on Sn,ε given by Φε(X

ε
i,j) := c(i, j) where i < j.
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εk = +

γ1γ2

εk = +

γ1γ2

εk = +

γ1γ2

εk = −
γ1 γ2

εk = −
γ1 γ2

εk = −
γ1 γ2

(a) (b) (c) (d) (e) (f)

Figure 2: The six possible local configurations of strand c(i2, j2) being clockwise from
strand c(i1, j1) near the shared endpoint (xk, 0).

Remark 6. It is clear that any strand c(i, j) can be represented by a monotone curve
γ ∈ c(i, j). That is, there exists a curve γ ∈ c(i, j) with a parameterization γ = (γ(1), γ(2)) :
[0, 1]→ R2 such that if t, s ∈ [0, 1] and t < s, then γ(1)(t) < γ(1)(s).

We say that two strands c(i1, j1) and c(i2, j2) intersect nontrivially if any two curves
γ` ∈ c(i`, j`) with ` ∈ {1, 2} intersect in their interiors. Otherwise, we say that c(i1, j1)
and c(i2, j2) do not intersect nontrivially. For example, in the case where n > 4,
c(1, 3), c(2, 4) intersect nontrivially if and only if ε2 = ε3. If c(i1, j1) and c(i2, j2) do not
intersect nontrivially, we say that c(i2, j2) is clockwise from c(i1, j1) (or, equivalently,
c(i1, j1) is counterclockwise from c(i2, j2)) if and only if some γ1 ∈ c(i1, j1) and γ2 ∈
c(i2, j2) share an endpoint (xk, 0), do not intersect in their interiors, and locally appear
in one of the six configurations in Figure 2 preserving the property that γ1 ∈ c(i1, j1) and
γ2 ∈ c(i2, j2).
Remark 7. Examination of these six diagrams in Figure 2 shows that the property of
c(i2, j2) being clockwise from c(i1, j1) (or, equivalently, c(i1, j1) being counterclockwise
from c(i2, j2)) is well-defined. In fact:

(1) If i1 < j1 = i2 < j2 then c(i2, j2) is clockwise from c(i1, j1) if and only if εj1 = −
(Figure 2 (d) illustrates this, but Figure 2 (a) does not).

(2) If i1 = i2 < j1 < j2 then c(i2, j2) is clockwise from c(i1, j1) if and only if εj1 = +
(Figure 2 (b) and Figure 2 (f) both illustrate this).

(3) If i1 < i2 < j1 = j2 then c(i2, j2) is clockwise from c(i1, j1) if and only if εi2 = +.
(Figure 2 (c) and Figure 2 (e) both illustrate this).

A given collection of strands d = {c(i`, j`)}`∈[k] with k 6 n, naturally defines a graph
with vertex set Sn,ε and edge set {{(xs, 0), (xt, 0)} : c(s, t) ∈ d}. We refer to this graph
as the graph determined by d.

Remark 8. Any monotone curve γ ∈ c(i, j) is the graph of a continuous function fγ :
[xi, xj]→ R having the following properties:

1. fγ(xi) = 0 = fγ(xj),

2. fγ(xk) < 0 for all i < k < j with εk = +, and

3. fγ(x`) > 0 for all i < ` < j with ε` = −.
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Conversely, any such continuous function is the graph of a monotone curve in c(i, j).

Definition 9. A strand diagram d = {c(i`, j`)}`∈[k] on Sn,ε where k 6 n is a collection
of strands on Sn,ε that satisfies the following conditions:

a) distinct strands do not intersect nontrivially, and
b) the graph determined by d is a forest (i.e., a disjoint union of trees).

Let Dk,ε denote the set of strand diagrams on Sn,ε with k strands, and let Dε denote the
set of all strand diagrams on Sn,ε. This implies that

Dε =
⊔
k∈[n]

Dk,ε.

Example 10. Let n = 4 and ε = (−,+,−,+,+) so that Qε = 1
a+1−→ 2

a−2←− 3
a+3−→ 4. Then

we have that d1 = {c(0, 1), c(0, 2), c(2, 3), c(2, 4)} ∈ D4,ε and d2 = {c(0, 4), c(1, 3), c(2, 4)}
∈ D3,ε. We draw these strand diagrams below.

The following technical lemma classifies when two nonisomorphic indecomposable rep-
resentations of Qε define zero, one, or two exceptional pairs. Its proof appears in Sec-
tion 3.2.

Lemma 11. Let Qε be given. Fix two nonisomorphic indecomposable representations
U, V ∈ ind(repk(Qε)).

a) The strands Φε(U) and Φε(V ) intersect nontrivially if and only if neither (U, V ) nor
(V, U) are exceptional pairs.

b) The strand Φε(U) is clockwise from Φε(V ) if and only if (U, V ) is an exceptional
pair and (V, U) is not an exceptional pair.

c) The strands Φε(U) and Φε(V ) do not intersect at any of their endpoints and they do
not intersect nontrivially if and only if (U, V ) and (V, U) are both exceptional pairs.

Furthermore, there exist monotone curves γε(U) ∈ Φε(U) for all U ∈ ind(repk(Qε)) so
that γε(U), γε(V ) have a unique crossing, have a common endpoint, or have no point of
intersection, respectively, if and only if U and V satisfy a), b), or c), respectively.

Using Lemma 11 we obtain our first main result. The following theorem says that the
data of an exceptional collection is completely encoded in the strand diagram it defines.

Theorem 12. Let E ε := {exceptional collections of Qε}. There is a bijection E ε → Dε
defined by

ξε = {Xε
i`,j`
}`∈[k] 7→ {c(i`, j`)}`∈[k].
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Proof. It is enough to show that the image of E ε under this map is a subset of Dε and
this map has a well-defined inverse.

Let ξε = {Xε
i`,j`
}`∈[k] be an exceptional collection of Qε. Let ξε be an exceptional

sequence obtained from ξε by choosing a suitable ordering of its representations. Without
loss of generality, assume ξε = (Xε

i`,j`
)`∈[k] is an exceptional sequence. Thus, (Xε

i`,j`
, Xε

ip,jp)
is an exceptional pair for all ` and p satisfying ` < p. Lemma 11 a) implies that distinct
strands of {c(i`, j`)}`∈[k] do not intersect nontrivially. This implies that the curves γ` =
γε(X

ε
i`,j`

) ∈ c(i`, j`) given in Lemma 11 will be pairwise nonintersecting.
Now we will show that {c(i`, j`)}`∈[k] has no cycles. Suppose that c(i`1 , j`1), . . . ,

c(i`p , j`p) is a cycle of length p 6 k in {c(i`, j`)}`∈[k]. Since the cycle is embedded in
the plane, it encloses one region. Choose the orientation of the cycle so that it goes
clockwise around this region. Interpreting the indices cyclically, we have that c(i`s , j`s) is
clockwise from c(i`s+1 , j`s+1) for all s ∈ [p]. Therefore Xε

i`s ,j`s
precedes Xε

i`s+1
,j`s+1

in the

exceptional sequence for all s ∈ [p], again interpreting the indices cyclically. But this is
impossible. This contradicts the fact that (Xε

i`,j`
)`∈[k] is an exceptional sequence. Hence,

the graph determined by {c(i`, j`)}`∈[k] is a tree. We have shown that {c(i`, j`)}`∈[k] ∈ Dk,ε.
Now let d = {c(i`, j`)}`∈[k] ∈ Dk,ε. Since c(i`, j`) and c(im, jm) do not intersect non-

trivially, it follows that (Φ−1ε (c(i`, j`)),Φ
−1
ε (c(im, jm))) or (Φ−1ε (c(im, jm)),Φ−1ε (c(i`, j`))) is

an exceptional pair for every ` 6= m. Notice that there exists c(i`1 , j`1) ∈ d such that
(Φ−1ε (c(i`1 , j`1)),Φ

−1
ε (c(i`, j`))) is an exceptional pair for every c(i`, j`) ∈ d \ {c(i`1 , j`1)}.

This is true because if such c(i`1 , j`1) did not exist, then d must have a cycle. Set
E1 = Φ−1ε (c(i`1 , j`1)). Now, choose c(i`p , j`p) such that (Φ−1ε (c(i`p , j`p)),Φ

−1
ε (c(i`, j`)))

is an exceptional pair for every c(i`, j`) ∈ d \ {c(i`1 , j`1), . . . , c(i`p , j`p)} inductively and
put Ep = Φ−1ε (c(i`p , j`p)). By construction, (E1, . . . , Ek) is an exceptional sequence, as
desired.

Remark 13. This version of the argument in the third paragraph of the proof of Theo-
rem 12 above was communicated to us by the anonymous referee, to whom we are grateful.

Our next step is to add distinct integer labels to each strand in a given strand diagram
d. When these labels are a good labeling, they will describe exactly the order in which
to put the representations corresponding to strands of d so that the resulting sequence of
representations is an exceptional sequence.

Definition 14. A labeled diagram d̂ = {(c(i`, j`), s`)}`∈[k] on Sn,ε is a set of pairs
(c(i`, j`), s`) where c(i`, j`) is a strand on Sn,ε and s` ∈ [k] such that d := {c(i`, j`)}`∈[k]
is a strand diagram on Sn,ε and s` 6= s`′ for any distinct `, `′ ∈ [k]. We refer to the pairs

(c(i`, j`), s`) as labeled strands and to d as the underlying diagram of d̂. We define
the endpoints of a labeled strand (c(i`, j`), s`) to be the endpoints of c(i`, j`).

Let (xi, 0) ∈ Sn,ε and let ((c(i, j1), s1), . . . , (c(i, jr), sr)) be the sequence of all labeled

strands of d̂ that have (xi, 0) as an endpoint, and assume that this sequence is ordered so
that strand c(i, jk) is clockwise from c(i, jk′) if k′ < k. We say the strand labeling of d̂ is
good if for each point (xi, 0) ∈ Sn,ε that is the endpoint of at least one labeled strand of

d̂, one has s1 < · · · < sr. Let D̂k,ε denote the set of labeled strand diagrams on Sn,ε with
k strands and with good strand labelings.
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Example 15. Let n = 4 and ε = (−,+,−,+,+) so that Qε = 1
a+1−→ 2

a−2←− 3
a+3−→ 4.

Below we show the labeled diagrams d̂1 = {(c(0, 1), 1), (c(0, 2), 2), (c(2, 3), 3), (c(2, 4), 4)}
and d̂2 = {(c(0, 4), 1), (c(2, 4), 2), (c(1, 3), 3)}.

1

2

3

4

3

2

1

We have that d̂1 ∈ D̂4,ε, but d̂2 6∈ D̂3,ε.

Theorem 16. Let k ∈ [n] and let Eε := {exceptional sequences of Qε of length k}. There

is a bijection Φ̃ε : Eε → D̂k,ε defined by

ξε = (Xε
i`,j`

)`∈[k] 7−→ {(c(i`, j`), k + 1− `)}`∈[k].

Proof. Let ξε ∈ Eε. By Lemma 11 a), Φ̃ε(ξε) has no strands that intersect nontrivially.
Let (V1, V2) be an exceptional pair appearing in ξε with Vi corresponding to strand ci in

Φ̃ε(ξε) for i = 1, 2, where c1 and c2 intersect only at one of their endpoints. Note that by

the definition of Φ̃ε, the strand label of c1 is larger than that of c2. From Lemma 11 b),

strand c1 is clockwise from c2 in Φ̃ε(ξε). Thus the strand labeling of Φ̃ε(ξε) is good, so

Φ̃ε(ξε) ∈ D̂k,ε for any ξε ∈ Eε.
Let Ψ̃ε : D̂k,ε → Eε be defined by {(c(i`, j`), `)}`∈[k] 7→ (Xε

ik,jk
, Xε

ik−1,jk−1
, . . . , Xε

i1,j1
).

We will show that Ψ̃ε(d̂) ∈ Eε for any d̂ ∈ D̂k,ε and that Ψ̃ε = Φ̃−1ε . Let

Ψ̃ε({(c(i`, j`), `)}`∈[k]) = (Xε
ik,jk

, Xε
ik−1,jk−1

, . . . , Xε
i1,j1

).

Consider the pair (Xε
is,js , X

ε
is′ ,js′

) with s > s′. We will show that (Xε
is,js , X

ε
is′ ,js′

) is an

exceptional pair and thus conclude that Ψ̃ε({(c(i`, j`), `)}`∈[k]) ∈ Eε for any d̂ ∈ D̂k,ε.
Clearly, c(is, js) and c(is′ , js′) do not intersect nontrivially. If c(is, js) and c(is′ , js′) do not
intersect at one of their endpoints, then by Lemma 11 c) (Xε

is,js , X
ε
is′ ,js′

) is exceptional.
Now suppose c(is, js) and c(is′ , js′) intersect at one of their endpoints. Because the strand-
labeling of {(c(i`, j`), `)}`∈[k] is good, c(is, js) is clockwise from c(is′ , js′). By Lemma 11
b), we have that (Xε

is,js , X
ε
is′ ,js′

) is exceptional.

To see that Ψ̃ε = Φ̃−1ε , observe that

Φ̃ε

(
Ψ̃ε({(c(i`, j`), `)}`∈[k])

)
= Φ̃ε

(
(Xε

ik,jk
, Xε

ik−1,jk−1
, . . . , Xε

i1,j1
)
)

= {(c(i`, j`), k + 1− (k + 1− `))}`∈[k]
= {(c(i`, j`), `)}`∈[k].

Thus Φ̃ε ◦ Ψ̃ε = 1D̂n,ε . Similarly, one shows that Ψ̃ε ◦ Φ̃ε = 1Eε . Thus Φ̃ε is a bijection.

The last combinatorial objects we discuss in this section are called oriented dia-
grams. These are strand diagrams whose strands have a direction.
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Definition 17. Let −→c (i`, j`) denote the data of the strand c(i`, j`) on Sn,ε and an orienta-
tion of each curve in c(i`, j`) from (xi` , 0) to (xj` , 0). We refer to −→c (i`, j`) as an oriented
strand on Sn,ε and we define the endpoints of −→c (i`, j`) to be the endpoints of c(i`, j`).

An oriented diagram
−→
d = {−→c (i`, j`)}`∈[k] on Sn,ε is a collection of oriented strands on

Sn,ε where d = {c(i`, j`)}`∈[k] is a strand diagram on Sn,ε. We refer to d as the underlying

diagram of
−→
d .

Remark 18. When it is clear from the context what the values of n and ε are, we will often
refer to a strand diagram on Sn,ε simply as a diagram. Similarly, we will often refer to
labeled diagrams (resp., oriented diagrams) on Sn,ε as labeled diagrams (resp., oriented
diagrams). Additionally, if we have two diagrams d1 and d2 (both on Sn,ε) where d1 ⊂ d2,
we say that d1 is a subdiagram of d2. One analogously defines labeled subdiagrams
(resp., oriented subdiagrams) of a labeled diagram (resp., oriented diagram).

We now define a special subset of the oriented diagrams on Sn,ε. As we will see, each

element in this subset of oriented diagrams, denoted
−→Dn,ε, will correspond to a unique

c-matrix C ∈ c-mat(Qε) and vice versa. Thus we obtain a diagrammatic classification of
c-matrices (see Theorem 22).

Definition 19. Let
−→Dn,ε denote the set of oriented diagrams

−→
d = {−→c (i`, j`)}`∈[n] on

Sn,ε with the property that for each k ∈ [0, n] there exist integers i1, i2, j ∈ [0, n] where

i1 < k < i2 and j ∈ [0, n]\{i1, k, i2} such that the oriented subdiagram
−→
dk of

−→
d consisting

of the oriented strands of
−→
d with (xk, 0) as an endpoint is an oriented subdiagram of one

of the following two oriented diagrams on Sn,ε:

i)
−→
d+ = {−→c (k, i1),

−→c (k, i2),
−→c (j, k)} where εk = + (shown in Figure 3 (left)) or

ii)
−→
d− = {−→c (i1, k),−→c (i2, k),−→c (k, j)} where εk = − (shown in Figure 3 (right)).

Note that to make sense of the local pictures in Figure 3, we must also choose represen-

tatives of the strands in
−→
dk which pairwise have no intersections in their interiors.

εk = + εk = −

Figure 3: The oriented subdiagrams from Definition 19.

Lemma 20. Let {−→ci }i∈[k] be a collection of c-vectors of Qε where k 6 n. Let −→ci =
±dim(Xε

i1,i2
) where the sign is determined by −→ci . There is an injective map{

noncrossing collections
of c-vectors {−→ci }i∈[k]

}
−→

{
oriented diagrams−→
d = {−→c (i`, j`)}`∈[k]

}
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defined by

−→ci 7−→
{ −→c (i1, i2) : −→ci is positive
−→c (i2, i1) : −→ci is negative,

where {−→ci }i∈[k] is a noncrossing collection of c-vectors if Φε(X
ε
i1,i2

) and Φε(X
ε
i′1,i
′
2
) do

not intersect nontrivially for any i, i′ ∈ [k]. In particular, each c-matrix Cε ∈ c-mat(Qε)

determines a unique oriented diagram denoted
−→
dCε with n oriented strands.

Example 21. Let n = 4 and ε = (+,+,−,+,−) so that Qε = 1
a+1−→ 2

a−2←− 3
a+3−→ 4. After

performing the mutation sequence µ3 ◦ µ2 to the corresponding framed quiver, we have
the c-matrix with its oriented diagram.

1 1 0 0
0 0 1 0
0 −1 −1 0
0 0 0 1


The following theorem shows that oriented diagrams belonging to

−→Dn,ε are in bijection
with c-matrices of Qε. We delay its proof until Section 4 because it makes use of the
concept of a mixed cobinary tree.

Theorem 22. The map c-mat(Qε) →
−→Dn,ε induced by the map defined in Lemma 20 is

a bijection.

3.2 Proof of Lemma 11

The proof of Lemma 11 requires some notions from representation theory of finite dimen-
sional algebras, which we now briefly review. For a more comprehensive treatment of the
following notions, we refer the reader to [ASS06].

Definition 23. Given a quiver Q with #Q0 = n, the Euler characteristic (of Q) is the
Z-bilinear (nonsymmetric) form Zn×Zn → Z defined by

〈dim(V ), dim(W )〉 =
∑
i>0

(−1)i dim ExtikQ(V,W )

for every V,W ∈ repk(Q).

For hereditary algebras A (e.g., path algebras of acyclic quivers), ExtiA(V,W ) = 0 for
i > 2 and the formula reduces to

〈dim(V ), dim(W )〉 = dim HomkQ(V,W )− dim Ext1kQ(V,W ).

The following lemma, which appears in [ASS06], gives a simple formula for the Euler
characteristic.
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Lemma 24. Given an acyclic quiver Q with #Q0 = n and vectors x = (x1, x2, . . . , xn),
y = (y1, y2, . . . , yn) ∈ Zn, the Euler characteristic of Q has the form

〈x, y〉 =
∑
i∈Q0

xiyi −
∑
α∈Q1

xs(α)yt(α)

Next, we give a slight simplification of the previous formula. Recall that the support
of V ∈ repk(Q) is the set supp(V ) := {i ∈ Q0 : Vi 6= 0}. Thus for quivers of the form Qε,
any indecomposable representation Xε

i,j ∈ ind(repk(Qε)) has supp(Xε
i,j) = [i+ 1, j].

Lemma 25. Let Xε
k,`, X

ε
i,j ∈ ind(repk(Qε)) and A := {a ∈ (Qε)1 : s(a), t(a) ∈ supp(Xε

k,`)∩
supp(Xε

i,j)}. Then 〈dim(Xε
k,`), dim(Xε

i,j)〉 is equal to

χsupp(Xε
k,`)∩supp(X

ε
i,j)
− #

(
{a ∈ (Qε)1 : s(a) ∈ supp(Xε

k,`), t(a) ∈ supp(Xε
i,j)}\A

)
where χsupp(Xε

k,`)∩supp(X
ε
i,j)

= 1 if supp(Xε
k,`) ∩ supp(Xε

i,j) 6= ∅ and 0 otherwise.

Proof. We have that

〈dim(Xε
k,`), dim(Xε

i,j)〉 =
∑
m

dim(Xε
k,`)mdim(Xε

i,j)m −
∑
a

dim(Xε
k,`)s(a)dim(Xε

i,j)t(a)

= #
(
supp(Xε

k,`) ∩ supp(Xε
i,j)
)

− #{α ∈ (Qε)1 : s(a) ∈ supp(Xε
k,`), t(a) ∈ supp(Xε

i,j)}
= #

(
supp(Xε

k,`) ∩ supp(Xε
i,j)
)
− #A

−#({a ∈ (Qε)1 : s(a) ∈ supp(Xε
k,`), t(a) ∈ supp(Xε

i,j)}\A).

Observe that if supp(Xε
k,`) ∩ supp(Xε

i,j) 6= ∅, then #A = #(supp(Xε
k,`) ∩ supp(Xε

i,j))− 1.
Otherwise #A = 0. Thus 〈dim(Xε

k,`), dim(Xε
i,j)〉 is equal to

χsupp(Xε
k,`)∩supp(X

ε
i,j)
− #

(
{a ∈ (Qε)1 : s(a) ∈ supp(Xε

k,`), t(a) ∈ supp(Xε
i,j)}\A

)
.

Before presenting the lemmas that we will use in the proof of Lemma 11, we pro-
vide a conceptual formulation of their content, which describes when HomkQε(−,−) and
Ext1kQε(−,−) vanish for a given type An quiver Qε.

Let Xε
k,`, X

ε
i,j ∈ ind(repk(Qε)) and let S = supp(Xε

k,`)∩ supp(Xε
i,j). Then we have that

HomkQε(X
ε
i,j, X

ε
k,`) 6= 0 if and only if

• S 6= ∅,

• any a ∈ (Qε)1 connecting a vertex p ∈ supp(Xε
i,j)\S and a vertex q ∈ S has s(a) = q

and t(a) = p, and

• any a ∈ (Qε)1 connecting a vertex p ∈ supp(Xε
k,`)\S and a vertex q ∈ S has s(a) = p

and t(a) = q.

Similarly, Ext1kQε(X
ε
i,j, X

ε
k,`) 6= 0 if and only if one of the following holds:
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• HomkQε(X
ε
k,`, X

ε
i,j) 6= 0 and S ( supp(Xε

k,`), supp(Xε
i,j), or

• S = ∅ but there is an arrow a ∈ (Qε)1 with s(a) ∈ supp(Xε
i,j) and t(a) ∈ supp(Xε

k,`).

In the next four lemmas, we translate the conceptual formulation above into explicit
characterizations of when HomkQε(−,−) and Ext1kQε(−,−) vanish. This characterization
is in terms of inequalities satisfied by the indices describing a pair of indecomposable
representations of Qε and the entries of ε. We will use these explicit lemmas to prove
Lemma 11. Since their proofs all use very similar techniques, we only prove Lemma 26.

Lemma 26. Let Xε
k,`, X

ε
i,j ∈ ind(repk(Qε)). Assume 0 6 i < k < j < ` 6 n.

i) HomkQε(X
ε
i,j, X

ε
k,`) 6= 0 if and only if εk = − and εj = −.

ii) HomkQε(X
ε
k,`, X

ε
i,j) 6= 0 if and only if εk = + and εj = +.

iii) Ext1kQε(X
ε
i,j, X

ε
k,`) 6= 0 if and only if εk = + and εj = +.

iv) Ext1kQε(X
ε
k,`, X

ε
i,j) 6= 0 if and only if εk = − and εj = −.

Proof. We only prove i) and iv) as the proof of ii) is very similar to that of i), and the
proof of iii) is very similar to that of iv). To prove i), first assume there is a nonzero
morphism θ : Xε

i,j → Xε
k,`. Clearly, θs = 0 if s 6∈ [k + 1, j]. If θs 6= 0 for some s ∈ [n], then

θs = λ · idk for some nonzero λ ∈ k (i.e., θs is a nonzero scalar transformation). As θ is
a morphism of representations, for any a ∈ (Qε)1 the equality θt(a)ϕ

i,j
a = ϕk,`a θs(a) holds.

Thus for any a ∈ {aεk+1

k+1 , . . . , a
εj−1

j−1 }, we have θt(a) = θs(a). As θ is nonzero, this implies that
θs = λ · idk for any s ∈ [k + 1, j]. If a = aεkk , then we have

θt(a)ϕ
i,j
a = ϕk,`a θs(a)

θt(a) = 0.

Thus εk = −. Similarly, εj = −.
Conversely, it is easy to see that if εk = εj = −, then θ : Xε

i,j → Xε
k,` defined by θs = 0

if s 6∈ [k + 1, j] and θs = idk otherwise is a nonzero morphism.
Next, we prove iv). Observe that by Lemma 25 we have

dim Ext1kQε(X
ε
k,`, X

ε
i,j) = dim HomkQε(X

ε
k,`, X

ε
i,j)− 〈dim(Xε

k,`), dim(Xε
i,j)〉

= dim HomkQε(X
ε
k,`, X

ε
i,j)− 1

+#({b ∈ (Qε)1 : s(b) ∈ supp(Xε
k,`), t(b) ∈ supp(Xε

i,j)}\A).

Note that #
(
{b ∈ (Qε)1 : s(b) ∈ supp(Xε

k,`), t(b) ∈ supp(Xε
i,j)}\A

)
6 2 with equality if

and only if εk = εj = −.
Suppose εk = εj = −. By i), we have HomkQε(X

ε
i,j, X

ε
k,`) 6= 0 so HomkQε(X

ε
k,`, X

ε
i,j) = 0.

This means

dim Ext1kQε(X
ε
k,`, X

ε
i,j) = #({b ∈ (Qε)1 : s(b) ∈ supp(Xε

k,`), t(b) ∈ supp(Xε
i,j)}\A)− 1

= 1.

Conversely, suppose Ext1kQε(X
ε
k,`, X

ε
i,j) 6= 0. Thus, one checks that there is a nonsplit

extension
0 −→ Xε

i,j

f−→ Xε
i,` ⊕Xε

k,j

g−→ Xε
k,` −→ 0.
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By Remark 4, this implies that HomkQε(X
ε
k,`, X

ε
i,j) = 0, since the composition h : Xε

i,j

f1→
Xε
i,`

g1→ Xε
k,` is nonzero. Using again that dimExt1kQε(X

ε
k,`, X

ε
i,j) 6= 0, the formula above

for its dimension tells us that εk = εj = −.

Lemma 27. Let Xε
k,`, X

ε
i,j ∈ ind(repk(Qε)). Assume 0 6 i < k < ` < j 6 n.

i) HomkQε(X
ε
i,j, X

ε
k,`) 6= 0 if and only if εk = − and ε` = +.

ii) HomkQε(X
ε
k,`, X

ε
i,j) 6= 0 if and only if εk = + and ε` = −.

iii) Ext1kQε(X
ε
i,j, X

ε
k,`) 6= 0 if and only if εk = + and ε` = −.

iv) Ext1kQε(X
ε
k,`, X

ε
i,j) 6= 0 if and only if εk = − and ε` = +.

Lemma 28. Assume 0 6 i < k < j 6 n. Then
i) HomkQε(X

ε
i,k, X

ε
k,j) = 0 and HomkQε(X

ε
k,j, X

ε
i,k) = 0.

ii) Ext1kQε(X
ε
i,k, X

ε
k,j) 6= 0 if and only if εk = +.

iii) Ext1kQε(X
ε
k,j, X

ε
i,k) 6= 0 if and only if εk = −.

iv) HomkQε(X
ε
i,k, X

ε
i,j) 6= 0 if and only if εk = −.

v) HomkQε(X
ε
i,j, X

ε
i,k) 6= 0 if and only if εk = +.

vi) Ext1kQε(X
ε
i,k, X

ε
i,j) = 0 and Ext1kQε(X

ε
i,j, X

ε
i,k) = 0.

vii) HomkQε(X
ε
k,j, X

ε
i,j) 6= 0 if and only if εk = +.

viii) HomkQε(X
ε
i,j, X

ε
k,j) 6= 0 if and only if εk = −.

ix) Ext1kQε(X
ε
k,j, X

ε
i,j) = 0 and Ext1kQε(X

ε
i,j, X

ε
k,j) = 0.

Lemma 29. Let Xε
k,`, X

ε
i,j ∈ ind(repk(Qε)). Assume 0 6 i < j < k < ` 6 n. Then

i) HomkQε(X
ε
i,j, X

ε
k,`) = 0, HomkQε(X

ε
k,`, X

ε
i,j) = 0,

ii) Ext1kQε(X
ε
i,j, X

ε
k,`) = 0, Ext1kQε(X

ε
k,`, X

ε
i,j) = 0.

We begin our proof of Lemma 11 by giving a formula for a good choice of representative
monotone curves γε(i, j) ∈ c(i, j) for all strands c(i, j). Let ϕ : R → R be any fixed
smooth (C1) function satisfying the equation ϕ(xk) = εk

√
xk for all (xk, 0) ∈ Sn,ε. For

0 6 i < j 6 n let fij : [xi, xj]→ R be the smooth function:

fij(t) = εi
√
xi
xj − t
xj − xi

+ εj
√
xj

t− xi
xj − xi

− ϕ(t) (1)

Note that the graph of the function fij+ϕ is a straight line from (xi, εi
√
xi) to (xj, εj

√
xj).

Lemma 30. The graph of the function fij : [xi, xj] → R is a monotone curve γε(i, j) ∈
c(i, j).

Proof. We follow Remark 8. For t = xi, f(xi) = εi
√
xi − εi

√
xi = 0. Similarly, f(xj) = 0.

Now, let i < k < j. Since the function y =
√
x is concave down, the weighted average of√

xi,
√
xj will be strictly smaller than

√
xk:

|fij(xk) + ϕ(xk)| <
√
xk.

Since |ϕ(xk)| =
√
xk, the sign of fij(xk) must be −εk as required by Remark 8.
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Lemma 31. Let c(i1, j1) and c(i2, j2) be distinct strands on Sn,ε that intersect nontrivially.
Then c(i1, j1) and c(i2, j2) do not share an endpoint.

Proof. Suppose c(i1, j1) and c(i2, j2) share an endpoint. Then the linear functions fi1j1 +ϕ
and fi2j2 +ϕ agree at one endpoint and therefore must be disjoint at all other points. So,
fi1j1 6= fi2j2 except at an endpoint and c(i1, j1), c(i2, j2) cannot intersect nontrivially.

Lemma 32. Two distinct strands c(i1, j1) and c(i2, j2) on Sn,ε intersect nontrivially if and
only if the representative monotone curves γε(i1, j1) and γε(i2, j2) have a unique crossing.

Proof. By the previous lemma we may assume that c(i1, j1) and c(i2, j2) do not share an
endpoint.

If γε(i1, j1) and γε(i2, j2) do not intersect then, by definition, c(i1, j1) and c(i2, j2) do
not intersect nontrivially. So, we may assume that γε(i1, j1) and γε(i2, j2) intersect. Then
the linear functions fi1j1 +ϕ, fi2j2 +ϕ agree at one point. The slopes of these lines must be
different, otherwise one curve γε(i1, j1) or γε(i2, j2) would contain an endpoint of the other.
Therefore, γε(i1, j1) and γε(i2, j2) intersect transversely at one point. It remains to show
that c(i1, j1) and c(i2, j2) intersect nontrivially, i.e., that any other pair of representatives
will intersect in their interiors.

Assuming that one pair of transversely intersecting representative curves γk ∈ c(ik, jk)
with k ∈ [2] meets an odd number of times, we will show that all of them do. This
will prove the lemma. Without loss of generality, we assume i1 < i2. Since c(i1, j1) and
c(i2, j2) do not share a common endpoint there are two cases:

a) i1 < i2 < j1 < j2
b) i1 < i2 < j2 < j1.

Suppose that case a) holds. If εi2 = − (resp., εi2 = +), then γ1 passes over (resp.,
underneath) γ2 at its left endpoint (xi2 , 0). Since γ1, γ2 cross an odd number of times, the
right hand endpoint of γ1 must lie under (resp., over) γ2, i.e., εj1 = − (resp., εj1 = +).
In both subcases, εi2 = εj1 and γ1 and γ2 must switch vertical order between (xi2 , 0) and
(xj1 , 0). So, all choices of γ1, γ2 must cross an odd number of times if the crossings are
transverse.

The proof in case b) is very similar. Again the monotone curves γ1, γ2 must switch
their vertical order between (xi2 , 0) and (xj1 , 0) which, in case b) means that εi2 6= εj2 .
Then all choices of γ1, γ2 will intersect an odd number of times if the intersections are
transverse.

Remark 33. If c(i1, j1) and c(i2, j2) are two distinct strands on Sn,ε that do not intersect
nontrivially, then the representative monotone curves γε(i1, j1) and γε(i2, j2) are noninter-
secting, except possibly at their endpoints.

We now arrive at the proof of Lemma 11. The proofs of a), b), and c) are a case-by-
case analysis where the cases are given in terms of the entries of ε and the inequalities
satisfied by the indices describing a pair of indecomposable representations of Qε. The
representatives γε(U) of U = Xε

i,j claimed by Lemma 11 are given by γε(U) = γε(i, j)
which have the required properties by Lemma 32 and Remark 33 above.
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Proof of Lemma 11 a). Let Xε
i,j = U and Xε

k,` = V. Assume that the strands Φε(X
ε
i,j) and

Φε(X
ε
k,`) intersect nontrivially. By Lemma 31, we can assume without loss of generality

that either 0 6 i < k < j < ` 6 n or 0 6 i < k < ` < j 6 n. By Lemma 32, we
can represent Φε(X

ε
i,j) and Φε(X

ε
k,`) by monotone curves γi,j and γk,` that have a unique

crossing. Furthermore, we can assume that this unique crossing occurs between (xk, 0)
and (xk+1, 0). There are four possible cases:

i) εk = εk+1 = −,
ii) εk = − and εk+1 = +,
iii) εk = εk+1 = +,
iv) εk = + and εk+1 = −.

We illustrate these cases up to isotopy in Figure 4. We see that in cases i) and ii) (resp.,
iii) and iv)) γk,` lies

εk = − εk+1 = − εk = −

εk+1 = + εk = + εk+1 = + εk = +

εk+1 = −

Figure 4: The four types of crossings.

above (resp., below) γi,j inside of {(x, y) ∈ R2 : xk+1 6 x 6 xmin{`,j}}.
Suppose γk,` lies above γi,j inside {(x, y) ∈ R2 : xk+1 6 x 6 xmin{`,j}}. Then

εmin{`,j} =

{
+ : min{`, j} = `
− : min{`, j} = j

otherwise γk,` and γi,j would have a nonunique crossing. If min{`, j} = `, we have 0 6 i <
k < ` < j 6 n, εk = −, and ε` = +. Now by Lemma 27, we have that HomkQε(X

ε
i,j, X

ε
k,`) 6=

0 and Ext1kQε(X
ε
k,`, X

ε
i,j) 6= 0. If min{`, j} = j, then 0 6 i < k < j < ` 6 n, εk = −, and

εj = −. Thus, by Lemma 26, we have that HomkQε(X
ε
i,j, X

ε
k,`) 6= 0 and Ext1kQε(X

ε
k,`, X

ε
i,j) 6=

0.
Similarly, if γi,j lies above γk,` inside {(x, y) ∈ R2 : xk+1 6 x 6 xmin{`,j}}, it follows

that

εmin{`,j} =

{
− : min{`, j} = `
+ : min{`, j} = j.

If min{`, j} = `, then HomkQε(X
ε
k,`, X

ε
i,j) 6= 0 and Ext1kQε(X

ε
i,j, X

ε
k,`) 6= 0 via Lemma 27. If

min{`, j} = j, then Lemma 26 implies HomkQε(X
ε
k,`, X

ε
i,j) 6= 0 and Ext1kQε(X

ε
i,j, X

ε
k,`) 6= 0.

Thus we conclude that neither (Xε
i,j, X

ε
k,`) nor (Xε

k,`, X
ε
i,j) are exceptional pairs.

Conversely, assume that neither (U, V ) nor (V, U) are exceptional pairs where Xε
i,j = U

and Xε
k,` = V. Then at least one of the following is true:
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a) HomkQε(X
ε
i,j, X

ε
k,`) 6= 0 and HomkQε(X

ε
k,`, X

ε
i,j) 6= 0,

b) HomkQε(X
ε
i,j, X

ε
k,`) 6= 0 and Ext1kQε(X

ε
k,`, X

ε
i,j) 6= 0,

c) Ext1kQε(X
ε
i,j, X

ε
k,`) 6= 0 and HomkQε(X

ε
k,`, X

ε
i,j) 6= 0,

d) Ext1kQε(X
ε
i,j, X

ε
k,`) 6= 0 and Ext1kQε(X

ε
k,`, X

ε
i,j) 6= 0.

As Xε
i,j and Xε

k,` are indecomposable and nonisomorphic, we have HomkQε(X
ε
i,j, X

ε
k,`) =

0 or HomkQε(X
ε
k,`, X

ε
i,j) = 0 by Remark 4. Without loss of generality, assume that

HomkQε(X
ε
k,`, X

ε
i,j) = 0. Thus b) or d) hold so Ext1kQε(X

ε
k,`, X

ε
i,j) 6= 0. Then Lemma 28

and Lemma 29 imply that 0 6 i < k < j < ` 6 n or 0 6 i < k < ` < j 6 n.
If 0 6 i < k < j < ` < n, we have εk = εj = − by Lemma 26 as HomkQε(X

ε
i,j, X

ε
k,`) 6= 0

and Ext1kQε(X
ε
k,`, X

ε
i,j) 6= 0. Let γi,j ∈ Φε(X

ε
i,j) and γk,` ∈ Φε(X

ε
k,`). We can assume that

there exists δ(k) > 0 such that γi,j and γk,` have no intersection inside {(x, y) ∈ R2 :
xk 6 x 6 xk + δ(k)}. This implies that γi,j lies above γk,` inside {(x, y) ∈ R2 : xk 6 x 6
xk + δ(k)}. Similarly, we can assume there exists δ(j) > 0 such that γi,j and γk,` have
no intersection inside {(x, y) ∈ R2 : xj − δ(j) 6 x 6 xj}. Thus γi,j lies below γk,` inside
{(x, y) ∈ R2 : xj − δ(j) 6 x 6 xj}. This means γi,j and γk,` must have at least one point
of intersection. Thus Φε(X

ε
i,j) and Φε(X

ε
k,`) intersect nontrivially. An analogous argument

shows that if 0 6 i < k < ` < j 6 n, then Φε(X
ε
i,j) and Φε(X

ε
k,`) intersect nontrivially.

Proof of Lemma 11 b). Assume that Φε(U) is clockwise from Φε(V ). Then we have that
one of the following holds:

a) Xε
k,j = U and Xε

i,k = V for some 0 6 i < k < j 6 n,
b) Xε

i,k = U and Xε
k,j = V for some 0 6 i < k < j 6 n,

c) Xε
i,j = U and Xε

i,k = V for some 0 6 i < j 6 n and 0 6 i < k 6 n,
d) Xε

i,j = U and Xε
k,j = V for some 0 6 i < j 6 n and 0 6 k < j 6 n.

In Case a), we have that εk = − since Φε(X
ε
k,j) is clockwise from Φε(X

ε
i,k). By

Lemma 28 i) and ii), we have HomkQε(X
ε
i,k, X

ε
k,j) = 0 and Ext1kQε(X

ε
i,k, X

ε
k,j) = 0. Thus

(Xε
k,j, X

ε
i,k) is an exceptional pair. By Lemma 28 iii), we have that Ext1kQε(X

ε
k,j, X

ε
i,k) 6= 0.

Thus (Xε
i,k, X

ε
k,j) is not an exceptional pair.

In Case b), we have that εk = + since Φε(X
ε
i,k) is clockwise from Φε(X

ε
k,j). By

Lemma 28 i) and iii), we have that HomkQε(X
ε
k,j, X

ε
i,k) = 0 and Ext1kQε(X

ε
k,j, X

ε
i,k) = 0.

Thus (Xε
i,k, X

ε
k,j) is an exceptional pair. By Lemma 28 ii), we have Ext1kQε(X

ε
i,k, X

ε
k,j) 6= 0.

Thus (Xε
k,j, X

ε
i,k) is not an exceptional pair.

In Case c), if j < k, it follows that εj = −. Indeed, since Φε(X
ε
i,j) and Φε(X

ε
i,k) share

an endpoint, the two do not intersect nontrivially by Lemma 31. As Φε(X
ε
i,j) is clockwise

from Φε(X
ε
i,k), Remark 33 asserts that we can choose monotone curves γi,k ∈ Φε(X

ε
i,k)

and γi,j ∈ Φε(X
ε
i,j) such that γi,k lies strictly above γi,j on {(x, y) ∈ R2 : xi < x 6

xj}. Thus εj = −. By Lemma 28 v) and vi), we have that HomkQε(X
ε
i,k, X

ε
i,j) = 0 and

Ext1kQε(X
ε
i,k, X

ε
i,j) = 0 so that (Xε

i,j, X
ε
i,k) is an exceptional pair. By Lemma 28 iv), we

have that HomkQε(X
ε
i,j, X

ε
i,k) 6= 0. Thus (Xε

i,k, X
ε
i,j) is not an exceptional pair.

Similarly, one shows that if k < j, then εk = +. By Lemma 28 iv) and vi), we have
that HomkQε(X

ε
i,k, X

ε
i,j) = 0 and Ext1kQε(X

ε
i,k, X

ε
i,j) = 0 so that (Xε

i,j, X
ε
i,k) is an exceptional

pair. By Lemma 28 v), we have that HomkQε(X
ε
i,j, X

ε
i,k) 6= 0. Thus (Xε

i,k, X
ε
i,j) is not an

exceptional pair. The proof in Case d) is completely analogous to the proof in Case c) so
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we omit it.
Conversely, let U = Xε

i,j and V = Xε
k,` and assume that (Xε

i,j, X
ε
k,`) is an exceptional

pair and (Xε
k,`, X

ε
i,j) is not an exceptional pair. This implies that at least one of the

following holds:
1) HomkQε(X

ε
k,`, X

ε
i,j) = 0,Ext1kQε(X

ε
k,`, X

ε
i,j) = 0, and HomkQε(X

ε
i,j, X

ε
k,`) 6= 0,

2) HomkQε(X
ε
k,`, X

ε
i,j) = 0,Ext1kQε(X

ε
k,`, X

ε
i,j) = 0, and Ext1kQε(X

ε
i,j, X

ε
k,`) 6= 0.

By Lemma 29, we know that [i, j] ∩ [k, `] 6= ∅. This implies that either
i) Φε(X

ε
i,j) and Φε(X

ε
k,`) share an endpoint,

ii) 0 6 i < k < j < ` 6 n,
iii) 0 6 i < k < ` < j 6 n,
iv) 0 6 k < i < ` < j 6 n, or
v) 0 6 k < i < j < ` 6 n.

We will show that Φε(X
ε
i,j) and Φε(X

ε
k,`) share an endpoint.

Suppose 0 6 i < k < j < ` 6 n. Since HomkQε(X
ε
k,`, X

ε
i,j) = 0,Ext1kQε(X

ε
k,`, X

ε
i,j) = 0,

we have by Lemma 26 ii) and iv) that either εk = − and εj = + or εk = + and εj = −.
However, as HomkQε(X

ε
i,j, X

ε
k,`) 6= 0 or Ext1kQε(X

ε
i,j, X

ε
k,`) 6= 0, Lemma 26 i) and iii)

assert that εk = εj = − or εk = εj = +. This is a contradiction. Thus, i, j, k, ` do not
satisfy 0 6 i < k < j < ` 6 n, and by a similar argument, they also do not satisfy
0 6 k < i < ` < j 6 n.

Suppose 0 6 i < k < ` < j 6 n. Since HomkQε(X
ε
k,`, X

ε
i,j) = 0,Ext1kQε(X

ε
k,`, X

ε
i,j) = 0,

we have by Lemma 27 ii) and iv) that either εk = ε` = + or εk = ε` = −. However,
as HomkQε(X

ε
i,j, X

ε
k,`) 6= 0 or Ext1kQε(X

ε
i,j, X

ε
k,`) 6= 0, Lemma 27 i) and iii) we have that

εk = − and ε` = + or εk = + and ε` = −. This is a contradiction. Thus, i, j, k, ` do not
satisfy 0 6 i < k < ` < j 6 n, and by an analogous argument, they also do not satisfy
0 6 k < i < j < ` 6 n.

We conclude that Φε(U) and Φε(V ) share an endpoint. Thus we have that one of the
following holds where we forget the previous roles played by i, j, k:

a) Xε
k,j = U and Xε

i,k = V for some 0 6 i < k < j 6 n,
b) Xε

i,k = U and Xε
k,j = V for some 0 6 i < k < j 6 n,

c) Xε
i,j = U and Xε

i,k = V for some 0 6 i < j 6 n and 0 6 i < k 6 n,
d) Xε

i,j = U and Xε
k,j = V for some 0 6 i < j 6 n and 0 6 k < j 6 n.

Suppose Case a) holds. We know that Ext1kQε(X
ε
i,k, X

ε
k,j) = 0 since (U, V ) is an ex-

ceptional pair. By Lemma 28 ii), we have that εk = −. Thus Φε(U) is clockwise from
Φε(V ).

Suppose Case b) holds. We know that Ext1kQε(X
ε
k,j, X

ε
i,k) = 0 since (U, V ) is an ex-

ceptional pair. By Lemma 28 iii), we have that εk = +. Thus Φε(U) is clockwise from
Φε(V ).

Suppose Case c) holds. Assume k < j. Then Lemma 28 iv) and the fact that
HomkQε(X

ε
i,k, X

ε
i,j) = 0 imply that εk = +. Thus we have that Φε(U) = Φε(X

ε
i,j) is

clockwise from Φε(V ) = Φε(X
ε
i,k). Now suppose j < k. Then Lemma 28 v) and

HomkQε(X
ε
i,k, X

ε
i,j) = 0 imply that εj = −. Thus we have that Φε(U) = Φε(X

ε
i,j) is

clockwise from Φε(V ) = Φε(X
ε
i,k). The proof in Case d) is very similar so we omit it.
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Proof of Lemma 11 c). Observe that two strands c(i1, j1) and c(i2, j2) share an endpoint
if and only if one of the two strands is clockwise from the other. Thus Lemma 11 a) and
b) imply that Φε(U) and Φε(V ) do not intersect at any of their endpoints and they do not
intersect nontrivially if and only if both (U, V ) and (V, U) are exceptional pairs.

4 Mixed cobinary trees

We recall the definition of an ε-mixed cobinary tree and construct a bijection between the
set of (isomorphism classes of) such trees and the set of maximal oriented strand diagrams
on Sn,ε.

Definition 34 ([IO13]). Given a sign function ε : [0, n]→ {+,−}, an ε-mixed cobinary
tree (MCT) is a tree T embedded in R2 with vertex set {(i, yi) : i ∈ [0, n]} and edges
straight line segments and satisfying the following conditions:

a) None of the edges is horizontal.
b) If εi = + then yi > z for any (i, z) ∈ T. So, the tree goes under (i, yi).
c) If εi = − then yi 6 z for any (i, z) ∈ T. So, the tree goes over (i, yi).
d) If εi = + then there is at most one edge descending from (i, yi) and

at most two edges ascending from (i, yi) and not on the same side.
e) If εi = − then there is at most one edge ascending from (i, yi) and

at most two edges descending from (i, yi) and not on the same side.
Two MCTs T, T ′ are isomorphic as MCTs if there is a graph isomorphism T ∼= T ′

which sends (i, yi) to (i, y′i) and so that corresponding edges have the same sign of their
slopes.

Given a MCT T , there is a partial ordering on [0, n] given by i <T j if the unique
path from (i, yi) to (j, yj) in T is monotonically increasing. Isomorphic MCTs give the
same partial ordering by definition. Conversely, the partial ordering <T determines T
uniquely up to isomorphism since T is the Hasse diagram of the partial ordering <T . We
sometimes decorate MCTs with leaves at vertices so that the result is trivalent, i.e.,
with three edges incident to each vertex. See, e.g., Figure 6. The ends of these leaves are
not considered to be vertices. In that case, each vertex with ε = + forms a “Y” and this
pattern is vertically inverted for ε = −. The position of the leaves is uniquely determined.

In Figure 6, the four vertices have coordinates (0, y0), (1, y1), (2, y2), (3, y3) where the
yi can be any real numbers such that y0 < y1 < y2 < y3. This inequality defines an open
subset of R4 which is called the region of this tree T. More generally, for any MCT T ,
the region of T , denoted Rε(T ), is the set of all points y ∈ Rn+1 with the property that
there exists a mixed cobinary tree T ′ which is isomorphic to T so that the vertex set of
T ′ is {(i, yi) : i ∈ [0, n]}.

Theorem 35 ([IO13]). Let n ∈ Z>0 and ε : [0, n]→ {+,−} be fixed. Then, for every MCT
T , the region Rε(T ) is convex and nonempty. Furthermore, every point y = (y0, . . . , yn)
in Rn+1 with distinct coordinates lies in Rε(T ) for a unique T (up to isomorphism). In
particular these regions are disjoint and their union is dense in Rn+1.
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(4, 1)
(1, 1)

(0, 0) (3, 0)

(2,−1)

Figure 5: A MCT with ε1 = ε2 = −,
ε3 = + and any value for ε0, ε4.

Figure 6: This MCT (in blue) has
added green leaves showing that ε =
(−,+,−,−).

For a fixed n and ε : [0, n] → {+,−} we will construct a bijection between the set

Tε of isomorphism classes of mixed cobinary trees with sign function ε and the set
−→Dn,ε

defined in Definition 19.
Let
−→
d = {−→c (i`, j`)}`∈[n] ∈

−→Dn,ε, and let−→γ` be an element of the set−→c (i`, j`) of oriented
curves with ` ∈ [n] so that each −→γ` is a monotone curve from i` to j` and so that the
oriented curves {−→γ`}`∈[n] are pairwise nonintersecting in their interiors. Let p = (x, y) and
q = (x, z) be two distinct points on the union of these oriented curves where q lies above p.

The oriented diagram
−→
d defines a unique sequence of oriented curves

−→
λi1 , . . . ,

−→
λik joining

p and q where
−→
λi1 ⊂ −→γi1 or

−→
λik ⊂ −→γik as subsets of R2 and

−→
λit = −→γit for all t ∈ {2, . . . , k−1}

for some collection of oriented curves −→γi1 , . . . ,−→γik ∈ {−→γ`}`∈[n]. We study the sequence−→
λi1 , . . . ,

−→
λik in the next lemma.

Lemma 36. In the notation of the previous paragraph, if p = (x, y) and q = (x, z) are
two points on the union of the curves {−→γ`}`∈[n] where q lies above p, then the sequence−→
λi1 , . . . ,

−→
λik forms an oriented path that is oriented from p to q.

Proof. The proof will be by induction on the number m of internal vertices appearing in

the sequence
−→
λi1 , . . . ,

−→
λik . If m = 1 with internal vertex (xj, 0) then p and q are connected

by
−→
λi1 and

−→
λi2 where the former connects p to (xj, 0) and the latter connects (xj, 0) back

to q. Since the oriented curves {−→γ`}`∈[n] are pairwise nonintersecting, the oriented curve−→
λi1 lies below

−→
λi2 . Since

−→
d ∈ −→Dn,ε, we conclude that

−→
λi1 (resp.,

−→
λi2) is oriented from p to

(xj, 0) (resp., from (xj, 0) to q).
Now suppose that m > 2 and the lemma holds for smaller m. There are two cases.

Case 1: the sequence
−→
λi1 , . . . ,

−→
λik lies entirely on one side of p and q (as in the case m = 1).

Case 2: the sequence
−→
λi1 , . . . ,

−→
λik has internal vertices on both sides of p and q.

Case 1: Suppose by symmetry that the sequence
−→
λi1 , . . . ,

−→
λik lies entirely to the left of

p and q. Let (xj, 0) denote the internal vertex of
−→
λi1 , . . . ,

−→
λik with the largest value of xj.

Thus all other internal vertices of
−→
λi1 , . . . ,

−→
λik are weakly to the left of (xj, 0) and p and

q are to the right of (xj, 0). Let
−→
λi1 , . . . ,

−→
λit (resp.,

−−→
λit+1 , . . . ,

−→
λik) denote the sequence of
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oriented curves connecting p and (xj, 0) (resp., (xj, 0) and q).
We claim that (xj, 0) cannot be a local maximum of γ with respect to the x-coordinate.

Assume by symmetry that εj = −. Then the curves determined by
−→
λi1 , . . . ,

−→
λit and−−→

λit+1 , . . . ,
−→
λik , respectively, are required to pass over (xj, 0), say at points r = (xj, yj) and

s = (xj, zj), respectively. Here s lies above r. Since r and s both lie above (xj, 0), by
induction on m we know that each of the two sequences of oriented curves joining (xj, 0)
to r and (xj, 0) to s form oriented paths oriented away from (xj, 0). This contradicts the

definition of
−→Dn,ε since two oriented curves leaving a vertex to the left cannot both be

oriented away from that vertex.

Now, by the maximality of xj, we have that either
−→
λi1 connects (xj, 0) and p or

−→
λik

connects (xj, 0) and q. Without loss of generality, we assume that
−→
λi1 connects (xj, 0)

and p. By the maximality of xj, there is a unique point r = (xj, yj) on the oriented

curve
−→
λik that lies directly above (xj, 0). In particular, this means εj = −. By abuse of

notation, let
−→
λi2 , . . . ,

−→
λik denote the sequence of oriented curves connecting (xj, 0) to r.

By induction, we obtain that the sequence of curves
−→
λi2 , . . . ,

−→
λik forms an oriented path

going from (xj, 0) to r. Now since
−→
d ∈ −→Dn,ε and since εj = −, we have that

−→
λi1 must be

oriented toward (xj, 0). This completes Case 1.

Case 2: Suppose that the sequence
−→
λi1 , . . . ,

−→
λik lies on both sides of the vertical line

containing p and q. This means the sequence
−→
λi1 , . . . ,

−→
λik contains a third point r = (x,w)

from the vertical line containing p and q. By abuse of notation, we let
−→
λi1 , . . . ,

−→
λit and−−→

λit+1 , . . . ,
−→
λik , respectively, denote the unique sequences of curves connecting p to r and r

to q, respectively. There are the following three possible subcases:

a) the point r lies between p and q,

b) the point r lies below both p and q, and

c) the point r lies above both p and q.

Suppose we are in subcase a). By induction, the sequence
−→
λi1 , . . . ,

−→
λit (resp.,

−−→
λit+1 , . . . ,−→

λik) forms an oriented path that goes from p to r (resp., from r to q). This completes the
proof of subcase a).

We now prove subcase b), and we omit the proof of subcase c) as it is very similar. By

induction, the sequence
−→
λi1 , . . . ,

−→
λit (resp.,

−−→
λit+1 , . . . ,

−→
λik) forms an oriented path that goes

from r to p (resp., r to q). Since the oriented curves {−→γ `}`∈[n] are pairwise nonintersecting
and since there are two oriented curves oriented away from r, we must have that r =
(xi, 0) ∈ Sn,ε for some i. Moreover, since p and q lie above r, we know that εi = −.

However, this contradicts that
−→
d ∈ −→Dn,ε. This completes that proof.

Theorem 37. For each
−→
d = {−→c (i`, j`)}`∈[n] ∈

−→Dn,ε, let R(
−→
d ) denote the set of all

y ∈ Rn+1 so that yi < yj for any −→c (i, j) in
−→
d . Then R(

−→
d ) = Rε(T ) for a uniquely
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determined mixed cobinary tree T ∈ Tε. Furthermore, this gives a bijection

−→Dn,ε ∼= Tε.

Proof. We first verify the existence of a mixed cobinary tree T for every choice of y ∈
R(
−→
d ). Since the strand diagram is a tree, the vector y is uniquely determined by y0 ∈ R

and yj` − yi` > 0, ` ∈ [n], which are arbitrary. Given such a y, we claim that the
n line segments L` in R2 connecting the pairs of points (i`, yi`), (j`, yj`) meet only at
their endpoints. If not then two of these line segments, say Ls, Lt, meet at some point
(a, b) ∈ R2. This leads to a contradiction of Lemma 36 as follows. Let {−→γ`}`∈[n] with
−→γ` ∈ −→c (i`, j`) for all ` ∈ [n] be monotone curves that are pairwise nonintersecting in their
interiors. Let p ∈ −→γs and q ∈ −→γt be the points on those curves with x-coordinate a. By

symmetry assume p is below q. Let
−→
λw1 , . . . ,

−→
λwk denote the sequence of oriented curves

connecting p and q so that w1 = s and wk = t. By Lemma 36, these oriented curves

form an oriented path going from p to q. By definition of the vector y ∈ R(
−→
d ) we have

yi` < yj` for each ` = w1, . . . , wk. Then b < yjs < yit < b is a contradiction. So, T is a
linearly embedded tree. The lemma also implies that the tree T lies above all negative
vertices and below all positive vertices. The other parts of Definition 34 follow from the
definition of an oriented strand diagram. Therefore T ∈ Tε. Since this argument works

for every y ∈ R(
−→
d ), we see that R(

−→
d ) = Rε(T ) as claimed.

A description of the inverse mapping Tε →
−→Dn,ε is given as follows. Take any ε-

MCT T and deform the tree by moving all vertices vertically to the subset [0, n] × 0 on
the x-axis and deforming the edges into curved arcs in such a way that they are always
embedded in the plane with no vertical tangents and so that their interiors do not meet.

The result is a collection of oriented curves representing an oriented strand diagram
−→
d

with R(
−→
d ) = Rε(T ). An explicit formula for these curves can be given using a formula

similar to Equation 1.

It is clear that these are inverse mappings giving the desired bijection
−→Dn,ε ∼= Tε.

Example 38. The MCTs in Figures 5 and 6 above give the oriented strand diagrams:

and the oriented strand diagram in Example 21 gives the MCT:

⇐⇒
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We now arrive at the proof of Theorem 22. This theorem follows from the fact that

oriented diagrams belonging to
−→Dn,ε can be regarded as mixed cobinary trees by Theo-

rem 37.

Proof of Theorem 22. Let f be the map c-mat(Qε) →
−→Dn,ε induced by the map defined

in Lemma 20, and let g be the bijective map Tε →
−→Dn,ε defined in Theorem 37. We will

assert the existence of a map h : c-mat(Qε)→ Tε which fits into the diagram

c-mat(Qε) Tε

−→Dn,ε
f

h

g
∼

The theorem will follow after verifying that h is a bijection and that f = g ◦ h.
We will define two new notions of c-matrix, one for MCTs and one for oriented strand

diagrams. Let T ∈ Tε with internal edges `i having endpoints (i1, yi1) and (i2, yi2). For
each `i, define the ‘c-vector’ of `i to be ci(T ) :=

∑
i1<j6i2

sgn(`i)ej, where sgn(`i) is
the sign of the slope of `i. Define c(T ) to be the ‘c-matrix’ of T whose rows are the

c-vectors ci(T ). Now, let
−→
d = {−→c (i`, j`)}`∈[n] ∈

−→Dn,ε. For each oriented strand −→c (i`, j`),
define the ‘c-vector’ of −→c (i`, j`) to be

c`(
−→
d ) :=

{ ∑
i`<k6j`

sgn(−→c (i`, j`))ek : i` < j`∑
j`<k6i`

sgn(−→c (i`, j`))ek : i` > j`

where sgn(−→c (i`, j`)) is positive if i` < j` and negative if i` > j`. Define c(
−→
d ) to be the

‘c-matrix’ of
−→
d whose rows are the c-vectors c`(

−→
d ).

It is known that the notion of c-matrix for MCTs coincides with the original notion
of c-matrix defined in Section 2.1, and that there is a bijection between c-mat(Qε) and
Tε which preserves c-matrices (see [IO13, Remarks 2 and 4] for details). Thus, we have a

bijective map h : c-mat(Qε)→ Tε. On the other hand, the bijection g : Tε →
−→Dn,ε defined

in Theorem 37 also preserves c-matrices. The map f : c-mat(Qε)→ Tε This Tε should be−→Dn,ε preserves c-matrices by definition. Hence, we have f = g ◦ h and f is a bijection, as
desired.

Remark 39. For linearly-ordered quivers (those with ε = (+, . . . ,+) or ε = (−, . . . ,−)),
this bijection was established by the first and third authors in [GM15] using a different
approach.

5 Exceptional sequences and linear extensions

In this section, we study CESs as linear extensions of certain posets. Our main result is
a complete classification of these posets.
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Definition 40. Given a strand diagram d, we define Pd = ({c(i`, j`)}`∈[n],6) to be the
poset whose elements are the strands of d and where c(k, `) covers c(i, j), denoted by
c(i, j)l c(k, `), if and only if the strand c(k, `) is clockwise from c(i, j) and there does not
exist another strand c(i′, j′) distinct from c(i, j) and c(k, `) such that c(i′, j′) is clockwise
from c(i, j) and counterclockwise from c(k, `).

This construction defines a poset because any oriented cycle in the Hasse diagram of
Pd arises from a cycle in the graph determined by d. Since the graph determined by d is a
tree, it has no cycles. In Figure 7, we show a diagram d ∈ D4,ε where ε := (+,+,−,+,−)
and its poset Pd.

−→
P(−)

Figure 7: A diagram and its poset.
Figure 8: Two diagrams with the
same poset.

In general, the map Dn,ε →P(Dn,ε) := {Pd : d ∈ Dn,ε} is not injective. For instance,
each of the two diagrams in Figure 8 have Pd = 4 where 4 denotes the linearly-ordered
poset with 4 elements. It is thus natural to ask which posets are obtained from strand
diagrams.

Our next result describes the posets arising from diagrams inDn,ε where ε = (−, . . . ,−)
or ε = (+, . . . ,+). Before we state it, we remark that diagrams in Dn,ε where ε =
(−, . . . ,−) or ε = (+, . . . ,+) can be regarded as chord diagrams.2 Figure 9 gives an
example of this identification. Under this identification, the term strand is synonymous
with chord.

0

1

2

3

Figure 9: The identification between strand diagrams and chord diagrams.

Let d ∈ Dn,ε where ε = (−, . . . ,−) or ε = (+, . . . ,+). Let c(i, j) be a strand of
d. There is an obvious action of Z/(n + 1)Z on chord diagrams. Let τ ∈ Z/(n + 1)Z

2These noncrossing trees embedded in a disk with vertices lying on the boundary have been studied
by Araya in [Ara13], Goulden and Yong in [GY02], and the first and third authors in [GM15].
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denote a generator and define τc(i, j) := c(i − 1, j − 1) and τ−1c(i, j) := c(i + 1, j + 1)
where we consider i ± 1 and j ± 1 mod n + 1. We also define τd := {τc(i`, j`)}`∈[n]
and τ−1d := {τ−1c(i`, j`)}`∈[n]. The next lemma, which is easily verified, shows that the
order-theoretic properties of CECs are invariant under the action of τ±1.

Lemma 41. Let d ∈ Dn,ε where ε = (−, . . . ,−) or ε = (+, . . . ,+). Then we have the
following isomorphisms of posets Pd ∼= Pτd and Pd ∼= Pτ−1d.

Remark 42. One may interpret the action of τ as the Auslander–Reiten translation on the
orbit category Db(kQε)/[1] where Db(kQε) is the bounded derived category of the module
category of kQε. A similar interpretation is given in [Ara13, Section 4].

Theorem 43. Let ε = (−, . . . ,−) or let ε = (+, . . . ,+). Then a poset P ∈ P(Dn,ε) if
and only if

i) each x ∈ P has at most two covers and covers at most two elements,
ii) the underlying graph of the Hasse diagram of P has no cycles,
iii) the Hasse diagram of P is connected.

We may equivalently define exceptional sequences and exceptional collections in terms
of the derived category. We use this alternative formulation and Theorem 43 to show that
the posets in P(Dn,ε′) where ε′ is any element of {+,−}n+1 have the same classification
as those belonging to P(Dn,ε) where ε = (−, . . . ,−).

We say that an object X ∈ Db(kQ) is exceptional if HomDb(kQ)(X,X) ∼= k and
HomDb(kQ)(X[`], X) = 0 for any integer ` 6= 0. A sequence (X1, X2, . . . , Xr) of ex-
ceptional objects of Db(kQ) is called an exceptional sequence if for each i < j one
has HomDb(kQ)(Xj[`], Xi) = 0 for all integers `. An exceptional collection is a set
{X1, X2, . . . , Xr} of exceptional objects that can be ordered in such a way that they
define an exceptional sequence.

It is known that for any indecomposable object E ∈ Db(kQε), there is a unique
integer ` and a unique indecomposable kQε-module X such that X ∼= E[`]. Moreover, if
(X1, X2, . . . , Xr) is an exceptional sequence in Db(kQε), then (X1[`1], X2[`2], . . . , Xr[`r])
is an exceptional sequence in Db(kQε) for any integers `1, `2, . . . , `r. It is also well-known
that for any two ε, ε′ ∈ {+,−}n+1, the derived categories Db(kQε) and Db(kQε′) are
triangle-equivalent (see [Hap88]). Thus any exceptional sequence of Qε′ where ε′ is any
element of {+,−}n+1 may be identified with an exceptional sequence of Qε where ε =
(−, . . . ,−) ∈ {+,−}n+1. These facts were already observed in [Ara13, Remark 2.2]. We
obtain the following corollary of Theorem 43.

Corollary 44. Given any ε ∈ {+,−}n+1, a poset P ∈P(Dn,ε) if and only if P satisfies
the conditions appearing in Theorem 43.

Proof of Theorem 43. Let Pd ∈ P(Dn,ε). By definition, Pd satisfies i) and ii). It is
also clear that the Hasse diagram of Pd is connected since the graph determined by d is
connected.

To prove the converse, we proceed by induction on the number of elements of P where
P is a poset satisfying conditions i), ii), iii). If #P = 1, then P is the unique poset with
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one element and P = Pd where d is the unique chord diagram with a single chord in a disk
with exactly two boundary vertices. Assume that for any poset P satisfying conditions
i), ii), iii) with #P = r for any positive integer r < n+ 1 there exists a chord diagram d
such that P = Pd. Let Q be a poset satisfying the above conditions where #Q = n + 1,
and let x ∈ Q be a maximal element. We know x covers either one or two elements of Q.

Assume x covers two elements y, z ∈ Q. Since the Hasse diagram of Q has no cycles,
we have that Q − {x} = Q1 + Q2 where y ∈ Q1, z ∈ Q2, and Qi satisfies i), ii), iii)
for i ∈ [2]. By induction, there exist positive integers k1, k2 satisfying k1 + k2 = n and
chord diagrams di = {ci(i`, j`)}`∈[ki] ∈ Dki,ε(i) where Qi = Pdi for i ∈ [2] and where

ε(i) ∈ {+,−}ki+1 has all of its entries equal to the corresponding entries of ε. In addition,
we know that y (resp., z) is covered by at most one element of Q1 (resp., Q2). This means
that the chord corresponding to y (resp., z) in d1 (resp., d2) has an endpoint such that the
chord is not counterclockwise from any other chord in d1 (resp., d2) about that endpoint.

By Lemma 41, we can assume that the chord corresponding to y ∈ Q1 (resp., z ∈ Q2)
is c1(i(y), k1) ∈ d1 for some i(y) ∈ [0, k1 − 1] and that c1(i(y), k1) is not counterclockwise
from any other chord of d1 about k1 (resp., c2(j(z), k2) ∈ d2 for some j(z) ∈ [0, k2 − 1]
and that c2(j(y), k2) is not counterclockwise from any other chord of d2 about k2). Define
d1td2 := {c′(i′`, j′`)}`∈[n] to be the chord diagram in the disk with n+ 2 boundary vertices
as follows (see Figure 10):

c′(i′`, j
′
`) :=

{
c1(i`, j`) : if ` ∈ [k1]
τ−(k1+1)c2(i`−k1 , j`−k1) : if ` ∈ [k1 + 1, n].

y

0

1

2

3 t
z

0

1 2

= y z

0

1

2

3 4

5

6

Figure 10: An example of d1 t d2 with k1 = 3 and k2 = 2 so that n = k1 + k2 = 5.

Define c′(i′n+1, j
′
n+1) := c(k1, n+ 1) and then d := {c′(i′`, j′`)}`∈[n+1] satisfies i), ii), iii), and

Q = Pd.
Next, assume x covers only the element y ∈ Q. In this case, the Hasse diagram

of Q − {x} is connected. By induction, the poset Q − {x} = Pd for some diagram
d = {c(i`, j`)}`∈[n] ∈ Dn,ε where we assume i` < j`. Let y = c(i(y), j(y)) ∈ Q − {x} with
i(y) < j(y) denote the unique element that is covered by x in Q. Note that y is covered
by at most one element of Q − {x}. This means that by applying τ sufficiently many
times to d and using Lemma 41, we can assume that there are no chords in d that are
clockwise from c(i(y), j(y)) about i(y).

We regard d as an element of Dn+1,ε′ by replacing it with d̃ := {c′(i′`, j′`)}`∈[n] ∈ Dn+1,ε′

as follows (see Figure 11):
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c′(i′`, j
′
`) :=


c(i`, j` + 1) : if i` 6 i(y) and j(y) 6 j`,
τ−1c(i`, j`) : if i(y) 6 i`,
c(i`, j`) : otherwise.

d = y

i(y) = 4

0

1 6

2

3

5 → d̃ = y

0

1

2

3 5

4

6

7

Figure 11: An example of d̃ with n = 6.

Here j`+1 is calculated mod n+2. Additionally, we are using that i` < j` in the definition
of d̃.

Now define c′(i′n+1, j
′
n+1) := c(i(y), i(y)+1) and put d′ := {c′(i′`, j′`)}`∈[n+1]. As Q−{x}

satisfies i), ii), and iii), it is clear that the resulting chord diagram d′ also satisfies i), ii),
and iii), and that P = Pd′ .

Let P be a finite poset with m = #P . Let f : P →m be an injective, order-preserving
map (i.e., x 6 y implies f(x) 6 f(y) for all x, y ∈ P) where m is the linearly-ordered
poset with m elements. We call f a linear extension of P . We denote the set of linear
extensions of P by L (P).

Theorem 45. Let d = {c(i`, j`)}`∈[n] ∈ Dn,ε and let ξε denote the corresponding complete

exceptional collection. Let CES(ξε) denote the set of CESs that can be formed using
only the representations appearing in ξε. Then the map χ : CES(ξε) → L (Pd) defined

by (Xε
i1,j1

, . . . , Xε
in,jn)

χ27−→ {(c(i`, j`), n + 1 − `)}`∈[n] χ17−→ (f(c(i`, j`)) := n + 1 − `) is a
bijection.

Proof. Let χ2 : CES(ξε) → D̂n,ε be the restriction of the domain of the map Φ̃ε to
CES(ξε). It follows that χ2 : CES(ξε)→ χ2(CES(ξε)) is a bijection by Theorem 16. Thus
it is enough to prove that χ1 : χ2(CES(ξε))→ L (Pd) is a bijection.

First, we show that χ1(d̂) ∈ L (Pd) for any d̂ ∈ χ2(CES(ξε)). Let d̂ ∈ χ2(CES(ξε)) and
let f := χ1(d̂). Since the strand-labeling of d̂ is good, if (c1, `1) and (c2, `2) are two labeled
strands of d̂ satisfying c1 6 c2, then f(c1) = `1 6 `2 = f(c2). Thus f is order-preserving.
As the strands of d̂ are bijectively labeled by [n], we have that f is bijective so f ∈ L (Pd).

Next, define a map

L (Pd) ϕ−→ χ2(CES(ξε))
f 7−→ {(c(i`, j`), f(c(i`, j`)))}`∈[n].

To see that ϕ(f) ∈ χ2(CES(ξε)) for any f ∈ L (Pd), consider two labeled strands
(c1, f(c1)) and (c2, f(c2)) belonging to ϕ(f) where c1 6 c2. Since f is order-preserving,
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f(c1) � f(c2). Thus the strand-labeling of ϕ(f) is good so ϕ(f) ∈ D̂n,ε. Moreover, it
is clear that the labeled diagram ϕ(f) corresponds to a complete exceptional sequence
formed using exactly the representations from ξε. Thus ϕ(f) ∈ χ2(CES(ξε)).

Lastly, we have that

χ1(ϕ(f)) = χ1({(c(i�, j�), f(c(i�, j�)))}�∈[n]) = f

and
ϕ(χ1({(c(i�, j�), �)}�∈[n])) = ϕ(f(c(i�, j�)) := �) = {(c(i�, j�), �)}�∈[n]

so ϕ = χ−1
1 . Thus χ1 is a bijection.

6 Applications

Here we showcase some interesting results that follow easily from our main theorems.

6.1 Reddening sequences

In [Kel12], Keller proves that for any quiver Q, any two reddening mutation sequences

applied to Q̂ produce isomorphic ice quivers. As mentioned in [Kel13], his proof is
highly dependent on representation theory and geometry, but the statement is purely
combinatorial—we give a combinatorial proof of this result for type An quivers Qε.

Let R ∈ EG(Q̂). A mutable vertex i ∈ R0 is called green if there are no arrows j → i
in R with j ∈ [n+1,m]. Otherwise, i is called red. A sequence of mutations μir ◦ · · · ◦μi1

is reddening if all mutable vertices of the quiver μir ◦ · · · ◦ μi1(Q̂) are red3. Recall that
an isomorphism of quivers that fixes the frozen vertices is called a frozen isomorphism.
We now state the theorem.

Theorem 46. If μir ◦· · ·◦μi1 and μjs ◦· · ·◦μj1 are two reddening sequences of Q̂ε for some

ε ∈ {+,−}n+1, then there is a frozen isomorphism μir ◦ · · · ◦ μi1(Q̂ε) ∼= μjs ◦ · · · ◦ μj1(Q̂ε).

Proof. Let μir ◦ · · · ◦ μi1 be any reddening sequence. Denote by C the c-matrix of μir ◦
· · · ◦ μi1(Q̂ε). By Theorem 22, C corresponds to an oriented strand diagram

−→
dC ∈ −→Dn,ε

with all strands of the form −→c (j, i) for some i and j satisfying i < j. Since all strands

of
−→
dC are oriented to the left and since

−→
dC satisfies Definition 19, we conclude that

−→
dC =

{−→c (i, i − 1)}i∈[n] and C = −In. Since c-matrices are in bijection with ice quivers in

EG(Q̂ε) and since qQε is an ice quiver in EG(Q̂ε) whose c-matrix is −In, we obtain the
desired result.

6.2 Noncrossing partitions and exceptional sequences

In this section, we give a combinatorial proof of Ingalls’ and Thomas’ result that complete
exceptional sequences are in bijection with maximal chains in the lattice of noncrossing

3By abuse of notation, we write μir ◦ · · · ◦ μi1(Q̂) to denote (μir ◦ · · · ◦ μi1(Q
′), F )
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partitions [IT09]. We remark that their result is more general than that which we present
here. Throughout this section, we assume that Qε has ε = (−, . . . ,−) and we regard the
strand diagrams of Qε as chord diagrams.

A partition of [n] is a collection π = {Bα}α∈I ∈ 2[n] of subsets of [n] called blocks
that are nonempty, pairwise disjoint, and whose union is [n]. We denote the lattice of set
partitions of [n], ordered by refinement, by Πn. A set partition π = {Bα}α∈I ∈ Πn is
called noncrossing if for any i < j < k < ` where i, k ∈ Bα1 and j, ` ∈ Bα2 , one has
Bα1 = Bα2 . We denote the lattice of noncrossing partitions of [n] by NCA(n).

Label the vertices of a convex n-gon S with elements of [n] so that reading the vertices
of S counterclockwise determines an increasing sequence mod n. We can thus regard
π = {Bα}α∈I ∈ NCA(n) as a collection of convex hulls Bα of vertices of S where Bα has
empty intersection with any other block Bα′ .

Let n = 5. The following partitions all belong to Π5, but only π1, π2, π3 ∈ NCA(5).

π1 = {{1}, {2, 4, 5}, {3}}, π2 = {{1, 4}, {2, 3}, {5}},
π3 = {{1, 2, 3}, {4, 5}}, π4 = {{1, 3, 4}, {2, 5}}

Below we represent the partitions π1, . . . , π4 as convex hulls of sets of vertices of a convex
pentagon. We see from this representation that π4 6∈ NCA(5).

2

1

5

43

2

1

5

43

2

1

5

43

2

1

5

43

Theorem 47. Let k ∈ [n]. There is a bijection between D̂k,ε and the following chains in
NCA(n+ 1){

(π1 = {{i}}i∈[n+1], π2, . . . , πk+1) :
πj = (πj−1\{Bα, Bβ}) t {Bα tBβ}

for some Bα 6= Bβ in πj−1

}
.

In particular, when k = n, there is a bijection between D̂n,ε and maximal chains in
NCA(n + 1). We remark that each chain described above is saturated (i.e., each in-
equality appearing in {{i}}i∈[n+1] < π1 < · · · < πk is a covering relation).

Proof. Let d̂ = {(c(i`, j`), `)}`∈[k] ∈ D̂k,ε. Define πd̂,1 := {{i}}i∈[n+1] ∈ Πn+1. Next, define
πd̂,2 := (πd̂,1\{{i1 + 1}, {j1 + 1}}) t {{i1 + 1, j1 + 1}}. Now assume that πd̂,s has been
defined for some s ∈ [k]. Define πd̂,s+1 to be the partition obtained by merging the blocks

of πd̂,s containing is + 1 and js + 1. Now define f(d̂) := (πd̂,1, . . . , πd̂,k+1).

It is clear that f(d̂) is a chain in Πn+1 with the desired property as π1 l π2 in Πn+1 if
and only if π2 is obtained from π1 by merging exactly two distinct blocks of π1. To see that
each πd̂,s ∈ NCA(n+ 1), suppose a crossing of two blocks occurs in a partition appearing

in f(d̂). Let πd̂,s be the smallest partition of f(d̂) (with respect to the partial order on set
partitions) with two blocks, B1 and B2, crossing. Without loss of generality, we assume
that B2 ∈ πd̂,s is obtained by merging the blocks Bα1 , Bα2 ∈ πd̂,s−1 containing is−1 +1 and
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js−1 + 1, respectively. This means that c(is−1, js−1) ∈ d̂ and c(is−1, js−1) crosses at least
one other chord of d̂. This contradicts that d̂ ∈ D̂k,ε. Thus f(d̂) is a chain in NCA(n+ 1)
with the desired property.

Next, we define a map g that is the inverse of f . Let

C = (π1 = {{i}}i∈[n+1], π2, . . . , πk+1) ∈ (NCA(n+ 1))k+1

be a chain where each partition in C satisfies πj = (πj−1\{Bα, Bβ})t {Bα tBβ} for some
Bα 6= Bβ in πj−1. As π2 = (π1\{{s1}, {t1}}) t {{s1, t1}} for some s1, t1 ∈ [n + 1], define
c(i1, j1) := c(s1 − 1, t1 − 1) where we consider s1 − 1 and t1 − 1 mod n + 1. Now for
r > 2, let B1, B2 ∈ πr−1 be the blocks that one merges to obtain πr and assume that
minB1 < minB2. Define s1 := max{i ∈ B1 : i < minB2} ∈ B1 and t1 := maxB2 ∈ B2.
Let c(ir−1, jr−1) := c(s1 − 1, t1 − 1). Finally, put g(C) := {(c(i`, j`), `) : ` ∈ [k]}.

We claim that g(C) has no crossing chords. Suppose (c(si, ti), i) and (c(sj, tj), j) are
crossing chords in g(C) with i < j and i, j ∈ [k]. We further assume that

j = min{j′ ∈ [i+ 1, k] : (c(sj′ , tj′), j
′) crosses (c(si, ti), i) in g(C)}.

We observe that si + 1, ti + 1 ∈ B1 for some block B1 ∈ πj and that sj + 1, tj + 1 ∈ B2

for some block B2 ∈ πj+1. We further observe that sj + 1, tj + 1 6∈ B1 otherwise, by
the definition of the map g, the chords (c(si, ti), i) and (c(sj, tj), j) would be noncrossing.
Thus B1, B2 ∈ πj+1 are distinct blocks that cross so πj+1 6∈ NCA(n + 1). We conclude
that g(C) has no crossing chords.

Lastly, we show that g(C) has a good labeling. Suppose c(i, j) and c(i, j′) are two
chords of g(C) where c(i, j′) is clockwise from c(i, j). By the definition of g, chord c(i, j′)
was added after chord c(i, j) so the label of chord c(i, j′) is greater than that of c(i, j).
Thus g(C) ∈ D̂k,ε.

To complete the proof, we show that g ◦ f = 1D̂k,ε . The proof that f ◦ g is the identity

map is similar. Let d̂ ∈ D̂k,ε. Then f(d̂) = (π1 = {{i}}i∈[n+1], π2, . . . , πk+1) where for any
s ∈ [k] we have

πs = (πs−1\{Bα, Bβ}) t {Bα, Bβ}
where is−1 + 1 ∈ Bα and js−1 + 1 ∈ Bβ. Then we have g(f(d̂)) = {c((i` + 1)− 1, (j` + 1)−
1), `)}`∈[k] = {(c(i`, j`), `)}`∈[k].

Corollary 48. If ε = (−, . . . ,−) or ε = (+, . . . ,+), then the exceptional sequences of Qε

are in bijection with saturated chains in NCA(n+ 1) of the form{
(π1 = {{i}}i∈[n+1], π2, . . . , πk+1) :

πj = (πj−1\{Bα, Bβ}) t {Bα tBβ}
for some Bα 6= Bβ in πj−1

}
.

Example 49. In Figure 12, we give two examples of the bijection from Theorem 47 with
k = 4.
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Figure 12: Two labeled strand diagrams and their corresponding maximal chains in
NCA(5).
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