
Improved Convergence for ℓ∞ and ℓ1 Regression via Iteratively Reweighted
Least Squares

Alina Ene * 1 Adrian Vladu * 1

Abstract
The iteratively reweighted least squares method
(IRLS) is a popular technique used in practice for
solving regression problems. Various versions of
this method have been proposed, but their theoret-
ical analyses failed to capture the good practical
performance.

In this paper we propose a simple and natural
version of IRLS for solving ℓ∞ and ℓ1 regres-
sion, which provably converges to a (1 + ε)-
approximate solution in O(m1/3 log(1/ε)/ε2/3+
logm/ε2) iterations, where m is the number of
rows of the input matrix. Interestingly, this run-
ning time is independent of the conditioning of
the input, and the dominant term of the running
time depends sublinearly in ε−1, which is atypical
for the optimization of non-smooth functions.

This improves upon the more complex algorithms
of Chin et al. (ITCS ’12), and Christiano et al.
(STOC ’11) by a factor of at least 1/ε2, and yields
a truly efficient natural algorithm for the slime
mold dynamics (Straszak-Vishnoi, SODA ’16,
ITCS ’16, ITCS ’17).

1. Introduction
Regression problems are fundamental primitives in scientific
computing. Among these, ℓ∞- and ℓ1-regression are their
hardest instantiations, since through standard reductions
they can be shown to be equivalent to linear programming.

While the series of works on these topics is truly extensive
and diverse, the simpler methods have pervaded into the
realm of practical applications. Among these, an extremely
popular scheme known for its simplicity is the iteratively
re-weighted least squares (IRLS) method. The idea behind

*Equal contribution 1Boston University, Boston, USA. Cor-
respondence to: Alina Ene <aene@bu.edu>, Adrian Vladu
<avladu@mit.edu>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

it is to reduce optimization problems to iteratively solving
a series of weighted ℓ2-minimization problems, where the
weights are adaptively chosen in such a way that the result-
ing solutions from the sequence of least-squares problems
converge to the sought optimal point. In particular, due to
its relevance in signal processing, ℓ1 regression is a very im-
portant application of IRLS (Candès et al., 2006; Chartrand
& Yin, 2008).

Despite the fact that various versions of this method have
been studied ever since the 60’s (Lawson, 1961; Osborne,
1985) theoretical understanding of their convergence has
lacked. Recent works have attempted to fill this gap, and
offer provable guarantees (Daubechies et al., 2010; Straszak
& Vishnoi, 2016a;b;c), some of them inspired from the inter-
pretation of this method as a dynamical system. In particular,
we note the Physarum dynamics, which have been studied
in a completely different context (Ito et al., 2011; Johannson
& Zou, 2012; Tero et al., 2007; Bonifaci et al., 2012; Bec-
chetti et al., 2013) in order to justify an experiment which
revealed that a unicellular organism, the slime mold, could
solve the shortest path problem in a maze (Nakagaki et al.,
2000). The fact that these dynamics are essentially just a
version of the IRLS method was observed in (Straszak &
Vishnoi, 2016a).

Returning to the more classical world of algorithm design
and analysis, it is worth observing that existing analyses of
IRLS methods fall into one of the following two categories:
(i) they show convergence only when the problem is properly
initialized, or (ii) the guaranteed running time is prohibitive
in the sense that it is highly dependent on how the input is
conditioned, or it has a high polynomial dependency on the
desired solution accuracy.

In this paper, we focus on analyzing simple versions of
IRLS which overcome both aforementioned obstacles. In
particular, our methods always converge to 1 + ε multi-
plicative approximation for the objectives minx :Ax=b ∥x∥p,
p ∈ {1,∞}, in Õ(m1/3/ε2/3+1/ε2) iterations1 of solving
a weighted least squares problem, wherem is the dimension
of the sought vector x .

1We use Õ notation to suppress polylogarithmic factors in
m/ε.

Improved Convergence for ℓ∞ and ℓ1 Regression via Iteratively Reweighted Least Squares

Inspiration for our methods is heavily drawn from the work
of (Christiano et al., 2011), which offered a ground-breaking
result by showing that in undirected graphs, a (1 + ε)-
approximate maximum flow can be found in Õ(m1/3/ε11/3)
iterations (subsequently the ε dependence was improved to
1/ε8/3, see (Chin et al., 2013)) of solving a weighted least
squares problem – which in conjunction with efficient Lapla-
cian system solvers, broke a longstanding barrier for fast
graph algorithms. While these algorithms generalize to ar-
bitrary ℓ1 and ℓ∞ regression problems, they are somewhat
involved, in particular due to the fact that they are the prod-
uct of combining the multiplicative weights update method
with a regularization technique, and a second potential func-
tion.2

Instead, our method attempts to directly solve the non-
smooth objective while tracking a single potential function.
The number of iterations looks surprising, since the dom-
inant term is Õ(m1/3/ε2/3), whenever ε ≥ m−1/4, while
classical techniques for optimizing non-smooth functions
require a number of iterations that depends on the product
between the function’s parameters (such as Lipschitz con-
stant of the gradient or radius of the domain), and 1/ε in the
best case, when accelerated methods are used; see (Nesterov,
2005) for more details. 3

Interestingly, a line of work that yielded results very similar
in spirit to ours is that of approximately solving positive
linear and semidefinite programs (Young, 2001; Allen-Zhu
& Orecchia, 2015; Allen-Zhu et al., 2016), where the goal
was to produce a first order optimization method that can be
implemented in a number of iterations independent of the
conditioning of the input. Improving the ε dependence to
o(1/ε2) is an important open problem in this subfield.

We believe that understanding the connection between these
results can pave the way for designing new efficient opti-
mization primitives.

2To be more specific, Christiano et al. solve the approximate
maximum flow problem, which is a specific instance of ℓ∞ regres-
sion. Chin et al. build on this work to solve ℓ1 regression with
block structure; the block structure is relevant for their specific
applications, but is a direct extension of the method, so solving
vanilla ℓ1 regression is still the main problem tackled there.

3We emphasize that using off-the-shelf methods, without fur-
ther assumptions on the input, the number of iterations of any
standard optimization method would be Ω(

√
m) even for the very

special instances where the affine constraint corresponds to a flow
satisfying a given demand in unweighted graphs, and in general
will depend on how the input matrix is conditioned, since this
conditioning determines the magnitude of the subgradients or the
diameter of the domain we are optimizing over. The breakthrough
of Christiano et al. was the first work that managed to reduce this
dependence for maximum flow, which is a specific instance of the
ℓ∞ regression problem.

1.1. Main Theorem

We state the main theorem of this paper. It follows from the
correctness proofs described in Sections 3.1 and 3.2, and
the convergence proofs from Lemmas A.6 and A.8.

Theorem 1.1. There exist algorithms ℓ∞-MINIMIZATION
and ℓ1-MINIMIZATION such that, on input (A, b, ε,M),
where A ∈ Rn×m is a matrix, b ∈ Rn is a vector which
lies in the span of A’s columns, ε is an accuracy parameter,
and M is a target value:

1. ℓ∞-MINIMIZATION returns a solution x such that
Ax = b , and ∥x∥∞ ≤ (1 + ε)M , or certifies that
minx :Ax=b ∥x∥∞ ≥ (1− ε)M .

2. ℓ1-MINIMIZATION returns a solution x such that
Ax = b , and ∥x∥1 ≤ (1 + ε)M , or certifies that
minx :Ax=b ∥x∥1 ≥ (1− ε)M .

Furthermore both algorithms finish in

O

(
m1/3 log(1/ε)

ε2/3
+

logm

ε2

)
iterations, each of which can be implemented in the time
required to solve a linear system of the form ADA⊤ϕ = b ,
where D ∈ Rm×m is an arbitrary nonnegative diagonal
matrix.

While our theorem statements are concerned with approxi-
mately solving a decision problem which requires a guess
M on the value of the objective, it follows from standard
techniques that this can be used to find a good approxima-
tion to the optimal solution without paying more than a Õ(1)
overhead in the number of iterations. For completeness, we
provide the details in Section D.

1.2. Relation to Previous IRLS Methods and
Slime-Mold Dynamics

A popular method for solving ℓ1 minimization is the iter-
atively re-weighted least squares method (IRLS). This is
essentially based on the observation that whenever x ∗ =
argminAx=b ∥x∥1, one also has that this is the minimizer
of the least squares problem argminx :Ax=b⟨1/x ∗,x 2⟩.4
Hence one approach that has been employed ever since
the 60’s (Lawson, 1961; Osborne, 1985; Daubechies et al.,
2010) is to iteratively adjust the weighting of the coordinates
and re-solve the least squares problem, until x converges
to a stationary point. This is rigorously described by the
iteration

x (t+1) = arg min
Ax=b

⟨
1

|x (t)|
,x 2

⟩
,

4Throughout the paper we use the convention that 0/0 = 0.

Improved Convergence for ℓ∞ and ℓ1 Regression via Iteratively Reweighted Least Squares

We abuse notation by applying scalar operations to vectors,
with the meaning that they are applied element-wise.

Subsequent works attempted to rigorously analyze this iter-
ation and prove convergence bounds. Oftentimes this relied
on specific structure, such as x being sparse (Daubechies
et al., 2010). A recent series of works drew inspiration from
convergence proofs for the slime-mold dynamics – a method
which essentially solves ℓ1 minimization, based on a model
used to describe the evolution of a slime mold (Physarum
polycephalum) as it spreads through its environment in order
to optimize its access to food sources (Nakagaki et al., 2000;
Tero et al., 2007). Based on the intuition that these dynam-
ics yield a method for solving the transportation problem,
Straszak and Vishnoi proved in a series of works (Straszak &
Vishnoi, 2016a;b;c) that this is as a matter of fact equivalent
to the IRLS method, and provided a rigorous convergence
analysis for a damped version of it:

x (t+1) = arg min
Ax=b

⟨
1√

(x (t))2 + η2
,x 2

⟩
.

Unfortunately their convergence proof shows that this
method is highly inefficient, and the time to convergence
has a high polynomial dependence in the desired accuracy,
and the structure of the linear constraint.

By comparison, what we describe in this work is an IRLS
method where the weights are updated according to a thresh-
olding rule. Given a guess M for the optimal value, we
perform an iteration equivalent to:

c
(t+1)
i = c

(t)
i · ψ1/(1−ε)

⎛⎝ x
(t)
i /c

(t)
i⟨

1
c(t) ,

(
x (t)

)2⟩ ·M

⎞⎠2

,

x (t+1) = arg min
Ax=b

⟨
1

c(t+1)
,x 2

⟩
,

where ψ is a thresholding operator i.e. ψb(u) = u, if u ≥ b,
and ψb(u) = 1 otherwise. Intuitively, this increases the
weights ci only for the elements where the corresponding
component x2i /ci of the quadratic objective contributes sig-
nificantly, therefore we want to favor increasing it even more
in the future by decreasing the weight 1/ci we place on this
coordinate.5

5Another way to think of this is that, ignoring the thresholding
operator, the update would simply be c

(t+1)
i = (x

(t)
i)2/c

(t)
i · γ,

where γ is some normalization factor. What thresholding achieves
here is to decide whether the contribution of a particular coordinate
to the energy of the system is sufficiently large compared to the
contributions of the entire vector x .

2. Preliminaries
2.1. Basic Notation

Sets. We let R be the set of real numbers. For any natu-
ral number n, we write [n] := {1, . . . , n}. We denote by
∆m the m-dimensional simplex i.e. ∆m = {p ∈ Rm :∑m

i=1 pi = 1,pi ≥ 0 for all i}.

Vectors. We let 0,1 ∈ Rn denote the all zeros and all
ones vectors, respectively. When it is clear from the context,
we apply scalar operations to vectors with the interpretation
that they are applied coordinate-wise.

Matrices. We write matrices in bold. We use I to de-
note the identity matrix. Given a vector x we let D(x)
be the diagonal matrix whose entries are given by x . For
a symmetric matrix A, we let A+ be its Moore-Penrose
pseudoinverse, i.e. AA+ = A+A = I Im(A). The pseu-
doinverse can be thought of as replacing all the nonzero
eigenvalues of A with their reciprocals.

Inner products. When it is convenient, we use ⟨·, ·⟩ no-
tation to denote inner products. Given two vectors x ,y of
equal dimensions, we let ⟨x ,y⟩ = x⊤y .

Norms. Given a vector x , we denote the ℓp norm of x
by ∥x∥p = (

∑
xpi)

1/p. When the subscript is dropped, we
refer to the ℓ2 norm. From this definition, we can also see
that ∥x∥∞ = maxi |xi|.

2.2. Proof Technique

Let us first understand the idea behind our ℓ∞ mini-
mization algorithm. The problem we aim to solve is
minx :Ax=b ∥x∥∞. Letting ∆m be the m-dimensional unit
simplex, we can write our objective equivalently as

min
x :Ax=b

∥x 2∥∞ = min
x :Ax=b

max
r∈∆m

⟨r ,x 2⟩

= max
r∈∆m

(
min

x :Ax=b
⟨r ,x 2⟩

)
:= max

r∈∆m

Er (b) ,

where the second identity follows from Sion’s theo-
rem (Sion, 1958), which allows us to interchange min and
max. The quantity between the parentheses has a very nat-
ural interpretation, in the case of electrical networks: it is
precisely the electrical energy required to route a demand b
through an electrical network encoded in A. Furthermore,
we have an easy way to lower bound how this energy in-
creases whenever resistances are increased, which is a finer
quantitative version of Rayleigh’s monotonicity principle.
More precisely, we can easily certify a lower bound on the
increase in energy determined by increasing a single coor-
dinate of r . Using this observation, which we make more
precise in Section A.2, we can identify a set of coordinates

Improved Convergence for ℓ∞ and ℓ1 Regression via Iteratively Reweighted Least Squares

of r to increase, guaranteeing that if r ′ is the new vector
with perturbed resistances, we have

Er ′(b)− Er (b)
∥r ′ − r∥1

≥M2 , (2.1)

for a fixed parameter M . In the case when no coordinates
of r can be increased, while preserving this property, this
yields a certificate that r is as a matter of fact (close to)
optimal, and thus we are done (Lemma A.5). Hence our
goal becomes that of guaranteeing that ∥r∥1 increases very
fast. Indeed, since the ”electrical energy” increases at the
right rate relative to ∥r∥1, after the latter has increased
sufficiently, we can safely guarantee that Er (b)/∥r∥1 ≥
(1−ε)M , since the increase in ∥r∥1 cancels out most of the
initial error introduced by starting with a potentially poor
solution.

The ℓ1 minimization algorithm relies on squaring the objec-
tive, and then writing it equivalently as

min
x :Ax=b

∥x∥21 = min
x :Ax=b

(
min
c∈∆m

⟨
1

c
,x 2

⟩)
= min

c∈∆m

(
min

x :Ax=b

⟨
1

c
,x 2

⟩)
= min

c∈∆m

E1/c(b) .

For the first identity we used the fact that ∥x∥21 =
minc∈∆m

⟨1/c,x 2⟩, achieved at c = x/∥x∥1; see (Owen,
2007; Sun & Zhang, 2012) for further use of this trick.6

The second identity follows from joint convexity w.r.t. c
and x , which can be verified by computing the Hessian
of the function in (x , c). So completely oppositely from
the previous case, the objective of our problem becomes
minimizing electrical energy with respect to a set of inverse
resistances, which we will call conductances. Note that in
this case the quantity that is invariant under scaling c by a
constant is E1/c · ∥c∥1. Therefore, equivalently, our goal
will be to find the set of conductances c ≥ 0 for which(
E1/c

)−1
/∥c∥1 ≥ 1

(1+ε)M . Similarly to the ℓ∞ case, in
this case we make progress by iteratively increasing conduc-
tances from c to c′ in such a way that

1
Ec ′ (b)

− 1
Ec(b)

∥c ′ − c∥1
≥ 1

M2
. (2.2)

Just as before, we can prove that unless the value of the
objective can not be made smaller than M , then c can be in-
creased while enforcing this invariant (Lemma A.7). Hence
we can prove fast convergence by arguing that ∥c∥1 in-
creases very fast.

6Interestingly, this can also be thought of as achieving tightness
for reverse Hölder’s inequality whenever we are considering the
dual ‘norms’ ℓ−1 and ℓ1/2.

2.3. Approximate Solutions and Infeasibility
Certificates

ℓ∞ minimization We consider the formulation

min
Ax=b

∥x∥∞ , (2.3)

for which we seek an approximate solution in the following
sense. Given a target value M , we aim to find one of the
following:

1. an approximate solution x in the sense that Ax = b
and ∥x∥∞ ≤ (1 + ε)M ,

2. an approximate infeasibility certificate r in the sense
that r ∈ ∆m and b⊤(AD(r)−1A⊤)+b ≥ (1 −
ε)2M2.

We prove in Lemma 2.1 that the latter is indeed an infeasi-
bility certificate.

Lemma 2.1. Let x ∗ be the solution to the problem de-
fined in Equation 2.3, and let r ∈ ∆m. Then ∥x ∗∥2∞ ≥
b⊤(AD(r)−1A⊤)+b .

Proof. Using Lemma A.2 we can write

b⊤(AD(r)−1A⊤)+b = min
x :Ax=b

⟨r ,x 2⟩ ≤ ⟨r , (x ∗)2⟩

≤ ∥r∥1∥x ∗∥2∞ = ∥x ∗∥2∞ ,

which gives us what we needed.

ℓ1 minimization We consider the formulation

min
Ax=b

∥x∥1 , (2.4)

for which seek an approximate solution in the following
sense. Given a target valueM , we seek one of the following:

1. an approximate infeasibility certificate ϕ ∈ Rn in the
sense that b⊤ϕ

∥A⊤ϕ∥∞
≥ (1− ε)M ,

2. an approximate feasibility certificate c in the sense
that c ∈ ∆m and b⊤(AD(c)A⊤)+b ≤ (1 + ε)2M2,
which yields an approximately feasible solution x =
D(c)A⊤(AD(c)A⊤)+b in the sense that Ax = b
and ∥x∥1 ≤ (1 + ε)M .

The fact that the former is an approximate infeasibil-
ity certificate follows from convex duality. Indeed, one
can see that the dual of the minimization problem is
maxϕ:∥A⊤ϕ∥∞≤1 b

⊤ϕ, so exhibiting a solution as above
implies that the value of this objective is at least (1− ε)M .
A proof for the fact that the latter is indeed an approximate
feasibility certificate, and that it yields an approximately
feasible solution can be found in Lemma 2.2.

Improved Convergence for ℓ∞ and ℓ1 Regression via Iteratively Reweighted Least Squares

Lemma 2.2. Given c ∈ ∆m, the vector x =
D(c)A⊤(AD(c)A⊤)+b satisfies Ax = b , and ∥x∥21 ≤
b⊤(AD(c)A⊤)+b .

Proof. The fact that Ax = b follows directly by substitu-
tion, and using the fact that b ∈ Im(A). Using Lemma A.2
and the definition in (A.1) we write

b⊤(AD(c)A⊤)+b

= b⊤(AD(c)A⊤)+(AD(c)A⊤)(AD(c)A⊤)+b

=

m∑
i=1

1

ci
·
(
D(c)A⊤(AD(c)A⊤)+b

)2
=

m∑
i=1

1

ci
· x2i .

We can use this identity inside the following upper bound,
which we obtain by applying Cauchy-Schwarz:

∥x∥1 =

m∑
i=1

|xi|√
ci

·
√
ci ≤

√(m∑
i=1

x2i
ci

)(
m∑
i=1

ci

)

=

√
b⊤(AD(c)A⊤)+b .

This yields our claim.

3. The Algorithms
Having introduced the necessary notation, we can describe
our simple IRLS routine. We prove convergence in Sec-
tion A.

3.1. The ℓ∞ Minimization Algorithm

We first present the algorithm for the ℓ∞ version of the
problem, since it is the most intuitive. The method attempts
to find a weighting of the columns of A i.e. a vector r ∈ Rm

for which the corresponding least squares solution has a
small ℓ∞ norm; more precisely ∥x∥∞/∥r∥1 ≤ (1 + ε)M
for some chosen target value M .

Then the weighting is updated via the following simple
thresholding rule. Elements for which the corresponding
coordinate of the least squares solution xi is below the
desired target value are left unchanged. The others are
scaled exactly by the amount by which the square of the
corresponding coordinate xi violates the desired threshold
i.e. x2i /M

2.

Note that the iteration defined here simply attempts to con-
struct an infeasibility certificate for the problem defined in
Equation 2.3. Building the feasible solution involves main-
tains a solution obtained by uniformly averaging a subset
of the iterates x witnessed so far. These are used to return
the approximately feasible solution in case the algorithm
fails to quickly produce an (approximate) infeasibility cer-
tificate. The details referring to how and why we perform

Algorithm 1 ℓ∞-MINIMIZATION(A, b, ε,M)

1: Input: Matrix A ∈ Rn×m, vector b ∈ Rn, accuracy ε,
target value M .

2: Output: Vector x such that Ax = b and ∥x∥∞ ≤ (1+
ε)M , or approximate infeasibility certificate r ∈ ∆m.

3: t = 0, r (0) = 1/m.
4: t′ = 0, s(t′) = 0⃗.
5: while ∥r (t)∥1 ≤ 1/ε do
6: x (t) = argminx :Ax=b⟨r ,x 2⟩.

// Equivalently,

x (t) = D(r)−1A⊤
(
AD(r)−1A⊤

)+
b.

7: if ∥x (t)∥∞ ≤ m1/3 ·M then
8: t′ = t′ + 1, s(t′) = s(t′−1) + x (t).
9: end if

10: if ∥s(t′)∥∞/t′ ≤ (1 + ε)M then
11: return s(t′)/t′.
12: end if

13: α
(t)
i =

{
1 if |x(t)i | < (1 + ε)M,
(x

(t)
i)2

M2 otherwise.
14: if α(t) = 1 then
15: return x (t).
16: end if
17: r (t+1) = r (t) ·α(t).
18: t = t+ 1.
19: end while
20: return r/∥r∥1.

this specific set of updates are explained in the convergence
proof. The steps involved in building this feasible solution
are written in blue. They can be ignored if the goal is simply
that of returning a yes/no answer.

Correctness. We notice that Algorithm 1 has two possible
outcomes. Either it returns a primal approximately feasible
vector (lines 11and 15), or returns a dual certificate (line 20).
In the former case, it is clear from the description of the
algorithm that the returned vector is indeed approximately
feasible: line 11 returns a uniform average of vectors sat-
isfying the linear constraint with small ℓ∞ norm; line 20
returns the x (t) computed within the corresponding itera-
tion, whenever α(t) = 1⃗, i.e. ∥x (t)∥∞ < (1 + ε)M .

Also, note that in case none of these stopping conditions is
triggered, the algorithm returns a dual certificate on line 20
after a finite number of iterations. Indeed, note that every
iteration where α(t)

i ̸= 1⃗, at least one element of r (t) gets
increased by a factor of at least (1 + ε)2, due to way α(t)

is defined. Since the algorithm stops when ∥r (t)∥1 = 1/ε,
no element of r can be scaled more than O(log(1+ε)(m/ε))
times, hence the total number of iterations is very roughly
upper bounded by O(m log(m/ε)/ε). We will see in Sec-

Improved Convergence for ℓ∞ and ℓ1 Regression via Iteratively Reweighted Least Squares

Algorithm 2 ℓ1-MINIMIZATION(A, b, ε,M)

1: Input: Matrix A ∈ Rn×m, vector b ∈ Rn, accuracy ε,
target value M .

2: Output: Vector x such that Ax = b and ∥x∥1 ≤ (1 +
ε)M , or approximate infeasibility certificate ϕ ∈ ∆n.

3: t = 0, c(0) = 1/m.
4: t′ = 0, s(t′) = 0, Φ(0) = 0.
5: while ∥c(t)∥1 ≤ 1 + 1

(1+ε)2−1 do

6: ϕ(t) =
(
AD(c)A⊤

)+
b . // Equivalently,

ϕ(t) is the vector of potentials
which induce the electrical
flow x = argminAx=b⟨1/c,x 2⟩ via
x = D(c)A⊤ϕ.

7: if
A⊤ϕ(t)

b⊤ϕ(t)


∞

≤ m1/3 · 1
M then

8: t′ = t′ + 1, s(t′) = s(t′−1) +
⏐⏐⏐A⊤ϕ(t)

b⊤ϕ(t)

⏐⏐⏐, Φ(t′) =

Φ(t′−1) + ϕ(t)

b⊤ϕ(t) .
9: end if

10: if ∥s(t′)∥∞/t′ ≤ 1
(1−ε)M then

11: return Φ(t′)/t′.
12: end if

13: α
(t)
i =

⎧⎨⎩1 if |A⊤ϕ(t)|i
b⊤ϕ(t) ≤ 1

(1−ε)M ,(
(A⊤ϕ(t))i
b⊤ϕ(t)

)2
·M2 otherwise.

14: if α(t) = 1 then
15: return ϕ(t).
16: end if
17: c(t+1) = c(t) ·α(t).
18: t = t+ 1.
19: end while
20: return x = D(c)A⊤ϕ(t).

tion A that we can prove a much finer upper bound.

Finally, we need to argue that whenever the algorithm re-
turns on line 20, it returns an infeasibility certificate as per
Lemma 2.1. We defer the proof to Lemma A.5 in Section A.

3.2. The ℓ1 Minimization Algorithm

The ℓ1 version is very similar. As a matter of fact, it can be
re-derived simply by attempting to solve the convex dual
of the problem from (2.3), which is an ℓ∞ minimization
problem, by using the routine from Figure 1. However,
since the reduction requires several, and previous works
attempted to solve this directly using various versions of
IRLS, we provide a natural iteration which does not involve
any reductions.

Correctness. We notice that Algorithm 2 has two possible
outcomes. Either it returns an approximate infeasibility

certificate (lines 11 and 15), or returns an approximately
feasible solution (line 20).

Let us verify that in the former case the returned vector
is indeed an approximate infeasibility certificate. Line 11
returns Φ(t′) =

∑
t∈S

ϕ(t)

b⊤ϕ(t) , where we know that S is a
set for whichA⊤Φ(t′)


∞

=

A⊤ ·
∑
t∈S

ϕ(t)

b⊤ϕ(t)


∞

=

∑
t∈S

A⊤ϕ(t)

b⊤ϕ(t)


∞

≤

∑
t∈S

⏐⏐⏐⏐⏐A⊤ϕ(t)

b⊤ϕ(t)

⏐⏐⏐⏐⏐

∞

≤ t′

(1− ε)M
.

Since b⊤Φ(t′) = t′, we see that returned vector Φ(t′)/t′ is
an approximate infeasibility certificate, as defined in Sec-
tion 2.3. If the algorithm returns on line 15, we get thatA⊤ϕ(t)

b⊤ϕ(t)


∞

≤ 1
(1−ε)M , hence ϕ(t) is an approximate infea-

sibility certificate.

Also, note that in case none of these stopping conditions is
triggered, the algorithm returns a solution on line 20 after a
finite number of iterations. Indeed, just as in the ℓ∞ case, in
every iteration some conductance gets increased by a factor
of at least Ω(1 + ε), hence the algorithm must stop in finite
time. We provide a rigorous analysis of the time required
for convergence in Section A.

Finally, we need to argue that whenever the algorithm re-
turns a solution on line 20, it is indeed an approximately
feasible solution. We defer the proof to Lemma A.7 in
Section A.

4. Experiments
We test both our resistance/conductance update schemes in
order to verify that the resulting algorithms converge fast
in practice. We slightly modify the schemes such that they
always update their target value M depending on the value
of the objective they have achieved so far. We stop when
given the history of witnessed iterates, we can certify a
sufficiently small duality gap. For solving linear systems,
we used the conjugate gradient implementation from the
ℓ1-MAGIC optimization suite (Candès & Romberg).

We test both algorithms while varying ε, and varyingm. We
consider both the update scheme given by our algorithms
from Section 3, and one where we attempt to double the
length of the step for as long as the invariants from (2.1)
and (2.2), respectively, are maintained. We notice that in
general, using this long step strategy, we improve both the
number of iterations and the running time.

The plots corresponding to the standard update scheme
(short-steps) are drawn in red, those corresponding to the
long-step version are drawn in blue.

Improved Convergence for ℓ∞ and ℓ1 Regression via Iteratively Reweighted Least Squares

1 2 3 4 5 6 7 8 9 10 11 12

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

(a) log(iterations) for ℓ∞
minimization as function of log(ε−1).

1 2 3 4 5 6 7 8 9 10 11 12

0.05

0.1

0.15

0.2

0.25

0.3

(b) Time (sec) for ℓ∞
minimization as function of log(ε−1).

5 10 15 20 25 30

50

100

150

200

250

300

(c) Number of iterations for ℓ∞
minimization as function of m/200.

5 10 15 20 25 30

5

10

15

20

25

30

35

40

45

(d) Time (sec) for ℓ∞
minimization as function of m/200.

1 2 3 4 5 6 7 8 9 10 11 12

2

3

4

5

6

7

8

(e) log(iterations) for ℓ1
minimization as function of log(ε−1).

1 2 3 4 5 6 7 8 9 10 11 12

0.5

1

1.5

2

(f) Time (sec) for ℓ1
minimization as function of log(ε−1).

5 10 15 20 25 30

100

200

300

400

500

600

(g) Number of iterations for ℓ1
minimization as function of m/200.

5 10 15 20 25 30

20

40

60

80

100

120

140

160

180

(h) Time (sec) for ℓ1
minimization as function of m/200.

Figure 3.1: Experimental results.

The experiments where we varied ε are reported in fig-
ures 1(a), 1(b), 1(e), and 1(f). For all these experiments,
the input consists a random 150 × 200 matrix A with or-
thogonal rows, and a vector b obtained from applying A
to a ±1-vector of sparsity 15. We plot the number of iter-
ations/running time of the algorithm for ε = 1/2k, where
k ∈ {1, . . . , 12}.

We notice that for these experiments, the number of itera-
tions for the short-step version does indeed scale linearly
with ε−1; the long-step version makes significant gains in
the ℓ∞ case.

The experiments where we varied m are reported in fig-
ures 1(c), 1(d), 1(g), and 1(h). For all these experiments, the
input consists of a random 150× (200 ·k) matrix A with or-
thogonal vectors, and a vector b obtained from applying A
to a ±1-vector of sparsity 15, and a fixed accuracy ε = .01.
We plot the number of iterations required by the algorithm
for k ∈ {1, . . . , 30}.

We notice that for these experiments, both the number of
iterations and the running time scale significantly better than
by m1/3, which suggests that this polynomial dependence
in m depends on the input structure, and can be avoided in
practice.

Acknowledgements
AE was partially supported by NSF CAREER grant CCF-
1750333 and NSF grant CCF-1718342. AV was partially

supported by NSF grant CCF-1718342.

References
Allen-Zhu, Z. and Orecchia, L. Using optimization to

break the epsilon barrier: A faster and simpler width-
independent algorithm for solving positive linear pro-
grams in parallel. In Proceedings of the twenty-sixth
annual ACM-SIAM symposium on Discrete algorithms,
pp. 1439–1456. Society for Industrial and Applied Math-
ematics, 2015.

Allen-Zhu, Z., Lee, Y. T., and Orecchia, L. Using opti-
mization to obtain a width-independent, parallel, simpler,
and faster positive sdp solver. In Proceedings of the
twenty-seventh annual ACM-SIAM symposium on Dis-
crete algorithms, pp. 1824–1831. Society for Industrial
and Applied Mathematics, 2016.

Becchetti, L., Bonifaci, V., Dirnberger, M., Karrenbauer,
A., and Mehlhorn, K. Physarum can compute shortest
paths: Convergence proofs and complexity bounds. In
International Colloquium on Automata, Languages, and
Programming, pp. 472–483. Springer, 2013.

Bonifaci, V., Mehlhorn, K., and Varma, G. Physarum can
compute shortest paths. Journal of theoretical biology,
309:121–133, 2012.

Candès, E. and Romberg, J. ℓ1-MAGIC: Recovery of sparse
signals via convex programming. URL https://
statweb.stanford.edu/˜candes/l1magic/.

https://statweb.stanford.edu/~candes/l1magic/
https://statweb.stanford.edu/~candes/l1magic/

Improved Convergence for ℓ∞ and ℓ1 Regression via Iteratively Reweighted Least Squares

Candès, E. J. et al. Compressive sampling. In Proceedings of
the international congress of mathematicians, volume 3,
pp. 1433–1452. Madrid, Spain, 2006.

Chartrand, R. and Yin, W. Iterative reweighted algorithms
for compressive sensing. Technical report, 2008.

Chin, H. H., Madry, A., Miller, G. L., and Peng, R. Runtime
guarantees for regression problems. In Kleinberg, R. D.
(ed.), Innovations in Theoretical Computer Science, ITCS
’13, Berkeley, CA, USA, January 9-12, 2013, pp. 269–
282. ACM, 2013. ISBN 978-1-4503-1859-4. doi: 10.
1145/2422436.2422469. URL https://doi.org/
10.1145/2422436.2422469.

Christiano, P., Kelner, J. A., Madry, A., Spielman, D. A., and
Teng, S. Electrical flows, laplacian systems, and faster
approximation of maximum flow in undirected graphs.
In Fortnow, L. and Vadhan, S. P. (eds.), Proceedings
of the 43rd ACM Symposium on Theory of Computing,
STOC 2011, San Jose, CA, USA, 6-8 June 2011, pp. 273–
282. ACM, 2011. ISBN 978-1-4503-0691-1. doi: 10.
1145/1993636.1993674. URL https://doi.org/
10.1145/1993636.1993674.

Daubechies, I., DeVore, R., Fornasier, M., and Güntürk,
C. S. Iteratively reweighted least squares minimization for
sparse recovery. Communications on Pure and Applied
Mathematics: A Journal Issued by the Courant Institute
of Mathematical Sciences, 63(1):1–38, 2010.

Ito, K., Johansson, A., Nakagaki, T., and Tero, A. Conver-
gence properties for the physarum solver. arXiv preprint
arXiv:1101.5249, 2011.

Johannson, A. and Zou, J. A slime mold solver for linear
programming problems. In Conference on Computability
in Europe, pp. 344–354. Springer, 2012.

Lawson, C. Contributions to the Theory of Linear Least
Maximum Approximation. University of California, Los
Angeles, 1961. URL https://books.google.at/
books?id=b_CtbwAACAAJ.

Nakagaki, T., Yamada, H., and Tóth, Á. Intelligence: Maze-
solving by an amoeboid organism. Nature, 407(6803):
470, 2000.

Nesterov, Y. Smooth minimization of non-smooth functions.
Mathematical programming, 103(1):127–152, 2005.

Osborne, M. R. Finite algorithms in optimization and data
analysis. 1985.

Owen, A. B. A robust hybrid of lasso and ridge regression.
Contemporary Mathematics, 443(7):59–72, 2007.

Sion, M. On general minimax theorems. Pacific Journal of
mathematics, 8(1):171–176, 1958.

Straszak, D. and Vishnoi, N. K. On a natural dynamics for
linear programming. In Sudan, M. (ed.), Proceedings of
the 2016 ACM Conference on Innovations in Theoretical
Computer Science, Cambridge, MA, USA, January 14-16,
2016, pp. 291. ACM, 2016a. ISBN 978-1-4503-4057-1.
doi: 10.1145/2840728.2840762. URL https://doi.
org/10.1145/2840728.2840762.

Straszak, D. and Vishnoi, N. K. Natural algorithms for
flow problems. In Krauthgamer, R. (ed.), Proceed-
ings of the Twenty-Seventh Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2016, Arling-
ton, VA, USA, January 10-12, 2016, pp. 1868–1883.
SIAM, 2016b. ISBN 978-1-61197-433-1. doi: 10.1137/
1.9781611974331.ch131. URL https://doi.org/
10.1137/1.9781611974331.ch131.

Straszak, D. and Vishnoi, N. K. IRLS and slime mold:
Equivalence and convergence. CoRR, abs/1601.02712,
2016c. URL http://arxiv.org/abs/1601.
02712.

Sun, T. and Zhang, C.-H. Scaled sparse linear regression.
Biometrika, 99(4):879–898, 2012.

Tero, A., Kobayashi, R., and Nakagaki, T. A mathematical
model for adaptive transport network in path finding by
true slime mold. Journal of theoretical biology, 244(4):
553–564, 2007.

Young, N. E. Sequential and parallel algorithms for mixed
packing and covering. In Foundations of Computer Sci-
ence, 2001. Proceedings. 42nd IEEE Symposium on, pp.
538–546. IEEE, 2001.

https://doi.org/10.1145/2422436.2422469
https://doi.org/10.1145/2422436.2422469
https://doi.org/10.1145/1993636.1993674
https://doi.org/10.1145/1993636.1993674
https://books.google.at/books?id=b_CtbwAACAAJ
https://books.google.at/books?id=b_CtbwAACAAJ
https://doi.org/10.1145/2840728.2840762
https://doi.org/10.1145/2840728.2840762
https://doi.org/10.1137/1.9781611974331.ch131
https://doi.org/10.1137/1.9781611974331.ch131
http://arxiv.org/abs/1601.02712
http://arxiv.org/abs/1601.02712

Improved Convergence for ℓ∞ and ℓ1 Regression via Iteratively Reweighted Least Squares

A. The Algorithm Analyses
A.1. The Flow/Potential Interpretation

While we study a very general problem, it is very useful to
develop intuition based on the case where A is the vertex-
edge incidence matrix of a graph. In this case we will always
think of the sought solution x as a flow on the graph’s edges.
The corresponding dual object is a set of potentials ϕ defined
on the graph’s vertices.

To be more precise, we consider the following setting. Let
G = (V,E) be an undirected graph. For each edge we
choose an arbitrary orientation, and define E+(v) be the set
of arcs leaving vertex v, and E−(v) the set of arcs entering
vertex v, for all v.

Letting m = |E|, n = |V |, we consider the matrix A ∈
Rn×m where

Ave =

⎧⎪⎨⎪⎩
+1 if e ∈ E+(v),

−1 if e ∈ E−(v),

0 otherwise.

One can easily verify that given a vector x ∈ Rm defined on
the arcs of the graph (which we will think of as a flow), after
applying the operator A we obtain the demand routed by
this flow Ax ∈ Rn, which lives in the space of potentials
defined on the graph’s vertices.

Therefore the ℓ∞ minimization problem from 2.3 can be
interpreted as finding the flow x with minimum congestion
which routes the demand b , while the ℓ1 minimization prob-
lem from 2.4 corresponds to finding the minimum cost flow
routing the demand b .

With this interpretation in mind, we proceed to define some
objects that in the case of electrical networks correspond to
energy and electrical flows.

We use weightings of A’s columns c ∈ Rm which we refer
to as conductances. We equivalently refer to the reciprocals
r ∈ Rm, with r i = 1/ci, which we call resistances. Our
analysis is exclusively based on tracking a potential function
which corresponds to the electrical energy of a flow.

Definition A.1 (Energy of a flow). Given a flow x ∈ Rm,
along with a vector of resistances r ∈ Rm, we let the energy
of x be

Er (x) = ⟨r ,x 2⟩ .

Overloading this notation, given a vector b ∈ Rn, let the
electrical energy be

Er (b) = min
x :Ax=b

Er (x) , (A.1)

in other words this is the minimum energy over all flows
satisfying Ax = b . We drop the argument whenever b is
clear from the context.

A.2. Preliminaries on Electrical Energy

Throughout the paper, our analyses will rely on a potential
function, which in the case of resistor networks corresponds
to the electrical energy. In this section we provide a few
useful facts.

Lemma A.2 (Characterization of Electrical Energy). Given
a vector of resistances r ∈ Rm, we have the following
equivalent characterizations for the electrical energy.

Er (b) = b⊤
(
AD(r)−1A⊤

)+
b (A.2)

= max
ϕ

2 · b⊤ϕ−
m∑
i=1

(
A⊤ϕ

)2
i

ri
(A.3)

=

⎛⎜⎝ min
ϕ:b⊤ϕ=1

m∑
i=1

(
A⊤ϕ

)2
i

ri

⎞⎟⎠
−1

. (A.4)

Furthermore, if x is the minimizing flow for the expression
in (A.1), and ϕ is the maximizing set of potentials for the
expression in (A.3), then for all i:

xi = (A⊤ϕ)i/ri . (A.5)

Since the proof is standard, we defer it to Section B.1.

As a corollary, we can derive a lower bound on the increase
in energy after increasing resistances.

Lemma A.3. Let r , r ′, and let x =
argminx :Ax=b⟨r ,x 2⟩. Then, one has that

Er ′(b) ≥ Er (b) +
m∑
i=1

rix
2
i

(
1− ri

r′i

)
.

The proof can be found in Section B.3.

We can derive a similar lower bound on the inverse energy,
after increasing conductances.

Lemma A.4. Let ϕ = argminϕ:⟨b,ϕ⟩=1⟨c, (A⊤ϕ)2⟩.
Then one has that

1

E1/c ′(b)
≥ 1

E1/c(b)
+

1

E1/c(b)2
·

m∑
i=1

ci(A
⊤ϕ)2i

(
1− ci

c′i

)
.

We defer the proof to Section B.2.

A.3. Convergence Proof for ℓ∞ Minimization

Having put together all these tools, we are ready to analyze
the algorithms presented in Section 3. We first prove that
ℓ∞-MINIMIZATION returns a correct infeasibility certifi-
cate, whenever it returns on line 20. This lemma is key to
understanding the intuition behind the algorithm.

Improved Convergence for ℓ∞ and ℓ1 Regression via Iteratively Reweighted Least Squares

Lemma A.5. Whenever ℓ∞-MINIMIZATION returns on
line 20, r/∥r∥1 is a correct approximate infeasibility cer-
tificate in the sense that

Er/∥r∥1
(d) ≥ (1− ε)2M2 .

Proof. First notice that by Lemma 2.1, the lower bound
on energy is indeed an approximate infeasibility certificate.
Now we proceed to prove that throughout the iterations of
the algorithm, energy increases at the right rate.

We show that every iteration satisfies the invariant

Er(t+1)(d)− Er(t)(d)

∥r (t+1) − r (t)∥1
≥M2 . (A.6)

This is easy to verify using Lemma A.3, which lower bounds
the increase in energy after perturbing resistances. We see
that using the perturbation rule defined on line 13 of the
algorithm, energy increases as follows

Er(t+1)(d) ≥ Er(t) +

m∑
i=1

r
(t)
i (x

(t)
i)2 ·

(
1− 1

α
(t)
i

)
.

For every coordinate of r (t) that has changed we see that
the ratio between the contribution to above lower bound of
that specific coordinate, and the increase in resistance is

r
(t)
i (x

(t)
i)2

(
1− 1

α
(t)
i

)
ri

(
α
(t)
i − 1

) =
(x

(t)
i)2

α
(t)
i

=M2 .

Therefore, summing up over all coordinates we obtain
the desired inequality. Finally, we notice that initially
Er(0)(d) ≥ 0, and ∥r (0)∥1 = 1. So once ∥r (t)∥1 ≥ 1

ε ,
one has that, using (A.6),

Er(t)(d)− Er(0)(d)

∥r (t)∥1 − 1
≥M2 ,

and thus

Er(t)(d) ≥M2(∥r (t)∥1 − 1), and equivalently:

Er(t)/∥r(t)∥1
(d) ≥M2

(
1− 1

∥r (t)∥1

)
≥M2(1− ε) ,

which implies what we needed.

Knowing that the algorithm is correct, we can now proceed
and prove that it converges fast (convergence rate can be
slightly improved by using a more careful schedule for M
and ε; we defer this improvement to Section C).

Lemma A.6. The algorithm ℓ∞-MINIMIZATION returns
a solution after O(m1/3 log(1/ε)/ε+ log(m/ε)/ε2) itera-
tions.

Proof. We show that unless the algorithm returns an approx-
imately feasible solution on lines 11 or 15, then there exists
a coordinate i ∈ [m] for which ri increases very fast.

Suppose the algorithm has run for T iterations without re-
turning an approximately feasible solution. Consider the
partial sum of iterates obtained so far s(t′) for some t′ ≤ T .
Since the algorithm did not return on line 11, we know that
∥s(t′)∥∞/t′ ≥ (1 + ε)M . Therefore there exists a coordi-
nate i ∈ [m] for which s

(t′)
i ≥ (1 + ε)Mt′. In other words,

letting I be the set of iterates that have contributed to s(t′),
one definitely has that∑

t∈I

|x (t)| ≥ t′ · (1 + ε)M ,

and thus ∑
t∈I

√
α
(t)
i ≥ t′ · (1 + ε) ,

where we used the fact that for each iteration t ∈ I one has

that
√
α
(t)
i = |x(t)i |M due to the perturbation rule defined

on line 13. This implies that restricting ourselves only to
iterations where αi increased the corresponding resistance
ri, we have that ∑

t∈I,α
(t)
i >1

√
α
(t)
i ≥ t′ε , (A.7)

By the condition on line 7 we see that for all iterations t ∈ I ,
one has √

α
(t)
i ≤ m1/3 . (A.8)

Also since we only consider the iterations t ∈ I with α(t)
i >

1, the rule from line 13 also enforces that for all these
iterations √

α
(t)
i ≥ 1 + ε . (A.9)

Equations (A.7), (A.8) and (A.9) suggest that the product∏
t∈I,α

(t)
i >1

√
α
(t)
i increases very fast: intuitively the worst

case should occur either when all the factors contribute
equally, either all of them are as small as possible (i.e. 1 +
ε, or as large as possible, i.e. m1/3). We formalize this
intuition in Lemma B.1, which implies that∏
t∈I,α

(t)
i >1

√
α
(t)
i ≥ min

{(
m1/3

) t′ε
m1/3

, (1 + ε)
t′ε
1+ε

}
.

Hence setting

t′ ≥ 10

(
m1/3 log(1/ε)

ε
+

log(m/ε)

ε2

)
suffices to lower bound this product by

√
m/ε. Since each

iteration a resistance r(t)i gets multiplied by the correspond-
ing α(t)

i , and all resistances are initially 1/m, this lower

Improved Convergence for ℓ∞ and ℓ1 Regression via Iteratively Reweighted Least Squares

bound implies that r(t)i ≥ 1/ε. But this means that the
algorithm will finish execution after the current iteration,
according to the condition on line 5.

Finally, we need to upper bound the number of iterations not
in I; these correspond to those iterations where ∥x (t)∥∞ ≥
m1/3 ·M , so there exists some index i for which α(t)

i ≥
m2/3. Therefore some resistance gets multiplied by m2/3.
Since all resistances are initially 1/m, in the worst case,
each such iteration increases one resistance from 1/m to
m−1/3. Therefore this can happen at mostm1/3 log(1/ε)/ε
times, before the sum of resistances becomes at least 1/ε,
and the algorithm finishes.

Combining these two cases, we obtain our bound.

We can prove the convergence bound for
ℓ1-MINIMIZATION similarly. The main difference is
that this time we maintain conductances, and the potential
function that enables us to prove convergence is 1/E1/c .

A.4. Convergence Proof for ℓ1-Minimization

Lemma A.7. Whenever ℓ1-MINIMIZATION returns on
line 20, c/∥c∥1 is a correct approximate feasibility cer-
tificate in the sense that

1

E∥c∥1/c
≥ 1/(1 + ε)2

M2
.

Proof. By Lemma 2.2, this also yields a solution x such
that Ax = b and ∥x∥1 ≤

√
E∥x∥1/c ≤M(1 + ε).

In order to prove that at the end of the execution the ℓ1 norm
of this solution is small enough, this time we track as poten-
tial function the inverse energy 1/E1/c . More precisely, we
show that every iteration satisfies the invariant

1
E
c(t+1) (d)

− 1
E
c(t)

(d)

∥c(t+1) − c(t)∥1
≥ 1

M2
. (A.10)

This is easy to verify using Lemma A.4, which lower bounds
the increase in inverse energy after perturbing conductances.
We see that using the perturbation rule defined on line 13 of
the algorithm, inverse energy increases as follows

1

E1/c(t+1)(d)
≥ 1

E1/c(t)

+
1

E2
1/c(t)

·
m∑
i=1

c
(t)
i (A⊤ϕ(t))2i ·

(
1− 1

α
(t)
i

)
.

For every coordinate of c(t) that has changed we see that
the ratio between the contribution to above lower bound of

that specific coordinate, and the increase in conductance is

1

E2
1/c(t)

·
c
(t)
i (A⊤ϕ(t))2i

(
1− 1

α
(t)
i

)
ci

(
α
(t)
i − 1

) =
(A⊤ϕ(t))2i
E2
1/c(t)

· 1

α
(t)
i

=

(
A⊤ϕ(t))i

b⊤ϕ(t)

)2

· 1

α
(t)
i

=
1

M2
,

where we used the fact that b⊤ϕ(t) = E1/c(t) (Lemma A.2).

Therefore, summing up over all coordinates we obtain the
desired inequality. Since E1/c(0) ≥ 0 and ∥c(0)∥1 = 1, we
know that once ∥c(t)∥1 ≥ 1 + 1

(1+ε)2−1 = O(1ε), one has
that, using (A.10),

1
E
1/c(t)

(d) −
1

E
1/c(0)

(d)

∥c(t)∥1 − 1
≥ 1

M2

and thus,

1

E1/c(t)(d)
≥ ∥c(t)∥1 − 1

M2
, and equivalently:

E∥c(t)∥1/c(t)(d) = E(1/c(t))(d) · ∥c(t)∥1

≤M2 · ∥c(t)∥1
∥c(t)∥1 − 1

≤M2(1 + ε)2 ,

which is what we needed.

Next we prove that the algorithm converges fast. Conver-
gence rate can be slightly improved by using a more careful
schedule for M and ε, which we defer to Section C.

Lemma A.8. The algorithm ℓ1-MINIMIZATION returns a
solution after O(m1/3 log(1/ε)/ε + log(m/ε)/ε2) itera-
tions.

Proof. The proof follows the lines of the proof we used for
Lemma A.6: unless the algorithm returns an approximate
infeasibility certificate on lines 11 or 15, then there exists a
coordinate i ∈ [m] for which ci increases very fast.

Suppose the algorithm has run for T iterations without re-
turning an approximate infeasibility certificate. Consider
the partial sum of iterates obtained so far s(t′) for some
t′ ≤ T . Since the algorithm did not return on line 11, we
know that ∥s(t′)∥∞/t′ ≥ 1

(1−ε)M , therefore there exists a

coordinate i ∈ [m] for which s(t
′)

i ≥ t′ · 1
(1−ε)M . In other

words, letting I be the set of iterates that contributed to s(t′),
one has that

s
(t′)
i =

∑
t∈I

⏐⏐⏐⏐⏐ (A⊤ϕ(t))i

⟨b,ϕ(t)⟩

⏐⏐⏐⏐⏐ ≥ t′ · 1

(1− ε)M

Improved Convergence for ℓ∞ and ℓ1 Regression via Iteratively Reweighted Least Squares

and thus, since by definition α(t)
i =

(
(A⊤ϕ(t))i
b⊤ϕ(t)

)2
·M2,

∑
t∈I

√
α
(t)
i ≥ t′ · 1

1− ε
.

Therefore, restricting ourselves only to iterations where αi

increased the corresponding conductance ci, we have that

∑
t∈I,α

(t)
i >1

√
α
(t)
i ≥ t′ ·

(
1

1− ε
− 1

)
≥ t′ · ε . (A.11)

By the condition on line 7 we see that for all iterations t ∈ I ,
one has √

α
(t)
i ≤ m1/3 . (A.12)

So considering only the iterations t ∈ I with α(t)
i > 1, the

rule from line 13 also enforces that for all these iterations√
α
(t)
i ≥ 1

1− ε
. (A.13)

Combining Equations (A.11), (A.12), and (A.13), and apply-
ing Lemma B.1, exactly the same way we did in the proof
of Lemma A.6 implies that

∏
t∈I,α

(t)
i >1

√
α
(t)
i ≥ min

⎧⎨⎩(m1/3
) t′ε

m1/3

,

(
1

1− ε

) t′ε
1/(1−ε)

⎫⎬⎭
So if

t′ ≥ 10

(
m1/3 log(1/ε)

ε
+

log(m/ε)

ε2

)
once again we have that this product is lower bounded by√
m ·

(
1 + 1

(1+ε)2−1

)
, therefore the corresponding con-

ductance c(T)
i ≥ 1 + 1

(1+ε)2−1 , since its initial value was
1/m. Since we can only control the total number of it-
erations T , we can lower bound t′ by showing that the
number of iterations not in I can not be too large. Just
as before, we lower bound the number of iterations whereA⊤ϕ(t)

b⊤ϕ(t)


∞

≥ m1/3/M . Note that whenever this happens,

there exists an index i for which α
(t)
i ≥ m2/3. There-

fore some conductance gets multiplied by m2/3. Again,
using an identical argument to the one from the proof of
Lemma A.6, we see that this can not happen more than
O(m1/3 log(1/ε)/ε) times. Combining this with the suffi-
cient number of iterations required by the other case, we
obtain our bound.

B. Deferred Proofs
B.1. Proof of Lemma A.2

Proof. We can write the formulation from (A.1) as an uncon-
strained optimization problem using Lagrange multipliers:

Er (b) = min
Ax=b

⟨r ,x 2⟩ = min
x

max
ϕ

⟨r ,x 2⟩+ 2⟨ϕ, b −Ax ⟩

= max
ϕ

min
x

⟨r ,x 2⟩+ 2⟨ϕ, b −Ax ⟩ .

By making the gradient with respect to x equal to 0, we see
that the inner minimization problem is optimized at 2ri ·
xi = 2(A⊤ϕ)i for all i, and equivalently xi = (A⊤ϕ)i/ri.
Plugging this back into the maximization objective w.r.t. ϕ
we obtain

Er (b) = max
ϕ

⟨
r ,
(
D(r)−1A⊤ϕ

)2⟩
+ 2

⟨
ϕ, b −AD(r)−1A⊤ϕ

⟩
= max

ϕ
2⟨ϕ, b⟩ − ⟨ϕ,AD(r)−1A⊤ϕ⟩

= b⊤
(
AD(r)−1A⊤

)+
b ,

where for the last equality we used that by optimality condi-
tions one must have (AD(r)−1A⊤)ϕ = b .

Finally, we prove (A.4) by using the fact that for any sym-
metric matrix L and vector b one has that

1

maxϕ 2b
⊤ϕ− ϕ⊤Lϕ

= min
ϕ:b⊤ϕ=1

ϕ⊤Lϕ ,

which can be seen by observing that both expressions are
optimized at ϕ = L+b , then applying (A.3).

B.2. Proof of Lemma A.4

Proof. We use the following basic inequality: for x, x′ > 0
one has 1

x′ ≥ 1
x + x−x′

x2 , which follows from (x− x′)2 ≥ 0.
Also, from the definition of energy in (A.1), we obtain an
upper bound on the new energy, after perturbing conduc-
tances. Let x = argminAx=b⟨1/c,x 2⟩, i.e. the electrical
flow corresponding to conductances c. We therefore have:

E1/c ′(b) ≤
m∑
i=1

1

c′i
x2i =

m∑
i=1

1

ci
x2i +

m∑
i=1

1

ci
x2i ·

(
ci
c′i

− 1

)

= E1/c(b) +
m∑
i=1

1

ci
x2i

(
ci
c′i

− 1

)
.

Using the fact that by optimality, xi = ci(A
⊤ϕ)i (per

Lemma A.2), and combining with the previous inequality

Improved Convergence for ℓ∞ and ℓ1 Regression via Iteratively Reweighted Least Squares

we obtain

1

E1/c ′(b)
≥ 1

E1/c(b)
+

1

E1/c(b)2
·
(
E1/c(b)− E1/c ′(b)2

)
≥ 1

E1/c(b)
+

1

E1/c(b)2
·

m∑
i=1

ci(A
⊤ϕ)2i

(
1− ci

c′i

)
,

which is what we wanted.

B.3. Proof of Lemma A.3

Proof. We use the characterization from Equation A.3 for
characterizing electrical energy. Let ϕ be the argument
that maximizes (A.3) for resistances r . We certify a lower
bound on Er ′(b) using ϕ as follows:

Er ′(b) ≥ 2 · b⊤ϕ−
m∑
i=1

(
A⊤ϕ

)2
i

r′i

= 2 · b⊤ϕ−
m∑
i=1

(
A⊤ϕ

)2
i

ri

+

m∑
i=1

(
A⊤ϕ

)2
i

ri
·
(
1− ri

r′i

)

= Er (b) +
m∑
i=1

(
A⊤ϕ

)2
i

ri
·
(
1− ri

r′i

)
.

Finally substituting the relation between flows and potentials
from Lemma A.2, Equation (A.5), we obtain the desired
claim.

B.4. Lower Bound Lemma

Lemma B.1. Let a set of nonnegative reals β1, . . . , βk such
that 1 + ε ≤ βi ≤ ρ for all i, and

∑k
i=1 βi ≥ S. Then, for

any k, one has that

k∏
i=1

βi ≥ min{ρS/ρ, (1 + ε)S/(1+ε)} .

Proof. Consider a fixed k, and let us attempt to minimize
the product of βi’s subject to the constraints. Equivalently
we want to minimize

∑k
i=1 log(βi), which is a concave

function. Therefore its minimizer is attained on the bound-
ary of the feasible domain. This means that for some
0 ≤ k′ ≤ k−1, there are k′ elements equal to 1+ε, k−1−k′
equal to ρ, and one which is exactly equal to the remaining
budget, i.e. S− k′(1+ ε)− (k− 1− k′)ρ, which yields the
product (1 + ε)k

′
ρk−k′−1(S − k′(1 + ε)− (k − 1− k′)ρ).

This can be relaxed by allowing k and k′ to be non-integral.
Hence we aim to minimize the product (1 + ε)k

′
ρk−k′

, sub-
ject to (1 + ε)k′ + ρ(k − k′) = S. Finally, we observe

that we can always obtain a better solution by placing all
the available mass on a single one of the factors, i.e. we
lower bound either by (1 + ε)S/(1+ε), or ρS/ρ, whichever
is lowest.

C. Using Phases to Improve the Iteration
Count

In this section, we show that via minor modifications
to our algorithms, we can improve the number of itera-
tions toO

(
m1/3 log(1/ε)

ε2/3
+ logm

ε2

)
thus obtaining the bound

promised by Theorem 1.1. This relies on the observation
that the entire difficulty of the problem is concentrated on
improving the quality of a solution from (1 − 2ε)M to
(1 − ε)M . For conciseness, let us focus on the ℓ∞ case,
and consider the convergence argument described in Sec-
tions A.3. Our goal there is to increase the sum of resistances
to 1/ε, since our argument assumes that the initial energy
could be arbitrarily small.

However, if we assume that we warm start the method with a
set of resistances r0, ∥r0∥1 = 1, for which the correspond-
ing energy is already large enough, Er0

≥ (1 − 2ε)2M2,
we only need to iterate until we obtain a set of resistances
r such that ∥r∥1 = 3 (rather than 1/ε) in order to certify
that the current energy/resistance ratio is as large as desired,
i.e. Er/∥r∥1 ≥ (1 − ε)2M2. This in turn improves the
number of iterations the algorithm needs before it returns.
We expand these ideas in what follows.

Now, suppose we have a set of resistances r0, such that
∥r0∥1 = 1 and Er0 ≥ (1 − 2ε)2M2. Let us analyze the
number of iterations of the method described in Section A.3
that we require before we can return r such that Er/∥r∥1 ≥
(1− ε)2M2 or a solution x such that ∥x∥∞ ≤ (1 + ε)M .

First, we claim that if each update satisfies the invariant from
Equation (A.6), then we can stop iteration once ∥r∥1 = 3.
Indeed, in this case, one has that

Er
∥r∥1

=
Er0

+ (Er − Er0
)

∥r0∥1 + ∥r − r0∥1

≥ (1− 2ε)2M2 + ∥r − r0∥1M2

1 + ∥r − r0∥1

≥M2

(
1− 4ε

1 + ∥r − r0∥1

)
≥M2(1− ε)2 ,

whenever ∥r − r0∥1 ≥ 3.

The remaining analysis is carried over almost identically,
except that the threshold set on line 7 is changed to ρ = εm,
and our goal is to get

∏
t∈I,α

(t)
i >1

αi ≥
√
3m.

For the iterations that satisfy this threshold, by applying
Lemma B.1 we see that it is sufficient to witness a small

Improved Convergence for ℓ∞ and ℓ1 Regression via Iteratively Reweighted Least Squares

number t′ of such iterations such that

min
{
ρ

t′ε
ρ , (1 + ε)

t′ε
1+ε

}
≥

√
3m,

so t′ = Θ
(

ρ
ε · logm

log ρ + logm
ε2

)
suffices.

For the iterations that do not satisfy the threshold, in the
worst case, each of them increases one resistance from 1/m
to ρ2/m so this can happen at most O(m/ρ2) times.

Setting ρ = (εm)
1/3 we get that the total number of itera-

tions is at most O
(

m1/3

ε2/3
log(1/ε) + logm

ε2

)
.

All of this holds assuming we have a good warm start for
resistances. We obtain it by recursively invoking the same
method for target value (1− 1.75ε)2M2, and .25ε accuracy.
In case of failure, this returns a vector x which certainly
satisfies ∥x∥∞ ≤M , so this concludes the entire run on the
algorithm; otherwise, it returns a certificate consisting of
resistances for which the ratio between the corresponding
energy and ℓ1 norm is at least (1− 2ε)2M2, so they can be
used as a warm start.

Recursion ends once ε ≥ 1/2. We note that since the desired
accuracy gets increased by a constant factor after each level
of recursion, the total number of iterations is dominated
by those performed at the top level (i.e. for the lowest ε).
Hence our result.

Note that this method can also be implemented slightly more
naturally by running Algorithm 1 with a varying schedule
for M and ε.

Improving the number of iterations for ℓ1 minimization is
done analogously.

D. From Approximate Decision to
Approximate Optimization

Our algorithms are designed to solve an approximate de-
cision problem, given a guess for the value of the optimal
solution. While this follows from a standard reduction, for
the sake of completeness we prove here that this is sufficient
to optimize the problem approximately without paying more
than an additional constant overhead in running time.

To be more specific, let us first focus on ℓ∞ minimization.
Theorem 1.1 states that given a guess M and accuracy ε, the
algorithm either returns an approximately feasible solution
with value ∥x∥∞ ≤ (1+ ε)M , or an infeasibility certificate
certifying that ∥x ∗∥∞ ≥ (1− ε)M . Hence this restricts the
search interval for the true value either within the interval
[0, (1 + ε)M] or [(1− ε)M,∞).

We initialize our search interval to [∥x 0∥2/
√
m, ∥x 0∥∞]

where x 0 is the initial iterate obtained with uniform resis-
tances. Using Lemma 2.1 we easily verify that ∥x 0∥2/

√
m

is indeed a lower bound on ∥x ∗∥∞, since energy lower
bounds the squared optimal value.

Given a search interval [L,U], we let M =
√
LU , ε̃ =

min
{

1
2 ,
(
U
L

)1/6 − 1
}

. We invoke Theorem 1.1 for target
value M and accuracy ε̃. Depending on the outcome we
update the search interval to [L, (1+ ε̃)M] or [(1− ε̃)M,U].

When U/L ≤ 1+ε/4 we stop the search, call the algorithm
for target value U(1+ε/4) and accuracy ε/4

1+ε/4 , then output
the approximately feasible iterate returned by the algorithm.
The fact that this call indeed returns an approximately feasi-
ble iterate follows from the fact that U is certainly feasible,
since this is an invariant maintained by our search, and that
if the algorithm were to return an infeasibility certificate it
must have needed that U(1 + ε/4)(1− ε/4

1+ε/4) < U , which
is false. Thus we know that the returned solution has value
at most U(1 + ε/4)(1 + ε/4

1+ε/4) ≤ L(1 + ε), so it satisfies
the desired approximation guarantee.

Finally, we analyze the cost of the search. Note that each
iteration of the search reduces logU − logL be a con-
stant factor, and it stops whenever it becomes at most
log(1 + ε/4) = Θ(ε). For as long as U/L > (3/2)6, the
algorithm is invoked with accuracy 1/2, and logU − logL
gets reduced by a constant factor, so this happens at most
O(log logm) times. Once U/L becomes small enough, i.e.
logU− logL < 6 log(3/2), we use accuracy exp((logU−
logL)/6)−1 = Θ(log(U/L)). Note that from Theorem 1.1
we know that the number of iterations of the algorithm for a
single invocation depends on 1/ε̃c, where c is a fixed con-
stant; due to our schedule for choosing ε̃, the total cost of
this sequence of invocations is dominated by the cost of the
final one, where ε̃ = Θ(ε).

So letting T (ε) be the number of iterations required
by the algorithm from Theorem 1.1 to solve the ap-
proximate decision problem to accuracy ε, we have that
solving the approximate optimization problem requires
O (T (1/2) log logm+ T (ε)) iterations.

The ℓ1 minimization problem is treated similarly, so we
omit its description.

