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Abstract

Translation to or from low-resource languages
(LRLs) poses challenges for machine transla-
tion in terms of both adequacy and fluency.
Data augmentation utilizing large amounts of
monolingual data is regarded as an effective
way to alleviate these problems. In this pa-
per, we propose a general framework for data
augmentation in low-resource machine transla-
tion that not only uses target-side monolingual
data, but also pivots through a related high-
resource language (HRL). Specifically, we ex-
periment with a two-step pivoting method to
convert high-resource data to the LRL, mak-
ing use of available resources to better approx-
imate the true data distribution of the LRL.
First, we inject LRL words into HRL sentences
through an induced bilingual dictionary. Sec-
ond, we further edit these modified sentences
using a modified unsupervised machine trans-
lation framework. Extensive experiments on
four low-resource datasets show that under ex-
treme low-resource settings, our data augmen-
tation techniques improve translation quality
by up to 1.5 to 8 BLEU points compared to
supervised back-translation baselines.

1 Introduction

The task of Machine Translation (MT) for low re-
source languages (LRLs) is notoriously hard due
to the lack of the large parallel corpora needed to
achieve adequate performance with current Neu-
ral Machine Translation (NMT) systems (Koehn
and Knowles, 2017). A standard practice to im-
prove training of models for an LRL of interest
(e.g. Azerbaijani) is utilizing data from a related
high-resource language (HRL, e.g. Turkish). Both
transferring from HRL to LRL (Zoph et al., 2016;
Nguyen and Chiang, 2017; Gu et al., 2018) and
joint training on HRL and LRL parallel data (John-
son et al., 2017; Neubig and Hu, 2018) have shown
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Figure 1: With a low-resource language (LRL) and a
related high-resource language (HRL), typical data aug-
mentation scenarios use any available parallel data [b]
and [c] to back-translate English monolingual data [a]
and generate parallel resources ([1] and [2]). We addi-
tionally propose scenarios [3] and [4], where we pivot
through HRL in order to generate a LRL–ENG resource.

to be effective techniques for low-resource NMT.
Incorporating data from other languages can be
viewed as one form data augmentation, and particu-
larly large improvements can be expected when the
HRL shares vocabulary or is syntactically similar
with the LRL (Lin et al., 2019). Simple joint train-
ing is still not ideal, though, considering that there
will still be many words and possibly even syntactic
structures that will not be shared between the most
highly related languages. There are model-based
methods that ameliorate the problem through more
expressive source-side representations conducive
to sharing (Gu et al., 2018; Wang et al., 2019), but
they add significant computational and implemen-
tation complexity.

In this paper, we examine how to better share
information between related LRL and HRLs through
a framework of generalized data augmentation for
low-resource MT. In our basic setting, we have
access to parallel or monolingual data of an LRL

of interest, its HRL, and the target language, which



we will assume is English. We propose methods to
create pseudo-parallel LRL data in this setting. As
illustrated in Figure 1, we augment parallel data via
two main methods: 1) back-translating from ENG

to LRL or HRL; 2) converting the HRL-ENG dataset
to a pseudo LRL-ENG dataset.

In the first thread, we focus on creating new
parallel sentences through back-translation. Back-
translating from the target language to the source
(Sennrich et al., 2016) is a common practice in data
augmentation, but has also been shown to be less
effective in low-resource settings where it is hard to
train a good back-translation model (Currey et al.,
2017). As a way to ameliorate this problem, we ex-
amine methods to instead translate from the target
language to a highly-related HRL, which remains
unexplored in the context of low-resource NMT.
This pseudo-HRL-ENG dataset can then be used for
joint training with the LRL-ENG dataset.

In the second thread, we focus on converting an
HRL-ENG dataset to a pseudo-LRL-to-ENG dataset
that better approximates the true LRL data. Con-
verting between HRLs and LRLs also suffers from
lack of resources, but because the LRL and HRL are
related, this is an easier task that we argue can be
done to some extent by simple (or unsupervised)
methods.1 In our proposed method, for the first
step, we substitute HRL words on the source side
of HRL parallel datasets with corresponding LRL

words from an induced bilingual dictionary gen-
erated by mapping word embedding spaces (Xing
et al., 2015; Lample et al., 2018b). In the second
step, we further attempt translate the pseudo-LRL

sentences to be closer to LRL ones utilizing an un-
supervised machine translation framework.

In sum, our contributions are four fold:

1. We conduct a thorough empirical evalua-
tion of data augmentation methods for low-
resource translation that take advantage of all
accessible data, across four language pairs.

2. We explore two methods for translating be-
tween related languages: word-by-word sub-
stitution using an induced dictionary, and un-
supervised machine translation that further
uses this word-by-word substituted data as
input. These methods improve over simple
unsupervised translation from HRL to LRL by
more than 2 to 10 BLEU points.

1This sort of pseudo-corpus creation was examined in a
different context of pivoting for SMT (De Gispert and Marino,
2006), but this was usually done with low-resource source-
target language pairs with English as the pivot.

3. Our proposed data augmentation methods
improve over standard supervised back-
translation by 1.5 to 8 BLEU points, across all
datasets, and an additional improvement of up
to 1.1 BLEU points by augmenting from both
ENG monolingual data, as well as HRL-ENG

parallel data.

2 A Generalized Framework for Data
Augmentation

In this section, we outline a generalized data aug-
mentation framework for low-resource NMT.

2.1 Datasets and Notations
Given an LRL of interest and its corresponding HRL,
with the goal of translating the LRL to English, we
usually have access to 1) a limited-sized LRL-ENG

parallel dataset {SLE, TLE}; 2) a relatively high-
resource HRL-ENG parallel dataset {SHE, THE}; 3) a
limited-sized LRL-HRL parallel dataset {SHL, THL};
4) large monolingual datasets in LRL ML, HRL

MH and English ME.
To clarify notation, we use S and T to denote the

source and target sides of parallel datasets, and M
for monolingual data. Created data will be referred
to as Ŝm

A ˃B. The superscript m denotes a particular
augmentation approach (specified in Section 3).
The subscripts denote the translation direction that
is used to create the data, with the LRL, HRL, and
ENG denoted with ‘L’, ‘H’, and ‘E’ respectively.

2.2 Augmentation from English
The first two options for data augmentation that we
explore are typical back-translation approaches:

1. ENG-LRL We train an ENG-LRL system and
back-translate English monolingual data to
LRL, denoted by {ŜE ˃L,ME}.

2. ENG-HRL We train an ENG-HRL system and
back-translate English monolingual data to
HRL, denoted by {ŜE ˃H,ME}.

Since we have access to LRL-ENG and HRL-
ENG parallel datasets, we can train these back-
translation systems (Sennrich et al., 2016) in a
supervised fashion. The first option is the com-
mon practice for data augmentation. However, in
a low-resource scenario, the created LRL data can
be of very low quality due to the limited size of
training data, which in turn could deteriorate the
LRL˃ENG translation performance. As we show in
Section 5, this is indeed the case.



The second direction, using HRL back-translated
data for LRL˃ENG translation, has not been ex-
plored in previous work. However, we suggest
that in low-resource scenarios it has potential to
be more effective than the first option because the
quality of the generated HRL data will be higher,
and the HRL is close enough to the LRL that joint
training of a model on both languages will likely
have a positive effect.

2.3 Augmentation via Pivoting

Using HRL-ENG data improves LRL-ENG transla-
tion because (1) adding extra ENG data improves
the target-side language model, (2) it is possible to
share vocabulary (or subwords) between languages,
and (3) because the syntactically similar HRL and
LRL can jointly learn parameters of the encoder.
However, regardless of how close these related lan-
guages might be, there still is a mismatch between
the vocabulary, and perhaps syntax, of the HRL and
LRL. However, translating between HRL and LRL

should be an easier task than translating from En-
glish, and we argue that this can be achieved by
simple methods.

Hence, we propose “Augmentation via Pivoting"
where we create an LRL-ENG dataset by translating
the source side of HRL-ENG data, into the LRL.
There are again two ways in which we can construct
a new LRL-ENG dataset:

3. HRL-LRL We assume access to an HRL-ENG

dataset. We then train an HRL-LRL system and
convert the HRL side of SHE to LRL, creating
a {ŜH ˃L, THE} dataset.

4. ENG-HRL-LRL Exactly as before, except that
the HRL-ENG dataset is the result of back-
translation. That means that we have first
converted English monolingual data ME to
ŜE ˃H, and then we convert those to the LRL,
creating a dataset {ŜE ˃H ˃L,ME}.

Given a LRL-HRL dataset {SLH, TLH} one could
also train supervised back-translation systems. But
we still face the same problem of data scarcity,
leading to poor quality of the augmented datasets.
Based on the fact that an LRL and its corresponding
HRL can be similar in morphology and word order,
in the following sections, we propose methods to
convert HRL to LRL for data augmentation in a
more reliable way.

3 LRL-HRL Translation Methods

In this section, we introduce two methods for con-
verting HRL to LRL for data augmentation.

3.1 Augmentation with Word Substitution

Mikolov et al. (2013) show that the word embed-
ding spaces share similar innate structure over dif-
ferent languages, making it possible to induce bilin-
gual dictionaries with a limited amount of or even
without parallel data (Xing et al., 2015; Zhang et al.,
2017; Lample et al., 2018b). Although the capacity
of these methods is naturally constrained by the in-
trinsic properties of the two mapped languages, it’s
more likely to create a high-quality bilingual dictio-
nary for two highly-related languages. Given the
induced dictionary, we can substitute HRL words
with LRL ones and construct a word-by-word trans-
lated pseudo-LRL corpus.

Dictionary Induction We use a supervised
method to obtain a bilingual dictionary between
the two highly-related languages. Following Xing
et al. (2015), we formulate the task of finding the
optimal mapping between the source and target
word embedding spaces as the Procrustes problem
(Schönemann, 1966), which can be solved by sin-
gular value decomposition (SVD):

min
W

∥WX − Y ∥2F s.t. W TW = I,

where X and Y are the source and target word
embedding spaces respectively.

As a seed dictionary to provide supervision, we
simply exploit identical words from the two lan-
guages. With the learned mapping W , we compute
the distance between mapped source and target
words with the CSLS similarity measure (Lample
et al., 2018b). Moreover, to ensure the quality of
the dictionary, a word pair is only added to the
dictionary if both words are each other’s closest
neighbors. Adding an LRL word to the dictionary
for every HRL word results in relatively poor per-
formance due to noise as shown in Section 5.3.

Corpus Construction Given an HRL-ENG

{SHE, THE} or a back-translated {ŜE ˃H,ME}
dataset, we substitute the words in SHE with
the corresponding LRL ones using our induced
dictionary. Words not in the dictionary are left
untouched. By injecting LRL words, we convert
the original or augmented HRL data into pseudo-
LRL, which explicitly increases lexical overlap
between the concatenated LRL and HRL data. The



created datasets are denoted by {Ŝw
H ˃E, THE} and

{Ŝw
E ˃H ˃L,ME} where w denotes augmentation

with word substitution.

3.2 Augmentation with Unsupervised MT
Although we assume LRL and HRL to be similar
with regards to word morphology and word order,
the simple word-by-word augmentation process
will almost certainly be insufficient to completely
replicate actual LRL data. A natural next step is to
further convert the pseudo-LRL data into a version
closer to the real LRL. In order to achieve this
in our limited-resource setting, we propose to use
unsupervised machine translation (UMT).

UMT Unsupervised Neural Machine Translation
(Artetxe et al., 2018; Lample et al., 2018a,c) makes
it possible to translate between languages without
parallel data. This is done by coupling denois-
ing auto-encoding, iterative back-translation, and
shared representations of both encoders and de-
coders, making it possible for the model to extend
the initial naive word-to-word mapping into learn-
ing to translate longer sentences.

Initial studies of UMT have focused on data-rich,
morphologically simple languages like English and
French. Applying the UMT framework to low-
resource and morphologically rich languages is
largely unexplored, with the exception of Neubig
and Hu (2018) and Guzmán et al. (2019), showing
that UMT performs exceptionally poorly between
dissimilar language pairs with BLEU scores lower
than 1. The problem is naturally harder for mor-
phologically rich LRLs due to two reasons. First,
morphologically rich languages have a higher pro-
portions of infrequent words (Chahuneau et al.,
2013). Second, even though still larger than the
respective parallel datasets, the size of monolin-
gual datasets in these languages is much smaller
compared to HRLs.

Modified Initialization As pointed out in Lam-
ple et al. (2018c), a good initialization plays a
critical role in training NMT in an unsupervised
fashion. Previously explored initialization methods
include: 1) word-for-word translation with an in-
duced dictionary to create synthetic sentence pairs
for initial training (Lample et al., 2018a; Artetxe
et al., 2018); 2) joint Byte-Pair-Encoding (BPE)
for both the source and target corpus sides as a
pre-processing step. While the first method intends
to give a reasonable prior for parameter search, the
second method simply forces the source and target

languages to share the same subword vocabulary,
which has been shown to be effective for translation
between highly related languages.

Inspired by these two methods, we propose a
new initialization method that uses our word sub-
stitution strategy (§3.1). Our initialization is com-
prised of a sequence of three steps:

1. First, we use an induced dictionary to substi-
tute HRL words in MH to LRL ones, producing
a pseudo-LRL monolingual dataset M̂L.

2. Second, we learn a joint word segmentation
model on both ML and M̂L and apply it to
both datasets.

3. Third, we train a NMT model in an unsu-
pervised fashion between ML and M̂L. The
training objective L is a weighted sum of two
loss terms for denoising auto-encoding and
iterative back-translation:

L = λ1

(
Ex∼ML

− logPs ˃s(x|C(x))

+ Ey∼M̂L
− logPt ˃t(y|C(y))

)
+λ2

(
Ex∼ML

− logPt ˃s(x|u∗(y|x))
+ Ey∼M̂L

− logPs ˃t(y|u∗(x|y))
)

where u∗ denotes translations obtained with
greedy decoding, C denotes a noisy manipula-
tion over input including dropping and swap-
ping words randomly, λ1 and λ2 denotes the
weight of language modeling and back trans-
lation respectively.

In our method, we do not use any synthetic par-
allel data for initialization, expecting the model
to learn the mappings between a true LRL distri-
bution and a pseudo-LRL distribution. This takes
advantage of the fact that the pseudo-LRL is natu-
rally closer to the true LRL than the HRL is, as the
injected LRL words increase vocabulary overlap.

Corpus Construction Given the word-level aug-
mented datasets {Ŝw

H ˃E, THE} and {Ŝw
E ˃H ˃L,ME},

we use the UMT model trained with this method
to translate the pseudo-LRL data from Ŝw

H ˃E and
from Ŝw

E ˃H ˃L. We obtain new parallel datasets
{Ŝm

H ˃E, THE} and {Ŝm
E ˃H ˃L,ME} with superscript m

denoting Modified UMT (M-UMT). We use super-
script u for un-modified standard UMT.

3.3 Why Pivot for Back-Translation?

Pivoting through an HRL in order to convert En-
glish to LRL will be a better option compared to



Datasets
LRL (HRL)

AZE BEL GLG SLK
(TUR) (RUS) (POR) (CES)

SLE, TLE 5.9K 4.5K 10K 61K
SHE, THE 182K 208K 185K 103K

SLH, TLH 5.7K 4.2K 3.8K 44K

ML 2.02M 1.95M 1.98M 2M
MH 2M 2M 2M 2M
ME 2M/ 200K

Table 1: Statistics (number of sentences) of all datasets.

directly translating ENG to LRL under the follow-
ing three conditions: 1) HRL and LRL are related
enough to allow for the induction of a high-quality
bilingual dictionary; 2) There exists a relatively
high-resource HRL-ENG dataset; 3) A high-quality
LRL-ENG dictionary is hard to acquire due to data
scarcity or morphological distance.

Essentially, the direct ENG˃LRL back-translation
may suffer from both data scarcity and morpholog-
ical differences between the two languages. Our
proposal breaks the process into two easier steps:
ENG˃HRL translation is easier due to the availability
of data, and HRL˃LRL translation is easier because
the two languages are related.

A good example is the agglutinative language
of Azerbaijiani, where each word may consist of
several morphemes and each morpheme could pos-
sibly map to an English word itself. Correspon-
dences to (also agglutinative) Turkish, however,
are easier to uncover. To give a concrete example,
the Azerbijiani word “düşüncәlәrim” can be fairly
easily aligned to the Turkish word “düşüncelerim”
while in English it corresponds to the phrase “my
thoughts”, which is unlikely to be perfectly aligned.

4 Experimental Setup

4.1 Data

We use the multilingual TED corpus (Qi et al.,
2018) as a test-bed for evaluating the efficacy
of each augmentation method. We conduct ex-
tensive experiments over four low-resource lan-
guages: Azerbaijani (AZE), Belarusian (BEL), Gali-
cian (GLG), and Slovak (SLK), along with their
highly related languages Turkish (TUR), Russian
(RUS), Portuguese (POR), and Czech (CES) respec-
tively. We also have small-sized LRL-HRL parallel
datasets, and we download Wikipedia dumps to
acquire monolingual datasets for all languages.

The statistics of the parallel datasets are shown
in Table 1. For AZE, BEL and GLG, we use all avail-
able Wikipedia data, while for the rest of the lan-
guages we sample a similar-sized corpus. We sam-
ple 2M/200K English sentences from Wikipedia
data, which are used for baseline UMT training and
augmentation from English respectively.

4.2 Pre-processing
We train a joint sentencepiece2 model for
each LRL-HRL pair by concatenating the mono-
lingual corpora of the two languages. The seg-
mentation model for English is trained on English
monolingual data only. We set the vocabulary size
for each model to 20K. All data are then segmented
by their respective segmentation model.

We use FastText3 to train word embeddings
using ML and MH with a dimension of 256 (used
for the dictionary induction step). We also pre-train
subword level embeddings on the segmented ML,
M̂L and MH with the same dimension.

4.3 Model Architecture
Supervised NMT We use the self-attention
Transformer model (Vaswani et al., 2017). We
adapt the implementation from the open-source
translation toolkit OpenNMT (Klein et al., 2017).
Both encoder and decoder consist of 4 layers, with
the word embedding and hidden unit dimensions
set to 256. 4 We use a batch size of 8096 tokens.

Unsupervised NMT We train unsupervised
Transformer models with the UnsupervisedMT
toolkit.5 Layer sizes and dimensions are the same
as in the supervised NMT model. The parame-
ters of the first three layers of the encoder and the
decoder are shared. The embedding layers are ini-
tialized with the pre-trained subword embeddings
from monolingual data. We set the weight parame-
ters for autodenoising language modeling and iter-
ative back translation as λ1 = 1 and λ2 = 1.

4.4 Training and Model Selection
After data augmentation, we follow the pre-train
and fine tune paradigm for learning (Zoph et al.,
2016; Nguyen and Chiang, 2017). We first train
a base NMT model on the concatenation of
{SLE, TLE} and {SHE, THE}. Then we adopt the

2https://github.com/google/sentencepiece
3https://github.com/facebookresearch/fastText
4We tuned on multiple settings to find the optimal parame-

ters for our datasets.
5https://github.com/facebookresearch/UnsupervisedMT



Training Data
BLEU for X˃ENG

AZE BEL GLG SLK
(TUR) (RUS) (POR) (CES)

Results from Literature
SDE (Wang et al., 2019) 12.89 18.71 31.16 29.16
many-to-many (Aharoni et al., 2019) 12.78 21.73 30.65 29.54

Standard NMT
1 {SLESHE , TLETHE} (supervised MT) 11.83 16.34 29.51 28.12
2 {ML,ME} (unsupervised MT) 0.47 0.18 1.15 0.75

Standard Supervised Back-translation
3 + {Ŝs

E ˃L , ME} 11.84 15.72 29.19 29.79
4 + {Ŝs

E ˃H , ME} 12.46 16.40 30.07 30.60

Augmentation from HRL-ENG

5 + {Ŝs
H ˃L , THE} (supervised MT) 11.92 15.79 29.91 28.52

6 + {Ŝu
H ˃L , THE} (unsupervised MT) 11.86 13.83 29.80 28.69

7 + {Ŝw
H ˃L , THE} (word subst.) 14.87 23.56 32.02 29.60

8 + {Ŝm
H ˃L , THE} (modified UMT) 14.72 23.31 32.27 29.55

9 + {Ŝw
H ˃LŜm

H ˃L , THETHE} 15.24 24.25 32.30 30.00

Augmention from ENG by pivoting
10 + {Ŝw

E ˃H ˃L , ME} (word subst.) 14.18 21.74 31.72 30.90
11 + {Ŝm

E ˃H ˃L , ME} (modified UMT) 13.71 19.94 31.39 30.22

Combinations
12 + {Ŝw

H ˃LŜw
E ˃H ˃L , THEME} (word subst.) 15.74 24.51 33.16 32.07

13 + {Ŝw
H ˃LŜm

H ˃L , THETHE} 15.91 23.69 32.55 31.58
+ {Ŝw

E ˃H ˃LŜm
E ˃H ˃L , MEME}

Table 2: Evaluation of translation performance over four language pairs. Rows 1 and 2 show pre-training BLEU
scores. Rows 3–13 show scores after fine tuning. Statistically significantly best scores are highlighted (p < 0.05).

mixed fine-tuning strategy of Chu et al. (2017),
fine-tuning the base model on the concatenation of
the base and augmented datasets. For each setting,
we perform a sufficient number of updates to reach
convergence in terms of development perplexity.

We use the performance on the development sets
(as provided by the TED corpus) as our criterion
for selecting the best model, both for augmentation
and final model training.

5 Results and Analysis

A collection of our results with the baseline and
our proposed methods is shown in Table 2.

5.1 Baselines

The performance of the base supervised model (row
1) varies from 11.8 to 29.5 BLEU points. Gener-
ally, the more distant the source language is from
English, the worse the performance. A standard un-
supervised MT model (row 2) achieves extremely
low scores, confirming the results of Guzmán et al.

(2019), indicating the difficulties of directly trans-
lating between LRLand ENG in an unsupervised
fashion. Rows 3 and 4 show that standard super-
vised back-translation from English at best yields
very modest improvements. Notable is the excep-
tion of SLK-ENG, which has more parallel data for
training than other settings. In the case of BEL and
GLG, it even leads to worse performance. Across
all four languages, supervised back-translation into
the HRL helps more than into the LRL; data is in-
sufficient for training a good LRL-ENG MT model.

5.2 Back-translation from HRL

HRL-LRL Rows 5–9 show the results when we
create data using the HRL side of an HRL-ENG

dataset. Both the low-resource supervised (row 5)
and vanilla unsupervised (row 6) HRL˃ENG trans-
lation do not lead to significant improvements.
On the other hand, our simple word substitu-
tion approach (row 7) and the modified UMT

approach (row 8) lead to improvements across
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tion) pivot BLEU and LRL-ENG translation BLEU.

the board: +3.0 BLEU points in AZE, +7.8 for
BEL, +2.3 for GLG, +1.1 for SLK. These results
are significant, demonstrating that the quality of
the back-translated data is indeed important.

In addition, we find that combining the datasets
produced by our word substitution and UMT mod-
els provide an additional improvement in all cases
(row 9). Interestingly, this happens despite the
fact that the ENG data are the exact same between
rows 5–9.

ENG-HRL-LRL We also show that even in the
absence of parallel HRL-LRL data, our pivoting
method is still valuable. Rows 10 and 11 in Ta-
ble 2 show the translation accuracy when the aug-
mented data are the result of our two-step pivot
back-translation. In both cases, monolingual ENG

is first translated into HRL and then into LRL with
either just word substitution (row 10) or modified
UMT (row 11). Although these results are slightly
worse than our one-step augmentation of a parallel
HRL-LRL dataset, they still outperform the base-
line standard back-translation (rows 3 and 4). An
interesting note is that in this setting, word substi-
tution is clearly preferable to UMT for the second
translation pivoting step, which we explain in §5.3.

Combinations We obtain our best results by
combining the two sources of data augmentation.
Row 12 shows the result of using our simple word
substitution technique on the HRL side of both a
parallel and an artificially created (back-translated)
HRL-ENG dataset. In this setting, we further im-
prove not only the encoder side of our model, as
before, but we also aid the decoder’s language mod-
eling capabilities by providing ENG data from two
distinct resources. This leads to improvements
of 3.6 to 8.2 BLEU points over the base model
and 0.3 to 2.1 over our best results from HRL-ENG
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HL Ŝw
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Figure 3: Rare word address rate (bars) and LRL-ENG
BLEU scores (line plot) for each data augmentation
method. The numbers in each upper left corner is the
Pearson correlation coefficient.

augmentation.
Finally, row 13 shows our attempt to obtain fur-

ther gains by combining the datasets from both
word substitution and UMT, as we did in setting 7.
This leads to a small improvement of 0.2 BLEU
points in AZE, but also to a slight degradation on
the other three datasets.

We also compare the results of our augmenta-
tion methods with other state-of-the-art methods
that either perform improvements to modeling to
improve the ability to do parameter sharing (Wang
et al., 2019), or train on many different target lan-
guages simultaneously (Aharoni et al., 2019). The
results demonstrate that the simple data augmenta-
tion strategies presented here improve significantly
over these previous methods.

5.3 Analysis
In this section we focus on the quality of HRL˃LRL

translation, showing that our better M-UMT initial-
ization method leads to significant improvements
compared to standard UMT.

We use the dev sets of the HRL-LRL datasets
to examine the performance of M-UMT between
related languages. We calculate the pivot BLEU6

score on the LRL side of each created dataset (SHL,
Ŝw

H ˃L, Ŝu
H ˃L, Ŝm

H ˃L). In Figure 2 we plot pivot HRL-
LRL BLEU scores against the translation LRL-ENG

BLEU ones. First, we observe that across all
datasets, the pivot BLEU of our M-UMT method is
higher than standard UMT (the squares are all fur-
ther right than their corresponding stars). Vanilla

6We will refer to pivot BLEU in order to avoid confusion
with translation BLEU scores from the previous sections.



Data Example Sentence Pivot BLEU
SLE (GLG) Pero con todo, veste obrigado a agardar nas mans dunha serie de estraños moi profesionais.

SHE (POR) Em vez disso, somos obrigados a esperar nas mãos de uma série de estranhos muito profissionais. 0.09

Ŝw
H ˃L En vez disso, somos obrigados a esperar nas mans de unha serie de estraños moito profesionais. 0.18

Ŝm
H ˃L En vez diso, somos obrigados a esperar nas mans dunha serie de estraños moi profesionais. 0.54

TLE But instead, you are forced there to wait in the hands of a series of very professional strangers.

Table 3: A POR-GLG pivoting example with corresponding pivot BLEU scores. Edits by word substitution or
M-UMT are highlighted.

UMT’s scores are 2 to 10 BLEU points worse than
the M-UMT ones. This means that UMT across
related languages significantly benefits from initial-
izing with our simple word substitution method.

Second, as illustrated in Figure 2, the pivot
BLEU score and the translation BLEU are im-
perfectly correlated; even though M-UMT reaches
the highest pivot BLEU, the resulting translation
BLEU is comparable to using the simple word sub-
stitution method (rows 7 and 8 in Table 2). The
reason is that the quality of {Ŝm

H ˃L , THE} is natu-
rally restricted by the {Ŝw

H ˃L , THE}, whose quality
is in turn restricted by the induced dictionary. How-
ever, by combining the augmented datasets from
these two methods, we consistently improve the
translation performance over using only word sub-
stitution augmentation (compare Table 2 rows 7
and 9). This suggests that the two augmented sets
improve LRL-ENG translation in an orthogonal way.

Additionally, we observe that augmentation from
back-translated HRL data leads to generally worse
results than augmentation from original HRL data
(compare rows 7,8 with rows 10,11 in Table 2).
We believe this to be the result of noise in the
back-translated HRL, which is then compounded by
further errors from the induced dictionary. There-
fore, we suggest that the simple word substitution
method should be preferred for the second pivoting
step when augmenting back-translated HRL data.

Table 3 provides an example conversion of an
HRL sentence to pseudo-LRL with the word sub-
stitution strategy, and its translation with M-UMT.
From SHE to Ŝw

H ˃L, the word substitution strategy
achieves very high unigram scores (0.50 in this
case), largely narrowing the gap between two lan-
guages. The M-UMT model then edits the pseudo-
LRL sentence to convert all its words to LRL.

Rare Word Coverage Next, we quantitatively
evaluate how our pivoting augmentation methods
increase rare word coverage and the correlation

AZE BEL GLG SLK

(TUR) (RUS) (POR) (CES)

WT-Bi 35K 42K 34K 51K
WT-Uni 211K 179K 89K 117K

WN-Bi 1.6M 2.5M 3.1M 2.0M
WN-Uni 2.9M 3.8M 3.8M 2.9M

BLEU-Bi 14.33 21.55 31.72 29.09
BLEU-Uni 14.10 21.86 30.51 28.58

Table 4: Injected word type (WT), injected word num-
ber (WN) and BLEU score (BLEU) on low-resource
translation with different induced dictionaries. Bi
denotes bidirectional and Uni denotes unidirectional
word induction.

with LRL-ENG translation quality. For each word
in the tested set, we define a word as “rare” if it
is in the training set’s lowest 10th frequency per-
centile. This is particularly true for LRL test set
words when using concatenated HRL-LRL training
data, as the LRL data will be smaller. We further
define rare words to be “addressed” if after adding
augmented data the rare word is not in the lowest
10th frequency percentile anymore. Then, we de-
fine the “address rate” of a test dataset as the ratio
of the number of addressed words to the number of
rare words. The address rate of each method, along
with the corresponding translation BLEU score is
shown in Figure 3. As indicated by the Pearson cor-
relation coefficients, these two metrics are highly
correlated, indicating that our augmentation meth-
ods significantly mitigate problems caused by rare
words, improving MT quality as a result.

Dictionary Induction We conduct experiments
to compare two methods of dictionary induction
from the mapped word embedding spaces: 1) Uni-
directional: For each HRL word, we collect its clos-
est LRL word to be added to the dictionary; 2) Bidi-
rectional: We only add word pairs the two words



of which are each other’s closest neighbor to the
dictionary.

In order to know how many LRL words are in-
jected into the HRL corpus, we show the num-
ber of injected unique word types, number of in-
jected words, and the corresponding BLEU score
of models trained with bidirectional and unidirec-
tional word induction in Table 4. It can be seen
that the ratio of word numbers is higher than that
of word types between bidirectional and unidirec-
tional word induction, indicating that the injected
words using the bidirectional method are of rel-
atively high frequency. The BLEU scores show
that bidirectional word induction performs better
than unidirectional induction in most cases (except
BEL). One explanation could be that adding each
word’s closest neighbor as a pair into the dictio-
nary introduces additional noise that might harm
the low-resource translation to some extent.

6 Related Work

Our work is related to multilingual and unsuper-
vised translation, bilingual dictionary induction, as
well as approaches for triangulation (pivoting).

In a low-resource MT scenario, multilingual
training that aims at sharing parameters by lever-
aging parallel datasets of multiple languages is a
common practice. Some works target learning a
universal representation for all languages either by
leveraging semantic sharing between mapped word
embeddings (Gu et al., 2018) or by using character
n-gram embeddings (Wang et al., 2019) optimizing
subword sharing. More related with data augmen-
tation, Nishimura et al. (2018) fill in missing data
with a multi-source setting to boost multilingual
translation.

Unsupervised machine translation enables train-
ing NMT models without parallel data (Artetxe
et al., 2018; Lample et al., 2018a,c). Recently,
multiple methods have been proposed to further
improve the framework. By incorporating a statis-
tical MT system as posterior regularization, Ren
et al. (2019) achieved state-of-the-art for en-fr and
en-de MT. Besides MT, the framework has also
been applied to other unsupervised tasks like non-
parallel style transfer (Subramanian et al., 2019;
Zhang et al., 2018).

Bilingual dictionaries learned in both supervised
and unsupervised ways have been used in low-
resource settings for tasks such as named entity
recognition (Xie et al., 2018) or information re-

trieval (Litschko et al., 2018). Hassan et al. (2017)
synthesized data with word embeddings for spoken
dialect translation, with a process that requires a
LRL-ENG as well as a HRL-LRL dictionary, while
our work only uses a HRL-LRL dictionary.

Bridging source and target languages through a
pivot language was originally proposed for phrase-
based MT (De Gispert and Marino, 2006; Cohn and
Lapata, 2007). It was later adapted for Neural MT
(Levinboim and Chiang, 2015), and Cheng et al.
(2017) proposed joint training for pivot-based NMT.
Chen et al. (2017) proposed to use an existing pivot-
target NMT model to guide the training of source-
target model. Lakew et al. (2018) proposed an
iterative procedure to realize zero-shot translation
by pivoting on a third language.

7 Conclusion

We propose a generalized data augmentation frame-
work for low-resource translation, making best use
of all available resources. We propose an effective
two-step pivoting augmentation method to convert
HRL parallel data to LRL. In future work, we will
explore methods for controlling the induced dictio-
nary quality to improve word substitution as well as
M-UMT. We will also attempt to create an end-to-
end framework by jointly training M-UMT pivoting
system and low-resource translation system in an
iterative fashion in order to leverage more versions
of augmented data.
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