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Abstract—Motion planning for mobile robots with many
degrees-of-freedom (DoF) is challenging due to their high-
dimensional configuration spaces. To manage this curse of di-
mensionality, this paper proposes a new hierarchical framework
that decomposes the system into sub-systems (based on shared
capabilities of DoFs), for which we can design and coordinate
motions. Instead of constructing a high-dimensional configuration
space, we establish a hierarchy of two-dimensional spaces on
which we can visually design gaits using geometric mechanics
tools. We then coordinate motions among the two-dimensional
spaces in a pairwise fashion to obtain desired robot locomotion.
Further geometric analysis of the two-dimensional spaces allows
us to visualize the contribution of each sub-system to the
locomotion, as well as the contribution of the coordination among
the sub-systems. We demonstrate our approach by designing
gaits for quadrupedal robots with different morphologies, and
experimentally validate our findings on a robot with a long
actuated back and intermediate-sized legs.

I. INTRODUCTION

High degree-of-freedom (HDoF) mobile robots offer ad-
vantages over conventional wheeled vehicles in difficult-to-
negotiate terrains [3, 17, 21, 25]. However, the benefit of many
degrees of freedom also poses a challenge: how to coordinate
all of the DoFs to produce purposeful motion. One approach
to address this so-called curse of dimensionality is to couple
groups of the DoFs into one or two DOFs thereby producing a
lower dimensional configuration space [5, 10, 15, 16, 24, 2, 6].
We term these lower dimensional systems as sub-systems. Sub-
systems can be formed based on observations of biological
systems, empirical experiments, or intuition. The approach
described in this paper first plans for motions within every
sub-system, and then for coordination among the sub-systems.
Specifically, we propose a hierarchical framework to decom-
pose the motion planning problem in the full configuration
space of a robot, into i) a series of simpler motion planning
problems in the low-dimensional spaces associated with the
different sub-systems, and ii) the coordination of these sub-
systems.

Our framework relies on a motion planning approach,
namely geometric mechanics (GM), which offers powerful
tools to design, visualize, and analyze a wide range of lo-
comotor behaviors [4, 7, 14]. We rely on GM tools to visually
design the motion of each subsystem with respect to our
locomotive goals (here, to maximize stride displacement), and
to design the coordination of pairs of sub-systems. By rely-
ing on a coordinate-descent-like approach, we then optimize
locomotion by iterating over every pair of sub-systems until

Fig. 1. Three link swimmer with four cubic legs CAD diagram of the
robot (a) top and (b) side view. (c) Physical model. The upper back and lower
back are actuated by two AX12 servos (labeled as 1 and 2) and the legs are
actuated by XL320 servos. The legs have rectangular shape (24x24x45 mm)
and the body is always in contact with ground via blocks (55x12x45 mm)
attached to the body segments.

convergence is attained. Once this process has converged,
we further show how GM tools allow us to visualize the
contribution of each sub-system to locomotion, as well as
that of the coordination of every pair of sub-systems. In this
way, the proposed hierarchical framework provides a motion
planning tool to visually and intuitively design gaits for HDoF
systems.

We apply our framework to study the motion of
a quadrupedal robot with a long articulated body and
intermediate-sized legs (Fig. 1), a morphology incorporating
features from both lizards and snakes. Here, we show how
our framework provides insight into the role of leg contacts
and body undulation in quadruped locomotion. Previous work
has shown that the undulation of an elongated body improves
the stride length of animals and robots [11, 27, 8]. A more
comprehensive review on quadrupedal gait design can be
found in [27]. There are two common modes of body un-
dulation: standing waves (lizard-like) [11, 27], and traveling
waves propagated from head to tail (snake-like) [8]. In the first
mode, the body curvature is maximized to increase the self-
propulsion generated by leg-ground interaction. In the second
mode, the body undulation can generate self-propulsion even
without legs. Interestingly, we find that the optimized whole-
body motion (i.e., motion in the full configuration space) for
our robot is a hybrid combination of the lizard- and snake-like
modes, such that the self-propulsion from leg-ground contact
and that from body-ground contact are properly coordinated.



Fig. 2. Example height functions and gaits in different shape spaces
(a) The height function in a Euclidean shape space corresponds to motions
of an 8-link snake robot slithering in the forward direction on the surface
of 6mm plastic particles. The purple circle represents the optimal gait in the
corresponding shape space. (b) The height function in a torus shape space
corresponds to the forward motion of a robot with a long actuated body
and intermediate-sized legs on the surface of ∼ 1 mm poppy seeds. The
solid purple curve represents a sample gait in the corresponding shape space.
Orange lines represent the assistive lines to form closed loops with the gait
path in the unfolded torus shape space. The area in the solid purple shadow
represents the area where the gait path and the assistive lines form a clockwise
loop; the area in the dashed purple shadow represents the area where the gait
path and the assistive lines form a counterclockwise loop. Red, white and black
indicate positive, zero and negative values in height function respectively.

We validate our theoretical predictions through a series of
experiments where a 10-DoF robot locomotes on granular
material.

The paper is structured as follows: Section II introduces
geometric mechanics and presents our framework to design
whole-body motion; Section III applies our methods to study
the motion design of a robot with a long articulated body and
four legs; Section IV discusses the significance and concludes
our work.

II. METHOD

A. Review of geometric mechanics

In this section, we provide a concise overview of the
geometric tools needed for this paper. For a more detailed
and comprehensive review, we refer readers to [4, 7, 14].
The gait design tools of geometric mechanics separate the
configuration space of a system into two spaces: the position
space and the shape space. The position space denotes the
location of a system relative to a world frame, while the shape
space denotes the internal configuration (internal shape) of the
system. Geometric mechanics seeks to establish a functional
relationship between velocities in these spaces; this functional
relationship is often called a connection, and it shares many
properties with the Jacobian of a robotic manipulator.

1) Kinematic reconstruction equation: Principally, in kine-
matic systems where there is no drift in the system, the
equations of motion [14] reduce to

ξ = A(r)ṙ, (1)

where ξ = [ξx ξy ξθ]
T ∈ g denotes the body velocity in

forward, lateral, and rotational direction; r denotes the internal
shape variables (joint angles); A(r) is the local connection
matrix that relates shape velocity ṙ to body velocity ξ.
Eq.(1) is also called the kinematic reconstruction equation and

maps the changes in internal shape variables (joint angles) to
changes in group variables (position and orientation) of the
robot.

The interaction between a robot and an environment is often
difficult to model, which is typically the case when the system
locomotes on a granular medium. In such a case, calculating
the local connection matrix A can be quite challenging.
Instead, we numerically derive A using resistive force theory
(RFT) [13, 22, 26] to model the contact. Prior work [8]
has shown that numerically derived local connections using
granular RFT can effectively predict movements in granular
media. In this paper, we model the robot-ground contact by
poppy seed RFT equations [27], from which we numerically
derive the local connections.

2) Connection vector fields and height functions: Each row
of local connection matrix A corresponds to a component
direction of the body velocity and therefore gives rise to a
connection vector field. The body velocities in the forward,
lateral and rotational directions are respectively computed as
the dot product of connection vector fields and the shape
velocity ṙ. A shape velocity ṙ along the direction of the vector
field yields the largest possible body velocity, while a shape
velocity ṙ orthogonal to the field produces zero body velocity.

A gait can be represented as a closed curve in the corre-
sponding shape space. The displacement resulting from a gait,
∂χ, can be approximated by

∆x

∆y

∆θ

 =

∫
∂χ

A(r)dr. (2)

According to Stokes’ Theorem, the line integral along a
closed curve ∂χ is equal to the surface integral of the curl of
A(r) over the area enclosed by ∂χ:∫

∂χ

A(r)dr =

∫∫
χ

∇×A(r)dr1dr2, (3)

where χ denotes the area enclosed by ∂χ. The curl of the
connection vector field,∇×A(r), is referred to as the height
function (Fig. 2a). The three rows of the vector field A(r) can
thus produce three height functions in the forward, lateral and
rotational direction, respectively.

With the above derivation, we simplify the gait design prob-
lem to drawing a closed path in Euclidean shape space. The
displacements can be approximated by the volume enclosed by
the gait path. For example, in Fig. 2a, we show an example
height function in Euclidean shape space corresponding to
the motion in the forward direction of an 8-link snake robot
slithering on the surface of 6mm plastic particles. The circle
(solid purple circle in Fig. 2a) enclosing the most volume
represents the gait with the largest forward stride displacement.

Although the review of geometric mechanics sections are
limited to two dimensions, there has been recent work on
applying geometric mechanics to high-dimensional robot gait
design [5, 20]. Ramasamy and Hatton [20] extended geometric
mechanics to high dimensional shape space and proposed a



method to visualized the kinematics. Gong et al. [5] approxi-
mated the kinematics of complex locomotors using only two
shape variables with the proper shape basis functions.

3) Torus shape space: Often, a shape space can have some
cyclic structure. With both shape variables being cyclic, the
shape space has a torus shape, (T 2) [12]. In Fig. 2b, we
show an example height function in a torus shape space
corresponding to the forward motion of a quadruped robot
with the standing wave body undulation on the surface of ∼ 1
mm poppy seeds. The shape variable, Φ = [φ1, φ2]T ∈ T 2,
has a cyclic structure, where one axis represents the phase of
the leg movement, and the other axis represents the phase of
the body undulation. While the gait path (solid purple curve
Fig. 2b) is a closed curve in the torus shape space, there is no
obvious area enclosed by the gait path.

To form an enclosed area, we introduce the notion of two
assistive lines in the Euclidean parameterization of the torus
shape space. The assistive lines are defined as: ∂χ1 : φ1 = 0,
(the solid orange line l1+l2 in Fig. 2b), and ∂χ2 : φ2 = 0 (the
solid orange line l3 + l4 in Fig. 2b). Note that the dashed line
l′i is equivalent to the corresponding solid line li, according to
the cyclic property of the torus shape space. In Fig. 2b, the
gait path (the solid purple curve) together with two assistive
lines (l′1, l2, l

′
3, l4) encloses two areas in the torus shape

space (solid purple shadow area and dashed purple shadow
area). The net displacement can be approximated by the line
integral along two assistive lines plus the surface integral of
the enclosed area:∫

∂χ

A(r)dΦ =

∫
∂χ1

A(Φ)dΦ +

∫
∂χ2

A(Φ)dΦ

+

∫∫
χ−χ1−χ2

∇×A(Φ)dφ1dφ2, (4)

where χ− χ1 − χ2 denotes the area enclosed by the assitive
lines and gait path. Note that in Fig. 2b, the gait path and
the assistive lines form a clockwise loop in the lower right
corner (solid purple shadow area) and a counterclockwise loop
in the upper left corner (dashed purple shadow area). Taking
the handedness into account, the surface integral (third term
on the right hand side) in Eq.(4) should be computed as the
surface integral of the enclosed area in the clockwise loop
(solid purple shadow area in Fig. 2b) minus the surface integral
of the enclosed area in the counterclockwise loop (dashed
purple shadow area in Fig. 2b).

To interpret the physical meaning of each term (right hand
side) in Eq.(4), we introduce the notation of two sets Pa
and Pb, where Pa and Pb denote the contribution from the
horizontal and vertical coordinate axes in the torus shape
space. In our example in Fig. 2b, Pa represents the contribution
from leg movement and Pb represents the contribution from
standing wave body undulation.

The physical meaning of the first term (right hand side)
in Eq.(4) is the displacement solely resulting from motions
in φ2, while keeping φ1 constant at the initial position, i.e.,
PCa ∩Pb, where ()C denotes the complement set. The physical
meaning of the second term (right hand side) in Eq.(4) is

the displacement solely resulting from motions in φ1, while
keeping φ2 constant at the initial position, i.e., Pa ∩ PCb .
The first two terms (right hand side) in Eq.(4) are constant
and independent from any gait path we choose. The physical
meaning of the last term (right hand side) in Eq.(4) is the
additional displacement resulting from the contribution from
coordination of φ1 and φ2, i.e., Pa ∩ Pb.

Finally, we refer readers to [7] for a detailed derivation and
proof of motion planning in torus shape spaces.

B. Whole-body motion

1) Sub-system motion phase variable: In this section, we
construct a high-dimensional torus shape space, on which
we can design the whole-body coordination. Consider an
M -dimensional motion system and its shape variable r =
[ri, r2, ..., rM ]T ∈ RM . Assume there are N sub-systems.
We term the motion of a sub-system sub-system motion. Each
sub-system motion will form a closed loop gait path in the
shape space RM . The closed loop gait path in sub-system
motion i ∈ {1, 2, ..., N} can be described by a function
fi : T 1 → RM such that r = fi(φi), where φi ∈ T 1 is
the gait phase variable of sub-system motion i. The whole-
body motion can be formulated as the superposition of the
sub-system motions gait paths:

r =

i=N∑
i=1

fi(φi). (5)

We define the sub-system motion phase variable as Φ =
[φ1, φ2, ..., φN ]T ∈ TN . We can relate the Φ̇ to the shape
velocity ṙ by the Jacobian matrix [23] Jr,Φ:

ṙ =
[
df1(φ1)

dφ1

df2(φ2)
dφ2

... dfN (φN)
dφN

]
Φ̇ = Jr,ΦΦ̇, (6)

With Eq.(6) in hand, we can rewrite Eq.(1):

ξ = A(r)ṙ = A(

i=N∑
i=1

fi(φi))ṙ

= A(

i=N∑
i=1

fi(φi))JrΦΦ̇ = A′(Φ)Φ̇ (7)

where A′(Φ) is the new local connection matrix mapping the
differential of the sub-system motion phase variable, Φ̇, to the
body velocity ξ.

A properly designed gait in the sub-system motion phase
variable space (N -dimensional torus shape space) will then
lead to coordinated whole-body motion. That is, we simplify
the whole-body motion gait design problem in the original M -
dimensional Euclidean space RM to the N -dimensional torus
sub-system motion phase variable space TN .

2) Gait design: In this section, we propose a method to
design a gait path in an N -dimensional torus shape space.
The gait path in the N -dimensional sub-system motion phase
variable space can be described by a gait function H : T 1 →
TN , such that: Φ = [h1(φ0), h2(φ0), ..., hN (φ0)]T . φ0 ∈ T 1

is the global gait phase of the motion in sub-system motion
phase variable space.



We assume that all the functions hi are homeomorphism
mapping, such that h−1◦h is the identity mapping. Under this
assumption, all sub-system motions will operate at the same
frequency (more formally, the winding number of the gait path
must be [1, 1, ..., 1] in N -dimensional torus space).

While there are N functions in H , there are only N − 1
independent functions in H (dimension of Φ ∈ TN space
minus the dimension of φ0 ∈ T 1 space), allowing one
constraint equation on H . For simplicity, we fix h1(x) := x,
i.e., φ1 := φ0. Note that our method is permutation invariant.

For simplicity, in this work we assume that all the functions
in H are linear mapping, such that hi(x) = x + φi, where
φi is the phase offset of the sub-system motion i. In these
cases, only the phase offsets between sub-system motions
are subject to optimization in the whole-body coordination
gait design. For more complex systems where linear mapping
cannot produce the effective whole-body coordination, the
mapping function prescription can be extended to sigmoidal,
quadrutic, cubic or other homeomorphism mappings.

We start the optimization with a naive initial guess on the
gait function H that all functions in H are identity mapping,
i.e., hi(x) = x. We then decompose the N -dimensional torus
shape space into N − 1 two-dimensional torus shape spaces
[φ0, φi]

T , where i ∈ {2, 3, ... N}. Next, we optimize one
independent function hi ⊂ H in the two-dimensional torus
shape space composed of [φ0, φi]

T ∈ T 2. Then, we take an
approach similar to coordinate descent methods, where at each
step, we optimize and update one function in H and iterate
among all the independent functions in H until convergence.
In the converged gait function H∗, every independent function
h∗i ⊂ H∗ should be optimized in its corresponding two-
dimensional torus shape space composed of [φ0, φi]

T .
The most challenging part in our proposed gait optimization

tool is to find the optimized mapping hi in the two-dimensional
torus shape space [φ0, φi]

T . The detailed optimization steps
are presented in the remainder of this section.

To optimize each independent function hi ⊂ H , we
first relate the two-dimensional shape variable [φ0, φi]

T to
the sub-system motion phase variable Φ such that Φ =
[h1(φ0), h2(φ0), ..., hi−1(φ0), φi, hi+1(φ0), ..., hN (φ0)]T .
Next, we relate the differentials of φ0 and φi to the sub-
system motion phase variable differential by a Jacobian matrix
JΦ,[φ0, φi]T :

Φ̇ = JΦ,[φ0, φi]T

φ̇0
φ̇i

 (8)

With Eq.(8) in hand, we can rewrite Eq.(7) as

ξ = A′(Φ)Φ̇ = A′([φ0 φi]
T )JΦ,[φ0, φi]T

φ̇0
φ̇i


= A

[i]
H ([φ0 φi]

T )

φ̇0
φ̇i

 (9)

where A[i]
H is the new local connection matrix. The subscript

H denotes that we need the gait function H to derive the

local connection matrix. The superscript [i] denotes that we
separated hi from H in deriving the local connection matrix.

Following the method discussed in Section II-A, we con-
struct the height function (given by ∇×A[i]

H∗ ), which help
us to design the mapping hi.

3) Visualization: In this subsection, we develop the tools to
visualize the contribution from a specific sub-system motion
and the contribution from the coordination of two sub-system
motions. We define Pi as the set denoting the contribution
from a sub-system motion i. The contribution from coordina-
tion between sub-system motion i and j can be expressed as
Pi ∩ Pj .

In Section II-B2, we construct the local connection matrix
mapping the phase differentials φ̇0 and φ̇i to the body velocity
ξ. Following the approach introduced in Section II-A, we can
approximate the net displacement as:

∫
∂χ

A
[i]
H∗([φ0 φi]

T )

[
φ̇0

φ̇i

]
=

∫
∂χ1:φ0=0

A
[i]
H∗([φ0 φi]

T )

[
φ̇0

φ̇i

]

+

∫
∂χ2:φi=0

A
[i]
H∗([φ0 φi]

T )

[
φ̇0

φ̇i

]

+

∫∫
χ−χ1−χ2

∇×A[i]
H∗([φ0 φi]

T )dφ0dφi (10)

The physical meaning of each term (right hand side) in
Eq.(10) can be interpreted in a similar manner to our analysis
in Section II-A. The physical meaning of the first term (right
hand side) in Eq.(10) is the displacement solely from the mo-
tion in sub-system i, while keeping φ0 constant at initial posi-
tion. Note that all other sub-system motions have been coupled
to φ0 by H∗ in our derivation of local connection matrixA[i]

H∗ .
Keeping φ0 constant at initial position is equivalent to keeping
all other sub-system motions stopped at initial position. Thus,
the first term (right hand side) in Eq.(10) can be interpreted
as the displacement solely from sub-system motion i, while
keeping all other motion systems stopped at initial position,
i.e., Pi∩PC[i] , where P[i] = P1∪P2∪...∪Pi−1∪Pi+1∪...∪PN .
The subscript [i] in P[i] denotes that P[i] is the union of the
contribution of all other sub-system motions except sub-system
motion i. Since only one sub-system motion is involved in
the first term (right hand side) in Eq.(10), it is then a pre-
computed constant, independent from the sub-system motion
coordination.

The physical meaning of the third term (right hand side) in
Eq.(10) is the additional displacement from coordination be-
tween sub-system motion i and all other sub-system motions,
i.e., Pi ∩ P[i].

Since Pi = (Pi ∩ PC[i]) ∪ (Pi ∩ P[i]), Pi can be visually
analyzed by the surface integral over the height function
∇×A[i]

H∗ plus a pre-computed constant.
Next, we develop the tool to visualize the contribution from

coordination of two specific sub-system motions i and j, i.e.,
Ci ∩Cj . In order to construct Ci ∩Cj , we first assign hj = 0
such that in this scenario, sub-system motion j is stopped.
Following our approach in section II-B2, we construct a two-



dimensional shape variable [φ0, φi] and relate it to the sub-
system motion phase variable Φ[j] (the superscript [j] denotes
that φj is not involved in Φ[j]) as:

Φ[j] = [h∗1(φ0), ..., h∗i−1(φ0), φi, h
∗
i+1(φ0), ...,

..., h∗j−1(φ0), 0, h∗j+1(φ0), h∗N (φ0)]T (11)

Given Eq.(11), we can relate the differential of φ0 and φi
to the sub-system motion phase variable differential Φ[j] by a
Jacobian matrix JΦ[j],[φ0, φi]T

:

Φ̇[j] = JΦ[j],[φ0, φi]T

φ̇0
φ̇i

 (12)

Note that motion associated with the sub-system motion
phase variable Φ[j] in Eq.(12) does not include the motion in
sub-system j. Similar to Eq.(7), we can then relate it to the
shape velocity:

ξ[j] = A(

k=j−1∑
k=1

fk(φk) +

k=N∑
k=j+1

fk(φk))ṙ

= A′(Φ[j])Φ̇[j] = A′([φ0 φi]
T )J

Φ[j],[φ0, φi]T

[
φ̇0

φ̇i

]

= A
[i][j]
H∗ ([φ0 φi]

T )

[
φ̇0

φ̇i

]
(13)

where ξ[j] denotes the body velocity (the superscript [j] in ξ[j]

denotes that sub-system motion j is not coupled in the body
velocity) and A[i][j]

H∗ denotes the new local connection. The
superscript [i][j] in A

[i][j]
H∗ denotes that we separated hi and

hj from H∗ in deriving A[i][j]
H∗ . With Eq.(13), we can rewrite

Eq.(3) as:

∫
∂χ

A
[i][j]
H∗ ([φ0 φi]

T )

[
φ̇0

φ̇i

]
=

∫
∂χ1:φ0=0

A
[i][j]
H∗ ([φ0 φi]

T )

[
φ̇0

φ̇i

]

+

∫
∂χ2:φi=0

A
[i][j]
H∗ ([φ0 φi]

T )

[
φ̇0

φ̇i

]

+

∫∫
χ−χ1−χ2

∇×A[i][j]
H∗ ([φ0 φi]

T )dφ0dφi, (14)

Similar to our analysis in Section II-B3, we can interpret the
physical meaning of the third term (right hand side) in Eq.(14)
as the additional displacement resulting from the coordination
between sub-system motion i and all other sub-system motions
coupled to φ0 in Eq.(11), where we assume that sub-system
motion j is stopped. In this way, we can express the physical
meaning of the third term (right hand side) in Eq.(14) as Pi ∩
(P[i] − Pj).

Given Eq.(10) and Eq.(14), we can construct Pi ∩ Pj . We
subtract the third term (right hand side) in Eq.(14) from the
third term (right hand side) in Eq.(10), giving us:

Pi ∩ Pj = Pi ∩ P[i] − Pi ∩ (P[i] − Pj)

=

∫∫
χ−χ1−χ2

∇× (A
[i]
H∗(

[
φ̇0

φ̇i

]
)−A[i][j]

H∗ (

[
φ̇0

φ̇i

]
))dφ0dφi

Fig. 3. The model for our robot and its sub-system motions. (a) The
shape variables of a robot with a long articulated body and four legs. The
body undulation joint angle, αi, and leg shoulder joint angle βi are labelled.
Segments in solid ellipses are in contact with the ground; segments in open
ellipses are in the air. (b) Leg sub-system motion. The leg sub-system motion
is prescribed by a periodic variable φ1. The row of eight boxes indicate the
contact state of the leg during the phase of the gait, where filled gray means
ground contact and open white means in the air. The blue curves indicate
the leg shoulder joint angles. (c) Upper back sub-system motion. The upper
back sub-system motion is prescribed by a periodic variable φ2. (d) Lower
back sub-system motion. The lower back sub-system motion is prescribed by
a periodic variable φ3

In this way, we can visualize Pi ∩ Pj as the surface integral
over the constructed height function ∇× (A

[i]
H∗ −A[i][j]

H∗ ).

III. EXAMPLE: GAIT DESIGN FOR A ROBOT WITH A LONG
ACTUATED BODY AND INTERMEDIATE-SIZED LEGS

In this section, we apply our proposed hierarchical frame-
work to design gaits for a robot with a long actuated body and
intermediate-sized legs. Existing approaches to design gaits for
quadrupedal systems can be found in [27]. We validate our
proposed hierarchical framework by robot experiments using
a robophysical approach [1, 19]. We first test the whole-body
motion resulting from the two common approaches to design
quadrupedal body undulation. We next apply our proposed
framework to design whole-body motion and visualize the
kinematics of whole-body coordination. Finally, we verify
our theoretical predictions by robot experiments and RFT
simulation.

A. Experimental set-up

We built an open-loop, servo-driven, 3D-printed robot (450
g, ∼40 cm long) with a long actuated body and intermediate-
sized legs (Fig.1), and tested its performance on granular
media (∼ 1 mm diameter poppy seeds). Each leg (front



Fig. 4. Height functions (a) The height function presenting the coordination
of snake-like body undulation and leg movement. (b) The height function
presenting the coordination of lizard-like body undulation and leg movement.
(c1) The height function presenting the coordination of upper back and leg
movement. (c2) The height function presenting the coordination of lower back
and leg movement. In all illustrations, the solid blue curve represents the
optimized gait path.

right FR, front left FL, hind right HR and hind left HL)
has two DoFs, with one controlling the planar shoulder joint
angle βi and the other controlling the binary ground contact
δi. The body consists of three segments, connected by two
independently-actuated joints (upper back joint angle α1 and
lower back joint angle α2), and maintains continuous contact
with the ground (Fig. 3).

The robot executed a programmed set of movements (fol-
lowing the gait input) to walk on the loosely-packed poppy
seeds. Throughout the experiment, four Optitrack Flex13 cam-
eras recorded the positions of the infrared-reflective markers
on the robot. At the end of each experiment, the robot’s
final position was identified. Before each experiment, an air-
fluidized bed erased the footprints and allowed the seeds to be
reset into a loosely-packed state.

B. Sub-system motions

We decompose the motion of the robot into three sub-
system motions: the leg sub-system motion, the upper back
sub-system motion and the lower back sub-system motion.

1) Leg sub-system motion: We assume that the leg sub-
system motion follows a trot gait pattern, a typical type of leg
movements given from prior work [9]. The trot is a two-beat
gait with diagonally paired leg movements. The fore right leg
is always in phase with the hind left leg while the fore left leg
is always in phase with the hind right leg. In Fig. 3b, we show
that the shoulder joint angles and the leg contact patterns of
all legs are prescribed by a periodic variable φ1.

2) Upper back sub-system motion: We prescribe the upper
back joint angle, α1, as a sinusoidal function of the gait
phase φ2, as illustrated in Fig. 3c. While the upper back
motion system itself cannot generate effective locomotion, it

Fig. 5. Robot experiment and RFT simulation results (a) The primary data
of displacement from robot experiments (solid lines with error bars) and RFT
simulation (solid lines) plotted as a function of gait percentage over two gait
cycles for snake-like body undulation (blue), optimal body undulation (red)
and lizard-like body undulation (yellow). (b) The displacement is plotted as
a function of spatial phase. The red curve with error bars shows the robot
experiment results. The blue curve shows the RFT simulation results.

can improve the locomotion performance by coordinating with
the leg sub-system motion and the lower back sub-system
motion.

3) Lower back sub-system motion: Similar to upper back
sub-system motion, we prescribe the lower back joint angle,
α2, as a sinusoidal function of the gait phase φ3, as illustrated
in Fig. 3d. While the lower back motion system itself cannot
generate effective locomotion, it can improve the locomotion
performance by coordinating with the leg sub-system motion
and the upper back sub-system motion.

C. Whole body motion gait design

Body undulation plays an important role in whole-body
motion. In some cases where the leg drag is dominating
(lizard-like locomotion), the body undulation will form a
standing wave to improve the self-propulsion by leg-ground
interaction [11, 27]. In other cases where the body drag is
dominating (snake-like locomotion), the body undulation will
form a traveling serpenoid wave to generate self-propulsion
by body-ground interaction [8]. In this section, we explore the
role of body undulation for a quadrupedal robot with a long
actuated body and intermediate-sized legs.

We assume all the mapping functions are linear, i.e., φi =
φj+ψij , where ψij is the phase offset between the sub-system



motion i and j. We define the spatial phase as the phase shift
between the upper back and lower back, i.e., ψ23. The spatial
phase characterizes the wave pattern of the body undulation.

In our robot experiments, we found that the optimal spatial
phase, intermediate between lizard-like and snake-like, max-
imizes the displacement. The optimized whole-body motion
will leverage the self-propulsion of leg-ground contact and the
self-propulsion of body-ground contact.

1) Snake-like body undulation: The long actuated body
of the robot can generate self-propulsion from body-ground
interaction. Hatton et al. [8] studied the motion of a three-
link swimmer on granular media, where the body undulation
follows the traveling serpenoid wave. We call the traveling
serpenoid wave body undulation snake-like body undulation.
In snake-like body undulation, we couple the upper and lower
back sub-system motions such that they form a traveling
serpenoid wave propagated from head to tail. Specifically, the
phase of lower back sub-system motion is π/2 ahead of the
phase of upper back sub-system motion, i.e., the spatial phase
of snake-like body undulation is ψsnake23 = π/2.

Next, we seek to coordinate the traveling serpenoid wave
body undulation with the leg movement, which is character-
ized by ψsnake12 . Following the steps in section II-B2, we can
calculate the height function on the shape space composed of
[φ1, φ2]T and then design the proper whole-body coordina-
tion gait. The height function and the optimized whole-body
coordination gait for snake-like body undulation is shown in
Fig 4a. To summarize, in snake-like body undulation, we have
ψsnake12 = 0.75π, ψsnake13 = 1.25π and ψsnake23 = 0.5π.

2) Lizard-like body undulation: The long actuated body
can, on the other hand, help to improve the self-propulsion by
leg-ground interaction. Zhong et al. [27] studied the motion
of a quadrupedal robot with a single DoF in the back. Ijspeert
et al. [11] showed that standing wave body undulation can be
coordinated with leg movements during walking. We call the
standing wave body undulation lizard-like body undulation.
Although the lizard-like body undulation itself does not lead
to effective motion, it can be coordinated with leg movement
to improve locomotion performance.

In lizard-like body undulation, we couple the upper and
lower back such that they form a standing wave. Specifically,
lower back sub-system motion is always in phase with upper
back sub-system motion, i.e., φ2 = φ3, such that spatial phase
ψlizard23 = 0.

Next, we seek to coordinate the standing wave body un-
dulation with the leg movement, which is characterized by
ψlizard12 . Following the steps in section II-B2, we can calcu-
late the height function on the two-dimensional shape space
composed of [φ1, φ2]T and then design the proper whole-
body coordination gait. The height function and the optimized
whole-body coordination gait for lizard-like body undulation is
shown in Fig 4b. To summarize, in lizard-like body undulation,
we have ψlizard12 = π, ψlizard13 = π and ψlizard23 = 0.

3) Optimal body undulation: In this subsection, we con-
sider the upper back and lower back as two independent sub-
system motions. With the methods described in section II-B2,

we can design the whole-body motion gait in the three-
dimensional sub-system motion phase space. Fig. 4c shows the
converged optimal gaits on their corresponding height func-
tions. In optimal body undulation, we have ψoptimal12 = 1.13π,
ψoptimal13 = 0.88π and ψoptimal23 = 0.25π. We observe that
spatial phase in optimal undulation ψoptimal23 is intermediate
between ψsnake23 and ψlizard23 .

The theory-predicted optimal body undulation for our robot
is neither traveling serpenoid wave nor standing wave. Instead,
the intermediate spatial space in the spectrum, from lizard-
like to snake-like, will maximize the forward displacement.
To verify our theory, we sampled the spectrum and tested the
the resulting whole-body motion on the robot experiments and
RFT simulation. Both robot experiments and RFT simulation
agree well with our theory prediction.

D. Visualization

In order to visualize the contribution from each individual
sub-system motion, we present a Venn diagram for sub-system
motions in Table I. There are three major sets: Pleg, contri-
bution from the leg movement (blue circle), Pup, contribution
from the upper back (red circle), and Plow, the contribution
from the lower back (yellow circle). The intersection of three
sets creates 4 additional regions (for a total of 7). The physical
meaning of each region is listed in Table I.

Note that regions 1, 3 and 6 are the contribution solely from
upper back, lower back and leg sub-system motion respec-
tively. The contribution solely from an individual sub-system
motion is a pre-computed constant, independent from any gait
we prescribe. Other regions, presenting the contribution from
coordination, are determined by the gait paths (characterize by
the phase offset ψ12, ψ13 and ψ23) we choose. In Table I, we
listed the dependence of each region on the phase offsets.

Following the steps in Section II-B3, we can visualize the
contribution from each region in Fig. 6. Note that in a motion
system with three sub-system motions, all the regions in the
Venn diagram can be visualized from the basic set operations.
From Fig. 6c and Fig. 6d, we observe that optimized body un-
dulation indeed leads to additional displacement by increasing
the self-propulsion from the leg-ground interaction, similar to
the role of lizard body undulation. On the other hand, Fig. 6a
suggests that the slight phase offset between upper back and
lower back, ψ23, can lead to additional displacement by self-
propulsion from body-leg interaction, similar to the role of
snake body undulation.

E. Results

In our robot experiments, we recorded the displacement of
the robot as it implemented the different gaits. In Fig. 5a, we
plotted the displacement as a function of gait percentage for
the snake-like, optimal body and lizard-like body undulation
gaits. In Fig. 5b, we plotted the displacement as a function of
spatial phase. Both simulation and robot experiments suggest
that our theoretically calculated optimal spatial phase will lead
to the largest displacement.



Venn Diagram Region Definition Physical meaning Determined by

1 Pup ∩ (Pleg ∪ Plow)C solely from UB -

2 (Pup ∩ Plow) ∩ PCleg from coordination of UB and LB ψ23

3 Plow ∩ (Pleg ∪ Pup)C solely from LB -

4 Plow ∩ Pleg ∩ Pup whole body coordination ψ12 and ψ13

5 (Pleg ∩ Plow) ∩ PCup from coordination of LB and legs ψ13

6 Pleg ∩ (Pup ∪ Plow)C solely from legs -

7 (Pleg ∩ Plow) ∩ PCup from coordination of UB and legs ψ12

TABLE I
DEFINITION AND PHYSICAL MEANING OF EACH OF THE REGIONS IN THE VENN DIAGRAM FOR OUR ROBOT.

Fig. 6. Visualization of the contribution from individual motion sub system and the contribution from the coordination. Each region in the Venn
diagram can be visualized by the surface integral over the corresponding height function.

We observe that the optimal body undulation spatial phase
decreases from π/2 to 0 for a robot with a long actuated
body and infinitesimal-sized legs (like a snake), a robot with
a long actuated body and intermediate-sized legs, and a robot
with a long actuated body and long legs (like a lizard). Such
spatial phase decreases could be associated with the changes
in leg sizes. We hypothesize that the evolution of leg size
(limblessness of snake) is associated with the changes in
their corresponding locomotion patterns. This framework may
provide insight into the hypothesis on the correspondence
between form and function [18].

IV. CONCLUSION

In this paper, we presented a new framework for design-
ing locomotion by coordinating motions of different sub-
systems, as well as visualizing the kinematics of the resulting
whole-body motion. Our framework allows us to design,
optimize, and visualize the whole-body motion. We applied
our framework to design a whole-body motion for quadrupedal
robots. A quadrupedal robot with a long actuated body and
infinitesimally small legs (snake-like) mainly utilizes its body-
ground interaction to generate self-propulsion. In contrast,
the quadrupedal robot with a long actuated body and long
legs (lizard-like) mainly unitizes its leg-ground interaction
to generate self-propulsion. Our quadrupedal robot, with a
long actuated body and intermediate-sized legs, combines
both approaches to coordinate the self-propulsion from both

body-leg interaction and leg-ground interactions to generate
efficient locomotion. Our theory-predicted optimized whole-
body motion agrees well with the presented robot experiments
and RFT simulation.

In future work, we will further explore the underlying link
between our hierarchical gait design framework and the way
animals have optimized their locomotion through evolution.
Specifically, we believe there could be interesting similarities
between our framework and the emergence of locomotion
patterns in certain quadrupeds (e.g., lizards, skinks), as well
as centipedes and millipedes. In doing so, we will study how
biological systems coordinate their HDoF motion systems and
adapt to different environments and leg/body morphologies.

Although this paper only considered cases where the hi-
erarchy had a depth of one (i.e., no sub-sub-systems), we
believe that our approach can be used recursively to optimize
locomotion for a robot decomposed into a deeper hierarchy
of sub-systems, sub-sub-systems, etc. Additionally, this frame-
work can also be applied to complex high-dimensional motion
systems where many sub-systems exist. For the future, we
will extend our work to study real-time motion planning in
response to possible sub-system failures. That is, when some
joints fail to be actuated, we envision that our framework will
be able to design a new whole-body motion in response to
these new constraints. Additionally, we will investigate how
our framework can be used to analyze animal locomotion with
numerous sub-systems in complex environments.
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