
This paper is included in the Proceedings of the
16th USENIX Symposium on Networked Systems

Design and Implementation (NSDI ’19).
February 26–28, 2019 • Boston, MA, USA

ISBN 978-1-931971-49-2

Open access to the Proceedings of the
16th USENIX Symposium on Networked Systems

Design and Implementation (NSDI ’19)
is sponsored by

Model-Agnostic and Efficient Exploration
of Numerical State Space of Real-World TCP

Congestion Control Implementations
Wei Sun and Lisong Xu, University of Nebraska-Lincoln;

Sebastian Elbaum, University of Virginia; Di Zhao, University of Nebraska-Lincoln

https://www.usenix.org/conference/nsdi19/presentation/sun

Model-Agnostic and Efficient Exploration of Numerical State Space of Real-World

TCP Congestion Control Implementations

Wei Sun1, Lisong Xu1, Sebastian Elbaum2, Di Zhao1

1Department of Computer Science and Engineering, University of Nebraska-Lincoln

Lincoln, NE, {wsun, xu, dzhao}@cse.unl.edu
2Department of Computer Science, University of Virginia

Charlottesville, Virginia, selbaum@virginia.edu

Abstract

The significant impact of TCP congestion control on the In-

ternet highlights the importance of testing the correctness

and performance of congestion control algorithm implemen-

tations (CCAIs) in various network environments. Many

CCAI testing questions can be answered by exploring the nu-

merical state space of CCAIs, which is defined by a group of

numerical (and nonnumerical) state variables of the CCAIs.

However, the current practices for automated numerical state

space exploration are either limited by the approximate ab-

stract CCAI models or inefficient due to the large space of

network environment parameters and the complicated rela-

tion between the CCAI states and network environment pa-

rameters. In this paper, we propose an automated numerical

state space exploration method, called ACT, which leverages

the model-agnostic feature of random testing and greatly im-

proves its efficiency by guiding random testing under the

feedback iteratively obtained in a test. Our experiments on

five representative Linux TCP CCAIs show that ACT can

more efficiently explore a large numerical state space than

manual testing, undirected random testing, and symbolic ex-

ecution based testing, while without requiring an abstract

CCAI model. ACT successfully detects multiple design and

implementation bugs of these Linux TCP CCAIs, including

some new bugs not reported before.

1 Introduction

TCP congestion control algorithms are crucial to Internet per-

formance and stability. We have seen many of them emerged

in the last decades [1, 6, 20, 43, 50], and we have witnessed

how billions of computers, servers, routers, smartphones,

and other Internet devices are affected, when new TCP Con-

gestion Control Algorithm Implementations (CCAIs) are de-

ployed, such as Linux CUBIC [20] and Windows Compound-

TCP [43]. That is why a significant effort is placed in testing

the correctness and performance of CCAIs in various net-

work environments [16].

1.1 Numerical state space exploration

In this paper, we focus on how to explore the numerical state

space S1 of a CCAI in various network environments. S is

defined by a group of numerical state variables of the CCAI,

such as congestion window size (cwnd), slow start thresh-

old (ssthresh), and smoothed round-trip time (RTT, rtt). S

may also have some additional nonnumerical state variables,

such as the Linux TCP variable ca_state whose value indi-

cates the current status of CCAI (e.g., 0:normal, 3:recovery,

4:timeout) but does not have numerical meanings. Space S

contains all possible combinations of the values of the state

variables, and each point in S is called a state or state vector.

Exploring S aims to answer questions like the following.

Motivating Example 1: Does Linux CUBIC increase its

cwnd appropriately in various network environments? The

aggressiveness of CUBIC is determined by its state vari-

able target [20], which is the expected congestion window

size after one RTT. It is typically expected [15] that a

CCAI increases its cwnd less aggressively in the conges-

tion avoidance stage (i.e., when cwnd > ssthresh) than in

the slow start stage (i.e., when cwnd ≤ ssthresh) where it

doubles its cwnd every RTT. This requirement can be tested

by answering a numerical state space exploration question:

does Linux CUBIC ever visit any states satisfying the condi-

tion cwnd > ssthresh (i.e., congestion avoidance stage) and

target > 2× cwnd (i.e., more aggressively)?

Motivating Example 2: Does a Linux CCAI appropriately

decrease its cwnd during fast recovery in various network

environments? It is typically expected [2] that a CCAI de-

creases its cwnd in fast recovery when a congestion is de-

tected (e.g., three duplicate ACKs). For example, CUBIC

decreases its cwnd to 0.7 ∗ prior_cwnd and AIMD2 [2] to

0.5∗ prior_cwnd right after a fast recovery, where state vari-

able prior_cwnd is the congestion window size right before

the fast recovery. This requirement can be roughly tested

1S is not to be confused with the TCP connection management state

space [10] such as LISTEN, SYN-SENT, and CLOSED.
2Additive Increase Multiplicative Decrease of Reno and NewReno

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 719

by answering a numerical state space exploration question:

does a Linux CCAI ever visit any states satisfying the con-

dition previous_ca_state == 3 and ca_state == 0 (i.e., just

finished fast recovery) and cwnd ≥ prior_cwnd (i.e., no win-

dow decrease at all)?

Similar to these two motivating examples, many CCAI re-

quirements can be tested if we can explore the S of a CCAI

in various network environments. Specifically, in this paper,

we consider the numerical state space exploration problem:

how to automatically sample a network environment param-

eter space P in order to efficiently visit as many as different

regions of S within a given amount of testing time? Space

P contains the parameter values of all possible network envi-

ronments that a tester needs to check, and each point in P is

called a network environment or network environment param-

eter vector. A region of S contains a group of nearby states

in S, and is defined and discussed in Section 2.1.

1.2 Challenges

The numerical state space exploration problem, however, is

challenging to solve. The first challenge is that space P is

usually too large to check exhaustively. For example, sup-

pose that a tester is testing a CCAI using a simple network

topology with a single link, where the packet loss rate param-

eter is in the range of [0%, 10%] with a granularity of 10−6,

the link bandwidth parameter is in the range of [0.1, 10000]

Mbps with a granularity of 0.1 Mbps, and the packet delay

parameter is in the range of [0, 1000] ms with a granularity

of 1 ms. The P of this simple example already contains about

1013 possible network environments (i.e., combinations).

The second challenge is that the mapping from the P to S

of a CCAI is usually very complicated so that it is difficult

to directly find a network environment in P that can lead the

CCAI to visit certain regions in S. 1) A real-world CCAI,

such as Linux CUBIC, involves multiple intertwined com-

ponents contributed by tens of developers spanning tens of

years. Many state variables, such as cwnd, are affected by

multiple components, such as slow start, congestion avoid-

ance, fast recovery, timeout, and undo components. 2) This

is exacerbated by the fact that many states in a large S can

be visited only after a large number of packets. For example,

thousands of packets are needed in order to increase cwnd

and ssthresh to over thousands of packets. That is, the ex-

ploration path from the start state to a final state may contain

thousands of intermediate states. 3) There are currently no

complete abstract models (e.g., state machines, or high-order

logic) of real-world TCP implementations capturing all state

variables and all components of the CCAIs, because they are

very challenging to develop and verify. For example, a rel-

atively complete TCP model [3] took several man-years of

effort and deals with only the traditional AIMD.

Because of the unknown mapping from a large P to a large

S, it is hard to efficiently explore S by either randomly or sys-

tematically sampling P and it is challenging to answer gen-

eral numerical state space exploration questions, like the mo-

tivating examples.

1.3 Our contributions

We propose an Automated Congestion control Testing

method, called ACT, to model-agnostically and efficiently ex-

plore a general numerical state space S of real-world CCAIs

for a given P. ACT belongs to the class of feedback-guided

random testing methods [28] or guided fuzzing methods [51]

used in the software testing and verification community.

While the general idea of feedback-guided random testing

or guided fuzzing is not new, to the best of our knowledge,

our work is the first one to use it in automatically explor-

ing a large S of a CCAI. Specifically, ACT randomly se-

lects network environments in a large P to explore a large

S, and the random selection of new network environments is

guided by the feedback iteratively obtained from the region

coverage information of previously selected network environ-

ments. We propose two novel types of feedback to explore

the low-probability regions of S: 1) parameter estimation to

explore the low-probability regions due to the unknown non-

linear mapping from P to S, 2) parameter concatenation to

explore the low-probability regions due to the correlation

among the state variables of S. Intuitively ACT randomly

samples in P but favoring those network environments that

are more likely to explore different regions of S. By doing

so, ACT is scalable to a large P (i.e., first challenge) and does

not require an abstract CCAI model (i.e., second challenge).

Our contributions are threefold. First, we propose an

automated and model-agnostic method, ACT, which can ef-

ficiently explore a large S for a large P without requiring an

abstract CCAI model, and then output the states satisfying

the specified conditions along with the concrete data neces-

sary to deterministically reproduce the detected states.

Second, we present an ACT implementation using the

widely used network simulator NS3 with Direct Code Exe-

cution (DCE) [44] to execute the original Linux networking

stack. It can be easily used for testing, debugging, and study-

ing the correctness and performance of real-world CCAIs in

various reproducible and controllable network environments.

Third, we conduct a family of experiments on five repre-

sentative Linux TCP CCAIs showing that ACT can more ef-

ficiently explore different regions of S than manual testing,

undirected random testing, and symbolic execution based

testing. ACT successfully detects multiple design and im-

plementation bugs of these CCAIs, including several new

bugs not reported before. For example, ACT finds that Linux

CUBIC (current default) sometimes misjudges the network

congestion and then mistakenly aggressively increases its

throughput (i.e., motivating example 1). ACT also detects

that Linux AIMD (previous default) sometimes mistakenly

doubles its throughput right after a fast recovery (i.e., moti-

vating example 2) or suddenly increases its throughput to an

extremely large number.

720 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

2 Design of ACT

2.1 Regions of numerical state space S

Intuitively, a region of S contains a group of nearby states

all satisfying or not satisfying a specified condition, and a

region is visited if at least one state of the region is visited.

We attempt to explore different regions of S instead of dif-

ferent individual states because of two unique properties of

numerical state variables. 1) Because numerical state vari-

ables usually have a large number of possible values, the S

of a CCAI is usually prohibitively large (e.g., in the order of

1011 states in our experiments). As a result, it is impossible

to visit each individual state in S in any reasonably amount

of testing time. 2) For a numerical state space exploration

problem (e.g., the two motivating examples), there are usu-

ally one or multiple regions of nearby states (instead of only

a single state) all satisfying the same condition. As long as

we find at least one state in these regions (i.e., one counterex-

ample), we can answer the exploration problem.

The shape and the size of a region might depend on the

CCAIs, S, P, and the specified conditions. Without mak-

ing any special assumption and for the sake of simplicity, we

divide S into equal-sized non-overlapping regions of size k.

Specifically, the range of each numerical state variable is di-

vided into equal-sized intervals with size k, and the range

of each nonnumerical state variable (if any) is divided into

intervals with size 1. A region contains all the states with

each state variable in the same interval. For example, let’s

consider a 2-dimensional S = {(cwnd,ssthresh) | cwnd ∈
[1,1024], ssthresh ∈ [1,1024]}. If k = 512, S is divided

into 4 equal-sized non-overlapping regions S = R1(512)∪
R2(512) ∪ R3(512) ∪ R4(512), where Ri(k) denotes the

i-th region when the region size is k. For instance,

R1(512) = {(cwnd,ssthresh) | cwnd ∈ [1,512], ssthresh ∈
[1,512]}, and R4(512) = {(cwnd,ssthresh) | cwnd ∈
[513,1024], ssthresh ∈ [513,1024]}. In the extreme case of

k = 1, S is divided into 1024× 1024 = 1,048,576 regions

R1(1),R2(1), ...,R1048576(1), each containing only one state.

In another extreme case of k = 1024, the whole S is a single

region R1(1024) = S.

Without making any special assumptions about the CCAIs,

S, P, and the specified conditions, we do not consider a spe-

cific region size k. Instead, we attempt to explore as many

as different regions for all possible k values within a given

amount of testing time.

Note that, it is reasonable to group nearby states of S into

regions, but it is not reasonable to group nearby network en-

vironments of P. This is because even a tiny difference be-

tween two network environments may lead to significantly

different CCAI behaviors. For example, two packet loss rates

of 10−5 and 10−6 with a tiny difference with respect to a pa-

rameter range [0%,10%] lead to about six times of different

throughputs for CUBIC [20].

init state

P S

s1

s2

p1

p2

a network

environment

p

Figure 1: A network environment −→p ∈ P leads a CCAI to

visit a sequence of states in S.

2.2 Numerical state space exploration

Each network environment −→p ∈ P leads a CCAI to visit a

sequence of states in S starting from the initial state, as illus-

trated in Fig. 1 using a two-dimensional P = {(p1, p2)} and

two-dimensional S = {(s1,s2)}. In a network simulation, the

sequence of visited states depends not only on −→p but also a

random seed e, which are collectively referred to as a simula-

tion configuration G = (e,−→p). The simulation results (e.g.,

visited states) are deterministic for a given G.

The numerical state space exploration problem is given

a number N, how to select N simulation configuration G’s

in order to maximize coverage(S,k) for any k ≥ 1, where

coverage(S,k) is the percentage of visited regions of S when

the region size is k.

max
N selected G′s

coverage(S,k) ∀ k ≥ 1 (1)

Note that we attempt to maximize coverage(S,k), instead

of exploring only a specific region of S for a specific condi-

tion that is nevertheless very challenging too. This is because

state space exploration is time consuming, and it is more con-

venient to explore S once and then use the explored S to an-

swer multiple different questions for the same S.

We say that a testing method is more efficient than another

one, if given the same N, the coverage(S,k) of the former is

higher than or equal to that of the latter for any k≥ 1. In this

and next sections, we propose ACT to solve the numerical

state space exploration problem, and in Section 4 we empiri-

cally evaluate the efficiency of ACT by comparing with other

related exploration methods.

The design of ACT is based on the following theorem,

where |S| denotes the total number of states in S. The proof

is shown in the appendix.

Theorem 1 Among all state exploration methods that visit

state i ∈ [1, |S|] with probability qi, the exploration method

with qi = q j for ∀i, j ∈ [1, |S|] maximizes coverage(S,k) for

any k ≥ 1.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 721

2.3 Feedback-guided random testing

Theorem 1 shows that the optimal exploration method should

uniformly visit the states. While it is hard or impossible to

design such an optimal exploration method, we attempt to de-

sign a method that visits as large as a fraction of S as possible

within a limited testing time budget, instead of thoroughly

visiting certain regions.

Our proposed ACT is based on undirected random test-

ing [41] that randomly samples P accordingly to a distribu-

tion, because it is scalable to a large P and does not require

an abstract model of a CCAI. Without making any special

assumptions about the CCAIs, S, P, and the specified condi-

tions, ACT uses the simple uniform distribution for the undi-

rected random testing. However, because of the unknown

and complicated mapping from P to S, undirected random

testing tends to repeatedly visit the high-probability regions

of S and thus is inefficient in covering different regions of

S. In other words, uniformly sampling P does not lead to

uniform coverage of S.

ACT leverages the model-agnostic feature of undirected

random testing, and greatly improves the region coverage

of S by guiding random testing under the feedback itera-

tively obtained in the test. Thus, ACT belongs to the class

of feedback-guided random testing [28] or guided fuzzing

methods [51]. We have identified two major reasons that

undirected random testing has low probabilities to visit cer-

tain regions of S, and correspondingly propose two types of

feedback to visit these low-probability regions of S: 1) pa-

rameter estimation to visit the low-probability regions due to

the unknown nonlinear mapping from P to S, 2) parameter

concatenation to visit the low-probability regions due to the

correlation among different state variables of S.

2.4 Parameter estimation

One reason that undirected random testing has low probabili-

ties to visit some regions of S is the unknown nonlinear map-

ping from P to S. For example, let’s consider packet loss rate

parameter loss in the range of [0%, 10%] and state variable

cwnd in the range of [1, 1024] packets for AIMD. The aver-

age cwnd of AIMD is greater than 379 packets if loss is lower

than 10−5 [15]. If loss is uniformly distributed in [0, 10%],

the probability that cwnd > 379 is approximately lower than

0.01%, and thus the regions with cwnd > 379 have very low

probabilities to be visited. With an unknown nonlinear map-

ping from P to S, it is impossible for undirected random test-

ing with any specific distribution (not just uniform) to uni-

formly visit different states of S.

Parameter estimation attempts to visit the low-probability

regions due to the unknown nonlinear mapping from P to S.

Specifically, for an unvisited state
−→
s∗ ∈ S, it attempts to find

a network environment
−→
p∗ such that the tested CCAI is likely

to visit region R(
−→
s∗ ,k), which is the region of state

−→
s∗ when

the region size is k. ACT starts with the smallest region size

P S

s1

s2

p1

p2

p
b

p*p
a

s
a

s* s
b

Figure 2: Interpolation finds
−→
p∗ using

−→
pa and

−→
pb to cover

the unvisited gap (e.g., the region of state
−→
s∗) between two

visited regions (e.g., the regions of
−→
sa and

−→
sb).

P S

s1

s2

p1

p2

directions to

decrease s2 s
c

p* s*

p
c

Figure 3: Extrapolation finds
−→
p∗ using

−→
pc to visit an unvisited

corner or side of S (e.g., the region of
−→
s∗ below the region of

−→
sc). The directions to decrease s2 are for illustration purpose.

k = 1 to find
−→
p∗, if not successful, it gradually doubles k until

it finds
−→
p∗.

Parameter estimation is illustrated in Figs. 2 and 3 where

shaded areas indicate the regions already visited by undi-

rected random testing. The pseudo-code of parameter esti-

mation is given in Method 1. Basically, for an unvisited state
−→
s∗ , we find a new network environment

−→
p∗ using either the

interpolation or extrapolation of the past selected network en-

vironments. Interpolation is used to cover the unvisited gap

between two visited regions in S, such as state
−→
s∗ in Fig. 2,

and extrapolation is used to cover an unvisited corner or side

of S, such as state
−→
s∗ in Fig. 3.

To implement parameter estimation, each state−→s ∈ S is as-

sociated with a pool of simulation configurations. Each sim-

ulation configuration G = (e,−→p) contains the random seed e

and the network environment −→p of a simulation that visited

state −→s . An unvisited state has an empty pool, and a visited

state may have multiple simulation configurations if it has

been visited multiple times by different simulations.

As an example of interpolation, for state
−→
s∗ in Fig. 2,

ACT randomly finds a pair of states
−→
sa and

−→
sb so that region

R(
−→
s∗ ,k) lies in between R(

−→
sa ,k) and R(

−→
sb ,k) for the small-

est possible k. In order to visit R(
−→
s∗ ,k), ACT estimates

−→
p∗

722 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Method 1 Parameter estimation to find a G∗ for
−→
s∗

1: function ESTIMATION(
−→
s∗)

2: e∗ ← randomly selected random seed

3: for region size k← 1; ; k← 2× k do

4: // First try interpolation

5: find a pair of states
−→
sa and

−→
sb such that R(

−→
s∗ ,k) lies in

between R(
−→
sa ,k) and R(

−→
sb ,k).

6: if find at least one pair of
−→
sa and

−→
sb then

7: randomly and uniformly select one pair

8: Ga ← randomly and uniformly select one from the

pool of simulation configurations associated with
−→
sa

9:
−→
pa ← the network environment in Ga for

−→
sa

10:
−→
pb ← similarly a network environment for

−→
sb

11: for i from 1 to dim(P) do

12: p∗i ← random(pa
i , pb

i)

13: return G∗← (e∗,
−→
p∗)

14: // If interpolation fails, then do extrapolation

15: find state
−→
sc such that R(

−→
sc ,k) and R(

−→
s∗ ,k) differ in

only one state variable.

16: if find at least one state
−→
sc then

17: randomly and uniformly select an
−→
sc

18:
−→
pc ← a network environment for

−→
sc

19: j ← the state variable index that R(
−→
sc ,k) and

R(
−→
s∗ ,k) differ

20: for i from 1 to dim(P) do

21: if
ds̄ j

d pi

∣

∣

∣−→
pc

and s∗j − sc
j have same sign then

22: p∗i ← random(pc
i , max)

23: else if different signs then

24: p∗i ← random(min, pc
i)

25: else ⊲ zero gradient

26: p∗i ← random(min, max)

27: return G∗← (e∗,
−→
p∗)

using the interpolation of the parameter vectors
−→
pa and

−→
pb of

the pair of states. The interpolation is implemented by lines

4 to 13 of the pseudo-code. Because ACT does not make

any assumption about the mapping from P to S, it randomly

and uniformly selects a network environment
−→
p∗ within the

range of
−→
pa and

−→
pb instead of possibly a linear or some other

interpolations.

As an example of extrapolation, for state
−→
s∗ in Fig. 3, ACT

randomly finds one state
−→
sc lying beside

−→
s∗ so that their re-

gions R(
−→
sc ,k) and R(

−→
s∗ ,k) differ only in one state variable,

say state s j with j ∈ [1,dim(S)], where dim(S) denotes the

dimension of S. That is, state
−→
sc and

−→
s∗ have a major dif-

ference only in s j, and have similar other state variables. In

order to visit R(
−→
s∗ ,k), ACT estimates

−→
p∗ using the extrapo-

lation of network environment
−→
pc (i.e., lines 14 to 27 of the

pseudo-code). Specifically, the extrapolation estimates
−→
p∗ by

P S

s1

directions to

decrease s2

s2

p1

p2

init state

s
d

p* s*

p
d

s
+

Figure 4: If s1 and s2 are positively correlated,
−→
p∗ estimated

by extrapolation leads to not only a smaller s2 but also a

smaller s1, and thus visits the region of
−→
s+ instead of

−→
s∗ .

P S

s1

s2

p1

p2

init state

s
d

p* s*

p
d

s
+

Figure 5: Parameter concatenation visits the region of
−→
s∗ by

first following the path from the initial state to state
−→
sd using

−→
pd , and then the path from state

−→
sd to state

−→
s+ using

−→
p∗.

increasing or decreasing each parameter of
−→
pc based on the

impact of that parameter on state variable s j. The impact

of a parameter pi (i ∈ [1,dim(P)]) on s j is measured using

the gradient of s̄ j with respect to pi, where s̄ j is the aver-

age of all visited s j values in a simulation and is defined as

s̄ j =
1
T

∫ T
0 s j(t)dt with T as the simulation time. The gradient

at
−→
pc is estimated using the simulation results of undirected

random testing. For example, states
−→
s∗ and

−→
sc in Fig. 3 dif-

fer mainly in state variable s2, and specifically state
−→
s∗ has a

smaller s2 than state
−→
sc . Then extrapolation estimates

−→
p∗ by

randomly adjusting
−→
pc in the directions to decrease s2.

2.5 Parameter concatenation

We notice that some regions of S have low probabilities to

be visited by both undirected random testing and parameter

estimation because of the correlation among the state vari-

ables of S. For example, state variables cwnd and ssthresh

are positively correlated due to the window reduction at each

congestion event (i.e., three duplicate acknowledgements),

where ssthresh is set to a certain fraction of cwnd (e.g., CU-

BIC: ssthresh = 0.7∗ cwnd, AIMD: ssthresh = 0.5∗ cwnd).

Because of this positive correlation, regions with very high

cwnd values but very low ssthresh values and regions with

very low cwnd values but very high ssthresh values have low

probabilities to be visited by both undirected random testing

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 723

and parameter estimation.

Let’s use states
−→
s∗ and

−→
sd in Fig. 4 to illustrate why extrap-

olation does not work if there is a strong positive correlation

between s1 and s2. Because
−→
s∗ has a smaller s2 than

−→
sd , ex-

trapolation estimates
−→
p∗ by randomly adjusting network en-

vironment
−→
pd in the directions to decrease s2. However, be-

cause of the positive correlation between s1 and s2,
−→
p∗ leads

to not only a smaller s2 but also a smaller s1. As illustrated

in Fig. 4,
−→
p∗ leads the tested CCAI to visit the region of state

−→
s+ by following the path from the initial state to

−→
s+, instead

of visiting the expected region of
−→
s∗ .

Parameter concatenation attempts to visit the low-

probability regions due to the state variable correlation. It

is illustrated in Fig. 5 where the shaded area indicates all the

region visited by the undirected random testing and parame-

ter estimation. The pseudo-code is given in Method 2. Ba-

sically, parameter concatenation runs a network simulation

with a list of network environments at different time periods

in order to visit the unvisited region of state
−→
s∗ .

To implement parameter concatenation, we extend the sim-

ulation configurations used in parameter estimation. A sim-

ulation configuration associated with state
−→
sd is changed to

Gd = (e,
−→
pd1 , t1,

−→
pd2 , t2,,

−→
pdn , tn), which means state

−→
sd was

visited by a simulation with random seed e, network environ-

ment
−→
pd1 from the beginning to time t1,

−→
pd2 to time t2, ..., and

finally
−→
pdn visiting state

−→
sd at time tn. The visiting time tn is

added to the configuration by ACT during the simulation.

Parameter concatenation runs a network simulation using

both the previous network environments
−→
pd1 ,
−→
pd2 ,...,

−→
pdn of

−→
sd and the new network environment

−→
p∗ estimated by extrap-

olation. At time tn when the simulation just visits state
−→
sd ,

parameter concatenation changes the current network envi-

ronment from
−→
pdn to

−→
p∗. As illustrated in Fig. 5, such a list

of network environments lead the tested CCAI to first visit

state
−→
sd by following the path from the initial state to

−→
sd , and

then visit state
−→
s+ by following the path from

−→
sd to

−→
s+.

The path from
−→
sd to

−→
s+ in Fig. 5 may possibly visit new

regions, such as the region of
−→
s∗ , which are not visited by

the path from the initial state to
−→
s+ in Fig. 4 for two reasons.

First, although both paths finally reach the same state
−→
s+ that

is determined by network environment
−→
p∗, they have differ-

ent starting states and thus go through different paths.

Second, we observe that two state variables may be corre-

lated strongly only over a long time scale but not in a short

time scale. For example, over a long time scale, such as

spanning multiple window reductions, cwnd and ssthresh are

strongly correlated. But in a short time scale, such as within

a congestion avoidance stage between two window reduc-

Method 2 Parameter concatenation to find a G∗ for
−→
s∗

1: function CONCATENATION(
−→
s∗)

2: for region size k← 1; ; k← 2× k do

3: find state
−→
sc such that R(

−→
sd ,k) and R(

−→
s∗ ,k) differ in

only one state variable

4: if find at least one state
−→
sd then

5: randomly and uniformly select an
−→
sd

6: Gd ← randomly and uniformly select one from the

pool of simulation configurations associated with
−→
sd

7:
−→
pdn ← the last parameter vector in Gd

8: j ← the state variable index that R(
−→
sd ,k) and

R(
−→
s∗ ,k) differ

9: for i from 1 to dim(P) do

10: if
ds̄ j

d pi

∣

∣

∣−→
pcn

and s∗j − sd
j have same sign then

11: p∗i ← random(p
dn

i , max)

12: else if different signs then

13: p∗i ← random(min, p
dn

i)

14: else ⊲ zero gradient

15: p∗i ← random(min, max)

16: G∗ ← append
−→
p∗ to end of Gd

17: return G∗

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 2 4 8 16 32 64 128 256 512

C
o
r
r
e
la

ti
o
n

Time scale (Every n−th ACKs)

Figure 6: The longer the time scale, the stronger the positive

correlation between cwnd and ssthresh.

tions, they are weakly correlated in that only cwnd changes

and ssthresh remains unchanged. For example, Fig. 6 shows

the positive correlation between cwnd and ssthresh becomes

stronger as the time scale n increases. Specifically, the Pear-

son’s correlation coefficient is measured in a sliding window

of 10 pairs of cwnd and ssthresh sampled every n-th ACKs in

a simulation and averaged over 30,000 simulations. Because

of the strong correlation between s1 and s2 in a long time

scale, both the path from
−→
sd to

−→
s+ in Fig. 5 and the path from

the initial state to
−→
s+ in Fig. 4 reach the same state

−→
s+, which

has both a smaller s1 and a smaller s2 than
−→
sd . But because

of the weak correlation in a short time scale, the path from
−→
sd to

−→
s+ in Fig. 5 may possibly visit the region of

−→
s∗ where

only s2 is changed.

724 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 7: The ACT testing platform consists of three compo-

nents: the existing network simulator NS3+DCE, our auto-

mated parameter selector, and automated rule checker.

3 Implementation of ACT

3.1 Testing platform

The ACT testing platform as illustrated in Fig. 7 takes as the

input a list L of CCAIs, a state space S of the CCAIs, a net-

work topology T, a network environment parameter space P

for the topology, and a set C of state conditions to check.

It automatically outputs the states satisfying the conditions

along with specific network environments and other data nec-

essary to deterministically reproduce the detected states.

The platform consists of three components. 1) A network

simulator simulates CCAI flows of L in a network described

by topology T and simulation configuration G that includes a

random seed e and one or multiple network environments in

P. We choose the widely used NS3 enabled with DCE [44],

which can execute the original Linux networking stack in re-

producible and controllable network environments. The out-

put of each simulation is a trace of the timestamped CCAI

state variables. 2) The automated parameter selector auto-

matically selects network environments in P and generates

the next simulation configuration G based on the feedback of

the region coverage of the previously selected network envi-

ronments. 3) The automated condition checker automatically

checks whether any visited states satisfy the conditions in C.

3.2 Test input

A test input is a 5-tuple (L, T, P, S, C). CCAI list L =
(l1, l2, ..., lm) with m≥1 indicates the CCAIs of a total of m

tested CCAI flows, where li with i ∈ [1,m] is the CCAI of

the i-th tested CCAI flow. That is, ACT can be used to test

not only a single CCAI flow, but also the interaction among

multiple different/same CCAI flows. Network topology T

describes the topology (e.g., the total number of nodes and

the routing information) of the tested network environments

in which the m tested CCAI flows run. Leveraging the pow-

erful NS3, our testing platform supports various types of net-

work topologies, such as a single link, the dumbbell topology,

and the parking lot topology. Network environment param-

eter space P describes the parameter ranges of the network

topology T. Each point −→p ∈ P is a network environment

parameter vector −→p = (p1, p2, ...) (also called network envi-

ronment), where pi with i ∈ [1,dim(P)] is a network envi-

ronment parameter. CCAI state space S describes the possi-

ble states of the tested CCAI flows. Each point −→s ∈ S is a

state vector −→s = (s1,s2, ...) (also called state), where si with

i ∈ [1,dim(S)] is a numerical or nonnumerical state variable

of a CCAI in L. C contains a set of the conditions of the state

variables of the CCAIs, and is implemented as a script that

reads and analyzes the simulation traces generated by NS3.

Different CCAI tests may need different test inputs. For

example, a throughput test checks only a single CCAI flow

whereas a fairness test checks multiple CCAI flows, and thus

their test inputs have different L’s. Also the same CCAI state

conditions may be used for different test inputs, for example,

with different network topologies and/or parameter spaces.

This paper focuses on the testing methods, and does not con-

sider the design of comprehensive test inputs for CCAIs.

3.3 Test output

After a test, the testing platform reports all detected states

satisfying the conditions. For each detected state, it outputs

the corresponding simulation configuration G, which can be

used to deterministically reproduce the detected state using

NS3. In addition, it outputs the percentage of the regions

covered in the test.

3.4 ACT method

ACT has the following four steps.

Step 1, undirected random testing repeatedly simulates

CCAIs of L in a network specified by T and G = (e,−→p) with

randomly selected seed e and uniformly selected −→p ∈ P, un-

til the coverage saturates. The goal of this step is not only to

have an initial coverage of the state space, but also to profile

the mapping from P to S to estimate the gradients used in pa-

rameter estimation and concatenation. Without making any

assumptions for L, T, P, and S, ACT uses the simple uniform

distribution for the undirected random testing.

Step 2, parameter estimation iteratively simulates CCAIs

in a network specified by T and G∗=Estimation(
−→
s∗) for a uni-

formly selected unvisited state
−→
s∗ ∈ S, until the coverage sat-

urates. This step is used to improve the coverage of the low-

probability regions due to the unknown nonlinear mapping

from P to S.

Step 3, parameter concatenation iteratively sim-

ulates CCAIs in a network specified by T and

G∗=Concatenation(
−→
s∗) for a uniformly selected unvis-

ited state
−→
s∗ ∈ S, until the coverage saturates. This step is

used to improve the coverage of the low-probability regions

due to the state variable correlation.

Step 4, condition checking reports all visited states in S

satisfying the conditions in C.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 725

ACT checks the coverage saturation using two parameters:

saturation size κ and threshold δ. The coverage has reached

saturation if the growth rate of coverage(S,κ) is lower than δ.

Note that, these two parameters are used only to determine

the total testing time, and ACT still attempts to maximize

coverage(S,k) for all possible k values within that testing

time. Smaller κ and δ increase coverage(S,k) for all k values

but require longer testing times.

4 Experiments

4.1 General setup

We consider five representative CCAIs of Linux kernel 3.10:

the traditional AIMD [2], the current Linux default CU-

BIC [20], HTCP [33] as a time-based CCAI, HSTCP [15] as

a high-speed CCAI, and VENO [17] as a delay-based CCAI.

We choose Linux kernel 3.10 for two reasons. First, this

is the Linux kernel extensively tested with DCE-enhanced

NS3 [44], and thus we can minimize the impact of the poten-

tial DCE-enhanced NS3 bugs on our experiments. Second,

all the tested CCAIs were initially developed before 2005,

and their implementations were already relatively stable in

Linux kernel 3.10 that was released in 2013. For all the ex-

periments, we use the default TCP parameters of Linux ker-

nel 3.10, except that the maximum buffer size is increased to

not limit the TCP throughput.

Each CCAI has a default test input, which is mainly used

for comparing the region coverage of different testing meth-

ods, so it does not have any conditions in C. The default

test inputs for different CCAIs are the same, except dif-

ferent L. For example, the default test input for CUBIC

has L = (CUBIC), and the default test input for AIMD has

L = (AIMD). In every default test input, the network topol-

ogy T has a single (virtual) link, which is simple and yet

very powerful in simulating various network environments

with random packet dynamics in terms of packet bandwidth,

delay, loss, and reordering. The network environment pa-

rameter space P contains all possible network environments
−→p = (p1, p2, p3, p4, p5, p6), with random packet loss rate

p1 ∈ [0%,10%] with granularity 10−6, link bandwidth p2 ∈
[0.1,10000] Mbps with granularity 0.1 Mbps, link delay p3 ∈
[1,1000] ms with granularity 1 ms, random queuing delay

following a Gamma distribution [26] with shape parameter

p4 ∈ [0,20] and scale parameter p5 ∈ [0,80] both with gran-

ularity 0.01, and application rate p6 ∈ [0.001,10000] Mbps

with granularity 0.1 Mbps. The ranges of the parameters are

selected to cover most of possible Internet conditions.

In every default test input, the state space S contains all

possible states −→s = (s1,s2,s3,s4,s5), where s1 is the con-

gestion window size variable cwnd ∈ [1,1024] packets with

granularity 1 packet, s2 is the slow start threshold variable

ssthresh ∈ [1,1024] packets with granularity 1 packet, s3 is

the smoothed RTT variable rtt ∈ [0,2048] ms with default

Linux granularity 4 ms, s4 is the smoothed RTT deviation

variable rttvar ∈ [0,1024] ms with granularity 4 ms, and s5

is the congestion avoidance state variable ca_state ∈ [0:nor-

mal, 1:disorder, 2:cwr, 3:recovery, 4:timeout]. These vari-

ables are the basic CCAI state variables, and are maintained

in the tcp_sock structure in the Linux kernel. The ranges

of these state variables are selected to cover most of possi-

ble TCP states in the Internet, except that cwnd and ssthresh

could be even larger for ultra-high-speed networks. In addi-

tion to these basic state variables, more state variables can be

added into S depending on the tested conditions, such as con-

gestion window size prior_cwnd right before fast recovery,

and CCAI-specific variables like target for CUBIC.

In each experiment, each tested CCAI flow transfers a long

file of size 15 MBytes, which is selected to be long enough

to generate tens of thousands of packets so that all CCAIs

can possibly increase their cwnd and ssthresh to over 1024

packets (i.e., their ranges in S).

4.2 Evaluation: region coverage

We compare the region coverage of ACT with manual testing

(MAN) and with other model-agnostic methods: undirected

random testing (RAN) and symbolic execution based testing

(SYM). We are unable compare ACT with model-guided

methods, because there is no abstract model that can capture

all state variables used in our experiments.

Methods: ACT: For each default test input, ACT runs

DCE-enhanced NS3 simulations with the following satura-

tion parameter values: κ=128, and δ=1.5% per 5000 simu-

lation runs. That is, the coverage has reached saturation if

the growth rate of coverage(S,128) is slower than 1.5% per

5000 simulation runs. These parameter values are selected

so that ACT can finish every test in about three days.

MAN: For each default test input, MAN repeatedly runs

simulations with our manually selected network environ-

ments, which are similar to those selected for the response

function test in a representative CCAI test [24]. Specifically,

we consider packet loss rates p1=0, 10−6, 10−5, ..., and 10−1,

bandwidths p2=1, 10, 100, and 250 Mbps, link delays p3=8,

20, 40, 80, and 160 ms, queuing delay shape values p4=1

and 2.5 and scale values p5=0, 1, and 10, and application

rate p6=10000 Mbps. There are a total of 840 network en-

vironments (i.e., combinations), and MAN repeatedly runs

simulations with these network environments with different

random seeds for the same total number of times as ACT.

RAN: For each default test input, RAN repeatedly runs

simulations with uniformly and randomly selected network

environments for the same total number of times as ACT.

SYM: Symbolic execution based testing [40, 46] executes

the network simulator using symbolic execution platforms,

where the packet dynamics (e.g., delay) are represented us-

ing symbolic variables with ranges defined according to P.

Because DCE-enhanced NS3 is a huge system where each

simulated network node runs a virtualized Linux networking

stack, we symbolically execute the simulations using a pow-

726 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

erful symbolic execute platform S2E [8], which is capable of

symbolically testing a virtual machine. We find that SYM

systematically checks all possible TCP behaviors including

congestion control behaviors and non-congestion-control be-

haviors, such as all possible retransmissions and consecutive

timeouts of the data packets, and all possible ways to estab-

lish and terminate a connection. As a result it can only test a

TCP flow for a small file size of a few KBytes within three

days instead of the expected 15-MByte file size, and thus it

can only increase cwnd by a few packets that is far below our

expected 1024 packets.

Result: We show the results of only CCAI L = (CUBIC)
in Fig. 8, and the results of other CCAIs are similar. Fig. 8

shows the coverage(S,k) results of ACT, RAN, and MAN,

which are measured by the percentages of visited regions

with size k. The region coverage of SYM is too low (lower

than all others) and not shown in the figure. As k increases,

the size of a region increases and the total number of regions

in S decreases, and thus the region coverages of all methods

increase. As an extreme case, when k= 1024, the whole state

space S is treated as a single region, and thus all three meth-

ods achieve 100% coverage. It is interesting that MAN is

more efficient (i.e., higher or the same coverage) than RAN

for big regions but not for small ones. This is because the

network environments used in MAN are representative net-

work environments in P selected by TCP experts [24], and

thus MAN covers a broader range of states than RAN. As

a result, MAN is more efficient than RAN for big regions

(i.e., k > 4). However, MAN has only a limited number of

network environments (i.e., 840), and thus covers a smaller

number of distinct states than RAN. As a result, MAN is less

efficient than RAN for small regions (i.e., k≤ 4). We can see

that ACT is more efficient than MAN, RAN, and SYM for all

possible region sizes. Note that ACT achieves high coverage

without requiring an abstract CCAI model.

Figs. 9 and 10 show the growth of coverage(S,2) and

coverage(S,128), respectively. When k = 2, there are a to-

tal of about 1010 regions and all three methods achieve very

small coverage percentages in three days. When k = 128,

there are a total of 2048 regions and then all three methods

achieve higher coverage percentages. We can see that ACT

covers slightly more small regions (i.e., k = 2) than RAN,

but significantly more big regions (i.e., k = 128) than RAN.

This is because ACT uniformly selects unvisited states in S

and thus is more likely to visit different big regions, whereas

RAN uniformly selects parameter vectors in P and thus is

more likely to redundantly visit the same big regions. Fig. 10

shows that ACT step 2 (i.e., estimation) without requiring

an abstract CCAI model already achieves a higher coverage

than both MAN and RAN, and ACT step 3 (i.e., concatena-

tion) further greatly improves the coverage.

Note that when k is small (e.g., ≤ 16), all three methods

including ACT achieve low coverage (e.g., ≤ 10%). This is

because we only run each test for three days, and there are

0.001%

0.010%

0.100%

1.000%

10.000%

100.000%

 1 4 16 64 256 1024

C
o

v
e
r
a

g
e
 P

e
r
c
e
n

ta
g

e

Region Size k

ACT
RAN
MAN

Figure 8: coverage(S,k) with different k values.

0.0001%

0.0010%

0.0100%

0.1000%

 0 10 20 30 40 50

C
o
v
e
r
a
g
e
 P

e
r
c
e
n

ta
g
e

Simulation runs (1000)

ACT
RAN
MAN

Figure 9: coverage(S,2).

1%

10%

100%

 0 10 20 30 40 50

ACT step 1

ACT step 2

ACT step 3

C
o
v
e
r
a
g
e
 P

e
r
c
e
n

ta
g
e

Simulation runs (1000)

ACT
RAN
MAN

Figure 10: coverage(S,128).

very large number of regions when k is small. For example,

when k is 16, there are already 8,388,608 regions. In three

days, RAN explores about 31,000 different regions, and ACT

explores about 260,000 different regions. The coverages of

all methods can be improved by running each test for a longer

time by reducing parameters κ and δ. But our experiments

already clearly demonstrate that ACT is significantly more

efficient than MAN, RAN, and SYM giving the same amount

of testing time.

4.3 Use case 1: Checking generic behaviors

We demonstrate the capability of ACT in detecting design

and implementation bugs using three types of state condi-

tions in the following three subsections, respectively: 1) a

condition that checks generic CCAI behaviors, 2) a condi-

tion that checks the window increase behavior of a CCAI, 3)

a condition that checks the window decrease behavior.

This group of experiments demonstrates that even a sim-

ple condition that checks generic CCAI behaviors might be

useful for detecting bugs. The test inputs are the same as the

default test inputs, except that C contains a simple condition:

cwnd > 107 packets. Intuitively, this test checks whether the

cwnd of a CCAI could be mistakenly larger than some upper

bound, such as 107 packets that approximately corresponds

to the throughput of a TCP flow with a rate of 100 Gbps and

an RTT of 1000 ms. Note that although 107 is outside of the

specified range [1,1024] for cwnd, it is still possible for ACT

to detect such states, because ACT keeps track of all the vis-

ited states, not just the states in the specified ranges. ACT

with this simple condition detects an implementation bug.

Due to a bug triggered by two consecutive undos, all tested

CCAIs with tcp_sack disabled, except CUBIC, mistakenly

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 727

 0

 1×10
9

 2×10
9

 3×10
9

 4×10
9

 5×10
9

 5 10 15 20 25 30

bug

c
w

n
d

 (
p

a
c
k

e
t)

Simulation Time (second)

Figure 11: AIMD imple-

mentation bug: Suddenly ex-

tremely large cwnd after con-

secutive undos.

 0

 100

 200

 300

 400

 500

 600

 300 350 400 450 500

bug

c
w

n
d

 (
p

a
c
k

e
t)

Simulation Time (second)

Figure 12: CUBIC design

bug: Too aggressive after

application rate-limited peri-

ods.

set cwnd to an extremely large number (i.e., 4,294,967,294

packets), as demonstrated in Fig 11. We thought that it was

a new and severe bug and reported it to Linux kernel devel-

opers [38], and then were told that it was just fixed a few

months ago.

4.4 Use case 2: Checking increase behavior

This group of experiments checks the first motivating exam-

ple in Section 1. The test inputs are the same as the de-

fault test inputs, except that C contains a condition: cwnd >

ssthresh and target > 2× cwnd, and S contains additional

target. Intuitively, this test checks whether CUBIC could be

mistakenly more aggressive in congestion avoidance than in

slow start. ACT detects multiple states satisfying this con-

dition. There are three types of cases. 1) New design bug

detected by ACT steps 1 and 2: CUBIC is designed to be

a time-based congestion control algorithm, and its window

increment in one RTT is a function of the duration of the

RTT. As a result, in cases of extremely long propagation or

queueing delays, CUBIC may set target to be higher than

twice of the current cwnd, which is reasonable for long prop-

agation delays but is questionable for long queueing delays

that are possible signs of network congestion. This is an ex-

treme case that we did not consider when we were designing

CUBIC [20]. 2) Design bug detected by ACT step 3: Linux

CUBIC mistakenly increases its target too aggressively after

a long idle period. This bug was first reported in 2015 [25],

and has been fixed in the latest Linux kernel. 3) New design

bug shown in Fig. 12 detected by ACT step 3: Linux CU-

BIC mistakenly increases its target too aggressively after a

long application rate-limited period. Both this and the previ-

ous bugs are special cases that we did not consider when we

were designing and implementing CUBIC [20].

4.5 Use case 3: Checking decrease behavior

This group of experiments checks the second motivating

example in Section 1. The test inputs are the same as

the default test inputs, except that C contains a condi-

tion: prior_ca_state == 3, ca_state == 0, and cwnd ≥
prior_cwnd, and S contains additional state variables used

in the condition. Intuitively, this test checks whether a CCAI

 0

 1

 2

 3

 4

 5

 5012 5014 5016 5018

bug

c
w

n
d

 (
p

a
c
k

e
t)

Simulation Time (second)

Figure 13: AIMD implemen-

tation bug: mistakenly in-

creases cwnd after fast recov-

ery.

 20

 30

 40

 50

 60

 70

 80

 445 446 447 448 449 450

bug

c
w

n
d

 (
p

a
c
k

e
t)

Simulation Time (second)

Figure 14: VENO implemen-

tation bug: mistakenly in-

creases cwnd after fast recov-

ery.

appropriately decreases its cwnd in fast recovery. ACT de-

tects multiple states satisfying this condition, all by steps 1

and 2. There are two types of cases. 1) New implementation

bug of AIMD and HTCP shown in Fig. 13. Due to a calcu-

lation boundary bug (happens only when cwnd < 4), AIMD

and HTCP mistakenly increase cwnd to 4 after an undoed

fast recovery. This is a new bug and was recently fixed af-

ter we reported it to Linux kernel developers [39]. This is

an important bug, because in a highly congested network

where we desperately need CCAIs, this bug makes the net-

work even more congested. 2) Implementation bug of VENO

and HSTCP shown in Fig. 14. VENO and HSTCP mistak-

enly double their cwnd after an undoed fast recovery, because

they mistakenly use the default undo function that was de-

signed for AIMD. This bug has been reported before and

was fixed in 2016 [47].

5 Discussions

What domain knowledge is required to use ACT? An ACT

user needs to know the state variables of a tested CCAI (e.g.,

by reading the related RFC or papers) in order to define the

state space S. In addition, currently the user needs to manu-

ally instrument the source code of CCAIs and NS3 to keep

track of the values of the state variables. The contribution of

our work is that ACT is model-agnostic so that the user does

not need to know how multiple intertwined components of

CCAIs change the state variables and does not need to know

the complicated mapping from P to S.

An ACT user needs to know the correct behavior of a

tested CCAI (e.g., by reading the related RFC or papers) in

order to define the set of conditions C. In addition, an ACT

user needs to manually analyze the outputted simulation

traces with buggy behavior (i.e., satisfying the conditions)

and then manually check the source code of CCAIs to iden-

tify the reasons for the bugs. The contribution of our work

is that ACT efficiently searches an extremely large number

of possible network environments P, and automatically finds

the specific network environments where the tested CCAIs

show the buggy behavior, so that the user only needs to man-

ually analyze the specific simulation traces with buggy be-

havior.

728 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

What kind of CCAIs ACT can or can’t test? Although we

haven’t evaluated ACT for all current CCAIs, we conjecture

that ACT works for general current and future CCAIs for

the following two reasons. First, ACT does not make any

specific assumptions about the network environment param-

eters of P and the state variables of S, except that S contains

mainly numerical state variables and state variables should

not be strongly correlated in a short time scale. Second, ACT

checks the general behaviors of a tested CCAI by analyzing

the impact of P on S, instead of checking the detailed imple-

mentations of the CCAI by analyzing its source code. While

different CCAIs may have quite different implementations

(e.g., loss based or delay based, expert designed or computer

generated, kernel space or user space), they have same or sim-

ilar general behaviors (e.g., increase or decrease cwnd based

on network congestion). Having said that, an important fu-

ture work is to evaluate the effectiveness of ACT for new

CCAIs, such as BBR [6], Remy [48], and PCC Vivace [12].

What kind of bugs ACT can or can’t detect? ACT can be

used to detect the bugs that can be described by state vari-

ables of S, like the two motivating examples. ACT does not

work well for the bugs related to the specific packet behav-

iors, such as whether an acknowledgement packet with the

correct acknowledgment number is sent right after receiving

a data packet, because it is hard or impossible to describe

such a behavior as a condition of state variables. In addition,

ACT does not work well for bugs that happen only with cer-

tain TCP configuration parameters, because ACT does not

search the large space of TCP configuration parameters.

Are there false positives and false negatives? ACT does

not have false positives, because ACT can output the specific

network environments and the actual simulation traces for

each reported bug. However, ACT does have false negatives

as it is possible that a tested CCAI satisfies a condition but

ACT could not find it. This is because ACT attempts to max-

imize the region coverage of S within a testing time budget,

instead of covering all regions which requires an unrealisti-

cally long time for small k values. Intuitively, this implies

that ACT can be used for bug detection but not for correct-

ness guarantee, which is consistent with a fundamental test-

ing principle “Program testing can be used to show the pres-

ence of bugs, but never to show their absence” [11] in the

software testing community. For real-world networking sys-

tems, correctness can be verified only for special cases, such

as for the abstract models of the code [34, 37], for code built

on verified libraries [52], and for partial pieces of code [42].

6 Related work

6.1 TCP numerical state space exploration

Three types of methods can be potentially used to address

TCP numerical state space exploration problems. 1) These

problems are usually studied by manual testing [19, 24],

where a tester manually selects some representative network

environments in P to test whether a CCAI visits certain re-

gions in S. Not only is manual testing unscalable to a pro-

hibitively large P (e.g., only an order of 102 network environ-

ments are selected in [19, 24]), but also the effectiveness of

manual testing highly depends on how much the tester knows

about a CCAI.

2) Automated and model-guided methods such as [22]

have the potential to automatically and efficiently explore a

limited S of a CCAI under the guidance of an abstract model

of the CCAI. But the choice of S is limited by the state vari-

ables captured in the abstract model. For example, the model

used in [22] does not capture CUBIC state variable target,

and thus cannot be used to explore the S of CUBIC in the

first motivating example. More importantly, the regions of

S that can be explored are limited by the CCAI components

captured in the abstract model. For example, the model used

in [22] does not capture the undo component of Linux CCAIs.

As a result, it is unable to guide the exploration of the regions

that can be reached by the undo component, and then hard to

detect the bugs caused by the interference between the undo

and fast recovery components in the second motivating exam-

ple. However, there is currently no complete abstract model

for real-world CCAIs, as described in the second challenge.

3) Automated and model-agnostic methods, such as undi-

rected random testing [41] and symbolic execution based

testing [40, 46], can automatically explore a general S of a

CCAI without requiring an abstract CCAI model. However,

they are inefficient to explore different regions of a large S,

because they blindly visit S and as a result tend to repeatedly

or densely explore some regions of S. Symbolic execution

based testing [40, 46] groups all the network environments

leading to exactly the same CCAI execution path into equiv-

alence classes in order to improve the scalability over exhaus-

tive testing that exhaustively tests each −→p ∈ P. However, it

is still inefficient in exploring different regions of a large S

for the following reasons. First, it still blindly explores S, be-

cause different equivalence classes of network environments

may still repeatedly or densely explore the same regions of

S. Second, the number of equivalence classes of network

environments is still prohibitively large, and is roughly an

exponential function of the number of packets (i.e., path ex-

plosion problem [4]). As a result, it can be used to test CCAI

with only a small number of packets [40, 46] or test partial

code of CCAIs [42].

ACT attempts to combine the advantages of the model-

guided and model-agnostic methods, that is, the efficiency of

model-guided methods and the generality of model-agnostic

methods. First, ACT is based on undirected random testing

instead of symbolic execution based testing, so that it is scal-

able to a large P and a large number of packets. Second,

ACT guides the selection of network environments under the

feedback iteratively obtained in a test, so as to select new net-

work environments that are more likely to explore different

regions. As a result, ACT does not blindly explore S, and

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 729

can more efficiently explore different regions of S than undi-

rected random testing and symbolic execution based testing.

6.2 Enhancements to random testing

The efficiency of random testing can be improved by in-

corporating the right guidance, such as feedback-based ran-

dom testing [28] and guided fuzzing (e.g., AFL [51]), or by

combining with symbolic execution in various ways (e.g.,

DART [18], Driller [36], MACE [9]). The major differ-

ence between these techniques and our proposed ACT is

that these techniques explore the general program execution

state space by maximizing the code coverage or edge cov-

erage, whereas ACT explores the specific numerical state

space of CCAIs where maximizing code coverage may not

always be helpful. First, maximizing code coverage might

waste the testing resources on covering code with no or lit-

tle impact on congestion control, such as the TCP code re-

lated to connection management or packet formats. Second,

many congestion control states can be explored only by re-

peatedly visiting the already visited code blocks for many

times. For example, in order for AIMD to reach from a state

with cwnd = ssthresh = 500 packets to another state with

cwnd = 1000 packets and ssthresh = 500 packets, AIMD

needs to repeatedly visit the same additive increase code for

500+501+502+ ...+999 = 374,750 times.

The efficiency of random testing can also be improved us-

ing genetic algorithms [29], where new test inputs can be

generated by recombining two existing test inputs (called

crossover), or by randomly changing one existing test input

(called mutation). The parameter estimation of ACT is in-

spired by genetic algorithms. Specifically, the interpolation

is inspired by the crossover, as it generates a new network en-

vironment by combining two existing network environments.

The extrapolation is inspired by mutation, as it generates a

new network environment by changing one existing network

environment. The major difference between ACT and ge-

netic algorithms is the parameter concatenation of ACT that

concatenates a sequence of network environments instead of

combining them into a single network environment, as inter-

polation and extrapolation (similarly crossover and mutation)

do not work well for S with correlated state variables.

6.3 General state space exploration

In addition to random testing, many automated techniques

have been proposed to explore various state spaces (e.g., pro-

gram execution space, TCP connection management space)

of network programs.

Implementation-level model checking techniques [27, 31]

recursively explore the next states from the start state by enu-

merating all possible events at each state. They are effective

for systematically exploring a small state space, but are not

scalable to a large one [28]. The path explosion problem [4]

limits symbolic execution based techniques [32,35,40,42] to

testing only a small number of packets [40], a component of

a network protocol [42], or an abstract network model [37].

Static analysis techniques [7,13,45] analyze the network pro-

grams at compilation time to infer their run-time behaviors.

These techniques [13] are effective at quickly checking shal-

low behaviors of large programs, but not at accurately check-

ing the deep program behaviors, such as finding the exact

network environments that lead a CCAI to certain states af-

ter thousands of packets. Model learning techniques [14,21]

attempt to automatically build an abstract model and then ex-

plore the state space of the model. But they work only for a

small state space.

The major difference between all above techniques and

our proposed ACT is that these techniques attempt to explore

different individual states and are more suitable for small

state spaces, such as nonnumerical state spaces (e.g., TCP

connection management state space [27]) or small numerical

state spaces of simple protocols (e.g., TFTP [40]), whereas

ACT is specifically designed to efficiently explore different

regions of an extremely large numerical state space of CCAIs

where certain regions can be reached only after thousands of

intermediate states (i.e., thousands of packets).

6.4 Other related TCP testing work

Pantheon [49] provides a training ground for evaluating the

performance of CCAIs in real-world settings and can auto-

matically calibrate the parameters of a network emulator to

match a real network path so that a tested CCAI achieves sim-

ilar average throughput and delay, whereas ACT attempts to

maximize the coverage of the whole state space and then de-

tect bugs. PacketDrill [5] is an automated TCP testing tool

that checks whether TCP meets a requirement in a specific

network environment −→p , whereas ACT checks whether a

CCAI meets a requirement in a large space P of network

environments. Automated trace analysis [3, 23, 30] checks

the correctness of TCP packet traces against some formal

models or rules mainly about the TCP connection establish-

ment and termination, whereas ACT checks the correctness

of TCP congestion control.

7 Conclusion

This paper proposes a CCAI testing tool ACT, and presents

several design and implementation bugs of Linux TCP. Most

of them are due to the mismatch among different TCP com-

ponents, because they were designed by different researchers

but their interfaces are evolving and not clearly defined. In

the future, we plan to extend ACT to test other congestion

control algorithms, such as those based on UDP and those in

information-centric networking.

ACKNOWLEDGMENT

We thank our shepherd, Anirudh Sivaraman, and the review-

ers for their constructive comments. The work presented in

this paper was supported in part by NSF CNS-1526253 and

NSF SHF-1718040.

730 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Appendix

Proof: Let I(k) denote the total number of regions in S when

the region size is k. Let Qi(k) denote the probability to visit

region Ri(k) with i ∈ [1, I(k)], which is the probability that at

least one state in region Ri(k) is visited. In the special case

when k = 1, we have I(k) = |S| and Qi(k) = qi.

Suppose that a method runs the network simulator for N

times and each time visits M states in S. The probability that

region Ri(k) is visited at least once is 1− (1−Qi(k))
N×M .

The expected number of visited regions is coverage(S,k) =

∑
I(k)
i=1

(

1− (1−Qi(k))
N×M

)

. Thus, the numerical state space

exploration problem can be rewritten as follows.

Maximize ∑
I(k)
i=1

(

1− (1−Qi(k))
N×M

)

(2)

Subject to ∑
I(k)
i=1 Qi(k) = 1 (3)

Using the Karush-Kuhn-Tucker conditions, we can prove

that the maximum coverage is achieved when Qi(k) = Q j(k)
for ∀i, j ∈ [1, I(k)]. If and only if qi = q j for ∀i, j ∈ [1, |S|],
we have Qi(k) = Q j(k) for ∀i, j ∈ [1, I(k)] and for any k ≥ 1.

That is, given the same amount of testing time (i.e., the same

N), the uniform distribution is the only one that maximizes

coverage(S,k) for any k ≥ 1.

References

[1] M. Alizadeh, A. Greenberg, D. Maltz, and J. Padhye et

al. Data center TCP (DCTCP). In Proceedings of ACM

SIGCOMM, New Delhi, India, August 2010.

[2] M. Allman, V. Paxson, and E. Blanton. TCP congestion

control. RFC 5681, September 2009.

[3] S. Bishop, M. Fairbairn, M. Norrish, P. Sewell,

M. Smith, and K. Wansbrough. Rigorous specifica-

tion and conformance testing techniques for network

protocols, as applied to TCP, UDP, and sockets. In

Proceedings of ACM SIGCOMM, Philadelphia, PA, Au-

gust 2005.

[4] C. Cadar and K. Sen. Symbolic execution for software

testing: three decades later. Communications of the

ACM, 56(2):82–90, February 2013.

[5] N. Cardwell, Y. Cheng, L. Brakmo, M. Mathis,

B. Raghavan, N. Dukkipati, H. Chu, A. Terzis, and

T. Herbert. PacketDrill: Scriptable network stack

testing, from sockets to packets. In Proceedings of

USENIX ATC, San Jose, CA, June 2013.

[6] N. Cardwell, Y. Cheng, C. Gunn, S. Yeganeh, and V. Ja-

cobson. BBR: Congestion-based congestion control.

Coomunications of the ACM, 60(2):pp. 58–66, Febru-

ary 2017.

[7] Q. Chen, Z. Qian, Y. Jia, Y. Shao, and Z. Mao. Static

detection of packet injection vulnerabilities: A case

for identifying attacker-controlled implicit information

leaks. In Proceedings of ACM CCS, Denver, CO, Octo-

ber 2015.

[8] V. Chipounov, V. Kuznetsov, and G. Candea. The

S2E platform: design, implementation, and applica-

tions. ACM Transactions on Computer Systems, 30(1),

February 2012.

[9] C. Cho, D. Babic, P. Poosankam, K. Chen, E. Wu, and

D. Song. MACE: model-inference-assisted concolic

exploration for protocol and vulnerability discovery. In

Proceedings of USENIX Conference on Security (SEC),

San Francisco, CA, August 2011.

[10] DARPA Internet Program. Transmission control pro-

tocol – protocol specification. RFC 793, September

1981.

[11] E. Dijkstra. Notes on Structured Programming in Book

Structured Programming. Academic Press, 1972.

[12] M. Dong, T. Meng, D. Zarchy, E. Arslan, Y. Gi-

lad, P. Godfrey, and M. Schapira. PCC Vivace:

Online-learning congestion control. In Proceedings of

USENIX NSDI, Renton, WA, April 2018.

[13] D. Engler and M. Musuvathi. Static analysis versus

software model checking for bug finding. In Pro-

ceedings of International Conference on Verification,

Model Checking and Abstract Interpretation, Venice,

Italy, January 2004.

[14] P. Fiterau-Brosteam, R. Janssen, and F. Vaandrager.

Combining model learning and model checking to an-

alyze TCP implementations. In Proceedings of In-

ternation Conference on Computer Aided Verification,

Canada, July 2016.

[15] S. Floyd. HighSpeed TCP for large congestion win-

dows. RFC 3649, December 2003.

[16] S. Floyd and M. Allman. Specifying new congestion

control algorithms. RFC 5033, August 2007.

[17] C. Fu and S. Liew. TCP Veno: TCP enhancement for

transmission over wireless access networks. IEEE Jour-

nal on Selected Areas in Communication, 21(2):216–

228, February 2003.

[18] P. Godefroid, N. Klarlund, and K. Sen. DART: Di-

rected automated random testing. In Proceedings of

ACM Programming Language Design and Implementa-

tion, Chicagi, IL, June 2005.

[19] S. Ha, L. Le, I. Rhee, and L. Xu. Impact of background

traffic on performance of high-speed TCP variant pro-

tocols. Computer Networks, 51(7):1748–1762, May

2007.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 731

[20] S. Ha, I. Rhee, and L. Xu. CUBIC: A new TCP-

friendly high-speed TCP variant. ACM SIGOPS Op-

erating System Review, 42(5):64–74, July 2008.

[21] Y. Hsu, G. Shu, and D. Lee. A model-based approach

to security flaw detection of network protocol imple-

mentations. In Proceedings of IEEE ICNP, Orlando,

FL, October 2008.

[22] S. Jero, E. Hoque, D. Choffnes, A. Mislove, and

C. Nita-Rotaru. Automated attack discovery in TCP

congestion control using a model-guided approach. In

Proceedings of NDSS, San Diego, CA, February 2018.

[23] D. Lee, D. Chen, R. Hao, R. Miller, J. Wu, and X. Yin.

Network protocol system monitoring - a formal ap-

proach with passive testing. IEEE/ACM Transactions

on Networking, 14(2):424–437, 2006.

[24] Y. Li, D. Leith, and R. Shorten. Experimental

evaluation of high-speed congestion control protocols.

IEEE/ACM Transactions on Networking, 15(5):1109–

1122, October 2007.

[25] P. McManus. Thanks Google for

open source TCP fix, September 2015.

http://bitsup.blogspot.com/2015/09/

thanks-google-tcp-team-for-open-source.

html.

[26] A. Mukherjee. On the dynamics and significance of

low frequency components of Internet load. Internet-

working: Research and Experience, 5:163–205, De-

cember 1994.

[27] M. Musuvathi and D. Engler. Model checking large

network protocol implementations. In Proceedings of

USENIX NSDI, San Francisco, CA, March 2004.

[28] C. Pacheco, S. Lahiri, M. Ernst, and T. Ball. Feedback-

directed random test generation. In Proceedings

of International Conference on Software Engineering

(ICSE), Minneapolis, MN, May 2007.

[29] R. Pargas, M. Harrold, and R. Peck. Test-data gen-

eration using genetic algorithm. Journal of Software:

Testing, Verification and reliability, 9(4):263–282, De-

cember 1999.

[30] V. Paxson. Automated packet trace analysis of TCP

implementations. In Proceedings of ACM SIGCOMM,

Cannes, France, September 1997.

[31] W. Rathje and B. Richards. A framework for model

checking UDP network programs with Java Pathfinder.

In Proceedings of ACM High Integrity Language Tech-

nology (HILT) International Conference, Portland, OR,

October 2014.

[32] R. Sasnauskas, O. Landsiedel, M. Alizai, C. Weise,

S. Kowalewski, and K. Wehrle. KleeNet: discovering

insidious interaction bugs in wireless sensor networks

before deployment. In Proceedings of ACM/IEEE

IPSN, Stockholm, Sweden, April 2010.

[33] R. Shorten and D. Leith. H-TCP: TCP for high-speed

and long-distance networks. In Proceedings of PFLD-

Net, Argonne, IL, February 2004.

[34] M. Smith and K. Ramakrishnan. Formal specification

and verification of safety and performance of TCP se-

lective acknowledgment. IEEE/ACM Transactions on

Networking, 10(2):193–207, August 2002.

[35] J. Song, C. Cadar, and P. Pietzuch. SymbexNet: Test-

ing network protocol implementations with symbolic

execution and rule-based specifications. IEEE Trans-

actions on Software Engineering, 40(7):695–709, July

2014.

[36] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang,

J. Corbette, Y. Shoshitaishvili, C. Kruegel, and G. Vi-

gna. Driller: augmenting fuzzing through selective

symbolic execution. In Proceedings of NDSS, San

Diego, CA, Feburary 2016.

[37] R. Stoenescu, M. Popovici, L. Negreanu, and C. Raiciu.

SymNet: Scalable symbolic execution for modern net-

works. In Proceedings of ACM SIGCOMM, Brazil,

August 2016.

[38] W. Sun. A bug report for Linux TCP congestion control

algorithms, May 2017. https://patchwork.ozlabs.

org/patch/767239/.

[39] W. Sun. A buggy behavior for Linux TCP Reno and

HTCP, July 2017. Report https://www.spinics.

net/lists/netdev/msg444955.html, Fix https://

patchwork.ozlabs.org/patch/797520/.

[40] W. Sun, L. Xu, and S. Elbaum. Improving the cost-

effectiveness of symbolic testing techniques for trans-

port protocol implementations under packet dynamics.

In Proceedings of ACM SIGSOFT International Sympo-

sium on Software Testing and Analysis (ISSTA), Santa

Barbara, CA, July 2017.

[41] W. Sun, L. Xu, and S. Elbaum. Limitations of emulat-

ing realistic network environments for correctness test-

ing of internet applications. In Proceedings of IEEE

ICC, pages 1–6, Kansas City, MO, May 2018.

[42] W. Sun, L. Xu, and S. Elbaum. Scalably testing conges-

tion control algorithms of real-world TCP implementa-

tions. In Proceedings of IEEE ICC, pages 1–6, Kansas

City, MO, May 2018.

732 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://bitsup.blogspot.com/2015/09/thanks-google-tcp-team-for-open-source.html
http://bitsup.blogspot.com/2015/09/thanks-google-tcp-team-for-open-source.html
http://bitsup.blogspot.com/2015/09/thanks-google-tcp-team-for-open-source.html
https://patchwork.ozlabs.org/patch/767239/
https://patchwork.ozlabs.org/patch/767239/
https://www.spinics.net/lists/netdev/msg444955.html
https://www.spinics.net/lists/netdev/msg444955.html
https://patchwork.ozlabs.org/patch/797520/
https://patchwork.ozlabs.org/patch/797520/

[43] K. Tan, J. Song, Q. Zhang, and M. Sridharan. A

compound TCP approach for high-speed and long dis-

tance networks. In Proceedings of IEEE INFOCOM,

Barcelona, Spain, April 2006.

[44] H. Tazaki, F. Uarbani, E. Mancini, M. Lacage, D. Ca-

mara, T. Turletti, and W. Dabbous. Direct code ex-

ecution: revisiting library OS architecture for repro-

ducible network experiments. In Proceedings of ACM

CoNEXT, Santa Barbara, CA, December 2013.

[45] O. Udrea, C. Lumezanu, and J. Foster. Rule-based

static analysis of network protocol implementation. In

Proceedings of USENIX Security Symposium, Vancou-

ver, Canada, July 2006.

[46] M. Vu, L. Xu, S. Elbaum, W. Sun, and K. Qiao. Effi-

cient systematic testing of network protocols with tem-

poral uncertain events. In Proceedings of IEEE INFO-

COM, Paris, France, April 2019.

[47] F. Westphal. TCP: make undo_cwnd mandatory for

congestion modules, November 2016. https://www.

mail-archive.com/netdev@vger.kernel.org/

msg138481.html.

[48] K. Winstein and H. Balakrishnan. TCP ex machina:

computer-generated congestion control. In Proceed-

ings of ACM SIGCOMM, Hong Kong, China, August

2013.

[49] F. Yan, J. Ma, G. Hill, D. Raghavan, R. Wahby, P. Levis,

and K. Winstein. Pantheon: the training ground for

Internet congestion-control research. In Proceedings

of USENIX ATC, Boston, MA, July 2018.

[50] P. Yang, J. Shao, W. Luo, L. Xu, J. Deogun, and

Y. Lu. TCP congestion avoidance algorithm identifica-

tion. IEEE Transactions on Networking, 22(4):1311–

1324, August 2014.

[51] M. Zalewski. American Fuzzy Lop for network

fuzzing. https://github.com/jdbirdwell/afl.

[52] A. Zaostrovnykh, S. Pirelli, L. Pedrosa, K. Argyraki,

and G. Candea. A formally verified NAT. In Proceed-

ings of ACM SIGCOMM, 2017.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 733

https://www.mail-archive.com/netdev@vger.kernel.org/msg138481.html
https://www.mail-archive.com/netdev@vger.kernel.org/msg138481.html
https://www.mail-archive.com/netdev@vger.kernel.org/msg138481.html
https://github.com/jdbirdwell/afl

	Introduction
	Numerical state space exploration
	Challenges
	Our contributions

	Design of ACT
	Regions of numerical state space S
	Numerical state space exploration
	Feedback-guided random testing
	Parameter estimation
	Parameter concatenation

	Implementation of ACT
	Testing platform
	Test input
	Test output
	ACT method

	Experiments
	General setup
	Evaluation: region coverage
	Use case 1: Checking generic behaviors
	Use case 2: Checking increase behavior
	Use case 3: Checking decrease behavior

	Discussions
	Related work
	TCP numerical state space exploration
	Enhancements to random testing
	General state space exploration
	Other related TCP testing work

	Conclusion

