usenix
.' THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

Model-Agnostic and Efficient Exploration
of Numerical State Space of Real-World TCP
Congestion Control Implementations

Wei Sun and Lisong Xu, University of Nebraska-Lincoln;
Sebastian Elbaum, University of Virginia; Di Zhao, University of Nebraska-Lincoln

https://www.usenix.org/conference/nsdi19/presentation/sun

This paper is included in the Proceedings of the
16th USENIX Symposium on Networked Systems

Design and Implementation (NSDI '19).
February 26-28, 2019 - Boston, MA, USA
ISBN 978-1-931971-49-2

Open access to the Proceedings of the
16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI '19)
is sponsored by

Model-Agnostic and Efficient Exploration of Numerical State Space of Real-World
TCP Congestion Control Implementations

Wei Sun!, Lisong Xu!, Sebastian Elbaum?, Di Zhao!

' Department of Computer Science and Engineering, University of Nebraska-Lincoln
Lincoln, NE, {wsun, xu, dzhao}@cse.unl.edu
2Department of Computer Science, University of Virginia
Charlottesville, Virginia, selbaum@virginia.edu

Abstract

The significant impact of TCP congestion control on the In-
ternet highlights the importance of testing the correctness
and performance of congestion control algorithm implemen-
tations (CCAls) in various network environments. Many
CCAI testing questions can be answered by exploring the nu-
merical state space of CCAls, which is defined by a group of
numerical (and nonnumerical) state variables of the CCAIs.
However, the current practices for automated numerical state
space exploration are either limited by the approximate ab-
stract CCAI models or inefficient due to the large space of
network environment parameters and the complicated rela-
tion between the CCAI states and network environment pa-
rameters. In this paper, we propose an automated numerical
state space exploration method, called ACT, which leverages
the model-agnostic feature of random testing and greatly im-
proves its efficiency by guiding random testing under the
feedback iteratively obtained in a test. Our experiments on
five representative Linux TCP CCAIs show that ACT can
more efficiently explore a large numerical state space than
manual testing, undirected random testing, and symbolic ex-
ecution based testing, while without requiring an abstract
CCAI model. ACT successfully detects multiple design and
implementation bugs of these Linux TCP CCAlIs, including
some new bugs not reported before.

1 Introduction

TCP congestion control algorithms are crucial to Internet per-
formance and stability. We have seen many of them emerged
in the last decades [1, 6, 20,43, 50], and we have witnessed
how billions of computers, servers, routers, smartphones,
and other Internet devices are affected, when new TCP Con-
gestion Control Algorithm Implementations (CCAIs) are de-
ployed, such as Linux CUBIC [20] and Windows Compound-
TCP [43]. That is why a significant effort is placed in testing
the correctness and performance of CCAls in various net-
work environments [16].

1.1 Numerical state space exploration

In this paper, we focus on how to explore the numerical state
space S' of a CCAI in various network environments. S is
defined by a group of numerical state variables of the CCAI,
such as congestion window size (cwnd), slow start thresh-
old (ssthresh), and smoothed round-trip time (RTT, rtt). S
may also have some additional nonnumerical state variables,
such as the Linux TCP variable ca_state whose value indi-
cates the current status of CCAI (e.g., O:normal, 3:recovery,
4:timeout) but does not have numerical meanings. Space S
contains all possible combinations of the values of the state
variables, and each point in S is called a state or state vector.
Exploring S aims to answer questions like the following.

Motivating Example I: Does Linux CUBIC increase its
cwnd appropriately in various network environments? The
aggressiveness of CUBIC is determined by its state vari-
able rarget [20], which is the expected congestion window
size after one RTT. It is typically expected [15] that a
CCAI increases its cwnd less aggressively in the conges-
tion avoidance stage (i.e., when cwnd > ssthresh) than in
the slow start stage (i.e., when cwnd < ssthresh) where it
doubles its cwnd every RTT. This requirement can be tested
by answering a numerical state space exploration question:
does Linux CUBIC ever visit any states satisfying the condi-
tion cwnd > ssthresh (i.e., congestion avoidance stage) and
target > 2 x cwnd (i.e., more aggressively)?

Motivating Example 2: Does a Linux CCAI appropriately
decrease its cwnd during fast recovery in various network
environments? It is typically expected [2] that a CCAI de-
creases its cwnd in fast recovery when a congestion is de-
tected (e.g., three duplicate ACKs). For example, CUBIC
decreases its cwnd to 0.7 x prior_cwnd and AIMD? [2] to
0.5 x prior_cwnd right after a fast recovery, where state vari-
able prior_cwnd is the congestion window size right before
the fast recovery. This requirement can be roughly tested

IS is not to be confused with the TCP connection management state
space [10] such as LISTEN, SYN-SENT, and CLOSED.
2 Additive Increase Multiplicative Decrease of Reno and NewReno

USENIX Association

16th USENIX Symposium on Networked Systems Design and Implementation 719

by answering a numerical state space exploration question:
does a Linux CCALI ever visit any states satisfying the con-
dition previous_ca_state == 3 and ca_state == 0 (i.e., just
finished fast recovery) and cwnd > prior_cwnd (i.e., no win-
dow decrease at all)?

Similar to these two motivating examples, many CCAI re-
quirements can be tested if we can explore the S of a CCAI
in various network environments. Specifically, in this paper,
we consider the numerical state space exploration problem:
how to automatically sample a network environment param-
eter space P in order to efficiently visit as many as different
regions of S within a given amount of testing time? Space
P contains the parameter values of all possible network envi-
ronments that a tester needs to check, and each point in P is
called a network environment or network environment param-
eter vector. A region of S contains a group of nearby states
in S, and is defined and discussed in Section 2.1.

1.2 Challenges

The numerical state space exploration problem, however, is
challenging to solve. The first challenge is that space P is
usually too large to check exhaustively. For example, sup-
pose that a tester is testing a CCAI using a simple network
topology with a single link, where the packet loss rate param-
eter is in the range of [0%, 10%] with a granularity of 1079,
the link bandwidth parameter is in the range of [0.1, 10000]
Mbps with a granularity of 0.1 Mbps, and the packet delay
parameter is in the range of [0, 1000] ms with a granularity
of 1 ms. The P of this simple example already contains about
1013 possible network environments (i.e., combinations).

The second challenge is that the mapping from the P to S
of a CCALI is usually very complicated so that it is difficult
to directly find a network environment in P that can lead the
CCALI to visit certain regions in S. 1) A real-world CCAI,
such as Linux CUBIC, involves multiple intertwined com-
ponents contributed by tens of developers spanning tens of
years. Many state variables, such as cwnd, are affected by
multiple components, such as slow start, congestion avoid-
ance, fast recovery, timeout, and undo components. 2) This
is exacerbated by the fact that many states in a large S can
be visited only after a large number of packets. For example,
thousands of packets are needed in order to increase cwnd
and ssthresh to over thousands of packets. That is, the ex-
ploration path from the start state to a final state may contain
thousands of intermediate states. 3) There are currently no
complete abstract models (e.g., state machines, or high-order
logic) of real-world TCP implementations capturing all state
variables and all components of the CCAIs, because they are
very challenging to develop and verify. For example, a rel-
atively complete TCP model [3] took several man-years of
effort and deals with only the traditional AIMD.

Because of the unknown mapping from a large P to a large
S, it is hard to efficiently explore S by either randomly or sys-
tematically sampling P and it is challenging to answer gen-

eral numerical state space exploration questions, like the mo-
tivating examples.

1.3 Our contributions

We propose an Automated Congestion control Testing
method, called ACT, to model-agnostically and efficiently ex-
plore a general numerical state space S of real-world CCAIs
for a given P. ACT belongs to the class of feedback-guided
random testing methods [28] or guided fuzzing methods [51]
used in the software testing and verification community.
While the general idea of feedback-guided random testing
or guided fuzzing is not new, to the best of our knowledge,
our work is the first one to use it in automatically explor-
ing a large S of a CCAI. Specifically, ACT randomly se-
lects network environments in a large P to explore a large
S, and the random selection of new network environments is
guided by the feedback iteratively obtained from the region
coverage information of previously selected network environ-
ments. We propose two novel types of feedback to explore
the low-probability regions of S: 1) parameter estimation to
explore the low-probability regions due to the unknown non-
linear mapping from P to S, 2) parameter concatenation to
explore the low-probability regions due to the correlation
among the state variables of S. Intuitively ACT randomly
samples in P but favoring those network environments that
are more likely to explore different regions of S. By doing
s0, ACT is scalable to a large P (i.e., first challenge) and does
not require an abstract CCAI model (i.e., second challenge).

Our contributions are threefold. First, we propose an
automated and model-agnostic method, ACT, which can ef-
ficiently explore a large S for a large P without requiring an
abstract CCAI model, and then output the states satisfying
the specified conditions along with the concrete data neces-
sary to deterministically reproduce the detected states.

Second, we present an ACT implementation using the
widely used network simulator NS3 with Direct Code Exe-
cution (DCE) [44] to execute the original Linux networking
stack. It can be easily used for testing, debugging, and study-
ing the correctness and performance of real-world CCAls in
various reproducible and controllable network environments.

Third, we conduct a family of experiments on five repre-
sentative Linux TCP CCAIs showing that ACT can more ef-
ficiently explore different regions of S than manual testing,
undirected random testing, and symbolic execution based
testing. ACT successfully detects multiple design and im-
plementation bugs of these CCAIs, including several new
bugs not reported before. For example, ACT finds that Linux
CUBIC (current default) sometimes misjudges the network
congestion and then mistakenly aggressively increases its
throughput (i.e., motivating example 1). ACT also detects
that Linux AIMD (previous default) sometimes mistakenly
doubles its throughput right after a fast recovery (i.e., moti-
vating example 2) or suddenly increases its throughput to an
extremely large number.

720 16th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

2 Design of ACT

2.1 Regions of numerical state space S

Intuitively, a region of S contains a group of nearby states
all satisfying or not satisfying a specified condition, and a
region is visited if at least one state of the region is visited.
We attempt to explore different regions of S instead of dif-
ferent individual states because of two unique properties of
numerical state variables. 1) Because numerical state vari-
ables usually have a large number of possible values, the S
of a CCALl is usually prohibitively large (e.g., in the order of
10! states in our experiments). As a result, it is impossible
to visit each individual state in S in any reasonably amount
of testing time. 2) For a numerical state space exploration
problem (e.g., the two motivating examples), there are usu-
ally one or multiple regions of nearby states (instead of only
a single state) all satisfying the same condition. As long as
we find at least one state in these regions (i.e., one counterex-
ample), we can answer the exploration problem.

The shape and the size of a region might depend on the
CCAlIs, S, P, and the specified conditions. Without mak-
ing any special assumption and for the sake of simplicity, we
divide S into equal-sized non-overlapping regions of size k.
Specifically, the range of each numerical state variable is di-
vided into equal-sized intervals with size k, and the range
of each nonnumerical state variable (if any) is divided into
intervals with size 1. A region contains all the states with
each state variable in the same interval. For example, let’s
consider a 2-dimensional S = {(cwnd, ssthresh) | cwnd €
[1,1024], ssthresh € [1,1024]}. If k = 512, S is divided
into 4 equal-sized non-overlapping regions S = R;(512) U
R>(512) U R3(512) U R4(512), where R;(k) denotes the
i-th region when the region size is k. For instance,
R1(512) = {(cwnd, ssthresh) | cwnd € [1,512], ssthresh €
[1,512]}, and R4(512) = {(cwnd,ssthresh) | cwnd €
[513,1024], ssthresh € [513,1024]}. In the extreme case of
k=1, S is divided into 1024 x 1024 = 1,048,576 regions
Ri(1),Ra(1),...,Ri048576(1), each containing only one state.
In another extreme case of k = 1024, the whole S is a single
region R;(1024) =S.

Without making any special assumptions about the CCAIS,
S, P, and the specified conditions, we do not consider a spe-
cific region size k. Instead, we attempt to explore as many
as different regions for all possible k values within a given
amount of testing time.

Note that, it is reasonable to group nearby states of S into
regions, but it is not reasonable to group nearby network en-
vironments of P. This is because even a tiny difference be-
tween two network environments may lead to significantly
different CCAI behaviors. For example, two packet loss rates
of 107> and 10~ with a tiny difference with respect to a pa-
rameter range [0%, 10%] lead to about six times of different
throughputs for CUBIC [20].

P2 N P S2 S
p
[]

a network
environment

P1 init state S1.|

Figure 1: A network environment ? € P leads a CCAI to
visit a sequence of states in S.

2.2 Numerical state space exploration

Each network environment 7 € P leads a CCAI to visit a
sequence of states in S starting from the initial state, as illus-
trated in Fig. | using a two-dimensional P = {(p1,p>)} and
two-dimensional S = {(s1,s2)}. In a network simulation, the
sequence of visited states depends not only on 7 but also a
random seed e, which are collectively referred to as a simula-
tion configuration G = (e,). The simulation results (e.g.,
visited states) are deterministic for a given G.

The numerical state space exploration problem is given
a number N, how to select N simulation configuration G’s
in order to maximize coverage(S,k) for any k > 1, where
coverage(S, k) is the percentage of visited regions of S when
the region size is k.

max coverage(S,k) Vk>1 (D

N selected G's

Note that we attempt to maximize coverage(S, k), instead
of exploring only a specific region of S for a specific condi-
tion that is nevertheless very challenging too. This is because
state space exploration is time consuming, and it is more con-
venient to explore S once and then use the explored S to an-
swer multiple different questions for the same S.

We say that a testing method is more efficient than another
one, if given the same N, the coverage(S, k) of the former is
higher than or equal to that of the latter for any £ > 1. In this
and next sections, we propose ACT to solve the numerical
state space exploration problem, and in Section 4 we empiri-
cally evaluate the efficiency of ACT by comparing with other
related exploration methods.

The design of ACT is based on the following theorem,
where [S| denotes the total number of states in S. The proof
is shown in the appendix.

Theorem 1 Among all state exploration methods that visit
state i € [1,|S|] with probability q;, the exploration method
with g; = q; for Vi, j € [1,|S|] maximizes coverage(S,k) for
any k> 1.

USENIX Association

16th USENIX Symposium on Networked Systems Design and Implementation 721

2.3 Feedback-guided random testing

Theorem | shows that the optimal exploration method should
uniformly visit the states. While it is hard or impossible to
design such an optimal exploration method, we attempt to de-
sign a method that visits as large as a fraction of S as possible
within a limited testing time budget, instead of thoroughly
visiting certain regions.

Our proposed ACT is based on undirected random test-
ing [41] that randomly samples P accordingly to a distribu-
tion, because it is scalable to a large P and does not require
an abstract model of a CCAI. Without making any special
assumptions about the CCAls, S, P, and the specified condi-
tions, ACT uses the simple uniform distribution for the undi-
rected random testing. However, because of the unknown
and complicated mapping from P to S, undirected random
testing tends to repeatedly visit the high-probability regions
of S and thus is inefficient in covering different regions of
S. In other words, uniformly sampling P does not lead to
uniform coverage of S.

ACT leverages the model-agnostic feature of undirected
random testing, and greatly improves the region coverage
of S by guiding random testing under the feedback itera-
tively obtained in the test. Thus, ACT belongs to the class
of feedback-guided random testing [28] or guided fuzzing
methods [51]. We have identified two major reasons that
undirected random testing has low probabilities to visit cer-
tain regions of S, and correspondingly propose two types of
feedback to visit these low-probability regions of S: 1) pa-
rameter estimation to visit the low-probability regions due to
the unknown nonlinear mapping from P to S, 2) parameter
concatenation to visit the low-probability regions due to the
correlation among different state variables of S.

2.4 Parameter estimation

One reason that undirected random testing has low probabili-
ties to visit some regions of S is the unknown nonlinear map-
ping from P to S. For example, let’s consider packet loss rate
parameter [oss in the range of [0%, 10%] and state variable
cwnd in the range of [1, 1024] packets for AIMD. The aver-
age cwnd of AIMD is greater than 379 packets if loss is lower
than 107 [15]. If loss is uniformly distributed in [0, 10%],
the probability that cwnd > 379 is approximately lower than
0.01%, and thus the regions with cwnd > 379 have very low
probabilities to be visited. With an unknown nonlinear map-
ping from P to S, it is impossible for undirected random test-
ing with any specific distribution (not just uniform) to uni-
formly visit different states of S.

Parameter estimation attempts to visit the low-probability
regions due to the unknown nonlinear mapping from P to S.
Specifically, for an unvisited state s* € S, it attempts to find
a network environment ? such that the tested CCAl is likely

to visit region R(s*,k), which is the region of state s* when
the region size is k. ACT starts with the smallest region size

e P| Ts S
e o e
= 4 5
p* p* p LNEN a
s° \s*
P1 | S1 |
Figure 2: Interpolation finds ? using 1?; and pj to cover

the unvisited gap (e.g., the region of state _S‘>) between two

?

visited regions (e.g., the regions of s¢ and s”).
A A
b p2 P| T S
directions to x4
«--oP
decrease s; !
¥
— —
® p* ®s*
P1 S1

j

Figure 3: Extrapolation finds p* using p© to visit an unvisited
corner or side of S (e.g., the region of s* below the region of
s¢). The directions to decrease s, are for illustration purpose.

k=1to find 1?“) if not successful, it gradually doubles k until
it finds p.

Parameter estimation is illustrated in Figs. 2 and 3 where
shaded areas indicate the regions already visited by undi-
rected random testing. The pseudo-code of parameter esti-
mation is given in Method 1. Basically, for an unvisited state
s*, we find a new network environment p* using either the
interpolation or extrapolation of the past selected network en-
vironments. Interpolation is used to cover the unvisited gap
between two visited regions in S, such as state s* in Fig. 2,
and extrapolation is used to cover an unvisited corner or side
of S, such as state s* in Fig. 3.

To implement parameter estimation, each state ¥ eSisas-
sociated with a pool of simulation configurations. Each sim-
ulation configuration G = (e, ?) contains the random seed e
and the network environment ? of a simulation that visited
state 5. An unvisited state has an empty pool, and a visited
state may have multiple simulation configurations if it has
been visited multiple times by different simulations.

As an example of interpolation, for state ? in Fig. 2,
ACT randomly finds a pair of states s?
R(?,k) lies in between R(sj,k) and R(s7,k) for the small-

est possible k. In order to visit R(s*,k), ACT estimates p

and s” so that region

722 16th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Method 1 Parameter estimation to find a G* for ?
function ESTIMATION(?)
¢* + randomly selected random seed

1:
2
3: for region size k < 1;; k< 2 x k do
4
5

// First try interpolation
find a pair of states 57 and s7 such that R(sj,k) lies in
between R(?,k) and R(s_g, k).
6: if find at least one pair of s7 and s7 then

7: randomly and uniformly select one pair
8: G“ < randomly and uniformly select one from the
pool of simulation configurations associated with s
9: p* « the network environment in G* for 37_>
10: pP « similarly a network environment for s”
11: for i from 1 to dim(P) do
12: pi < random(p¢, pf’)
13: return G* (e*,;?é)
14: // If interpolation fails, then do extrapolation
15: find state 5¢ such that R(?,k) and R(?,k) differ in
only one state variable.
16: if find at least one state s7 then
17: randomly and uniformly select an s
18: pt < anetwork environment for s
19: Jj ¢ the state variable index that R(?,k) and
R(sj,k) differ
20: for i from 1 to dim(P) do
21: if % - and sjf — s? have same sign then
22: p; <+ random(p$, max)
23: else if different signs then
24: p; < random(min, pf)
25: else > zero gradient
26: p; < random(min, max)
27: return G* + (e*,]?)

2 and ob

using the interpolation of the parameter vectors p® and p” of
the pair of states. The interpolation is implemented by lines
4 to 13 of the pseudo-code. Because ACT does not make
any assumption about the mapping from P to S, it randomly

and uniformly selects a network environment p* within the

j

range of p“ and 1)7 instead of possibly a linear or some other
interpolations.

As an example of extrapolation, for state ? in Fig. 3, ACT
randomly finds one state s lying beside s* so that their re-
gions R(a?k) and R(s* k) differ only in one state variable,
say state s; with j € [1,dim(S)], where dim(S) denotes the
dimension of S. That is, state s and s* have a major dif-
ference only in s;, and have similar othir state variables. In
order to visit R(s*, k), ACT estimates p* using the extrapo-
lation of network environment p® (i.e., lines 14 to 27 o_f> the
pseudo-code). Specifically, the extrapolation estimates p* by

P2 P

j

directions to p
“-9®

decrease s; N

S2
-
0—*> S
p ./\/\.

P1 init state

=

Figure 4: If 51 and s, are positively correlated, p* estimated
by extrapolation leads to not only a smaller s, but also a

smaller sy, and thus visits the region of sj instead of ?
A S

p2 P S2 S

A

Zal

P1 init state

Figure 5: Parameter concatenation visits the region gf) ? by

first following the path from the initial state to state s using

%
p“, and then the path from state s¢ to state 5 using ?

increasing or decreasing each parameter of 170) based on the
impact of that parameter on state variable s;. The impact
of a parameter p; (i € [1,dim(P)]) on s; is measured using
the gradient of §; with respect to p;, where §; is the aver-
age of all visited s; values in a simulation and is defined as
§i=1 fOT s;(t)dt with T as the simulation time. The gradient
at p® is estimated using the simulation results of undirected
random testing. For example, states ? and s7> in Fig. 3 dif-
fer mainly in state variable s,, and specifically state s* has a
smaller s, than state s¢. Then extrapolation estimates p* by
randomly adjusting ? in the directions to decrease s;.

2.5 Parameter concatenation

We notice that some regions of S have low probabilities to
be visited by both undirected random testing and parameter
estimation because of the correlation among the state vari-
ables of S. For example, state variables cwnd and ssthresh
are positively correlated due to the window reduction at each
congestion event (i.e., three duplicate acknowledgements),
where ssthresh is set to a certain fraction of cwnd (e.g., CU-
BIC: ssthresh = 0.7 * cwnd, AIMD: ssthresh = 0.5 x cwnd).
Because of this positive correlation, regions with very high
cwnd values but very low ssthresh values and regions with
very low cwnd values but very high ssthresh values have low
probabilities to be visited by both undirected random testing

USENIX Association

16th USENIX Symposium on Networked Systems Design and Implementation 723

and parameter estimation.

Let’s use states s7 and s_} in Fig. 4 to illustrate why extrap-
olation does not work if there is a strong positive correiiltion
between s and s,. Because ? has a smaller s, than s¢, ex-
trapolation estimates p* by randomly adjusting network en-

vironment pd in the directions to decrease s,. However, be-
cause of the positive correlation between s; and s, p* leads
to not onlL a smaller s, but also a smaller s;. As illustrated
in Fig. 4, p* leads the tested CCAI to visit the regign of state
5T by following the path from the initial state to s™, instead
of visiting the expected region of s™.

Parameter concatenation attempts to visit the low-
probability regions due to the state variable correlation. It
is illustrated in Fig. 5 where the shaded area indicates all the
region visited by the undirected random testing and parame-
ter estimation. The pseudo-code is given in Method 2. Ba-
sically, parameter concatenation runs a network simulation
with a list of network environments at different time periods
in order to visit the unvisited region of state s™.

To implement parameter concatenation, we extend the sim-
ulation configurations used in parameter esgmation. A sim-
ulation configuration associated with state s¢ is Changad to

d_ (oot 1 b i : d
G = (e,p",t1,p™ 12,, p . t,), which means state s¢ was
Visite(gy a simulation with random seecl_e>, network environ-
ment pdl_lgrom the beginnir;g to time #1, p® to time 1o, ..., and
finally p% visiting state s¢ at time #,. The visiting time #, is
added to the configuration by ACT during the simulation.
Parameter concatenation runs a network simu_lgtion using

both the previous network environments p?t, p®,..., p% of
s¢ and the new network environment 1;2 estimated by extrg-

olation. At time 7, when the simulation just visits state s,
parameter con(ﬂsnation changes the current network envi-

=

ronment from p% to p*. As illustrated in Fig. 5, such a list
of netlyork environments lead the tested CCAI to ﬁrg visit
state s¢ by following the path from the initial state to s¢, and

then visit state s™ by following the path from s to sj .

The path from s_d> to s_+> in Fig. 5 may possibly visit new
regions, such as the region of s*, which are not visited by
the path from the initial state to s™ in Fig. 4 for two reasons.
First, although both paths finally reach the same state s™ that
is determined by network environment p*, they have differ-
ent starting states and thus go through different paths.

Second, we observe that two state variables may be corre-
lated strongly only over a long time scale but not in a short
time scale. For example, over a long time scale, such as
spanning multiple window reductions, cwnd and ssthresh are
strongly correlated. But in a short time scale, such as within
a congestion avoidance stage between two window reduc-

=

Method 2 Parameter concatenation to find a G* for s

1: function CONCATENATION(?)
2: for region size k < 1; ; k <2 x k do

. 2 i 20 differ
3: find state s¢ such that R(s%,k) and R(s™,k) differ in

only one state variable

_>
if find at least one state s¢ then

4:
5: randomly and uniformly select an s¢
6: G“ + randomly and uniformly select (lle from the

pool of simulation configurations associated with s¢
—

7: pn « the last parameter vector in G¢ .
8: j ¢ the state variable index that R(s¢ k) and
R(?,k) differ
9: for i from 1 to dim(P) do
10: if % _, and 5% — s¢ have same sign then
pi | e i
11: pi random(p?”, max)
12: else if different signs then
13: p; < random(min, p?")
14: else > zero gradient
15: p; < random(min, max)
16: G* < append 1? to end of G¢
17: return G*
0.6

Correlation

1 2 4 8 16 32 64 128 256 512
Time scale (Every n—th ACKs)

Figure 6: The longer the time scale, the stronger the positive
correlation between cwnd and ssthresh.

tions, they are weakly correlated in that only cwnd changes
and ssthresh remains unchanged. For example, Fig. 6 shows
the positive correlation between cwnd and ssthresh becomes
stronger as the time scale n increases. Specifically, the Pear-
son’s correlation coefficient is measured in a sliding window
of 10 pairs of cwnd and ssthresh sampled every n-th ACKs in
a simulation and averaged over 30,000 simulations. Because
of the strong correlationgetween s1 and s> in a long time

scale, both the path from s¢ to sj in Fig. 5 and the path from
the initial state to s™ in Fig. 4 reach the same state 5™, which

has both a smaller s; and a smaller s, than s*. But because

(lf> the weak correlation in a short time scale, the path from
=

s

_>
s? to sT in Fig. 5 may possibly visit the region of s* where

only s; is changed.

724 16th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

ACT testing platform
L: list of CCAls —
» networl
T: net. topolo,
pooey » simulator
G- simulation " (NS3+DCE)
configuration
P: network _ _
parameter space | |automated simulation
parameter [« traces
S: state space selector
automated detected
C: conditions condition states .
checker

Figure 7: The ACT testing platform consists of three compo-
nents: the existing network simulator NS3+DCE, our auto-
mated parameter selector, and automated rule checker.

3 Implementation of ACT

3.1 Testing platform

The ACT testing platform as illustrated in Fig. 7 takes as the
input a list L of CCALls, a state space S of the CCAls, a net-
work topology T, a network environment parameter space P
for the topology, and a set C of state conditions to check.
It automatically outputs the states satisfying the conditions
along with specific network environments and other data nec-
essary to deterministically reproduce the detected states.
The platform consists of three components. 1) A network
simulator simulates CCAI flows of L in a network described
by topology T and simulation configuration G that includes a
random seed e and one or multiple network environments in
P. We choose the widely used NS3 enabled with DCE [44],
which can execute the original Linux networking stack in re-
producible and controllable network environments. The out-
put of each simulation is a trace of the timestamped CCAI
state variables. 2) The automated parameter selector auto-
matically selects network environments in P and generates
the next simulation configuration G based on the feedback of
the region coverage of the previously selected network envi-
ronments. 3) The automated condition checker automatically
checks whether any visited states satisfy the conditions in C.

3.2 Test input

A test input is a 5-tuple (L, T, P, S, C). CCAI list L =
(L, by,) with m>1 indicates the CCAIs of a total of m
tested CCAI flows, where /; with i € [1,m] is the CCAI of
the i-th tested CCAI flow. That is, ACT can be used to test
not only a single CCAI flow, but also the interaction among
multiple different/same CCAI flows. Network topology T
describes the topology (e.g., the total number of nodes and
the routing information) of the tested network environments
in which the m tested CCAI flows run. Leveraging the pow-
erful NS3, our testing platform supports various types of net-
work topologies, such as a single link, the dumbbell topology,
and the parking lot topology. Network environment param-

eter space P describes the parameter ranges of the network
topology T. Each point ? € P is a network environment
parameter vector 7 = (p1,p2,...) (also called network envi-
ronment), where p; with i € [1,dim(P)] is a network envi-
ronment parameter. CCAI state space S describes the possi-
ble states of the tested CCAI flows. Each point T eSisa
state vector § = (81,52, ...) (also called state), where s; with
i € [1,dim(S)] is a numerical or nonnumerical state variable
of a CCAl in L. C contains a set of the conditions of the state
variables of the CCAIs, and is implemented as a script that
reads and analyzes the simulation traces generated by NS3.
Different CCALI tests may need different test inputs. For
example, a throughput test checks only a single CCAI flow
whereas a fairness test checks multiple CCAI flows, and thus
their test inputs have different L’s. Also the same CCAI state
conditions may be used for different test inputs, for example,
with different network topologies and/or parameter spaces.
This paper focuses on the testing methods, and does not con-
sider the design of comprehensive test inputs for CCAIs.

3.3 Test output

After a test, the testing platform reports all detected states
satisfying the conditions. For each detected state, it outputs
the corresponding simulation configuration G, which can be
used to deterministically reproduce the detected state using
NS3. In addition, it outputs the percentage of the regions
covered in the test.

3.4 ACT method

ACT has the following four steps.

Step 1, undirected random testing repeatedly simulates
CCAISs of L in a network specified by T and G = (e, /) with
randomly selected seed e and uniformly selected 7 € P, un-
til the coverage saturates. The goal of this step is not only to
have an initial coverage of the state space, but also to profile
the mapping from P to S to estimate the gradients used in pa-
rameter estimation and concatenation. Without making any
assumptions for L, T, P, and S, ACT uses the simple uniform
distribution for the undirected random testing.

Step 2, parameter estimation iteratively simulates CCAIs
in a network specified by T and G*=Estimation(s*) for a uni-
formly selected unvisited state s* € S, until the coverage sat-
urates. This step is used to improve the coverage of the low-
probability regions due to the unknown nonlinear mapping
from P to S.

Step 3, parameter concatenation iteratively sim-
ulates CCAIs in a network specified by T and
G*:Concatenation(?) for a uniformly selected unvis-
ited state s* € S, until the coverage saturates. This step is
used to improve the coverage of the low-probability regions
due to the state variable correlation.

Step 4, condition checking reports all visited states in S
satisfying the conditions in C.

USENIX Association

16th USENIX Symposium on Networked Systems Design and Implementation 725

ACT checks the coverage saturation using two parameters:
saturation size K and threshold 3. The coverage has reached
saturation if the growth rate of coverage(S, k) is lower than d.
Note that, these two parameters are used only to determine
the total testing time, and ACT still attempts to maximize
coverage(S,k) for all possible k values within that testing
time. Smaller k and 8 increase coverage(S, k) for all k values
but require longer testing times.

4 Experiments

4.1 General setup

We consider five representative CCAls of Linux kernel 3.10:
the traditional AIMD [2], the current Linux default CU-
BIC [20], HTCP [33] as a time-based CCAI, HSTCP [15] as
a high-speed CCAI and VENO [17] as a delay-based CCAL
We choose Linux kernel 3.10 for two reasons. First, this
is the Linux kernel extensively tested with DCE-enhanced
NS3 [44], and thus we can minimize the impact of the poten-
tial DCE-enhanced NS3 bugs on our experiments. Second,
all the tested CCAIs were initially developed before 2005,
and their implementations were already relatively stable in
Linux kernel 3.10 that was released in 2013. For all the ex-
periments, we use the default TCP parameters of Linux ker-
nel 3.10, except that the maximum buffer size is increased to
not limit the TCP throughput.

Each CCALI has a default test input, which is mainly used
for comparing the region coverage of different testing meth-
ods, so it does not have any conditions in C. The default
test inputs for different CCAls are the same, except dif-
ferent L. For example, the default test input for CUBIC
has L = (CUBIC), and the default test input for AIMD has
L = (AIMD). In every default test input, the network topol-
ogy T has a single (virtual) link, which is simple and yet
very powerful in simulating various network environments
with random packet dynamics in terms of packet bandwidth,
delay, loss, and reordering. The network environment pa-
rameter space P contains all possible network environments
7 = (p1, P2, D3, P4, D5, P6), With random packet loss rate
p1 € [0%,10%)] with granularity 10~°, link bandwidth p, €
[0.1,10000] Mbps with granularity 0.1 Mbps, link delay p3 €
[1,1000] ms with granularity 1 ms, random queuing delay
following a Gamma distribution [26] with shape parameter
pa € [0,20] and scale parameter ps € [0, 80] both with gran-
ularity 0.01, and application rate pg € [0.001,10000] Mbps
with granularity 0.1 Mbps. The ranges of the parameters are
selected to cover most of possible Internet conditions.

In every default test input, the state space S contains all
possible states Y= (s1,52,53,54,55), where s is the con-
gestion window size variable cwnd € [1,1024] packets with
granularity 1 packet, s; is the slow start threshold variable
ssthresh € [1,1024] packets with granularity 1 packet, s3 is
the smoothed RTT variable r#t € [0,2048] ms with default
Linux granularity 4 ms, s4 is the smoothed RTT deviation

variable rttvar € [0,1024] ms with granularity 4 ms, and ss
is the congestion avoidance state variable ca_state € [0:nor-
mal, l:disorder, 2:cwr, 3:recovery, 4:timeout]. These vari-
ables are the basic CCALI state variables, and are maintained
in the fcp_sock structure in the Linux kernel. The ranges
of these state variables are selected to cover most of possi-
ble TCP states in the Internet, except that cwnd and ssthresh
could be even larger for ultra-high-speed networks. In addi-
tion to these basic state variables, more state variables can be
added into S depending on the tested conditions, such as con-
gestion window size prior_cwnd right before fast recovery,
and CCAlI-specific variables like rarget for CUBIC.

In each experiment, each tested CCAI flow transfers a long
file of size 15 MBytes, which is selected to be long enough
to generate tens of thousands of packets so that all CCAIs
can possibly increase their cwnd and ssthresh to over 1024
packets (i.e., their ranges in S).

4.2 Evaluation: region coverage

We compare the region coverage of ACT with manual testing
(MAN) and with other model-agnostic methods: undirected
random testing (RAN) and symbolic execution based testing
(SYM). We are unable compare ACT with model-guided
methods, because there is no abstract model that can capture
all state variables used in our experiments.

Methods: ACT: For each default test input, ACT runs
DCE-enhanced NS3 simulations with the following satura-
tion parameter values: k=128, and 6=1.5% per 5000 simu-
lation runs. That is, the coverage has reached saturation if
the growth rate of coverage(S, 128) is slower than 1.5% per
5000 simulation runs. These parameter values are selected
so that ACT can finish every test in about three days.

MAN: For each default test input, MAN repeatedly runs
simulations with our manually selected network environ-
ments, which are similar to those selected for the response
function test in a representative CCAI test [24]. Specifically,
we consider packet loss rates p;=0, 107°, 1075, ...,and 107},
bandwidths p,=1, 10, 100, and 250 Mbps, link delays p3=8,
20, 40, 80, and 160 ms, queuing delay shape values ps=1
and 2.5 and scale values ps=0, 1, and 10, and application
rate pe=10000 Mbps. There are a total of 840 network en-
vironments (i.e., combinations), and MAN repeatedly runs
simulations with these network environments with different
random seeds for the same total number of times as ACT.

RAN: For each default test input, RAN repeatedly runs
simulations with uniformly and randomly selected network
environments for the same total number of times as ACT.

SYM: Symbolic execution based testing [40,46] executes
the network simulator using symbolic execution platforms,
where the packet dynamics (e.g., delay) are represented us-
ing symbolic variables with ranges defined according to P.
Because DCE-enhanced NS3 is a huge system where each
simulated network node runs a virtualized Linux networking
stack, we symbolically execute the simulations using a pow-

726 16th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

erful symbolic execute platform S?E [8], which is capable of
symbolically testing a virtual machine. We find that SYM
systematically checks all possible TCP behaviors including
congestion control behaviors and non-congestion-control be-
haviors, such as all possible retransmissions and consecutive
timeouts of the data packets, and all possible ways to estab-
lish and terminate a connection. As a result it can only test a
TCP flow for a small file size of a few KBytes within three
days instead of the expected 15-MByte file size, and thus it
can only increase cwnd by a few packets that is far below our
expected 1024 packets.

Result: We show the results of only CCAI L = (CUBIC)
in Fig. 8, and the results of other CCAls are similar. Fig. 8
shows the coverage(S, k) results of ACT, RAN, and MAN,
which are measured by the percentages of visited regions
with size k. The region coverage of SYM is too low (lower
than all others) and not shown in the figure. As k increases,
the size of a region increases and the total number of regions
in S decreases, and thus the region coverages of all methods
increase. As an extreme case, when k = 1024, the whole state
space S is treated as a single region, and thus all three meth-
ods achieve 100% coverage. It is interesting that MAN is
more efficient (i.e., higher or the same coverage) than RAN
for big regions but not for small ones. This is because the
network environments used in MAN are representative net-
work environments in P selected by TCP experts [24], and
thus MAN covers a broader range of states than RAN. As
a result, MAN is more efficient than RAN for big regions
(i.e., k > 4). However, MAN has only a limited number of
network environments (i.e., 840), and thus covers a smaller
number of distinct states than RAN. As a result, MAN is less
efficient than RAN for small regions (i.e., k < 4). We can see
that ACT is more efficient than MAN, RAN, and SYM for all
possible region sizes. Note that ACT achieves high coverage
without requiring an abstract CCAI model.

Figs. 9 and 10 show the growth of coverage(S,2) and
coverage(S,128), respectively. When k = 2, there are a to-
tal of about 10'° regions and all three methods achieve very
small coverage percentages in three days. When k = 128,
there are a total of 2048 regions and then all three methods
achieve higher coverage percentages. We can see that ACT
covers slightly more small regions (i.e., k = 2) than RAN,
but significantly more big regions (i.e., kK = 128) than RAN.
This is because ACT uniformly selects unvisited states in S
and thus is more likely to visit different big regions, whereas
RAN uniformly selects parameter vectors in P and thus is
more likely to redundantly visit the same big regions. Fig. 10
shows that ACT step 2 (i.e., estimation) without requiring
an abstract CCAI model already achieves a higher coverage
than both MAN and RAN, and ACT step 3 (i.e., concatena-
tion) further greatly improves the coverage.

Note that when & is small (e.g., < 16), all three methods
including ACT achieve low coverage (e.g., < 10%). This is
because we only run each test for three days, and there are

100.000%

&

£ 10.000%

W

5 1.000%

Y]

gn 0.100%

£ ACT —eo—
z 0.010% RAN —&—
&) MAN —%—

0.001% ‘ : ‘ ‘
1 4 16 64 256 1024
Region Size k

Figure 8: coverage(S, k) with different k values.
0.1000% 100%

: opaesesets
0.0100% 3
HHH
K *W o
kax -

Coverage Percentage
Coverage Percentage

0.0010% [E
*

0.0001% L - - - %
10 20 30 40 50 0 10 20 30 40 50

Simulation runs (1000) Simulation runs (1000)

Figure 9: coverage(S,2). Figure 10: coverage(S,128).

very large number of regions when k is small. For example,
when k is 16, there are already 8,388,608 regions. In three
days, RAN explores about 31,000 different regions, and ACT
explores about 260,000 different regions. The coverages of
all methods can be improved by running each test for a longer
time by reducing parameters ¥ and 8. But our experiments
already clearly demonstrate that ACT is significantly more
efficient than MAN, RAN, and SYM giving the same amount
of testing time.

4.3 Use case 1: Checking generic behaviors

We demonstrate the capability of ACT in detecting design
and implementation bugs using three types of state condi-
tions in the following three subsections, respectively: 1) a
condition that checks generic CCAI behaviors, 2) a condi-
tion that checks the window increase behavior of a CCAI, 3)
a condition that checks the window decrease behavior.

This group of experiments demonstrates that even a sim-
ple condition that checks generic CCAI behaviors might be
useful for detecting bugs. The test inputs are the same as the
default test inputs, except that C contains a simple condition:
cwnd > 107 packets. Intuitively, this test checks whether the
cwnd of a CCAI could be mistakenly larger than some upper
bound, such as 107 packets that approximately corresponds
to the throughput of a TCP flow with a rate of 100 Gbps and
an RTT of 1000 ms. Note that although 107 is outside of the
specified range [1,1024] for cwnd, it is still possible for ACT
to detect such states, because ACT keeps track of all the vis-
ited states, not just the states in the specified ranges. ACT
with this simple condition detects an implementation bug.
Due to a bug triggered by two consecutive undos, all tested
CCAIs with tcp_sack disabled, except CUBIC, mistakenly

USENIX Association

16th USENIX Symposium on Networked Systems Design and Implementation 727

5x10°

cwnd (packet)
S = N W A W\

5012

bug

5014

5016

Simulation Time (second)

5018

80
=70
% 60
250
T 40

© 30

bug

20
445 446 447 448 449 450
Simulation Time (second)

600
a 9 = L
3z 4x10 B 3 500
S 3x10° bu. _ E 400
& 9 £ 300 |-
2x10 N
H 1x10° | Fawop
g Ix 100 -
0 I I I | I 0 " "

5 10 15 20 25 30 300 350 400 450 500

Simulation Time (second) Simulation Time (second)
Figure 11: AIMD imple- Figure 12: CUBIC design

mentation bug: Suddenly ex- bug: Too aggressive after
tremely large cwnd after con- application rate-limited peri-
secutive undos. ods.

set cwnd to an extremely large number (i.e., 4,294,967,294
packets), as demonstrated in Fig 11. We thought that it was
a new and severe bug and reported it to Linux kernel devel-
opers [38], and then were told that it was just fixed a few
months ago.

4.4 Use case 2: Checking increase behavior

This group of experiments checks the first motivating exam-
ple in Section 1. The test inputs are the same as the de-
fault test inputs, except that C contains a condition: cwnd >
ssthresh and target > 2 x cwnd, and S contains additional
target. Intuitively, this test checks whether CUBIC could be
mistakenly more aggressive in congestion avoidance than in
slow start. ACT detects multiple states satisfying this con-
dition. There are three types of cases. 1) New design bug
detected by ACT steps 1 and 2: CUBIC is designed to be
a time-based congestion control algorithm, and its window
increment in one RTT is a function of the duration of the
RTT. As aresult, in cases of extremely long propagation or
queueing delays, CUBIC may set rarget to be higher than
twice of the current cwnd, which is reasonable for long prop-
agation delays but is questionable for long queueing delays
that are possible signs of network congestion. This is an ex-
treme case that we did not consider when we were designing
CUBIC [20]. 2) Design bug detected by ACT step 3: Linux
CUBIC mistakenly increases its target too aggressively after
a long idle period. This bug was first reported in 2015 [25],
and has been fixed in the latest Linux kernel. 3) New design
bug shown in Fig. 12 detected by ACT step 3: Linux CU-
BIC mistakenly increases its farget too aggressively after a
long application rate-limited period. Both this and the previ-
ous bugs are special cases that we did not consider when we
were designing and implementing CUBIC [20].

4.5 Use case 3: Checking decrease behavior

This group of experiments checks the second motivating
example in Section 1. The test inputs are the same as
the default test inputs, except that C contains a condi-
tion: prior_ca_state == 3, ca_state == 0, and cwnd >
prior_cwnd, and S contains additional state variables used
in the condition. Intuitively, this test checks whether a CCAI

Figure 13: AIMD implemen- Figure 14: VENO implemen-
tation bug: mistakenly in- tation bug: mistakenly in-
creases cwnd after fast recov- creases cwnd after fast recov-
ery. ery.

appropriately decreases its cwnd in fast recovery. ACT de-
tects multiple states satisfying this condition, all by steps 1
and 2. There are two types of cases. 1) New implementation
bug of AIMD and HTCP shown in Fig. 13. Due to a calcu-
lation boundary bug (happens only when cwnd < 4), AIMD
and HTCP mistakenly increase cwnd to 4 after an undoed
fast recovery. This is a new bug and was recently fixed af-
ter we reported it to Linux kernel developers [39]. This is
an important bug, because in a highly congested network
where we desperately need CCAIs, this bug makes the net-
work even more congested. 2) Implementation bug of VENO
and HSTCP shown in Fig. 14. VENO and HSTCP mistak-
enly double their cwnd after an undoed fast recovery, because
they mistakenly use the default undo function that was de-
signed for AIMD. This bug has been reported before and
was fixed in 2016 [47].

5 Discussions

What domain knowledge is required to use ACT? An ACT
user needs to know the state variables of a tested CCAI (e.g.,
by reading the related RFC or papers) in order to define the
state space S. In addition, currently the user needs to manu-
ally instrument the source code of CCAls and NS3 to keep
track of the values of the state variables. The contribution of
our work is that ACT is model-agnostic so that the user does
not need to know how multiple intertwined components of
CCAIs change the state variables and does not need to know
the complicated mapping from P to S.

An ACT user needs to know the correct behavior of a
tested CCAI (e.g., by reading the related RFC or papers) in
order to define the set of conditions C. In addition, an ACT
user needs to manually analyze the outputted simulation
traces with buggy behavior (i.e., satisfying the conditions)
and then manually check the source code of CCAIs to iden-
tify the reasons for the bugs. The contribution of our work
is that ACT efficiently searches an extremely large number
of possible network environments P, and automatically finds
the specific network environments where the tested CCAIs
show the buggy behavior, so that the user only needs to man-
ually analyze the specific simulation traces with buggy be-
havior.

728

16th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

What kind of CCAIs ACT can or can’t test? Although we
haven’t evaluated ACT for all current CCAls, we conjecture
that ACT works for general current and future CCAIs for
the following two reasons. First, ACT does not make any
specific assumptions about the network environment param-
eters of P and the state variables of S, except that S contains
mainly numerical state variables and state variables should
not be strongly correlated in a short time scale. Second, ACT
checks the general behaviors of a tested CCAI by analyzing
the impact of P on S, instead of checking the detailed imple-
mentations of the CCAI by analyzing its source code. While
different CCAIs may have quite different implementations
(e.g., loss based or delay based, expert designed or computer
generated, kernel space or user space), they have same or sim-
ilar general behaviors (e.g., increase or decrease cwnd based
on network congestion). Having said that, an important fu-
ture work is to evaluate the effectiveness of ACT for new
CCAIs, such as BBR [6], Remy [48], and PCC Vivace [12].

What kind of bugs ACT can or can’t detect? ACT can be
used to detect the bugs that can be described by state vari-
ables of S, like the two motivating examples. ACT does not
work well for the bugs related to the specific packet behav-
iors, such as whether an acknowledgement packet with the
correct acknowledgment number is sent right after receiving
a data packet, because it is hard or impossible to describe
such a behavior as a condition of state variables. In addition,
ACT does not work well for bugs that happen only with cer-
tain TCP configuration parameters, because ACT does not
search the large space of TCP configuration parameters.

Are there false positives and false negatives? ACT does
not have false positives, because ACT can output the specific
network environments and the actual simulation traces for
each reported bug. However, ACT does have false negatives
as it is possible that a tested CCAI satisfies a condition but
ACT could not find it. This is because ACT attempts to max-
imize the region coverage of S within a testing time budget,
instead of covering all regions which requires an unrealisti-
cally long time for small k values. Intuitively, this implies
that ACT can be used for bug detection but not for correct-
ness guarantee, which is consistent with a fundamental test-
ing principle “Program testing can be used to show the pres-
ence of bugs, but never to show their absence” [11] in the
software testing community. For real-world networking sys-
tems, correctness can be verified only for special cases, such
as for the abstract models of the code [34,37], for code built
on verified libraries [52], and for partial pieces of code [42].

6 Related work

6.1 TCP numerical state space exploration

Three types of methods can be potentially used to address
TCP numerical state space exploration problems. 1) These
problems are usually studied by manual testing [19, 24],
where a tester manually selects some representative network

environments in P to test whether a CCAI visits certain re-
gions in S. Not only is manual testing unscalable to a pro-
hibitively large P (e.g., only an order of 10% network environ-
ments are selected in [19, 24]), but also the effectiveness of
manual testing highly depends on how much the tester knows
about a CCAL

2) Automated and model-guided methods such as [22]
have the potential to automatically and efficiently explore a
limited S of a CCAI under the guidance of an abstract model
of the CCALI. But the choice of S is limited by the state vari-
ables captured in the abstract model. For example, the model
used in [22] does not capture CUBIC state variable target,
and thus cannot be used to explore the S of CUBIC in the
first motivating example. More importantly, the regions of
S that can be explored are limited by the CCAI components
captured in the abstract model. For example, the model used
in [22] does not capture the undo component of Linux CCAls.
As aresult, it is unable to guide the exploration of the regions
that can be reached by the undo component, and then hard to
detect the bugs caused by the interference between the undo
and fast recovery components in the second motivating exam-
ple. However, there is currently no complete abstract model
for real-world CCAls, as described in the second challenge.

3) Automated and model-agnostic methods, such as undi-
rected random testing [41] and symbolic execution based
testing [40, 46], can automatically explore a general S of a
CCAI without requiring an abstract CCAI model. However,
they are inefficient to explore different regions of a large S,
because they blindly visit S and as a result tend to repeatedly
or densely explore some regions of S. Symbolic execution
based testing [40, 46] groups all the network environments
leading to exactly the same CCAI execution path into equiv-
alence classes in order to improve the scalability over exhaus-
tive testing that exhaustively tests each 7 € P. However, it
is still inefficient in exploring different regions of a large S
for the following reasons. First, it still blindly explores S, be-
cause different equivalence classes of network environments
may still repeatedly or densely explore the same regions of
S. Second, the number of equivalence classes of network
environments is still prohibitively large, and is roughly an
exponential function of the number of packets (i.e., path ex-
plosion problem [4]). As a result, it can be used to test CCAI
with only a small number of packets [40, 46] or test partial
code of CCAIs [42].

ACT attempts to combine the advantages of the model-
guided and model-agnostic methods, that is, the efficiency of
model-guided methods and the generality of model-agnostic
methods. First, ACT is based on undirected random testing
instead of symbolic execution based testing, so that it is scal-
able to a large P and a large number of packets. Second,
ACT guides the selection of network environments under the
feedback iteratively obtained in a test, so as to select new net-
work environments that are more likely to explore different
regions. As a result, ACT does not blindly explore S, and

USENIX Association

16th USENIX Symposium on Networked Systems Design and Implementation 729

can more efficiently explore different regions of S than undi-
rected random testing and symbolic execution based testing.

6.2 Enhancements to random testing

The efficiency of random testing can be improved by in-
corporating the right guidance, such as feedback-based ran-
dom testing [28] and guided fuzzing (e.g., AFL [51]), or by
combining with symbolic execution in various ways (e.g.,
DART [18], Driller [36], MACE [9]). The major differ-
ence between these techniques and our proposed ACT is
that these techniques explore the general program execution
state space by maximizing the code coverage or edge cov-
erage, whereas ACT explores the specific numerical state
space of CCAIs where maximizing code coverage may not
always be helpful. First, maximizing code coverage might
waste the testing resources on covering code with no or lit-
tle impact on congestion control, such as the TCP code re-
lated to connection management or packet formats. Second,
many congestion control states can be explored only by re-
peatedly visiting the already visited code blocks for many
times. For example, in order for AIMD to reach from a state
with cwnd = ssthresh = 500 packets to another state with
cwnd = 1000 packets and ssthresh = 500 packets, AIMD
needs to repeatedly visit the same additive increase code for
500+ 501 +502 + ... +999 = 374,750 times.

The efficiency of random testing can also be improved us-
ing genetic algorithms [29], where new test inputs can be
generated by recombining two existing test inputs (called
crossover), or by randomly changing one existing test input
(called mutation). The parameter estimation of ACT is in-
spired by genetic algorithms. Specifically, the interpolation
is inspired by the crossover, as it generates a new network en-
vironment by combining two existing network environments.
The extrapolation is inspired by mutation, as it generates a
new network environment by changing one existing network
environment. The major difference between ACT and ge-
netic algorithms is the parameter concatenation of ACT that
concatenates a sequence of network environments instead of
combining them into a single network environment, as inter-
polation and extrapolation (similarly crossover and mutation)
do not work well for S with correlated state variables.

6.3 General state space exploration

In addition to random testing, many automated techniques
have been proposed to explore various state spaces (e.g., pro-
gram execution space, TCP connection management space)
of network programs.

Implementation-level model checking techniques [27,31]
recursively explore the next states from the start state by enu-
merating all possible events at each state. They are effective
for systematically exploring a small state space, but are not
scalable to a large one [28]. The path explosion problem [4]
limits symbolic execution based techniques [32,35,40,42] to
testing only a small number of packets [40], a component of

a network protocol [42], or an abstract network model [37].
Static analysis techniques [7,13,45] analyze the network pro-
grams at compilation time to infer their run-time behaviors.
These techniques [13] are effective at quickly checking shal-
low behaviors of large programs, but not at accurately check-
ing the deep program behaviors, such as finding the exact
network environments that lead a CCAI to certain states af-
ter thousands of packets. Model learning techniques [14,21]
attempt to automatically build an abstract model and then ex-
plore the state space of the model. But they work only for a
small state space.

The major difference between all above techniques and
our proposed ACT is that these techniques attempt to explore
different individual states and are more suitable for small
state spaces, such as nonnumerical state spaces (e.g., TCP
connection management state space [27]) or small numerical
state spaces of simple protocols (e.g., TFTP [40]), whereas
ACT is specifically designed to efficiently explore different
regions of an extremely large numerical state space of CCAIs
where certain regions can be reached only after thousands of
intermediate states (i.e., thousands of packets).

6.4 Other related TCP testing work

Pantheon [49] provides a training ground for evaluating the
performance of CCAIs in real-world settings and can auto-
matically calibrate the parameters of a network emulator to
match a real network path so that a tested CCAI achieves sim-
ilar average throughput and delay, whereas ACT attempts to
maximize the coverage of the whole state space and then de-
tect bugs. PacketDrill [5] is an automated TCP testing tool
that checks whether TCP meets a requirement in a specific
network environment 7, whereas ACT checks whether a
CCAI meets a requirement in a large space P of network
environments. Automated trace analysis [3, 23, 30] checks
the correctness of TCP packet traces against some formal
models or rules mainly about the TCP connection establish-
ment and termination, whereas ACT checks the correctness
of TCP congestion control.

7 Conclusion

This paper proposes a CCAI testing tool ACT, and presents
several design and implementation bugs of Linux TCP. Most
of them are due to the mismatch among different TCP com-
ponents, because they were designed by different researchers
but their interfaces are evolving and not clearly defined. In
the future, we plan to extend ACT to test other congestion
control algorithms, such as those based on UDP and those in
information-centric networking.

ACKNOWLEDGMENT

We thank our shepherd, Anirudh Sivaraman, and the review-
ers for their constructive comments. The work presented in
this paper was supported in part by NSF CNS-1526253 and
NSF SHF-1718040.

730 16th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Appendix

Proof: Let I(k) denote the total number of regions in S when
the region size is k. Let Q;(k) denote the probability to visit
region R;(k) with i € [1,1(k)], which is the probability that at
least one state in region R;(k) is visited. In the special case
when k = 1, we have I(k) = |S| and Q;(k) = g;.

Suppose that a method runs the network simulator for N
times and each time visits M states in S. The probability that
region R;(k) is visited at least once is 1 — (1 — Q;(k))N*M.
The expected number of visited regions is coverage(S,k) =

10 — Qi(k))N*M)_ Thus, the numerical state space

Yy (1-(1

exploration problem can be rewritten as follows.
N xM) (2)
):, 1 Qz()=1 03

Using the Karush-Kuhn-Tucker conditions, we can prove
that the maximum coverage is achieved when Q;(k) = Q;(k)
for Vi, j € [1,1(k)]. If and only if ¢; = g; for Vi, j € [1,|S]],
we have Q;(k) = Q(k) for Vi, j € [1,1(k)] and for any k > 1.
That is, given the same amount of testing time (i.e., the same
N), the uniform distribution is the only one that maximizes
coverage(S,k) for any k > 1. .

Maximize Y8 (—(1-

Subject to

References

[1] M. Alizadeh, A. Greenberg, D. Maltz, and J. Padhye et
al. Data center TCP (DCTCP). In Proceedings of ACM
SIGCOMM, New Delhi, India, August 2010.

[2] M. Allman, V. Paxson, and E. Blanton. TCP congestion
control. RFC 5681, September 2009.

[3] S. Bishop, M. Fairbairn, M. Norrish, P. Sewell,
M. Smith, and K. Wansbrough. Rigorous specifica-
tion and conformance testing techniques for network
protocols, as applied to TCP, UDP, and sockets. In
Proceedings of ACM SIGCOMM, Philadelphia, PA, Au-
gust 2005.

[4] C. Cadar and K. Sen. Symbolic execution for software
testing: three decades later. Communications of the
ACM, 56(2):82-90, February 2013.

[5] N. Cardwell, Y. Cheng, L. Brakmo, M. Mathis,
B. Raghavan, N. Dukkipati, H. Chu, A. Terzis, and
T. Herbert. PacketDrill: Scriptable network stack
testing, from sockets to packets. In Proceedings of
USENIX ATC, San Jose, CA, June 2013.

[6] N. Cardwell, Y. Cheng, C. Gunn, S. Yeganeh, and V. Ja-
cobson. BBR: Congestion-based congestion control.
Coomunications of the ACM, 60(2):pp. 58-66, Febru-
ary 2017.

[7]1 Q. Chen, Z. Qian, Y. Jia, Y. Shao, and Z. Mao. Static
detection of packet injection vulnerabilities: A case

(8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

for identifying attacker-controlled implicit information
leaks. In Proceedings of ACM CCS, Denver, CO, Octo-
ber 2015.

V. Chipounov, V. Kuznetsov, and G. Candea. The
S2E platform: design, implementation, and applica-
tions. ACM Transactions on Computer Systems, 30(1),
February 2012.

C. Cho, D. Babic, P. Poosankam, K. Chen, E. Wu, and
D. Song. MACE: model-inference-assisted concolic
exploration for protocol and vulnerability discovery. In
Proceedings of USENIX Conference on Security (SEC),
San Francisco, CA, August 2011.

DARPA Internet Program. Transmission control pro-
tocol — protocol specification. RFC 793, September
1981.

E. Dijkstra. Notes on Structured Programming in Book
Structured Programming. Academic Press, 1972.

M. Dong, T. Meng, D. Zarchy, E. Arslan, Y. Gi-
lad, P. Godfrey, and M. Schapira. PCC Vivace:
Online-learning congestion control. In Proceedings of
USENIX NSDI, Renton, WA, April 2018.

D. Engler and M. Musuvathi. Static analysis versus
software model checking for bug finding. In Pro-
ceedings of International Conference on Verification,
Model Checking and Abstract Interpretation, Venice,
Italy, January 2004.

P. Fiterau-Brosteam, R. Janssen, and F. Vaandrager.
Combining model learning and model checking to an-
alyze TCP implementations. In Proceedings of In-
ternation Conference on Computer Aided Verification,
Canada, July 2016.

S. Floyd. HighSpeed TCP for large congestion win-
dows. RFC 3649, December 2003.

S. Floyd and M. Allman. Specifying new congestion
control algorithms. RFC 5033, August 2007.

C. Fu and S. Liew. TCP Veno: TCP enhancement for
transmission over wireless access networks. IEEE Jour-
nal on Selected Areas in Communication, 21(2):216—
228, February 2003.

P. Godefroid, N. Klarlund, and K. Sen. DART: Di-
rected automated random testing. In Proceedings of
ACM Programming Language Design and Implementa-
tion, Chicagi, IL, June 2005.

S.Ha, L. Le, I. Rhee, and L. Xu. Impact of background
traffic on performance of high-speed TCP variant pro-
tocols. Computer Networks, 51(7):1748—-1762, May
2007.

USENIX Association

16th USENIX Symposium on Networked Systems Design and Implementation 731

[20]

[21]

S. Ha, I. Rhee, and L. Xu. CUBIC: A new TCP-
friendly high-speed TCP variant. ACM SIGOPS Op-
erating System Review, 42(5):64-74, July 2008.

Y. Hsu, G. Shu, and D. Lee. A model-based approach
to security flaw detection of network protocol imple-
mentations. In Proceedings of IEEE ICNP, Orlando,
FL, October 2008.

(32]

(33]

R. Sasnauskas, O. Landsiedel, M. Alizai, C. Weise,
S. Kowalewski, and K. Wehrle. KleeNet: discovering
insidious interaction bugs in wireless sensor networks
before deployment. In Proceedings of ACM/IEEE
IPSN, Stockholm, Sweden, April 2010.

R. Shorten and D. Leith. H-TCP: TCP for high-speed
and long-distance networks. In Proceedings of PFLD-
Net, Argonne, IL, February 2004.

[22] S. Jero, E. Hoque, D. Choffnes, A. Mislove, and
C. Nita-Rotaru. Automated attack discovery in TCP [34] M. Smith and K. Ramakrishnan. Formal specification
congestion control using a model-guided approach. In and verification of safety and performance of TCP se-
Proceedings of NDSS, San Diego, CA, February 2018. lective acknowledgment. TEEE/ACM Transactions on

. . king, 10(2):193-207, A t 2002.

[23] D. Lee, D. Chen, R. Hao, R. Miller, J. Wu, and X. Yin. Networking, 10(2):19 ngust 200
Network .pTOtOCO.I system monitoring - a formal. ap- [35] J. Song, C. Cadar, and P. Pietzuch. SymbexNet: Test-
proach with passive testing. IEEE/ACM Transactions ing network protocol implementations with symbolic
on Networking, 14(2):424-437, 2006. execution and rule-based specifications. IEEE Trans-

[24] Y. Li, D. Leith, and R. Shorten. Experimental actions on Software Engineering, 40(7):695-709, July

. . . 2014.
evaluation of high-speed congestion control protocols.
IEEE/ACM Transactions on Networking, 15(5):1109— [36] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang,
1122, October 2007. J. Corbette, Y. Shoshitaishvili, C. Kruegel, and G. Vi-

[25] P. McManus. Thanks Google for gna.b 1].)riller: gugmenltinigD fuzzigg throu%f]l Ds;éectsive
open source TCP fix, September 2015. ls)y,m ° ICCAGXECEUOH' 201116 roceedings of » oan
http://bitsup.blogspot.com/2015/09/ 1620, , beburary)
thanks-google-tcp-team-for-open-source. [37] R. Stoenescu, M. Popovici, L. Negreanu, and C. Raiciu.
html. SymNet: Scalable symbolic execution for modern net-

[26] A. Mukherjee. On the dynamics and significance of works. In Proceedings of ACM SIGCOMM, Brazil,
low frequency components of Internet load. Internet- August 2016.
worltc)mgi §:search and Experience, 5:163-205, De- [38] W. Sun. A bug report for Linux TCP congestion control
cember 1994. algorithms, May 2017. https://patchwork.ozlabs.

[27] M. Musuvathi and D. Engler. Model checking large org/patch/767239/.
network protocol implementations. In Proceedings of . .

. [39] W. Sun. A buggy behavior for Linux TCP Reno and
USENIX NSDI, San Francisco, CA, March 2004. HTCP, July 2017. Report https://waw.spinics.
[28] C. Pacheco, S. Lahiri, M. Ernst, and T. Ball. Feedback- net/lists/netdev/msg444955.htnl, Fix https://
directed random test generation. In Proceedings patchwork.ozlabs.org/patch/797520/.
I . Enei)
of nternaflonal C(?nference on Software Engineering [40] W. Sun, L. Xu, and S. Elbaum. Improving the cost-
(ICSE), Minneapolis, MN, May 2007.
effectiveness of symbolic testing techniques for trans-

[29] R. Pargas’ M. Harrold, and R. Peck. Test-data gen- port pI'OtOCOl implementations under packet dynamics.
eration using genetic algorithm. Journal of Software: In Proceedings of ACM SIGSOFT International Sympo-
Testing, Verification and reliability, 9(4):263-282, De- sium on Software Testing and Analysis (ISSTA), Santa
cember 1999. Barbara, CA, July 2017.

[30] V. Paxson. Automated packet trace analysis of TCP [41] W. Sun, L. Xu, and S. Elbaum. Limitations of emulat-
implementations. In Proceedings of ACM SIGCOMM, ing realistic network environments for correctness test-
Cannes, France, September 1997. ing of internet applications. In Proceedings of IEEE

ICC, pages 1-6, Kansas City, MO, May 2018.

[31] W. Rathje and B. Richards. A framework for model
checking UDP network programs with Java Pathfinder. [42] W. Sun, L. Xu, and S. Elbaum. Scalably testing conges-
In Proceedings of ACM High Integrity Language Tech- tion control algorithms of real-world TCP implementa-
nology (HILT) International Conference, Portland, OR, tions. In Proceedings of IEEE ICC, pages 1-6, Kansas
October 2014. City, MO, May 2018.

732 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://bitsup.blogspot.com/2015/09/thanks-google-tcp-team-for-open-source.html
http://bitsup.blogspot.com/2015/09/thanks-google-tcp-team-for-open-source.html
http://bitsup.blogspot.com/2015/09/thanks-google-tcp-team-for-open-source.html
https://patchwork.ozlabs.org/patch/767239/
https://patchwork.ozlabs.org/patch/767239/
https://www.spinics.net/lists/netdev/msg444955.html
https://www.spinics.net/lists/netdev/msg444955.html
https://patchwork.ozlabs.org/patch/797520/
https://patchwork.ozlabs.org/patch/797520/

[43]

[44]

[45]

[46]

[47]

K. Tan, J. Song, Q. Zhang, and M. Sridharan. A
compound TCP approach for high-speed and long dis-
tance networks. In Proceedings of IEEE INFOCOM,
Barcelona, Spain, April 2006.

H. Tazaki, F. Uarbani, E. Mancini, M. Lacage, D. Ca-
mara, T. Turletti, and W. Dabbous. Direct code ex-
ecution: revisiting library OS architecture for repro-
ducible network experiments. In Proceedings of ACM
CoNEXT, Santa Barbara, CA, December 2013.

O. Udrea, C. Lumezanu, and J. Foster. Rule-based
static analysis of network protocol implementation. In
Proceedings of USENIX Security Symposium, Vancou-
ver, Canada, July 2006.

M. Vu, L. Xu, S. Elbaum, W. Sun, and K. Qiao. Effi-
cient systematic testing of network protocols with tem-
poral uncertain events. In Proceedings of IEEE INFO-
COM, Paris, France, April 2019.

F. Westphal. TCP: make undo_cwnd mandatory for
congestion modules, November 2016. https://wuw.
mail-archive.com/netdev@vger.kernel.org/
msgl38481.html.

(48]

[49]

(50]

(51]

[52]

K. Winstein and H. Balakrishnan. TCP ex machina:
computer-generated congestion control. In Proceed-
ings of ACM SIGCOMM, Hong Kong, China, August
2013.

F. Yan, J. Ma, G. Hill, D. Raghavan, R. Wahby, P. Levis,
and K. Winstein. Pantheon: the training ground for
Internet congestion-control research. In Proceedings
of USENIX ATC, Boston, MA, July 2018.

P. Yang, J. Shao, W. Luo, L. Xu, J. Deogun, and
Y. Lu. TCP congestion avoidance algorithm identifica-
tion. IEEE Transactions on Networking, 22(4):1311—
1324, August 2014.

M. Zalewski. American Fuzzy Lop for network
fuzzing. https://github.com/jdbirdwell/afl.

A. Zaostrovnykh, S. Pirelli, L. Pedrosa, K. Argyraki,
and G. Candea. A formally verified NAT. In Proceed-

ings of ACM SIGCOMM, 2017.

USENIX Association

16th USENIX Symposium on Networked Systems Design and Implementation

733

https://www.mail-archive.com/netdev@vger.kernel.org/msg138481.html
https://www.mail-archive.com/netdev@vger.kernel.org/msg138481.html
https://www.mail-archive.com/netdev@vger.kernel.org/msg138481.html
https://github.com/jdbirdwell/afl

	Introduction
	Numerical state space exploration
	Challenges
	Our contributions

	Design of ACT
	Regions of numerical state space S
	Numerical state space exploration
	Feedback-guided random testing
	Parameter estimation
	Parameter concatenation

	Implementation of ACT
	Testing platform
	Test input
	Test output
	ACT method

	Experiments
	General setup
	Evaluation: region coverage
	Use case 1: Checking generic behaviors
	Use case 2: Checking increase behavior
	Use case 3: Checking decrease behavior

	Discussions
	Related work
	TCP numerical state space exploration
	Enhancements to random testing
	General state space exploration
	Other related TCP testing work

	Conclusion

