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ABSTRACT 

This work presents a Procedural Content Generation 
(PCG) method based on a Neural Network Reinforcement 
Learning (RL) approach that generates new environments 
for Virtual Reality (VR) learning applications. The primary 
objective of PCG methods is to algorithmically generate 
new content (e.g., environments, levels) in order to improve 
user experience. Researchers have started exploring the 
integration of Machine Learning (ML) algorithms into their 
PCG methods. These ML approaches help explore the 
design space and generate new content more efficiently. 
The capability to provide users with new content has great 
potential for learning applications. However, these ML 
algorithms require large datasets to train their generative 
models. In contrast, RL based methods do not require any 
training data to be collected a priori since they take 
advantage of simulation to train their models. Moreover, 
even though VR has become an emerging technology to 
engage users, there have been few studies that explore PCG 
for learning purposes and fewer in the context of VR. 
Considering these limitations, this work presents a method 
that generates new VR environments by training an RL in a 
simulation platform. This PCG method has the potential to 
maintain users’ engagement over time by presenting them 
with new environments in VR learning applications.  
 

Keywords: Procedural Content Generation, Reinforcement 
Learning, Virtual Reality, Education, Learning. 
 
 
 

1. INTRODUCTION 
The objective of Procedural Content Generation (PCG) 

methods is to generate content automatically. PCG has 
been used by the gaming industry since the ‘80s [1], mainly 
to generate new game levels by manipulating game design 
elements (e.g., terrains, maps, objects locations, 
environment). There exist several advantages to 
automatically generate new content for  the development 
and design of new applications [2]. For example, PCG 
methods can help reduce the resources needed to create 
new content. Moreover, content that is automatically 
generated can be tailored to an individual’s preference in 
order to maximize the user experience. Finally, PCG 
methods can help designers explore the design space, and 
potentially help co-create more creative content [3]–[5].    

In recent years, immersive Virtual Reality (VR) has 
become an emerging technology with great potential to 
improve learning [6], [7]. Immersive VR systems allow 
users to experience being physically present in simulated 
environments (e.g., virtual worlds) [8]. This capability 
offers a significant potential to make learning more 
engaging to individuals by facilitating experiential learning 
[9]. Furthermore, several studies have shown that VR can 
improve individuals’ engagement and performance [10], 
[11]. Unfortunately, researchers caution that some of the 
positive effects of VR might be due to novelty effects (i.e., 
individuals’ performance improves with the use of new 
technology due to the initial interest in the technology, and 
not due to actual learning gains) [12], [13]. Due to novelty 
effects, individuals’ interest can diminish over time if they 
continue interacting with the same application; hence, the 
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value of generating new VR environments for them to 
interact.  

The use of PCG methods have the potential to improve 
an individual’s experience and the capability of a learning 
application to engage them (e.g., replay value) [5], [14]. 
However, there has been a limited number of studies that 
have explored the use of PCG for learning purposes [15], 
[16]. Moreover, most of the recent PCG methods 
implement Machine Learning (ML) algorithms to generate 
new content, which requires some training dataset. In 
contrast, Reinforcement Learning (RL) based methods 
implement sensory input (e.g., pixels acquire from images 
in a video game) to generate efficient representations of 
complex situations and tasks through simulation [17]. 
Hence, there is no need to capture training data a priori, 
which can help reduce cost [3]–[5]. In addition, studies 
have shown that artificial agents based on RL algorithms 
are capable of accomplishing a diverse array of challenging 
tasks at human level performance (e.g., puzzles, logic 
games, strategy games) [18].  

In light of the advantages that PCG has for learning 
applications and the potential of RL algorithms, this work 
presents a PCG method based on an RL approach that 
generates new environments for immersive VR learning 
applications. Figure 1 shows an outline of this method. In 
this method, a Neural Network RL agent generates new VR 
environments that are validated via a simulation platform. 
The RL agent generated the new environments according to 
individuals’ preferences for the location of a subset of 
virtual objects. Once a new environment is generated, it can 
be used for learning purposes, and the user can interact 
with it in the immersive VR learning application. The 
ability to generate new environments for VR applications 

has the potential to improve users’ learning gains.  
 

2. LITERATURE REVIEW  
 

2.1 Virtual Reality and Learning  
Virtual Reality (VR) is an emerging technology that has 

shown great potential for improving the learning process 
[6], [7]. Researchers have used VR on a wide range of 
applications (e.g., education, training, manufacturing) [19], 
[20]. For learning applications, VR offers many advantages 
[7], [21]. Particularly, the capability of individuals to 
interact with virtual objects in real-time, as in traditional 
environments, makes VR an effective learning tool [22], 
[23]. VR applications provide a sense of presence and 
create a “first person” experience [24], [25]. Presence is 
defined as “the subjective experience of being in one place 
or environment, even when one is physically situated in 
another” [26, p. 225]. Hence, VR offers great potential to 
make the learning process more engaging for individuals by 
facilitating experiential learning [9]. Furthermore, several 
studies have shown that VR can improve individuals’ 
engagement and performance on a variety of learning 
activities [10], [11], as well as  enhance understanding and 
reduce misconceptions [27]. 

Thanks to recent advancements in technology, VR 
systems are becoming more common and economically 
accessible [6]. For example, the recently released 
standalone VR headset Oculus Go™ costs only $199.00 
(www.oculus.com/go/). Low-cost systems make the use of 
VR more accessible and affordable for learning 
applications. Particularly, researchers are developing new 
methods to leverage immersive VR in order to advance 
engineering education [28], [29]. However, while 
immersive VR systems are becoming more economically 

  
FIGURE 1. OUTLINE OF RL PCG METHOD  
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accessible and have shown potential to improve 
individuals’ engagement, several factors can affect their 
user experience (UX) [27]. Studies have shown that factors 
such as the characteristics of the virtual environment or 
system use can impact UX [10], [30]. Moreover, studies 
indicate that some of the positive effects of VR might be 
due to novelty effects [12], [13]. Because of these effects, 
individuals’ interest can diminish over time if they continue 
interacting with the same application; hence, the 
importance of generating new environments for VR 
learning applications. Considering these limitations, this 
work presents a PCG method for immersive VR learning 
applications. The method can generate new environments, 
which can be used by users of VR learning applications. 
The capability of generating new environments has the 
potential to mitigate possible novelty effects and maintain 
users engaged over time. Making sure individuals are 
motivated and engaged with a learning system has direct 
implications on improving their learning performance [31]–
[33].  

 
2.2 Procedural Content Generation  
 Procedural Content Generation (PCG) can be defined 
as the field that studies the development of algorithms and 
methods capable of generating content automatically. The 
gaming industry has used PCG for decades [1] and recently 
has started developing new methods founded on Artificial 
Intelligence (AI) algorithms [34], [35]. One of the most 
well-known examples of integrating ML and AI into PCG 
methods to generate new environments is for the game 
Super Mario Bros  (www.marioai.org) [35]–[37].  

While PCG methods are commonly used within the 
gaming community [34], there has been a limited number 
of studies that have explored the use of PCG methods for 
learning purposes [15], [16]. For example, Hullett and 
Mateas [14] present an application capable of generating 
new scenarios for a firefighting training application. The 
application was able to generate different scenarios of 
buildings partly collapsed based on the desired skills the 
users wanted to train on. Smith et al. [38] implement a PCG 
method for creating levels in a learning application aimed 
to teach students about fractional arithmetic. The method 
implements a constraint-focused generator design 
approach. Similarly, a learning application that 
implemented PCG and gamification to engage students in 
solving math problems is introduce in [39]. This PCG 
method was founded on template based and constructive 
algorithms.  

In the context of conflict resolution, a serious game 
application that combined a Player Modeling and a 

metaheuristic-search PCG approach is introduced in [40]. 
This PCG method was driven by a Neural Network used to 
predict the distribution fairness of the players. The results 
of this study support the value of PCG to guide the learning 
of individuals toward targeted objectives. Most recently, 
Hooshyar [5], proposes a PCG framework for educational 
game applications based on a Genetic algorithm approach. 
The framework allows designers to control the generation 
process given various learning objectives and preferences. 
In a different study, [15] presents a data-driven PCG 
approach based on a Genetic and a Support Vector 
Machine algorithms. They implemented their method in a 
language learning application and compared the method 
against a heuristic based approach. Their results indicate 
that their data-driven approach was more effective at 
generating contents that matched the performance target of 
individuals compared to the heuristic approach. 

The previous studies show how PCG methods can be 
implemented in learning applications and their potential 
benefits. These studies also show that researchers are 
starting to use ML and data-driven approaches (e.g., Neural 
Network, Support Vector Machines, Genetic algorithms) to 
train their PCG models. They train their models on datasets 
from existing content or datasets containing users’ data, 
which has to be generated or collected a priori [5], [15], 
[40]. The process of generating new content can require 
significant time and resources [3]–[5]. In recent years, 
researches have started exploring how realistic, synthetic 
data can be automatically generated [41], [42]. However, 
while studies have shown that these approaches can 
generate synthetic datasets that cannot be accurately 
distinguished from human generated ones [43]–[45], they 
still require some initial datasets to train their models.  

The objective of PCG methods to generate new 
environments given certain criteria is analogous to the 
Facility Layout Planning (FLP) optimization problem. The 
objective of FLP algorithms is to identify the optimal 
arrangement of equipment or facilities in accordance with 
some criteria and given certain constraints [46]. FLP 
problems are a NP-complete problem, which means that 
“the computational time required to find an optimal 
solution increases exponentially with the problem size” [47, 
p. 25]. This is one of the reasons why researchers have 
proposed multiple meta-heuristics algorithms to solve the 
FLP problem, such as Simulated Annealing and Genetic 
algorithms [46]. However, one of the limitations of 
optimization approaches is that a given optimal solution 
might not continue to be optimal under a different problem 
configuration. For example, if an additional constraint is 
added (e.g., now machine Z must be in the coordinates x 
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and y), the algorithm needs to be run again to find the 
optimal or near-optimal solution. 
 
2.3 Reinforcement Learning 

While traditional supervised ML algorithms require the 
use of a training dataset, RL methods do not require a 
training dataset a priori since they take advantage of 
simulation environments to generate efficient 
representations of complex situations and tasks [17]. RL 
can be described as a Markov Decision Processes, were the 
RL agent connect to a simulation environment via different 
sensory inputs. The objective of the agent is to develop a 
model that selects the actions that maximize its long-run 
reward. In other words, the agents learn the desired action 
policy by a process of trial and error via simulation [48]. RL 
methods are suitable for solving learning control problems, 
which are challenging for traditional supervised ML 
algorithms and dynamic programming optimization 
methods [49]. Since RL agents focus on generating an 
action policy, they can adapt to changes in the environment 
without the need for additional training (e.g., now machine 
Z must be the coordinates in x and y), which is not the case 
for most optimization methods. Researchers have used RL 
methods to train agents capable of mastering complex tasks 
at human level performance (e.g., puzzles, Atari games, the 
Chinese game of Go)[18], [50], [51].  
 

TABLE 1. SUMMARY OF EXISTING WORKS 

Reference Meta-
Heuristics 

Supervised 
ML RL Learning 

Context VR 

[1], 
[35]–
[37], 
[52] 

 X  

 

 

[14] [38] 
[39] [40] 

[5] 
X   

 
 

X  

[15]  X  X  
This work   X X X 

 
Table 1 shows a summary of existing work related to 

PCG methods. As it can be shown from this table, 
researchers have started integrating ML algorithms into 
their PCG methods. Moreover, while PCG methods are 
frequently used in gaming applications, researchers are 
starting to explore the use of PCG methods for learning 
purposes. However, most of the studies on learning 
applications implement meta-heuristics, and they rarely 
focus on automatically generating content for VR learning 
applications. In light of the advantages of PCG methods 

and the potential of RL algorithms, this work presents a 
PCG method based on an RL approach that generates new 
environments for VR learning applications. The approach 
validates the new virtual environments via a simulation 
platform; hence, it does not require any training data to be 
collected a priori. The PCG method presented has the 
potential to maintain users’ engagement over time and 
mitigate possible novelty effects by presenting them with 
new environments in immersive VR applications that 
promote experiential learning. Promoting experiential 
learning with immerse environments while ensuring that 
individuals are engaged with the learning system has direct 
implications on improving their learning performance [9], 
[31]–[33]. 
 
3. METHOD 

In this work, a PCG method based on an RL approach 
is introduced. The method is capable of dynamically 
generating new environments for immersive VR learning 
applications by implementing an RL agent that validates 
the content via a simulation platform. Figure 2 shows the 
framework of the RL algorithm implemented and examples 
of 2D aerial views of the simulation platform used to 
validate the environments generated. The RL model can be 
described as a Markov Decision Processes, were the agents 
connect to the simulation environment on a given time t via 
the sensory inputs of state (St) and action (At) (see Fig. 2). 
In each training epoch t, the agent takes as input the current 
state: St and chooses an action to be executed: At. This 
produces a state transition in which the environment reacts 
to the action executed and provides a reward signal (i.e., 
reinforcement): Rt. The sensory inputs of the state and 
action can be in a vector form, containing information 
about the state of the environment and information 
regarding the action the agent is taking, respectively. 

For example, in the task of learning how to play the 
game of chess, a chess game simulator can be used to train 
an RL agent. In every training epoch t, St will contain 
information about the location of all the game pieces in the 
8x8 grid, while At will contain information about the 
locations where all the black game pieces should be moved 
(i.e., assuming the RL agent is playing with the black game 
pieces, this indicates the next moves). In the case, the 
intention is to train a RL agent to generate new 
manufacturing layouts for learning purposes (as in Fig.1 & 
2), St will contain information about the current state of the 
layout (e.g., locations of a subset of equipment), while At 

will contain information about the locations of the reminder 
equipment, as shown in Fig. 2.  
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The goal of the agent is to develop a model that selects 
the actions that maximize the long-run reward signal, 
which takes the form of a scalar value. Going back to the 
example of the chess game, the agent could be rewarded 
every time that it manages to checkmate the king of the 
opponent and penalized every time its king is checkmated. 
The function could also reward the agent based on the 
number of opponent’s pieces removed from the game and 
penalize the agent based on the number of its own pieces 
removed. The elements of the reward function will depend 
on the underline behavior that the designers expected the 
RL agent to model (i.e., learn).  

For the PCG method to generated VR environments 
that provide a sense of presence and create a “first person” 
experience to the users, the environments need to be 
realistic. Therefore, the RL agent needs to be rewarded for 
generating new environments that are functional and not 
just a random placement of virtual objects. This can be 
achieved by designing a reward function that incentivizes 
the generation of functional environments and penalizes 
nonfunctional ones (e.g., makes parts as in the 
manufacturing layout example of Fig. 1 & 2). Through its 
interactions with the simulated  environment, the RL agent 
is trained (i.e., learns) to model an action policy that will 
maximize its reward function. Once the RL agent is trained, 
it will be able to generate new VR environments given an 
initial state provided by the user (i.e., user input, see Fig.1). 
In the example shown in Fig.2, this could be the initial 

location of the injection molding machine. Hence, the RL 
agent will place the reminder equipment in a way that will 
create a functional manufacturing layout. 

In this work, the Proximal Policy Optimization (PPO) 
algorithm was employed to train the RL agent [53]. PPO is 
a Neural Network policy gradient ascent-based algorithm 
capable of moving between sampling data through 
interactions with the simulation environment. The 
algorithm can update its gradient policy more than once per 
simulation iteration. Schulman et al.’s [53] study reveals 
that the PPO algorithm outperformed other policy gradient 
algorithms, and provided a more favorable tradeoff 
between sample complexity, simplicity, and wall-time. 
PPO is based on the Trust Region Policy Optimization 
(TRPO) algorithm introduced by Schulman et al.’s work 
[54]. For details about the PPO algorithm implementation, 
readers are referred to [53]. 

The PCG method presented will generate new VR 
environments to be used for learning purposes. The 
capability to generate new environments has the potential 
to facilitate experiential learning in a wide range of 
learning contexts. As in the example of generating 
manufacturing layouts shown in Fig. 2, the method 
presented can help generate new layouts that could 
potentially be used to teach a range of engineering 
concepts, from the basics of stochastic processes (e.g., 
Poisson distribution) to the analysis of complex 
manufacturing system (e.g., Little’s Law). 

  
FIGURE 2. OUTLINE OF RL METHOD 
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4. CASE STUDY 

For this case study, the authors used a VR learning 
application designed to teach Industrial Engineering (IE) 
concepts (i.e., Poisson distribution, Little’s Law, Queuing 
Theory) with the use of a simulated manufacturing system. 
Specifically, a manufacturing system that produces power 
drills was simulated, as shown in Fig.1 & 2. The objective 
of this VR application is to provide a tool with a common 
theme that educators could use to teach IE concepts and 
integrate course knowledge into their curriculum. A  power 
drill manufacturing line was selected since previous studies 
that aim to integrate IE course knowledge have 
implemented similar power tools [55]. The virtual 
environment simulates the initial steps of the process to 
manufacture a power drill. In these steps, the plastic 
housing of the drill is manufactured.  

Figure 3 shows, from a user’s point of view, a 
functional layout for this manufacturing system. In this 
layout, first, an injection molding press produces the plastic 
housing components. Then, they are cooled down with the 
use of a conveyor belt. Finally, the plastic housings are 
placed in a tote with the use of a robotic arm in order to be 
transported to the assembly line. In the VR module, 
students can interact with the parts and machinery of the 
virtual systems. 

For this application, the agent is rewarded based on the 
efficiency and functionality of the layout generated to 
produce goods (e.g., the rightmost image on Fig. 2 has a 
high reward, while the two other images have a low 
reward). Specifically, the reward function used in this case 
study can be mathematically expressed as follows: 

 

𝑅 = 𝛽1(𝑇𝑜𝑡𝑒) − 𝛽2(𝐹𝑙𝑜𝑜𝑟) − 𝛽3(𝜎𝜆) + 𝛽4(𝐹𝑙𝑜𝑤)  (1) 
For, 

𝑇𝑜𝑡𝑒 = ∑ ϕ𝑝
P
𝑝=1                               (2) 

𝐹𝑙𝑜𝑜𝑟 = ∑ φ𝑝
P
𝑝=1                                (3) 

𝜎𝜆 =  √
∑ (λ𝑒−λ)̅̅ ̅2E

𝑒=1

E
                               (4) 

𝐹𝑙𝑜𝑤 =  ∑ ∑ ∆𝑝,𝑒
E
𝑒=1

P
𝑝=1                          (5) 

 
βi > 0   ∀  𝑖 = {1,2,3,4}                      (6) 

 
Where,  
 

 ϕ𝑝 is a binary variable that indicates if a given part p 
was correctly placed in a tote ϕ𝑝 = 1 or not ϕ𝑝 = 0, 
for p ϵ{P} 

 φ𝑝 is a binary variable that indicates if a given part p 
fall to the floor φ𝑝 = 1 or not φ𝑝 = 0, for p ϵ{P} 

 λ𝑒  is a parameter that describes the behavior 
distribution of equipment e, for e ϵ{E} 

 ∆𝑝,𝑒 is a binary variable that indicates if a given part p 
interacted with a given equipment e, for p ϵ{P} and 
e ϵ{E} 

 
The reward function shown in Eq. (1), will be 

maximized when all the parts p are placed in a tote and no 
parts fall on the floor, following Eq. (2) and (3), when the 
standard deviation of the parameters that describe the 
behavior distribution of the equipment set {E} is 
minimized, following Eq. (4), and when all the parts 
interact with all the equipment following the manufacturing 
process, as shown in Eq. (5). This reward function was 
designed to reinforce the generation of functional 
manufacturing layouts that have a constant flow of parts to 
the tote. This reward function will be computed for every 
simulation epochs t (Rt), as shown in Fig. 2. In addition, in 
every simulation epoch t, the RL agent will be able to 
control the placement ( x𝑒 , y𝑒), orientation (θ𝑒), and the 
parameters that describes the behavior distribution (λ𝑒) of 

 
FIGURE 3. USER’S VIEW OF A FUNTIONAL LINE LAYOUT  
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the equipment set {E}. The environment will provide the 
agent with the state information about the placement 
( 𝑥𝑢 , 𝑦𝑢) of the equipment placed by the user {U}. The set 
of equipment {U} will allow users (e.g., students, teachers) 
to customize the VR environment. In the case the user does 
not want to customize the environment, the equipment set 
{U} can be placed randomly, to generate a new 
environment. 

For this application, users can select the location of the 
injection molding machine, U = {Injection molding 
machine}. In the other hand, the RL agent will manipulate 
one conveyor belt, one tote, and one robot arm. This means 
that the set E will contain three different equipment (i.e., 
virtual objects). The 𝜆𝑐𝑜𝑛𝑣𝑒𝑦𝑜𝑟 parameter will control the 
speed of the conveyor, while 𝜆𝑟𝑜𝑏𝑜𝑡 , will control the rate at 
which the robot can handle parts. The tote is used for 
storing, and its parameter 𝜆𝑡𝑜𝑡𝑒 will control the rate at 
which it can store parts.  

Finally, in this work, the game engine Unity [56] is 
used as the simulation platform to train the RL agent. 
Because of its fidelity, physics simulation capabilities, 
accessibility, and community support, Unity is widely used 
by developers and designers of learning game applications 
[57], [58], as well as by researchers [59], [60]. 
Furthermore, Unity recently launched its ML-Agents 
Toolkit [61], which  provides several algorithms and 
functionalities for the development and design of RL 
applications [62]. For each simulation epoch t, a total of 10 
parts were simulated (i.e., p = {1-10}). This number of 
parts was selected to reduce the complexity of the 
simulation while allowing the simulation platform to 
generate the state transition in which the environment 
reacts to the action executed and provides a reward signal. 
However, this number can be increased, and the relative 
difference between the rewards score of layouts would not 
change. That is, a layout that allows all the parts to fall on 
the floor will always have a worse reward than one that 
places all the parts on the tote, no matter how many parts 
are simulated. 

 
5. RESULTS AND DISCUSSION 

The RL agent was trained using an ASUS Q551LB 
Intel® Core™ i7-5500U 2.40 GHz CPU and 8 GB RAM. 
A total of 75,000 training iterations (t = 75000) were used 
to train an RL agent in the simulated environment shown 
in Fig. 2. Figure 4 shows the evolution of the RL agent’s 
reward score given the training epoch t. The y-axis shows 
the bounds of the reward function (i.e., [-10, 20]). While 
the plot shows that the RL agent did not achieve the 
maximum reward score on the given simulation iterations, 

it shows that the agents’ rewards score was significantly 
and strongly correlated with the simulation iterations (ρ = 
0.98, p-value < 0.001). This indicates that the agent 
managed to train a model that describes an action policy 
that maximized the long-run rewards function use in this 
case study. Due to computational limitations, the RL agent 
was not trained for a longer period of time. Just training 
with t = 75,000 took a total of 338.52 minutes (5.66 hours) 
on the equipment described above. However, once a model 
is trained it takes less than a second for the agent to 
generate a new layout given the machine location.    

In addition, in this training process the location of the 
injection molding machine (i.e., environment state 
:{ 𝑥𝑢 , 𝑦𝑢}) were randomly updated every 25,000 simulation 
iterations (dotted line in Fig. 4). This was done to help on 
the modeling of the RL agent’s action policy and facilitate 
its generalization (i.e., trained to generate new 
environments without being constrained on the location of 
the machine).  As it can be seen in Fig. 4, after the 
environment state was updated at t = 25000 and t = 50000, 
the reward function was not significantly affected. This  
indicates that the RL agent was able to model an action 
policy that was generalizable (i.e., transfer learning 
between state environments [63]). These results indicate 
that the RL agent managed to model an action policy 
capable of generating new VR environments using the 
location of the injection molding machine as an input.  

This finding shows promising results for using PCG 
methods based on RL algorithm to generate new 
environments for immersive VR learning applications. For 
example, Fig. 5 shows how the environment can be 
integrated into the VR application used in this case study, 
to teach individuals about IE concepts. However, the PCG 

 
FIGURE 4. RL AGENT REWARD vs. TRANING  
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method presented can be applied to other VR learning 
applications, since it is not constrained to only the 
application used in this case study. Other VR application 
can benefit from the PCG method presented and using RL 
agent to generate new environments. Designers can 
implement this method in their VR applications by creating 
a rewards function based on the environment they would 
like the RL agent to generate. 

 
6. CONCLUSIONS 

VR has become an emerging technology that can 
facilitate experiential learning and improve individuals’ 
learning gains. Unfortunately, researchers caution that 
some of the positive effects of VR might be due to novelty 
effects. Because of these effects, individuals’ motivation 
and engagement can diminish over time if they continue 
interacting with the same environments. Implementing 
PCG methods allows designers to generate new 
environments that can help improve the user experience 
and learning. The most recent PCG methods develop 
integrate ML algorithms, which allow designers to explore 
the design space and generate new content more efficiently. 
However, these algorithms require large datasets to train 
their generative models. In contrast, RL methods do not 
require any training data to be collected a priori since they 
take advantage of simulation. Moreover, while PCG offers 
many advantages to sustain users’ engagement and 
motivation over time, there have been few studies that 
explore the use of PCG for learning purposes and fewer in 
the context of VR applications.  

In light of these limitations, this work presents a PCG 
method based on an RL approach that generates new 
environments for VR learning applications. This method 
trains a model by implementing an RL agent that validates 
new environments via a simulation platform; hence, it does 
not require any training data to be collected a priori. This 
PCG approach has the potential to sustain individuals’ 
engagement in VR learning applications and mitigate 
possible novelty effects by presenting them with new 
virtual environments. Promoting experiential learning with 

immersive VR environments while ensuring that users are 
engaged with the learning system has direct implications on 
improving their learning performance. In this work, the 
method presented is implemented in a VR learning 
application designed to teach IE concepts with the use of a 
simulated manufacturing system. The preliminary results 
indicate that the RL agent was able to model (i.e., learn) a 
policy that allows it to automatically generate new and 
functional VR environments that can be used for learning 
purposes.  

While this work presents a novel PCG method based on 
an RL approach, there still exist a lot of areas for 
improvement. First, the method should be tested with 
multiple VR learning applications that differ from the one 
used in this work in their degree of complexity and context 
of the application. Moreover, while the RL approach does 
not require the collection of any data a priori since it takes 
advantage of simulation to train its model, the reward 
function, which impacts the action policy the RL agent 
models, can be challenging to design under certain 
conditions. One of the biggest areas for improvement is the 
training procedure of the RL agent used in the case study. 
Future work should take advantage of the GPU and multi-
agent parallelization capabilities of the Unity ML-toolkit. 
This will drastically reduce the time required to train the 
RL agent in the method presented. Moreover, future work 
should explore how the implementation of this PCG 
method can impact the motivation and learning of users 
that interact with VR learning applications, as shown in Fig 
5.  
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