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1 Introduction

Modeling the dynamics of a moving human face/body con-
ditioned on another modality is a fundamental problem
in computer vision, where applications are ranging from
audio-to-video generation [3] to text-to-video generation
and to skeleton-to-image/video generation [7]. This paper
considers such a task: given a target face image and an ar-
bitrary speech audio recording, generating a photo-realistic
talking face of the target subject saying that speech with nat-
ural lip synchronization while maintaining a smooth transi-
tion of facial images over time (see Fig. 1). Note that the
model should have a robust generalization capability to dif-
ferent types of faces (e.g., cartoon faces, animal faces) and
to noisy speech conditions. Solving this task is crucial to
enabling many applications, e.g., lip-reading from over-the-
phone audio for hearing-impaired people, generating virtual
characters with synchronized facial movements to speech
audio for movies and games.

The main difference between still image generation and
video generation is temporal-dependency modeling. There
are two main reasons why it imposes additional challenges:
people are sensitive to any pixel jittering (e.g., temporal
discontinuities and subtle artifacts) in a video; they are
also sensitive to slight misalignment between facial move-
ments and speech audio. However, recent researchers [3, 2]
tended to formulate video generation as a temporally in-
dependent image generation problem. In this paper, we
propose a novel temporal GAN structure, which consists
of a multi-modal convolutional-RNN-based (MMCRNN)
generator and a novel regression-based discriminator struc-
ture. By modeling temporal dependencies, our MMCRNN-
based generator yields smoother transactions between ad-
jacent frames. Our regression-based discriminator struc-
ture combines sequence-level (temporal) information and
frame-level (pixel variations) information to evaluate the
generated video.

Another challenge of the talking face generation is to
handle various visual dynamics (e.g., camera angles, head
movements) that are not relevant to and hence cannot be
inferred from speech audio. Those complicated dynam-
ics, if modeled in the pixel space, will result in low-quality
videos. For example, in web videos (e.g., LRW and Vox-
Celeb datasets), speakers move significantly when they are
talking. Nonetheless, all the recent photo-realistic talk-
ing face generation methods [3, 9] failed to consider this
problem. In this paper, we propose a hierarchical structure
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Figure 1: Problem description. The model takes an arbitrary
audio speech and one face image, and synthesizes a talking
face saying the speech.

that utilizes a high-level facial landmarks representation to
bridge the audio signal with the pixel image. Concretely,
our algorithm first estimates facial landmarks from the in-
put audio signal and then generates pixel variations in image
space conditioned on generated landmarks. Besides lever-
aging intermediate landmarks for avoiding directly correlat-
ing speech audio with irrelevant visual dynamics, we also
propose a novel dynamically adjustable loss along with an
attention mechanism to enforce the network to focus on
audiovisual-correlated regions.

Combining the above features, which are designed to
overcome limitations of existing methods, our final model
can capture informative audiovisual cues such as the lip
movements and cheek movements while generating ro-
bust talking faces under significant head movements and
noisy audio conditions. We evaluate our model along with
state-of-the-art methods on several popular datasets (e.g.,
GRID [5], LRW [4], VoxCeleb [8] and TCD [6]). Exper-
imental results show that our model outperforms all com-
pared methods and all the proposed features contribute ef-
fectively to our final model. Furthermore, we also show ad-
ditional novel examples of synthesized facial movements of
the human/cartoon characters who are not in any dataset to
demonstrate the robustness of our approach. The code has
been released at https://github.com/lelechen63/ATVGnet.

2  Overview of Proposed Approach

Cascade Structure and Training Strategy We tackle
the task of talking face video generation in a cascade per-
spective. Given the input audio sequence a1.7, one exam-
ple frame i, and its landmarks p,,, our model generates fa-
cial landmarks sequence p;.r and subsequently generates
frames 01.7. To solve this problem, we come up with a
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Figure 2: Overview of our network architecture. The blue part illustrates the AT-net, which transfers audio signal to low-
dimensional landmarks representation and the green part illustrates the VG-net, which generates video frames conditioned on
the landmark. During training, the input to VG-net are ground truth landmarks (p;.7). During inference, the input to VG-net
are fake landmarks (p;.7) generated by AT-net. The AT-net and VG-net are trained separately to avoid error accumulation.

novel cascade network structure:
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where the AT-net ¥ (see Fig. 2 blue part) is a condi-
tional LSTM encoder-decoder and the VG-net ® (see Fig. 2
green part) is a multi-modal convolutional recurrent net-
work. During inference, the AT-net W (see Eq. 1) observes
audio sequence a;.7 and example landmarks p, and then
predicts low-dimensional facial landmarks p;.7. By passing
p1.7 into VG-net ® (see Eq. 2) along with example image
1, and p,, we subsequently get synthesized video frames
v1.7. ¥ and @ are trained in a decoupled way so that ¢ can
be trained with teacher forcing strategy. To avoid the error
accumulation caused by p;.p, ® is conditioned on ground
truth landmarks p;.7 during training.
Audio Transformation Network (AT-net)
the AT-net (V) is formulated as:

Specifically,
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Here, the AT-net observes the audio MFCC a; and land-
marks PCA components h,, of the target identity and out-
puts PCA components h, that are paired with the input au-
dio MFCC. The faudios fimark and ¢mak indicate audio en-
coder, landmarks encoder and landmarks decoder. The ¢;_4
and ¢, are outputs from cell units. PCAg is PCA reconstruc-
tion and w is a boost matrix to enhance the PCA feature.
The U corresponds to the largest eigenvalues and M is the
mean shape of landmarks in the training set. In our em-
pirical study, we observe that PCA can decrease the effect
of none-audio-correlated factors (e.g., head movements) for
training the AT-net.

Visual Generation Network (VG-net) Intuitively, sim-
ilar to [1], we assume that the distance between current
landmarks p; and example landmarks p, in feature space

N

can represent the distance between current image frame and
example image in image feature space. Based on this as-
sumption (see Eq. 5), we can obtain current frame feature
vy . Different from their methods, we replace element-wise
addition with channel-wise concatenation in Eq. 5, which
better preserves original frame information in our empirical
study. In the meanwhile, we can also compute an attention
map (att,,) based on the difference between p; and p,, (see
Eq. 6). By feeding the computed v;’ and att,, along with
example image feature 4;, into the MMCRNN part, we ob-
tain the current image feature v; (see Eq. 7). The resultant
image feature v; will be used to generate video frames as
detailed in the next section. Specifically, the VG-net is per-
formed by:

Uél = fimg(ip) © (flmark(pt) - flmark(pp)) ) (5)
attpt = U(flmark(pt) b flmark(pp)) ) (6)
= (CRNN(v})) ® atty, +i;, © (1 —atty,,) , @)

where & and © are concatenation operation and element-
wise multiplication, respectively. The CRNN part consists
of Conv-RNN, residual block and deconvolution layers. i;
is the middle layer output of fime (%), and o is Sigmoid ac-
tivation function. We omit some convolution operations in

equations for better understanding.

Attention-Based Dynamic Pixel-wise Loss In order to
solve the pixel jittering problem discussed in Sec. 1, we
propose a novel dynamic pixel-wise loss to enforce the gen-
erator to generate consistent pixels along temporal axis. In-
tuitively, 0 < oy < 1 can be viewed as a spatial mask
that indicates which pixels of given face image %, need to
move at time step £. We can also regard o; as a reference
to represent to which extend each pixel contributes to the
loss. The audiovisual-non-correlated regions should con-
tribute less to the loss compared with the correlated regions.
Thus, we propose a novel dynamic adjustable pixel-wise



loss by leveraging the power of o, which is defined as:

T
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where @ is the same as o but without gradient. It repre-
sents the weight of each pixel dynamically that eases the
generation. We remove the gradient of a; when back-
propagating the loss to the network to prevent trivial so-
lutions (lower loss but no discriminative ability). We also
give base weights 3 to all pixels to make sure all pixels will
be optimized. Here, we manually tune the hyper-parameter
3 and set 3 = 0.5 in all of our experiments.
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Figure 3: The overview of the regression-based discrimina-
tor. The @ means concatenation. The + means element-
wise addition. The blue arrow and red arrow represent D,
and Dy, respectively.

Regression-Based Discriminator  Perceptual loss uti-
lizes high-level features to compare generated images and
ground-truth images resulting in better sharpness of the syn-
thesized images. Based on the perceptual loss, we propose
a novel discriminator structure (see Fig. 3). The discrimina-
tor observes example landmarks p,, and either ground truth
video frames v1.7 or synthesized video frames 1.7, then re-
gresses landmarks shapes p;.7 paired with the input frames,
and additionally, gives a discriminative score s for the en-
tire sequence. Specifically, we formulate discriminator into
frame-wise part D,, (blue arrows in Fig. 3) and sequence-
level part Dy (red arrows in Fig. 3). Thus our GAN loss can
be expressed as:

Loan =Ep, 0,7 [10g Dy (pp, v1.7)]+
Ep, p1.7i, 108(1 — Ds(pp, G(pp, P17 1)) ]+
| (Dp(pp, G(pp, P17+ 1)) — P1o7) © MpH%‘*‘
I(Dp(pp, v1:7) — Pri7) © Myf3 ©)

where M,, is a pre-defined weight mask hyper-parameter
which can penalize more on lip regions. By updating the
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Figure 4: The trend of image quality w.r.t. (a) the land-
marks (top) and (b) the poses (bottom). Please zoom in on
a computer screen.

parameters based on the regression loss when training the
discriminator, the D, can learn to extract low-dimensional
representations from raw image data. When we train the
generator, we will fix the weights of discriminator includ-
ing D, and D,, so that D,, will not compromise to generator.
The loss back-propagated from D,, will enforce generator to
generate accurate face shapes (e.g., cheek shape, lip shape
etc.) and the loss back-propagated from D, will enforce the
network to generate high-quality images.

3 Experiments

Dataset and Implementation Details We quantitatively
evaluate our ATVGnet on LRW [4], VoxCele [&] and
TCD [6] datasets. For the image stream, all the talking
faces in the videos are aligned based on key-points (eyes
and nose) of the extracted landmarks at the sampling rate
of 25FPS, and then resize to 128 x 128. As for audio data,
each audio segment corresponds to 280ms audio. We ex-
tract MFCC at the window size of 10ms and use center im-
age frame as the paired image data. Our network is im-
plemented using Pytorch 0.4 library. We adopt Adam opti-
mizer during training with the fixed learning rate of 2 x 10,
We initialize all network layers using random normaliza-
tion with mean=0.0, std=0.2. All models are trained and
tested on a single NVIDIA GTX 1080Ti. our inference time
can achieve around 34.5 frames per second (FPS), which is
slightly faster than real time (30 FPS).

Results  To evaluate whether the synthesized video con-
tains accurate lip movements that correspond to the input
audio, we adopt the evaluation matrix Landmarks Distance
(LMD) proposed in [1]. We compare our model with other
three state-of-the-art methods [, 3, 10]. The quantitative
results are illustrated in Table 1. We can find that our
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Figure 5: The outputs of ATVGnet. The first row is ground truth images paired with the given audio sequence. We mark the
different sources of the identity image on the left side.

Method LRW GRID results in Fig. 5 to demonstrate the generalizability of our
model in different datasets.
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