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1 Introduction

Modeling the dynamics of a moving human face/body con-

ditioned on another modality is a fundamental problem

in computer vision, where applications are ranging from

audio-to-video generation [3] to text-to-video generation

and to skeleton-to-image/video generation [7]. This paper

considers such a task: given a target face image and an ar-

bitrary speech audio recording, generating a photo-realistic

talking face of the target subject saying that speech with nat-

ural lip synchronization while maintaining a smooth transi-

tion of facial images over time (see Fig. 1). Note that the

model should have a robust generalization capability to dif-

ferent types of faces (e.g., cartoon faces, animal faces) and

to noisy speech conditions. Solving this task is crucial to

enabling many applications, e.g., lip-reading from over-the-

phone audio for hearing-impaired people, generating virtual

characters with synchronized facial movements to speech

audio for movies and games.

The main difference between still image generation and

video generation is temporal-dependency modeling. There

are two main reasons why it imposes additional challenges:

people are sensitive to any pixel jittering (e.g., temporal

discontinuities and subtle artifacts) in a video; they are

also sensitive to slight misalignment between facial move-

ments and speech audio. However, recent researchers [3, 2]

tended to formulate video generation as a temporally in-

dependent image generation problem. In this paper, we

propose a novel temporal GAN structure, which consists

of a multi-modal convolutional-RNN-based (MMCRNN)

generator and a novel regression-based discriminator struc-

ture. By modeling temporal dependencies, our MMCRNN-

based generator yields smoother transactions between ad-

jacent frames. Our regression-based discriminator struc-

ture combines sequence-level (temporal) information and

frame-level (pixel variations) information to evaluate the

generated video.

Another challenge of the talking face generation is to

handle various visual dynamics (e.g., camera angles, head

movements) that are not relevant to and hence cannot be

inferred from speech audio. Those complicated dynam-

ics, if modeled in the pixel space, will result in low-quality

videos. For example, in web videos (e.g., LRW and Vox-

Celeb datasets), speakers move significantly when they are

talking. Nonetheless, all the recent photo-realistic talk-

ing face generation methods [3, 9] failed to consider this

problem. In this paper, we propose a hierarchical structure
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Figure 1: Problem description. The model takes an arbitrary

audio speech and one face image, and synthesizes a talking

face saying the speech.

that utilizes a high-level facial landmarks representation to

bridge the audio signal with the pixel image. Concretely,

our algorithm first estimates facial landmarks from the in-

put audio signal and then generates pixel variations in image

space conditioned on generated landmarks. Besides lever-

aging intermediate landmarks for avoiding directly correlat-

ing speech audio with irrelevant visual dynamics, we also

propose a novel dynamically adjustable loss along with an

attention mechanism to enforce the network to focus on

audiovisual-correlated regions.

Combining the above features, which are designed to

overcome limitations of existing methods, our final model

can capture informative audiovisual cues such as the lip

movements and cheek movements while generating ro-

bust talking faces under significant head movements and

noisy audio conditions. We evaluate our model along with

state-of-the-art methods on several popular datasets (e.g.,

GRID [5], LRW [4], VoxCeleb [8] and TCD [6]). Exper-

imental results show that our model outperforms all com-

pared methods and all the proposed features contribute ef-

fectively to our final model. Furthermore, we also show ad-

ditional novel examples of synthesized facial movements of

the human/cartoon characters who are not in any dataset to

demonstrate the robustness of our approach. The code has

been released at https://github.com/lelechen63/ATVGnet.

2 Overview of Proposed Approach

Cascade Structure and Training Strategy We tackle

the task of talking face video generation in a cascade per-

spective. Given the input audio sequence a1:T , one exam-

ple frame ip and its landmarks pp, our model generates fa-

cial landmarks sequence p̂1:T and subsequently generates

frames v̂1:T . To solve this problem, we come up with a

1



+

Dlib  
 

MFCC LSTM

 PCA

Deconv 
Sigmoid 

CRNN

+

(AT-net)

(VG-net)

+Time

Figure 2: Overview of our network architecture. The blue part illustrates the AT-net, which transfers audio signal to low-

dimensional landmarks representation and the green part illustrates the VG-net, which generates video frames conditioned on

the landmark. During training, the input to VG-net are ground truth landmarks (p1:T ). During inference, the input to VG-net

are fake landmarks (p̂1:T ) generated by AT-net. The AT-net and VG-net are trained separately to avoid error accumulation.

novel cascade network structure:

p̂1:T = Ψ(a1:T , pp) , (1)

v̂1:T = Φ(p̂1:T , ip, pp) , (2)

where the AT-net Ψ (see Fig. 2 blue part) is a condi-

tional LSTM encoder-decoder and the VG-net Φ (see Fig. 2

green part) is a multi-modal convolutional recurrent net-

work. During inference, the AT-net Ψ (see Eq. 1) observes

audio sequence a1:T and example landmarks pp and then

predicts low-dimensional facial landmarks p̂1:T . By passing

p̂1:T into VG-net Φ (see Eq. 2) along with example image

ip and pp, we subsequently get synthesized video frames

v̂1:T . Ψ and Φ are trained in a decoupled way so that Φ can

be trained with teacher forcing strategy. To avoid the error

accumulation caused by p̂1:T , Φ is conditioned on ground

truth landmarks p1:T during training.

Audio Transformation Network (AT-net) Specifically,

the AT-net (Ψ) is formulated as:

[ht, ct] = ϕlmark(LSTM(faudio(at), flmark(hp), ct−1)), (3)

p̂t = PCAR(ht) = ht ⊙ ω ∗ UT + M . (4)

Here, the AT-net observes the audio MFCC at and land-

marks PCA components hp of the target identity and out-

puts PCA components ht that are paired with the input au-

dio MFCC. The faudio, flmark and ϕlmark indicate audio en-

coder, landmarks encoder and landmarks decoder. The ct−1

and ct are outputs from cell units. PCAR is PCA reconstruc-

tion and ω is a boost matrix to enhance the PCA feature.

The U corresponds to the largest eigenvalues and M is the

mean shape of landmarks in the training set. In our em-

pirical study, we observe that PCA can decrease the effect

of none-audio-correlated factors (e.g., head movements) for

training the AT-net.

Visual Generation Network (VG-net) Intuitively, sim-

ilar to [1], we assume that the distance between current

landmarks pt and example landmarks pp in feature space

can represent the distance between current image frame and

example image in image feature space. Based on this as-

sumption (see Eq. 5), we can obtain current frame feature

v′′t . Different from their methods, we replace element-wise

addition with channel-wise concatenation in Eq. 5, which

better preserves original frame information in our empirical

study. In the meanwhile, we can also compute an attention

map (attpt
) based on the difference between pt and pp (see

Eq. 6). By feeding the computed v′′t and attpt
along with

example image feature i′p into the MMCRNN part, we ob-

tain the current image feature v′t (see Eq. 7). The resultant

image feature v′t will be used to generate video frames as

detailed in the next section. Specifically, the VG-net is per-

formed by:

v′′t = fimg(ip) ⊕ (flmark(pt)− flmark(pp)) , (5)

attpt
= σ(flmark(pt)⊕ flmark(pp)) , (6)

v′t = (CRNN(v′′t ))⊙ attpt
+ i′p ⊙ (1 − attpt

) , (7)

where ⊕ and ⊙ are concatenation operation and element-

wise multiplication, respectively. The CRNN part consists

of Conv-RNN, residual block and deconvolution layers. i′p
is the middle layer output of fimg(ip), and σ is Sigmoid ac-

tivation function. We omit some convolution operations in

equations for better understanding.

Attention-Based Dynamic Pixel-wise Loss In order to

solve the pixel jittering problem discussed in Sec. 1, we

propose a novel dynamic pixel-wise loss to enforce the gen-

erator to generate consistent pixels along temporal axis. In-

tuitively, 0 ≤ αt ≤ 1 can be viewed as a spatial mask

that indicates which pixels of given face image ip need to

move at time step t. We can also regard αt as a reference

to represent to which extend each pixel contributes to the

loss. The audiovisual-non-correlated regions should con-

tribute less to the loss compared with the correlated regions.

Thus, we propose a novel dynamic adjustable pixel-wise
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loss by leveraging the power of αt, which is defined as:

Lpix =
T∑

t=1

‖(vt − v̂t)⊙ (αt + β)‖1) , (8)

where αt is the same as αt but without gradient. It repre-

sents the weight of each pixel dynamically that eases the

generation. We remove the gradient of αt when back-

propagating the loss to the network to prevent trivial so-

lutions (lower loss but no discriminative ability). We also

give base weights β to all pixels to make sure all pixels will

be optimized. Here, we manually tune the hyper-parameter

β and set β = 0.5 in all of our experiments.
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Figure 3: The overview of the regression-based discrimina-

tor. The ⊕ means concatenation. The + means element-

wise addition. The blue arrow and red arrow represent Dp

and Ds, respectively.

Regression-Based Discriminator Perceptual loss uti-

lizes high-level features to compare generated images and

ground-truth images resulting in better sharpness of the syn-

thesized images. Based on the perceptual loss, we propose

a novel discriminator structure (see Fig. 3). The discrimina-

tor observes example landmarks pp and either ground truth

video frames v1:T or synthesized video frames v̂1:T , then re-

gresses landmarks shapes p̂1:T paired with the input frames,

and additionally, gives a discriminative score s for the en-

tire sequence. Specifically, we formulate discriminator into

frame-wise part Dp (blue arrows in Fig. 3) and sequence-

level part Ds (red arrows in Fig. 3). Thus our GAN loss can

be expressed as:

Lgan =Epp,v1:T
[logDs(pp, v1:T )]+

Epp,p1:T ,ip [log(1− Ds(pp,G(pp, p1:T , ip))]+

‖(Dp(pp,G(pp, p1:T , ip))− p1:T )⊙ Mp‖
2
2+

‖(Dp(pp, v1:T )− p1:T )⊙ Mp‖
2
2 , (9)

where Mp is a pre-defined weight mask hyper-parameter

which can penalize more on lip regions. By updating the
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Figure 4: The trend of image quality w.r.t. (a) the land-

marks (top) and (b) the poses (bottom). Please zoom in on

a computer screen.

parameters based on the regression loss when training the

discriminator, the Dp can learn to extract low-dimensional

representations from raw image data. When we train the

generator, we will fix the weights of discriminator includ-

ing Ds and Dp so that Dp will not compromise to generator.

The loss back-propagated from Dp will enforce generator to

generate accurate face shapes (e.g., cheek shape, lip shape

etc.) and the loss back-propagated from Ds will enforce the

network to generate high-quality images.

3 Experiments

Dataset and Implementation Details We quantitatively

evaluate our ATVGnet on LRW [4], VoxCele [8] and

TCD [6] datasets. For the image stream, all the talking

faces in the videos are aligned based on key-points (eyes

and nose) of the extracted landmarks at the sampling rate

of 25FPS, and then resize to 128 × 128. As for audio data,

each audio segment corresponds to 280ms audio. We ex-

tract MFCC at the window size of 10ms and use center im-

age frame as the paired image data. Our network is im-

plemented using Pytorch 0.4 library. We adopt Adam opti-

mizer during training with the fixed learning rate of 2×10-4.

We initialize all network layers using random normaliza-

tion with mean=0.0, std=0.2. All models are trained and

tested on a single NVIDIA GTX 1080Ti. our inference time

can achieve around 34.5 frames per second (FPS), which is

slightly faster than real time (30 FPS).

Results To evaluate whether the synthesized video con-

tains accurate lip movements that correspond to the input

audio, we adopt the evaluation matrix Landmarks Distance

(LMD) proposed in [1]. We compare our model with other

three state-of-the-art methods [1, 3, 10]. The quantitative

results are illustrated in Table 1. We can find that our

3



Ground 
Truth

VoxCeleb
Dataset

LRW
Dataset

Caetoon
Samples

Real-
 world
Sample

Figure 5: The outputs of ATVGnet. The first row is ground truth images paired with the given audio sequence. We mark the

different sources of the identity image on the left side.

Method LRW GRID

LMD SSIM PSNR LMD SSIM PSNR

Chen [1] 1.73 0.73 29.65 1.59 0.76 29.33

Wiles [10] 1.60 0.75 29.82 1.48 0.80 29.39

Chung [3] 1.63 0.77 29.91 1.44 0.79 29.87

ATVGnet 1.37 0.81 30.91 1.29 0.83 32.15

Table 1: Quantitative results of different methods on LRW

dataset and GRID dataset.

ATVGnet achieves the best results both in image quality

(SSIM, PSNR) and the correctness of audiovisual synchro-

nization (LMD). In Fig. 4, we investigate the model per-

formance w.r.t. the generated landmarks accuracy and dif-

ferent pose angles. We add Gaussian noises with different

standard deviations to the generated landmarks during infer-

ence and conduct user study on the generated videos. The

image quality drops (see Fig. 4(a)) if we increase the stan-

dard deviation. This phenomenon also indicates that our

AT-net can output promising intermediate landmarks. To

investigate the pose effects, we test different example im-

ages (different pose angles) with the same audio. The re-

sults in Fig. 4(b) demonstrate the robustness of our method

w.r.t. the different pose angles. We also show our visual

results in Fig. 5 to demonstrate the generalizability of our

model in different datasets.
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