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Abstract— This paper presents the design of a thermoacous-
tically unstable combustor experiment for identifiability. We
examine the impact of sensor placement, flame location, and
acoustic excitation frequency on the Fisher identifiability of
a one-dimensional combustion stability model’s parameters.
The model uses linear delay differential equations to describe
both the acoustics and heat release dynamics in a laboratory
combustor called a Rijke tube. We derive analytic expressions
for the frequency-domain Fisher identifiability of the model’s
parameters. This leads to two key insights. First, excitation
frequency, flame location, and sensor placement all have a
significant impact on parameter identifiability. Second, the
optimal excitation frequencies for identifiability are not strong
functions of sensor placement but change with flame location.
Building on these insights, the paper concludes by using a
genetic algorithm to optimize the design of a Rijke tube
experiment for thermoacoustic model identifiability.

I. INTRODUCTION

This paper examines two main questions. First, how accu-
rately can one estimate the parameters of a thermoacoustic
combustion stability model from laboratory data? Second, to
what extent is it possible to improve this accuracy through
optimal experimental design? The paper focuses on a linear,
physics-based, one-dimensional model of a common labora-
tory combustor known as a “Rijke tube” [1].

Our research is motivated by the challenge of combustion
instability in lean premixed commercial gas turbines and
the potential of model-based active control to address this
challenge. Combustion instability is an operational risk in
systems such as gas turbines, furnaces, and rocket engines
[2]. It arises from the coupling between acoustic pressure and
unsteady heat release rate fluctuations in the flame. Depend-
ing on the phase difference between the fluctuations of heat
release rate and pressure, this coupling can create a positive
feedback loop, thereby inducing instability. The resulting
high-amplitude pressure oscillations can cause significant
damage to the combustor hardware. This consequence is
undesirable and increasingly problematic as the power gen-
eration industry migrates towards lean premixed combustion
techniques that provide lower emissions at the expense of
greater vulnerability to instability.

The literature presents both passive and active techniques
for attenuating or perhaps eliminating combustion instability.
Passive control methods include the modification of combus-
tor geometries [3], implementation of acoustic dampers [4],
and fuel staging [5]. The main idea behind active combustion
instability control is to utilize an external actuation signal,
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such as fueling or acoustic excitation, in order to break
the positive feedback coupling between heat release and
acoustic oscillations ([6], [7], [8], [9]). Active controllers
can be designed using either empirical [10] or model-based
methods. They have been shown to be promising in the
laboratory, but to the best of the authors’ knowledge, they
have only been fielded on one industry-scale engine [11].

The effectiveness of a model-based active stability con-
troller depends on the accuracy with which the underlying
combustion dynamics are modeled and parameterized. The
literature presents a number of studies on the application
of both physics-based and empirical modeling/identification
techniques to the combustion stability problem (e.g., [12],
[13], [14], [15]). However, to the best of the authors’ knowl-
edge, the critical challenges of uncertainty quantification and
experimental design optimization for combustion stability
modeling remain relatively unexplored. In particular, there is
a need for in-depth analyses of the statistical accuracy with
which combustion stability models can be parameterized
from a given experiment. Moreover, there is a need for
optimizing the design of lab experiments to achieve better
combustion stability parameter estimation accuracy. One
common combustion stability experiment involves measuring
the response of a local pressure signal inside a combustion
chamber to acoustic excitation in the frequency domain.
Key questions when designing such an experiment include
the following: where should the pressure sensors be placed
relative to the flame location, and what excitation frequencies
should be used for parameter estimation?

The goal of this paper is to address the above research
challenges. Specifically, the paper utilizes Fisher information
analysis to assess the accuracy with which the parameters of
a linear time-delay combustion model can be estimated from
experimental data. The specific parameters of interest are an
amplification factor and a time delay relating the rate of heat
release at the flame to combustor acoustic oscillations [16].
Both parameters can be measured experimentally [17]; our
goal in this paper is the assessment and optimization of their
estimation accuracy. We perform the uncertainty quantifica-
tion portion of this work using Fisher information analysis.
Moreover, we examine and optimize the impact of three
key experimental design parameters on Fisher identifiabil-
ity, namely: sensor placement, flame location, and acoustic
excitation frequency. Fisher information is an established
means for such uncertainty quantification/optimization [18],
[19], [20], [21], [22]. It is well-suited for assessing the local
identifiability of a model’s parameters around a nominal
value, which is useful in the context of this work, given



the degree to which the existing literature already provides
nominal estimates of the above model parameters [17].
The remainder of this paper is organized into three main
parts, focusing on introducing the paper’s combustion stabil-
ity model (Section II), analyzing its parameter identifiabil-
ity (Section III), and optimizing this identifiability through
experimental design (Section IV). The paper concludes by
summarizing the results of this analysis and optimization.

II. PROBLEM FORMULATION
A. Rijke Tube Configuration

Fig.1 shows a Rijke tube of length L. On the left boundary
lies an acoustic excitation source. The Rijke tube’s right
boundary is exposed to atmospheric pressure, p,,,, gener-
ating a pressure release boundary. Fuel and air mixtures
flow in positive x direction (i.e., left to right) at a low
Mach number. An acoustically-compact flame sits at x = b,
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Fig. 1. Rijke tube modelé

B. Thermoacoustic Model

We assume an isentropic, homogeneous, and steady mean
flow as well as a step temperature rise across the flame in
the Rijke tube. Following the work of Dowling and Stow
[2], we obtain linearize continuity, momentum, and energy
conservation equations for the thermoacoustic system. These
equations assume that: (i) the mean flow occurs at a small
Mach number (i.e., the bulk flow velocity u, is low); and (ii)
fluctuations in density, pressure, velocity, and temperature
around equilibrium states are small. The resulting linearized
conservation equations for the one-dimensional thermoacous-
tic model in space x and time ¢ are:
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where, ¢ and p represent the speed of sound and density,
respectively. Oscillations of pressure, density, particle veloc-
ity, and heat release rate per unit volume are denoted by
p', p', ' and ¢'. The coefficient in front of ¢’ includes the
specific heat ratio v. We assume a linear time-lag model (n-7
model), as indicated in (3), to govern the heat release rate
response of the compact flame per unit cross sectional area

Q'. In this model, 3 is the amplification factor, 7 is the time
delay, and u'; is the particle velocity oscillation just upstream
the flame. The equivalent amplification factor n is obtained
based on (4), where ¢, is the constant pressure specific
heat of premixed fuel and air, and AT is the temperature
rise across the flame.
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Equation (5) includes the two boundary conditions (B.C.s)
shown in Fig.1. The speaker provides acoustic forcing with
particle velocity oscillations u/o(¢) at the Rijke tube’s closed
end; the other end is open to atmospheric pressure, creating
a pressure release boundary condition.

u'(0,t) = ug(t), p'(L,t) =0 )

Based on the above equations, we derive a thermoacoustic
wave equation in (6). The mean variables are constant in the
regions upstream and downstream of the flame and p,’ is the
pressure oscillation located just upstream the flame, x = b".
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C. Solution to Thermoacoustic Model

Since the thermoacoustic model is linear, We apply the
Laplace transform to equation (6) with the zero initial con-
ditions in (7). The transformed 2"-order ordinary differential
equation in the frequency-domain s is in (8).
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The two boundary conditions in time domain correspond
to the two boundary conditions in the s-domain in (9).
Additionally, we apply two B.C.s across the flame: (i) a
continuity pressure oscillation p’ in (10); and (ii) a relation
of the first-order spatial derivative of P’ between regions
upstream and downstream flame from the integration of (8)
over the flame region [b7, b*] in (11).

U'(0,s) = L{ug(t)} = Up(s), P'(L,s) =0 (9

P'(b,s)=P'(b",s) (10)
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We solve for the distribution of pressure oscillation P’(x,s)
along the Rijke tube’s axial coordinate for regions upstream
and downstream of the flame in (12) and (13) separately.
Appendix A includes the new variables definitions in (27).
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D. Transfer Function

In this Rijke tube setup, the actuator input is the acoustic
excitation from a speaker mounted at the combustor inlet.
The output is the local pressure oscillation measured at one
location along the Rijke tube. Considering the different units
of the input and output, we define a normalized transfer
function based on the dimensionless input and output in (14).
The nominal pressure is atmospheric pressure p,,, and the
nominal velocity is bulk flow velocity up,.
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Similar to the pressure distribution, the transfer function
has different forms in the regions upstream and downstream
of the flame, displayed in (15) and (16). Knowing the
flame location at x = b and mean heat release rate, we
obtain the spatial distribution of the mean variables. For
fluctuating variables, the flame dynamics describing the
dependence of the heat release rate fluctuations on acoustic
velocity oscillations contain the amplification factor 5 and
time delay 7, which significantly affect the transfer function
characteristics. Additionally, the transfer function depends on
sensor placement xy and acoustic forcing frequency w = s/j.
In one example under conditions specified in Table I, the
transfer function magnitude response is plotted in Fig.2. The
high magnitude peaks of the transfer function correspond to
the first three longitudinal acoustic resonant modes of the
thermoacoustic system.

Fig.2 displays the frequency response of the normalized
transfer function magnitude |H,(x,s)| observed at four
locations along the Rijke tube, including locations both
upstream and downstream of the flame. The four sensors
all observe the first three longitudinal acoustic modes of this
one-dimensional combustor, corresponding to one quarter-,
three quarters-, and five quarters-longitudinal modes.
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TABLE I
PARAMETER SPECIFICATION OF RIJKE TUBE COMBUSTION
INSTABILITY MODEL

Parameter Name | Symbol |  Value | Unit
Rijke tube length L 1 m
Flame location b 0.25 m
Temperature upstream flame T 288.15 K
Mean bulk flow velocity up 5 mls
Temperature rise across flame AT 1900 K

Specific gas constant R 287 JIkgK
Specific heat capacity ratio o7 1.4 -

Atmospheric pressure Patm 1.013x10° Pa

Particle velocity amplitude

f . . g 1 mls

rom acoustic forcing

Amplification factor B 0.5 -

Amplification factor n 0.0758 -
Time delay T 2.0 ms
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Fig. 2. Transfer function frequency response with model specifications in

Table I at four sensor placements

E. Transfer Function Magnitude Comparison to Time-
Domain Simulation

To see if the frequency-domain based model derived in
section II-D captures the open-loop system characteristics,
we conduct a time-domain simulation with the same input
and output as the frequency-domain model by applying
the open source combustion instability low order simulator
(OSCILOS) developed by Li et al. [23]. The particle velocity
oscillation is the input driven by a speaker at Rijke tube inlet,
xo = 0.0 m, and the sensors observe the output pressure
oscillation at two locations, xo = 0.2 m and 0.4 m. Based
on input and output time series, we apply cross-spectral
analysis to calculate the transfer function magnitude between
the two signals [15]. Fig.3 illustrates the the transfer function
magnitude comparisons between the frequency- and time-
domain modeling, showing a good agreement at nearly all
frequencies for the two sensor placements.
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III. MODEL IDENTIFIABILITY ANALYSIS

In this combustion instability model, all variables can be
either initially specified or measured directly from exper-
iments except two parameters, the amplification factor [
and time delay 7, in the linear heat release model. Because
the normalized transfer function magnitude depends on the
two parameters, we can estimate of the two parameters
with knowledge of the experimental transfer function mag-
nitude from the time series pressure and particle velocity
oscillations using the method in section II-E. However, due
to the existence of measurement noise in practical experi-
ments, there are statistical uncertainties in identifying the two
parameters. In this section, we employ Fisher information
analysis to evaluate the influence of experimental designs on
this combustion instability model’s identifiability.

A. Fisher Information Analysis

Before performing the Fisher information analysis, we
make a few assumptions. First, we assume that we know the
input velocity oscillation exactly, although in real situations,
the measurement of particle velocity oscillations also include
noise. In addition, we assume an unbiased estimate of the
parameter vector © that contains the parameters: amplifica-
tion factor 8 and time delay 7. Third, the analysis assumes
Gaussian white noise w(x,s) in the pressure measurement, as
indicated in (17). Fourth, each sample from the measurement
of the observed transfer function is assumed to be indepen-
dent and identically distributed so that each measurement
has the same probability distribution p(|H,,,(x,s)];0) as the
others and all are mutually independent. The subscript “m”
in the transfer function indicates the measured observations.
The equations (17) and (18) show the measured transfer
function magnitude from experiments and the probability
density function (PDF) for the observed objective. Func-
tion G describes the theoretical transfer function magnitude
|H,(x,s)|, which depends on the parameter vector ©.

|Hpm (2, )| = G(z,5,0) + w(z, s)

w(z,s) ~ A (0,0%) (1n
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In (18), the PDF of the measured transfer function mag-
nitude can also be viewed as the likelihood function for the
unknown parameter vector 0. We expect a better estimate if
o2 is smaller. The expectation over the second derivative
of the likelihood function at the true value of © is one
option for quantifying the “sharpness” of the function, which
determines how accurately we can estimate the parameter.
This expectation provides a lower bound for parameter
estimate error variance, which is called the Cramér Rao lower
bound (CRLB), as in equation (19). The denominator on the
right hand side of (19) is referred to as Fisher information
F(0), which can also be expressed by the product of two
first-order derivatives in (20) based on the third assumption.
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B. Optimization Scalar Objective - Fisher Information Ma-
trix Determinant

In the combustion instability model, we define the param-
eter vector O in (21) with each parameter normalized by their
nominal values; the definitions of nominal variables are in
(22). The nominal flame flocation, by, is 0.25 m and the
nominal bulk flow velocity, ug, is 5 m/s.
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Based on the normalized parameters, we achieve the
Fisher information matrix (FIM), as illustrated in (23), with
corresponding elements defined in (24).
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Fig. 4.  Dependence of FIM determinant on two acoustic excitation
frequencies fex;; and fex», with sensor placed at xo = 0.20 m and flame
located at b = 0.25 m

In equation (24), w is the acoustic excitation frequency and
N is the number of the acoustic forcing frequencies. The
covariance matrix Cj representing the parameter estimate
error variance is no smaller than the Fisher information
matrix inverse, as expressed in (25).
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The goal of the parameter estimation accuracy improve-
ment is equivalent to minimizing the two diagonal elements
in the FIM inverse. Three design variables - flame location
b, acoustic excitation frequency f,,, and sensor placement
Xo - affect the two diagonal elements in FIM inverse. Three
optimal design techniques exist for simplifying the FIM to
a scalar objective related to the shape of the uncertainty or
confidence ellipsoids ([18], [19]). To minimize the overall
variance of the two parameters estimate errors, we employ
the D-optimal design technique in this work to minimize
the area of the confidence ellipse, as defined in Equation
(26), where the Fisher information matrix is calculated based
on two excitation frequencies w; and ws since we need to
estimate two unknown parameters.

} (25)
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IV. EFFECTS OF DESIGN VARIABLES ON FISHER
IDENTIFIABILITY

Based on prior nominal values of the two parameters,
amplification factor 5 and time delay 7, in Table I, we
analyze the dependence of the FIM determinant on the
experimental design variables. The standard deviation of
normalized transfer function magnitude measurement noise
is assumed to be o = 0.1.
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Fig. 5. Sensitivity of normalized transfer function magnitude with respect
to normalized parameters at different acoustic forcing frequencies and four
sensor locations with a flame located at b = 0.25 m

For one flame location, b = 0.25 m, one sensor placement,
and xp = 0.2 m, Fig.4 illustrates the dependence of the FIM
determinant on the two acoustic excitation frequencies f,, |
and f,,, between 0 and 1000 Hz. The peak of the contour
indicates the local maximum FIM determinant over the range
of excitation frequencies (f,1, fux2); all the other local
maxima were significantly smaller than the one shown here.
The small region indicates that there is a strong dependence
of the FIM determinant on two excitation frequencies.

A. Dependence of FIM Determinant on Excitation Frequen-
cies

As in (26), the FIM determinant is proportional to the
absolute difference between the products of the normalized
transfer function magnitude sensitivities with respect to the
two normalized parameters at two excitation frequencies. In
this section, we analyze the dependence of these sensitivi-
ties on the acoustic excitation frequency f,, at four sensor
placements xp and one flame location b in Fig.5.

For all the four sensor placements, sensitivities with re-
spect to normalized time delay, 7,,, are approximately one
order of magnitude larger than those with respect to the nor-
malized amplification factor, 3,,. This agrees with previous
studies using the time-lag model [24] and thermoacoustic
experiments ([25], [26]) that show a strong dependence of
thermoacoustic instability on the time delay between the
input disturbance and heat release oscillations. This result



indicates that experiments should be designed to minimize
the uncertainty of 7, even at the expense of the 3 estimation,
given their disparate sensitivities. For all the four sensor
placements, the sensitivities are greatest near the natural
modes of the system. In addition, the dependence of the
sensitivities on acoustic excitation frequency are similar for
different sensor placements. This result is important for
experimental design, as it means that the frequencies used to
construct the optimal FIM determinant do not need to vary
with sensor placement. Sharp peaks in the sensitivities for
each sensor placement indicate that the FIM determinant is
large over a small frequency range, which agrees with the
contour plot in Fig.4. Sensor placement only significantly
affects the sensitivities at the system natural modes.

B. Dependence of FIM Determinant on Sensor Placement

Since the frequency dependence of the parameter sensi-
tivities is not a strong function of sensor placement at a
given flame location, the same excitation frequencies can
be used to obtain the FIM for any sensor placement along
the Rijke tube. The variation of the FIM determinant at a
range of flame locations is shown in Fig.6. At any one of the
flame locations, the FIM determinant varies along the spatial
coordinate x( nearly in a sinusoidal fashion. However, these
variations are not sharp as compared to the variations with
respect to excitation frequency in Fig.5. Sensors placed near
the closed boundary end provide a larger FIM determinant
than other locations. This initial result is partially encourag-
ing, as the location with the highest determinant is not near
and even upstream the flame, avoiding high heating load on
the sensor.

C. Dependence of FIM Determinant on Flame Location

When changing the flame location, the acoustic mode
changes due to the variation of the temperature distribution
in the system. As a result, the excitation frequencies need to
be updated when calculating the FIM to ensure a maximum
determinant. In contrast to the dependence on sensor place-
ment, the FIM determinant varies significantly with flame
location, as illustrated in Fig.6, where the flame is moved
from 0.05 m to 0.45 m. The excitation frequency pairs for
different flame locations are summarized in Table II.

TABLE I
OPTIMAL EXCITATION FREQUENCIES WITH FLAME AT FIVE LOCATIONS

b@m) | 005 | 0.5 | 025 | 035 | 045

Sexq (Hz) 688 569.4 | 859.4 | 7383 | 954.6
fex2 Hz) | 2294 | 2165 | 199.2 | 1784 | 1579

Fig.6 illustrates the large difference between the FIM de-
terminant at different flame locations. This strong sensitivity
of the parameter estimation accuracy with respect to flame
location suggests that optimal pressure sensor placement may
be difficult to achieve in systems where the flame location
is variable. As illustrated in Fig.7, when the flame location
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Fig. 7. Normalized time delay 7, sensitivity around a narrower frequency
range with sensor placed at xo = 0.7 m for six flame locations b

changes from 0.32 to 0.33 m, the strength of the third
acoustic mode in the Rijke tube increases dramatically.

V. OPTIMAL EXPERIMENTAL DESIGN

Based on the analysis in section IV, the model’s parametric
identifiability depends on flame location, acoustic excitation
frequency, and sensor placement. A complete experimental
design includes optimal values for these three variables.
To obtain optimal model identifiability, we apply a genetic
algorithm (GA) to optimize the sensor placement and two
acoustic excitation frequencies by maximizing the FIM de-
terminant. The optimization is conducted to find these values
over a range of flame locations within the region [0.05L,
0.45L]. The excitation frequencies should be different by
at least the minimum difference between resonant acoustic
modes (m™ and n™) in the Rijke tube. As an additional
constraint, the sensor should be placed at least 0.05 m
away from the flame to avoid heating load from the high
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temperature flame.
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This optimization problem is non-convex, as seen in Fig.0,
as the objective function is not smooth with respect to
the sensor placement. To achieve the optimal experimental

Subject to

design, we choose the genetic algorithm for global optimiza-
tion. In the genetic algorithm, options are set as shown in
1.

TABLE III
GENETIC ALGORITHM SETTING FOR MODEL IDENTIFIABILITY

OPTIMIZATION

Generation number 500
Population size 500
Crossover fraction 0.85
Crossover function crossoverarithmetic
Selection function selectionroulette
Function tolerance 0.001

Mutation function

mutationadaptfeasible

For each flame location, the GA algorithm returns two
optimal acoustic excitation frequencies and one sensor place-
ment for the thermoacoustic model identification experiment
design. Fig.8 displays the design variable combination for
each flame location. The optimal excitation frequencies (solid
black and red circles) are close to the resonant modes (open
circles) of the Rijke tube. The optimal sensor placements
are mostly achieved at the combustor closed end where the
pressure oscillation amplitude is high due to its proximity
to the acoustic source and pressure anti-node position. For
each flame location, the optimized FIM determinant achieves
very different values, which agrees with the conclusion on
the dependence of model identifiability on flame location in
section IV-C.

VI. CONCLUSIONS

This paper quantifies the uncertainty of the parameter
estimate in a linear time-lag model that describes the dy-
namics between acoustics and heat release rate oscillations
in a combustion system. The accuracy of the parameter
estimation is quantified by the determinant of the Fisher
information matrix. The FIM determinant is strongly depen-
dent on the excitation frequencies and the flame locations,
though not as sensitive to the location of the pressure sensors
used to calculate the transfer function. With the current
analysis, we can achieve the global optimized accuracy of the
parametric identification when pressure oscillation measured
near 0.00 m with two acoustic forcing frequencies near the
first and third resonant modes and a flame located at 0.34
m. Optimization of the FIM determinant provides critical
information for designing Rijke tube thermoacoustic model
identification experiments.



APPENDIX

A. Variable Definition in Pressure Solution Equations
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