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1. Introduction

Video captioning [8] aims to automatically generate a
natural language sentence to describe the dynamic, poten-
tially complex multimodal scene inside of a video. Most of
the previous works [8, 10] focus on exploring better vision-
and-language modelings and put less emphasis on the mul-
timodal aspect of video captioning, where audio often re-
veals important in-scene and out-of-scene information and
contributes to the language generation in its unique ways.
For example, it adds the difficulty to describe the singing
event by watching the audio-mute video in Fig. 1. Although
this is not new to the multimedia community, many works
over there aim to optimize the video captioning metrics with
an uninterpretable fusion strategy. The basic questions as
to what extent different modalities (auditory and visual)
contribute to a particular sentence, and furthermore, to
individual words in a sentence remain underexplored. It
is our belief that unfolding these questions is valuable to
making fundamental progress on video captioning.

At first glance, it is seemingly impossible to answer the
above questions. The first challenge is that there is no an-
notation denoting the individual contributions of the audi-
tory or visual modality made to texts in any of the exist-
ing video captioning datasets—such a process is difficult
to quantify without breakthroughs in Neurophysiology and
Psychophysics. Instead, we study these questions from a
computational perspective, where we mine signals from au-
dio and video and compete their associations to text.

The second challenge lies on the computational frame-
work. Recurrent neural networks (RNNs) are widely used
as decoders for video captioning. Despite the success in
modeling sequential dependencies, RNN decoder-based ar-
chitectures have inherent limitations to perform modality-
interpretable video captioning. When generating a word,
besides using current provided/attended features and previ-
ous words, these models always exploit hidden states of the
RNN decoder. The latter contains memorized information
from different modalities, which makes the models impossi-
ble to disentangle the contributions from individual modal-
ities for predicting the words.

In this paper, we aim to disentangle the interplay of
the two modalities and make the first attempt to inter-
pretable audio-visual video captioning. Concretely, we
propose a novel multimodal convolutional neural network-
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(2) a group of people singing and dancing.

Interpretability: a group of people are singing and dancing.
Controllability: (a) a man and a woman are singing a song.
(b) a group of people are singing and dancing.
(c) a group of women are dancing.
Figure 1. Audio-visual video captioning with interpretability on
word generation and controllability on sentence prediction. The
automatically detected audio/visual activated words are high-
lighted with red/blue. We see that visual modality is dominated
when generating people and dancing, and audio content is more
informative for predicting singing. The trained single model can
generate different sentences by setting an audio-visual controller
as different values.

based audio-visual video captioning framework without a
RNN decoder to ease the design of interpretable structure,
and introduce a modality-aware feature aggregation module
with defined activation energy to distinguish which modal-
ity is more informative for generating words. In addition,
the interpretability endows our framework ability on audio-
visual controllable sentence generation. In practice, we
introduce an audio-visual controller to manipulate the pa-
rameters in the modality-aware feature aggregation mod-
ule allowing the proposed model generate diverse modality-
aware captions.

2. Overview of Proposed Approach

Given an input visual and audio clip pair {V, A}, our
captioning network aims to generate a natural language sen-
tence S = (s1,$2,...,s7,) containing T words. Un-
like previous RNN-based encoder-decoder video captioning
networks, we propose a 2D MMCNN-based audio-visual
video captioning framework illustrated in Fig. 2, which is
capable of learning decoupled audio-text and visual-text
deep feature hierarchies and is more convenient for achiev-
ing modality interpretability. We utilize pre-trained CNN
models to extract visual features v € RTv*Pv and audio
features a € R7«*Pa from the input visual clip V and au-
dio clip A. Here, we sample T, video frames from the given
visual clip V and T, seconds from the given audio clip A.
Visual feature dimension for each frame is D, and audio
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Figure 2. The proposed audio-visual interpretable and controllable video captioning framework. During testing, words in the sentence
will be predicted one-by-one. The input video frames only contain content of the video game, but there is man speaking sound in the
audio channel. The word man will be inferred from activated the auditory modality, and the words playing and minecraft are mainly from
visual modality. We make modality selection decision based on values of audio activation energy and visual activation energy. There is an
audio-visual controller « in the modality-aware aggregation module, which balances the importance between audio and visual modalities

during sentence prediction.
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Figure 3. Residual Network with & residual units in the proposed MMCNN and an example for illustrating the masked convolution operation
in residual units. On the right, there is a 3 x 3 masked convolution kernel colorized by red and black boxes for processing a visual-text joint
embedding. The masked convolution will only use features from red boxes and cannot access information in black boxes. When predicting
the word is, the network will only use source visual information and words sos, a, and man (previous words).

feature dimension for each second audio segment is D,. To
explore temporal structures of audio and visual modalities
individually, we use two separated LSTMs: one takes vi-
sual feature v as input and the other takes audio feature a
as input. They model temporal dependencies independently
for the two modalities and implicitly align them with the
textual sequence. Concerning the interpretability on word
generation, we build two separated MMCNNS: one for each
modality. Taking the aggregated hidden states from the au-
dio LSTM and the sentence .S as inputs, our audio-text MM-
CNN will predict a joint deep audio-text embedding F'*.
Similarly, we can obtain a joint deep visual-text embedding
F" from the visual-text MMCNN. The modality-aware ag-
gregation module takes these embeddings as inputs along
with an audio-visual controller and generates a feature for
the final sentence generation. The sentence generator pre-
dicts words parallel during training and one-by-one during
inference.

2.1. Multimodal Convolutional Neural Network

Taking the visual-text MMCNN as an example, we intro-
duce the detail. The visual-text MMCNN mainly contains
two parts: visual-text tensor construction and joint deep
visual-text feature extraction.

Tensor Construction:  For a target sentence .S, we first
extract word embedding e; € RPs for each word s; in S
and then combine all words into a matrix e € RTs*Ds,
Given the aggregated visual hidden states h? € RT»*D»
for a video clip V' and word embedding e for the sen-

tence, we construct a 3D tensor IV € RT=*xTvxDvs where

Dys = Dy + Dg and I}; = [es h;’] Note that, for design-
ing an autoregressive language model, the first word in the
sentence will be set to < sos >. This tensor is then input to
the joint deep feature learning module.
Joint Deep Feature Learning: To learn joint deep rep-
resentations for visual and textual modalities, we feed the
tensor /Y into a deep residual 2D CNN network f,. The
joint visual-text embedding FV € RTs*TvXDPuvs can be ob-
tain: F'¥ = f,(I"). Following the deign of residual blocks
in the ResNet and considering computation efficiency, we
utilize the residual block layout as illustrated in Fig. 3.
Similarly, we can build a audio-text MMCNN to predict
the joint deep embedding F* € RTs*TaxDas

2.2. Modality-Aware Aggregation

The modality-aware aggregation module will adaptively
select features over different time steps and across different
modalities for captioning generation.

Given F* € RT:XTaxDas gpd v ¢ RTs*xTvXDvs e
first use two fully connected layers to align the two tensors
with a same feature dimension D, and then construct a new
tensor ['¢ € RTs*TexDe by concatenating the two tensors
along the audio-visual channel, where T, = T}, + T,.

Let Ff € RTeXDe be the i-th row of F°¢. We will use
F¥ to generate a feature vector x; € RP<, and then pre-
dict the (¢ + 1)-th word S;y;. The naive and simple way
to generate x; from F; is by max-pooling or mean-pooling.
Since mean-pooling will regard the T feature vectors are
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equally important and max-pooling will highly mix infor-
mation from different feature vectors, the two methods are
modality-ambiguous. Motivated by a self-attention mech-
anism in [4], we introduce a modality-aware aggregation
module to compute x; from F:

= wiFy (1)

where Ff; € RP and w; € [0,1]. We define respec-
tive activation energies for audio and video, and measure
the dominant one that generates a noun or a verb word.
The visual activation energy is defined as: e} = Z?;l w]z.
Similarly, the audio activation energy can be computed as:
ey = ZJT:T 41 w?. When the generated word is a noun
or a verb, if e] > ef, visual content is more important for
generating the word; if e] < e, the word is more related
to the auditory modality. In this way, our model will have
interpretable ability for modality selection during word gen-
eration. The weights in Eq. | can be computed by:

= softmaz(u) , (2)
u= fes(0(fea(fer(Fi)))) 3)

w1, ..., WT

where the first Fully-Connected (FC) layer fc; aggregates
features at each position j of Fj, fci(F;) € R, the sec-
ond and third FC layers have | T,./2] and T, output neurons,
respectively. Here, u € RTe, and 6 is the ReLU function.

2.3. Audio-Visual Controllable Captioning

The weights {wy, ..., wr, } indicate the importance of
corresponding features for word generation, and two sets
of weights: {wy,...,wr, } and {wr, 41, ...,wr,} are asso-
ciated with visual and audio features, respectively. We in-
troduce a controller o € [0, 1] to generate two parameters,
«, and «,, to manipulate the audio and visual weights for
audio-visual controllable video captioning:

10, ifa<05 @
Ay = .
1, otherwise ,

Qg =

1, ifaa<0.5 ,
, otherwise .

L (5)

With the defined o, and «,,, we revisit Eq. 1 to compute the
feature x; for audio-visual controllable word generation:

T, T,
C C
T; = E aijFij + g ozaijij . (6)
j=1 F=Ty,+1

Clearly, the Eq. 1 is a special case of the Eq. 6 (v = 0.5).
Setting the controller to different values during inference,

AR o e 0 S

mans: (1) a man is playing with garrys mod.
(2) two men demonstrate a video game.
Our: a man is playing a video gar
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(2) a group of young girls sing and dance.
Our: a group of girls are singing.
Figure 4. Audio-visual video captioning results with modality se-
lection visualizations. Here, audio activated words and visual acti-
vated words are highlighted with red and blue texts, respectively.

it will assign different importance to both audio and vi-
sual modalities for audio-visual video captioning to gener-
ate diverse descriptions for a single video. However, when
we directly take a trained model with the modality-aware
aggregation module defined in Eq. 1, it fails to generate
meaningful and logical sentences for certain « values like
a =1 Whena =1, o, = 0 and o, = 1, but both «,,
and ¢, are equal to 1 for the Eq. | during training. There-
fore, the audio-text MMCNN branch may also make con-
tributions to language modeling and we can not ensure that
the visual-text MMCNN learns a individual good language
model, which will lead to inaccurate sentence generation.

To overcome the above issue, we introduce a random
controller « to train the network for keeping training and
testing be more consistent. During training, o will be uni-
formly sampled from [0, 1] for each batch. In this way, the
network can randomly sample different « to penalize audio
or visual modality, which makes the model be able to ex-
plore the associations between words and individual modal-
ities; adaptively learn to be aware of visual-related, audio-
related, or both audio- and visual-related words for sentence
generation and discover corresponding events from audio or
visual modalities. With the competing (o, or a, may be
close to 0), both audio-text and visual-text MMCNNSs will
learn good language models.

3. Example Results

In this work, we train and evaluate the proposed audio-
visual video captioning model on the MSR-VTT [I10].
MSR-VTT is a large-scale video description dataset, which
has 10,000 video clips over 20 video categories with diverse
video content and descriptions, as well as multimodal audio
and video streams. We use four commonly used automatic
evaluation metrics: BLEU [6], METEOR [2], ROUGE-
L [5], and CIDEr [7] to measure similarity between ground
truth and automatic video description results.

Figure 4 illustrates the audio-visual interpretability on



Table 1. Performances of the proposed model and other state-of-
the-art methods on MSR-VTT test dataset [10].

Models |BLEU-4 METEOR ROUGE-L CIDEr
PickNet [3] 38.9 272 595  42.1
HRL [9] 413 28.7 61.7  48.0
GRU-EVE [1]| 38.3 28.4 60.7  48.1
Ours | 427 28.5 615 472

modality selection of the proposed MMCNN-based audio-
visual video captioning framework. For the first example,
sound source (man) is not visible, but our network predicts
the word man by activating auditory modality. For the sec-
ond example, the model finds girls from visual informa-
tion and predict the singing based on auditory signal. From
these results, we observe that the auditory signal tends to
be activated when predicting words related to audio events;
and visual information will dominate word generation when
describing visual events. To demonstrate the capability of
the proposed framework on controllable audio-visual video
captioning, some results are illustrated in Fig. 5. We can
find that the proposed framework with a single trained
model by setting different audio-visual controller values can
generate diverse sentences for each video. Fig. 5(I) shows
that the singing audio event dominates the sentence gener-
ation when o« <= 0.5; when the audio modality is penal-
ized a >= 0.6, the model infers that this is a scene from
a movie by partially considering the background music and
leveraging whole visual information; when o = 1, only
visual modality is available, the model predicts there is a
soldiers’ talking event. For Fig. 5(I), when o« <= 0.2, the
model tries to only describe sound in the video but fails to
generate accurate contents; when o becomes larger, it gen-
erates audio-visual comprehensive descriptions by predict-
ing woman and talking from sound and dish and cooking
from visual domain; when audio modality is further penal-
ized (¢ >= 0.7), only the visual event is described and
the model is blind on finding who is cooking, because the
woman is not visible in the video.

Table 1 shows the performances of the proposed method
and other SOTA methods on the MSR-VTT test dataset.
We can see that the proposed approach equipped with inter-
pretability and controllability can still achieve comparable
performance with the current SOTA models.
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