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Abstract. In this paper, we propose a new temporal logic for express-
ing and reasoning about probabilistic hyperproperties. Hyperproperties
characterize the relation between different independent executions of a
system. Probabilistic hyperproperties express quantitative dependencies
between such executions. The standard temporal logics for probabilis-
tic systems, i.e., PCTL and PCTL" can refer only to a single path at a
time and, hence, cannot express many probabilistic hyperproperties of
interest. The logic proposed in this paper, HyperPCTL, adds explicit and
simultaneous quantification over multiple traces to PCTL. Such quantifi-
cation allows expressing probabilistic hyperproperties. A model check-
ing algorithm for the proposed logic is also introduced for discrete-time
Markov chains.

1 Introduction

Four decades ago, Lamport [16] used the notion of trace properties as a means
to specify the correctness of individual executions of concurrent programs. This
notion was later formalized and classified by Alpern and Schneider [1] to safety
and liveness properties. Temporal logics (e.g., LTL [17] and CTL [3]) were built
based on these efforts to give formal syntax and semantics to requirements of
trace properties. Subsequently, verification algorithms were developed to reason
about individual traces of a system.

It turns out that many interesting requirements are not trace properties.
For example, important information-flow security policies such as noninterfer-
ence® [10] and observational determinism®* [22] cannot be expressed as properties
of individual execution traces of a system. Also, service level agreement require-
ments (e.g., mean response time and percentage uptime) that use statistics of a
system across all executions of a system are not trace properties. Rather, they
are properties of sets of execution traces, also known as hyperproperties [5]. Tem-
poral logics HyperLTL and HyperCTL* [4] have been proposed to provide a unifying

3 Noninterference stipulates that input commands from high-privileged users have no
effect on the system’s behavior observed by low-privileged observers.

4 Observational determinism requires that two executions that start at two low initial
states appear deterministic to a low user.



framework to express and reason about hyperproperties. They allow explicit and
simultaneous quantification over multiple paths to LTL and to CTL*.

Hyperproperties can also be probabilistic. Such probabilistic hyperproperties
generally express probabilistic relations between independent executions of a
system. For example, in information-flow security, adding probabilities is moti-
vated by establishing a connection between information theory and information
flow across multiple traces. It is also motivated by using probabilistic schedulers,
which opens up an opportunity for the attacker to set up a probabilistic covert
channel, whereby information is obtained by statistical inferences drawn from
the relative frequency of outcomes of a repeated computation. Policies that de-
fend against such an attempt, known as probabilistic noninterference, stipulate
that the probability of every low-observable trace be the same for every low-
equivalent initial state. Such policies quantify on different execution traces and
the probability of reaching certain states in the independent and simultaneous
executions.

Consider the following classic example [21] comprising of two threads th and
th':

th: while h>0do{h«+ h—1}; 1+ 2 I th : 1+ 1

where h is an input by a high-privileged user and [ is an output observable by
low-privileged users. Probabilistic noninterference would require that [ obtains
values of 1 and 2 with equal probabilities, regardless of the initial value of h.
However, assuming that the scheduler chooses to execute atomic statements of
the threads th and th' iteratively with uniform probability distribution, the likely
outcome of the race between the two assignments [ < 1 and [ < 2 depends on the
initial value of h: the larger the initial value of h, the greater the probability that
the final value of [ is 2. For example, if the initial value of A is 0 in one execution,
then the final value of [ is 1 with probability 1/4 and 2 with probability 3/4, but
for the initial value h = 5 in another independent execution we can observe the
final value [ = 1 with probability 1/4096 and ! = 2 with probability 4095/4096.
Thus, it holds that for two independent executions with initial i values 0 resp.
5 the larger h value leads to a lower probability for [ = 1 upon termination. L.e.,
this program does not satisfy probabilistic noninterference.

It is straightforward to observe that requirements such as probabilistic non-
interference cannot be expressed in existing probabilistic temporal logics such as
PCTL [12] and PCTL*, as they cannot draw connection between the probability
of reaching certain states in independent executions. Also, introducing proba-
bility operators to HyperLTL is not quite natural, as the semantics of HyperLTL
is trace-based and probabilistic logics are branching-time in nature. Moreoever,
introducing probability operators to HyperCTL* cannot be done trivially. With
this motivation, in this paper, we propose the temporal logic HyperPCTL that lifts
PCTL by allowing explicit quantification over initial states and, hence, multiple
computation trees simultaneously, as well as probability of occurring proposi-
tions that stipulate relationships among those traces. For the above example,
the following HyperPCTL formula expresses probabilistic noninterference, which
obviously does not hold:



Voo (im‘to. A inityr N hg # h0,> = ( (Po(ﬁng A (1=1)g) = PO(fing: A (l=1)af))/\
(PO, A 1=2)0) = BO{fn, A (1=2)0) )

That is, for any two executions from initial states o and ¢’ (i.e., initial values
of h), the probability distribution of terminating with value I =1 (or [ = 2) is
uniform.

In addition to probabilistic noninterference, we show that HyperPCTL can ex-
press other important requirements and policies, some not related to information-
flow security. First, we show that HyperPCTL subsumes probabilistic bisimula-
tion. We also show that HyperPCTL can express requirements such as differential
privacy, quantitative information flow, and probabilistic causation (a.k.a. causal-
ity). We also present a HyperPCTL model checking algorithm for discrete-time
Markov chains (DTMCs). The complexity of the algorithm is polynomial-time
in the size of the input DTMC and is PSPACE-hard in the size of the input Hyper-
PCTL formula. We also discuss a wide range of open problem to be tackled by
future research. We believe that this paper opens a new area in rigorous analysis
of probabilistic systems.

Organization The rest of the paper is organized as follows. Section 2 defines the
syntax and semantics of HyperPCTL. Section 3 provides a diverse set of exam-
ple requirements that HyperPCTL can express. We present our model checking
algorithm in Section 4. Related work is discussed in Section 5. Finally, we make
concluding remarks and discuss future work in Section 6.

2 HyperPCTL

We assume the systems to be described by HyperPCTL formulas to be modeled
as discrete-time Markov chains.

Definition 1. A (discrete-time) Markov chain (DTMC) M = (S,P,AP,L) is
a tuple with the following components:

— S is a finite nonempty set of states,

— P :Sx8 — [0,1] is a transition probability function with ), o P(s,s') =1
for all states s € S,

— AP is a set of atomic propositions, and

— L: S — 2”7 js g labeling function. |

A path of a Markov chain M = (S, P, AP, L) is defined as an infinite sequence
T = 508182+ € S¥ of states with P(s;, s;41) > 0, for all i > 0; we write 7[i]
for s;. Let Paths®(M) denote the set of all (infinite) paths starting in s in M,
and Pathsf;,, (M) denote the set of all finite prefixes of paths from Paths®(M),
which we sometimes call finite paths.



2.1 HyperPCTL Syntax

To be able to express probabilistic hyperproperties of DTMCs, the syntax of
HyperPCTL differs from computation tree logic (CTL) in two different aspects.
Firstly, CTL quantification over paths starting in a given state is replaced by
a probability operator expressing the probability that a certain property holds
on the paths starting in a given state; this extension is similar to probabilistic
computation tree logic (PCTL), but whereas PCTL allows only the comparison
of these probabilities to constant thresholds, we allow the arbitrary usage of
such probabilities in arithmetic constraints. Secondly, we add quantification over
states to express hyperproperties; note that whereas HyperCTL* extends CTL* by
path quantification, in the probabilistic setting the argumentation moves from
paths to the probabilities of paths, which are determined in the context of states
(where the paths start).

HyperPCTL state formulas are inductively defined by the following grammar:

Y =Voup ’ do. ‘ true ‘ Uy ’ YAY ‘ - ‘ p~p

p == P(p) ‘ c ’ p+p ‘ p—p ’ p-p

where ¢ € Q, a € AP is an atomic proposition, ~€ {<,<,=,>,>}, o is a state
variable from a countably infinite supply of variables V = {o1,09,...}, p is a
probability expression, and ¢ is a path formula. HyperPCTL path formulas are
formed according to the following grammar:

o = Op | vUy | pulily

where 9 is a state formula and k1, ks € N> with k; < ko.

As syntactic sugar, we introduce state formulas of the form p € J, where
J = [l,u] C [0,1] is an interval with rational bounds, defined as I < pAp <
u. We also define the syntactic sugar ¢ U =F )y for ¢ U OF ). As usual, we
furthermore introduce ¥1 V 19 = =(—1)1 A —tbg), Otb = true U 9, Olaokz] S
true U (Frkl o P(OY) = 1 — P(O ), and PRl ) = 1 — P(OFR2] —p),
We denote by F the set of all HyperPCTL state formulas.

An occurrence of an indexed atomic proposition a, in a HyperPCTL state
formula 1) is free if it is not in the scope of a quantifier bounding ¢ and oth-
erwise bound. HyperPCTL sentences are HyperPCTL state formulas in which all
occurrences of all indexed atomic propositions are bound. HyperPCTL (quanti-
fied) formulas are HyperPCTL sentences.

Ezxample Consider the following formula:

Vo1.302.P(OCag,) = P(Obyy).

This formula holds if for each instantiated state sq, there exists another instan-
tiated state so, such that the probability to finally reach a state labeled with a
from s; equals the probability of reaching b from ss.



2.2 HyperPCTL Semantics

We present the semantics of HyperPCTL based on m-ary self-composition of a
DTMC. We emphasize that it is possible to define the semantics in terms of the
non-self-composed DTMC, but it will essentially result in a very similar setting,
but more difficult to understand.

Definition 2. The n-ary self-composition of a DTMC M = (S,P,AP L) is a
DTMC M™ = (8™, P"™, AP", L™) with

— S" =98 X%...x S is the n-ary Cartesian product of S,

— P"(s,5) =P(s1,8)) - ... P(sn,s),) for all s = (s1,...,5,) € S™ and s’ =
(sh,...,8,) €8,

— AP" = U, AP;, where AP; = {a;|a € AP} fori € [1,n], and

— L™(s) = U Li(s;) for all s = (s1,...,8,) € S™ with Li(s;) = {a;]a €
L(s;)} forie[1,n]. |

The satisfaction of a HyperPCTL quantified formula by a DTMC M=(S, P, AP, L)
is defined by:

M4 diff M OEY

where () is the empty sequence of states. Thus, the satisfaction relation = defines
the values of HyperPCTL quantified, state, and path formulas in the context of
a DTMC M = (S,P,AP,L) and an n-tuple s = (s1,...,5,) € S™ of states
(which is () for n = 0). Intuitively, the state sequence s stores instantiations for
quantified state variables. Remember that HyperPCTL quantified formulas are
sentences. The semantics evaluates HyperPCTL formulas by structural recursion.
Quantifiers are instantiated and the instantiated values for state variables are
stored in the state sequence s. To maintain the connection between a state in this
sequence and the state variable which it instantiates, we introduce the auxiliary
syntax a; with a € AP and ¢ € Ny, and if we instantiate ¢ in Jo.9 or Vo.1) by
state s, then we append s at the end of the state sequence and replace all a,, that
is bound by the given quantifier by a; with ¢ being the index of s in the state
sequence. We will express the meaning of path formulas based on the n-ary self-
composition of M; the index ¢ for the instantiation of o also fixes the component
index in which we keep track of the paths starting in . The semantics judgment
rules to evaluate formulas in the context of a DTMC M = (S,P, AP, L) and an



n-tuple s = (sq,..

., 8n) € 8™ of states are the following:

M,S ':VU’LZ) Zﬁ VSnJrl S S M,(Sl,...78n,8n+1) ':'IIZJ[APnJrl/APU}
M,S ':EUw Zﬁ 38n+1 cS. M,(Sl,...78n,8n+1) ):’Q[J[APnJrl/APU]
M, s = true
M, s Ea; iff a€ L(s;)
M’S':¢1A¢2 Zﬁ M75|:1/)1 a'ndMaS':wQ
M, sl iff M,sEY
M,sEpr~p2 iff [pilams ~ [P2lms
[P(o)]m,s = Pr{m € Paths*(M") | M, 7 = ¢}
[e]m,s = ¢
[p1 + p2]r,s = [pilm,s + [P2]m,s
[p1 — p2]rm,s = [pilm,s — [P2]m,s
le : p2ﬂ./\/l,s = [[plﬂ./\/[,s . ”:pQ]]M,s
where 1, 1, and 1o are HyperPCTL state formulas; the substitution

»[AP,+1/AP,] replaces for each atomic proposition a € AP each free occur-
rence of a, in 1 by a,41; a € AP is an atomic proposition and 1 < i < n; p; and
pe2 are probability expressions and ~€ {<,<,=,>,>}; ¢ is a HyperPCTL path
formula and c is a rational constant.

The satisfaction relation for HyperPCTL path formulas is defined as follows,
where 7 is a path of M™ for some n € Nsg; 9, 11, and 1) are HyperPCTL state
formulas and k1, k2 € N> with & < ko:

M, 7 = Oy ff Mizll] =y
M7 | 1 Uty iff 3 > 0.(Mlj] = o AV € [0,5) Ml | v1)

M, = U Rk, i 35 € [k17k2]o<M»7Tm =2 A
Vi € [0,5)-M.7li] = 41 )

Note that each HyperPCTL formula
can be transformed into an equiva-
lent formula in prenex normal form
Q101....Qpopn.1, where each Q; €
{¥, 3} is a quantifier, o; is a state vari-
able, and v is a quantifier-free Hyper-
PCTL formula. Note furthermore that
the semantics assures that each path
formula ¢ is evaluated in the context
of a path of M"™ such that 1 <i <n
for each a; in .

1 1

Fig. 1: Semantics example.

Ezxample Consider the DTMC M in Fig. 1 and the following HyperPCTL formula:
Wb =Yoo (inity A inity) = (IP’(<> as) = P(O a{,/))

This formula is satisfied by M if for all pairs of initial states (labeled by the
atomic proposition init), the probability to satisfy a is the same, i.e., for each



(si,85) € S? with nit € L(s;) and init € L(s;) it holds that M, (s;,s;) E
P(Gar) = P(Oag). The probability of reaching a from sg is 0.4 + (0.2 x 0.2) =
0.44. Moreover, the probability of reaching a from s; is 0.3 + (0.7 x 0.2) = 0.44.
Hence, we have M = 1.

3 HyperPCTL in Action

We now put HyperPCTL into action by formulating probabilistic requirements
from different areas, such as information-flow security, privacy, and causality
analysis.

3.1 Probabilistic Bisimulation

A bisimulation is an equivalence relation over a set of states of a system such that
equivalent states cannot be distinguished by observing their behaviors. In the
context of DTMC states and PCTL properties, a probabilistic bisimulation is an
equivalence relation over the DTMC states such that any two equivalent states
satisfy the same PCTL formulas. The latter property can be assured inductively
by requiring that equivalent states have the same labels and the probability to
move from them to any of the equivalence classes is the same.

Assume a partitioning Sy, ..., Sy of S with U¥_|S; = S and S; N S; = () for
all 1 <i < j < k. To express that the equivalence relation R = UY_,S; x S; is
a probabilistic bisimulation, we define M’ = (S,P,AP’, L’) with AP’ = AP U
{at,...,a*}, where each a’, for all i € [1, k], is a fresh atomic proposition not in
AP, and for each s € S;, we set L'(s) = L(s) U {a'}. The equivalence relation R
is a bisimulation for M if M’ satisfies the following HyperPCTL formula

k k
pr = Vo Vo' \ | (ah Aal)) = |¢* A N\ P(Oa)) =P(Oal,)

i=1 j=1

where ¥A" = A pp(ao < aqr).

3.2 Probabilistic Noninterfence

Noninterference is an information-flow security policy that enforces that a low-
privileged user (e.g., an attacker) should not be able to distinguish two computa-
tions from their publicly observable outputs if they only vary in their inputs by a
high-privileged user (e.g., a secret). Probabilistic noninterference [14] establishes
connection between information theory and information flow by employing prob-
abilities to address covert channels. Intuitively, it requires that the probability
of every low-observable trace pattern is the same for every low-equivalent initial
state. Probabilistic noninterference can be expressed in HyperPCTL as follows:

Goni = Yoo (za A zg,) = (P(Ola) = PO ln,))



where [ denotes a low-observable atomic proposition. Observe that formula @pn;
is a simplification of formula @p, in Section 3.1, but a stronger form of the
noninterference formula for the example in Section 1. In fact, most approaches
to prove probabilistic noninterference is by showing probabilistic bisimulation
with respect to low-observable propositions.

3.3 Differential Privacy

Differential privacy [6] is a commitment by a data holder to a data subject
(normally an individual) that he/she will not be affected by allowing his/her data
to be used in any study or analysis. Formally, let ¢ be a positive real number
and A be a randomized algorithm that makes a query to an input database
and produces an output. Algorithm A is called e-differentially private, if for all
databases D7 and D5 that differ on a single element, and all subsets S of possible
outputs of A, we have:

PrlA(D;) € S] <e®- PrlA(D;) € S].

Differential privacy can be expressed in HyperPCTL by the following formula:
Yap = Vo Vo', {dbSim(U, 0’)} =
{P(Q(qOut e 5)0) < e .p(o(qout € S)U,)}

where dbSim(o,0’) means that two different dataset inputs have all but one
similarity and qQOut is the result of the query. For example, one way to provide
differential privacy is through randomized response in order to create noise and
provide plausible deniability. Let A be an embarrassing or illegal activity. In
a social study, each participant is faced with the query, “Have you engaged in
activity A in the past week?” and is instructed to respond by the following
protocol:

1. Flip a fair coin.
2. If tail, then answer truthfully.
3. If head, then flip the coin again and respond “Yes” if head and “No” if tail.

Thus, a “Yes” response may have been offered because the first and second coin
flips were both heads. This implies that, there are no good or bad responses and
an answer cannot be incriminating.

We now show that this social study is (In3)-deferentially private. For each
participant in the study, Fig. 2 shows the Markov chain of the response protocol,
where {t=y} (respectively, {t=n}) denotes that the truth is that the participant
did (respectively, did not) engage in activity A, and {r=y} (respectively, {r=n})
means that the participant responds “Yes” (respectively, “No”). The HyperPCTL



e /@\
0.5, 0.5 0.5

{r=y} {r=n}

0.5 0.5
1
{r=n} {r=y} {r= n}g Q{T y}
1 1

Fig. 2: Markov chain of the randomized response protocol.

formula to express (In 3)-deferentially privacy for this protocol is the following;:
Va.VU’[((t:n)g A (t:y)gl) = (]P’(()(r:n)g) < ens -P(Q(r:n)g,)ﬂ A

(=00 1 (=000 ) = (P(00=a) < e B(0tr=0)0) )]

Observe that compared to formula t)g,, we have decomposed dbSim(c,o’) to
two cases of t = y and t = n. Thus, in the left conjunct, the set S represents the
case where the response is “No” and in the right conjunct, the set S represents
the case where the response is “Yes”. It is straightforward to see that the DTMC
in Fig. 2 satisfies the formula, when for the left conjunct o and ¢’ are instantiated
by so and s7, respectively, and for the right conjunct ¢ and ¢’ are instantiated
by s1 and sg, respectively.

3.4 Probabilistic Causation

Probabilistic causation [8] aims to characterize the relationship between cause
and effect using the tools of probability theory. The reason for using probabili-
ties is that most causes are not invariably followed by their effects. For example,
smoking is a cause of lung cancer, even though some smokers do not develop
lung cancer and some people who have lung cancer are not smokers. Thus, we
need to somehow express that some causes are more likely to develop an effect.
Specifically, the central idea in probabilistic causation is to assert that the prob-
ability of occurring effect e if cause ¢ happens is higher than the probability of
occurring e when ¢ does not happen. We can express the most basic type of
probabilistic causation in HyperPCTL as follows:

Ype, = Voo .co A (]P’(<> ex) > P(—co Ue(,/))

Observe that expressing causation in the standard PCTL by stripping the state
quantifiers in formula v, will damage the meaning of causation. The resulting
PCTL formula captures the causation relation from each initial state in isolation



and it wrongly allows the probability of & e from one initial state to be less than
the probability of (—c U e) from another initial state.

One problem with formula ., is spurious correlations. For example, if ¢ is
the drop in the level of mercury in a barometer, and e is the occurrence of a
storm, then the above formula may hold in a system, though c is not really the
cause of e. In fact, the real cause for both is the drop in atmospheric pressure.
To address this problem, we add a constraint, where there should be no further
event a that screens off e from c [18]:

Ppe, = Voo =Fo" .o A (P(Qeg) > P(—¢,r L{egl)> A

N l(agu Acor) A (P(<> egr) = P(O e(,))],

a€AP\{e,c}

The negation behind the existential quantifier can be pushed inside to obtain a
proper HyperPCTL formula. We note that for simplicity, in formula pc,, propo-
sitions a and ¢ occur in the same state in ¢”. A more general way is to allow
a happen before or simultaneously with c. Finally, we note that other concepts
in probabilistic causation such as Reichenbach’s Common Cause Principle and
Fork Asymmetry [18] (which emulates the second law of thermodynamics), as
well as Skyrms’s Background Contexts [20] can be expressed in a similar fashion.

4 HyperPCTL Model Checking

In the following, we show that the HyperPCTL model checking problem is decid-
able by introducing a model checking algorithm. The space complexity of our
algorithm is exponential in the number of quantifiers of the input formula, be-
cause for n state quantifiers, we build the n-ary self-composition of the input
DTMC. We are uncertain whether there exists a PSPACE algorithm, but we show
the PSPACE-hardness of the problem.

Let M = (S,P,AP, L) be a DTMC and 1) be a HyperPCTL quantified formula.
Let furthermore n be the number of state quantifiers in v if it has any and let
n = 1 otherwise. Informally, our model checking algorithm decides whether
M E 9 as follows (detailed pseudo-code is formulated in the Algorithms 1-3):

1. Apply variable renaming such that the quantified state variables are named
01y.-.,0n.
2. Build the self-composition M™.
3. Compute a labeling f/"(s) for all states s € S™ of M" as follows. Initially
L™(s) =0 for all s € S™ (Line 5 in Algorithm 1). For all sub-formulas ¢’ of
1) inside-out do the following:
— If the subformula 1)’ has the form true, add true to the label sets IA/"(S)
of all states s € S™ (Line 3 in Algorithm 2).
— If the subformula ¢’ is an atomic proposition a,,, add a,, to the label
set of each state s € S™ with a; € L™(s) (Line 5 in Algorithm 2).

10



Algorithm 1: HyperPCTL model checking algorithm I

W N =

o o

©

10

Input :DTMC M = (S,P,AP, L), HyperPCTL quantified formula ¢
Output : Whether M = ¢
Function main(M, )

n := number of quantifiers in ¥

if n =0 then

L n:=1 % n will be the arity of the self-composition
let L™ : S™ — 27 with L™(s) = for all s € S™
L™ := HyperPCTL(M, ¢, n, L") % see Algorithm 2

if ¢ € L"(s) for some s € S™ then
L return true

else
L return false

— If the subformula )’ is 11 A )2, then add 1 A s to f/”(s) for each

s € S™ with ¢, € L™(s) and v, € L"(s) (Lines 6 — 9 in Algorithm 2).
If the subformula ¢ is =)y, then add —¢; to L™(s) for each s € S™ with
Yy & L™(s) (Lines 10 — 12 in Algorithm 2).

If the subformula 1)’ is p; ~ py (respectively p € J), then compute for all
P(p) appearing in p; ~ po (respectively, p € J) for all states s € S™ the
probability that ¢ holds in s using standard PCTL model checking, and
add for all s € S™ the property p; ~ po (respectively, p € J) to ﬁ"(s)
if p1 ~ po2 (respectively, p € J) evaluates to true in s (Lines 13 — 16 in
Algorithm 2).

If the subformula 1’ is of the form Jo;.1)1, then label all states s =
(S1y.-.,8n) € S™ with Jo;.1¢1 iff there exists an s} € S, such that ¢, €
i}"(sl, ey 8ic1y8hy Sitls- .., Sn) (Lines 17 — 19 in Algorithm 2).

If the subformula %’ is of the form Vo;.1)1, then label all states s =
(81y...,8n) € S™ with Vo;.¢p; iff for all s; € S it holds that ¢ €

f/"(sl, ey 8i21, 8k, Sit1, -+ -5 Sn) (Lines 20 — 22 in Algorithm 2).

4. Upon termination of the above iterative labeling procedure, as 1) is a sentence

and thus state-independent, either all states are labelled with it or none of
them. Return true if for an arbitrary state s we have ¢ € L™(s) and return
false otherwise.

Theorem 1. For a finite Markov chain M and HyperPCTL formula v, the
HyperPCTL model checking problem (to decide whether M = 1) can be solved in

time O(poly(|M])).

Theorem 2. The HyperPCTL model checking problem is PSPACE-hard in the
number of quantifiers in the formula.

Proof. We show that the HyperPCTL model checking problem is PSPACE-hard by

reducing the following PSPACE-hard quantified Boolean formula (QBF) satisfia-

bility problem [9] to it:

11



Algorithm 2: HyperPCTL model checking algorithm II

Input :DTMC M = (S,P,AP, L), HyperPCTL quantified formula 1,
non-negative integer n, L™ : S® — 27

Output : An extension of L™ to label each state s € S with sub-formulas of 1
that hold in s

1 Function HyperPCTL(M,,n, L")
2 if ¢ = true then
3 L for all s € S™ set ﬁ”(s) = ﬁ”(s) U {true}
4 else if ¢ = a,, then
5 L for all s € S™ with a; € L™(s) set ﬁ”(s) = ﬁ"(s) U{as,}
6 else if ¥ = 91 N 12 then
7 L":=HyperPCTL(M )1,n,L™)
8 ﬁ"::HyperPCTL(M,wz,n,ﬁ”)
9 | for all states s € S™ with {t1,¢2} C Ii”(s) set f/”(s) = f/”(s) U {v}
10 else if ¢ = -1 then
11 L"™:=HyperPCTL(M,1,n,L"™)
12 | for all states s € S™ with ¢1 ¢ L™(s) set L™(s) := L™(s) U {4}
13 else if ¢y = p; ~ p2 then
14 L} := ProbMC(M, p1,n, L") % see Algorithm 3
15 L} := ProbMC(M, p2,n, L™) % see Algorithm 3
16 | for all states s € S™ with Ly (s) ~ L3 (s) set ﬁ”(s) = ﬁ”(s) U{y}
17 else if ¢ = J0;.91 then
18 L™:=HyperPCTL(M 1,n,L")
19 for all states s = (s1,...,8,) € S™ with ¢1 € L™(s") for some s} € S and
| 8" =(s1,---,8i-1,80,Si41,- -, Sn) set ﬁ"(s) = ﬁ"(s) U {¢}
20 else if ¢ = Vo,;.11 then
21 L"™:=HyperPCTL(M,1,n,L"™)
22 for all states s = (s1,...,8,) € S™ with 11 € L™(s') for all s; € S and
| 8" =(s1,...,8i-1,80,Si41,.--,5n) set f}"(s) = i”(s) U {v}
23 | return L
Given is a set {x1,xa,...,2,} of Boolean variables and a quantified

Boolean formula

y=Qz1.Qiz2...Quo12n—1.Qnzn 9

where Q; € {V,3} for each i € [1,n] and ¢ is an arbitrary Boolean
formula over variables {x1,...,xn}. Is y true?

We reduce the satisfiability problem for a quantified Boolean formula to

the model checking problem for a HyperPCTL formula with the same quantifier
structure as follows. We define the simple DTMC M = (S,P,AP, L) shown in
Fig. 3, which contains two states s and s; and has two paths sg and s{. The

12



Algorithm 3: HyperPCTL model checking algorithm III

© 0N O s W N

10
11

12
13
14

15
16
17

18
19
20
21

22

23

Input

: DTMC M = (S, P, AP, L), HyperPCTL probability expression p,
non-negative integer n, L™ : S™ — 27

Output : Ly : S™ — Q specifying the values Lj (s) of p in all states s € S™
Function ProbMC(M,p,n, L")

let Ly : 8™ — Q with Ly(s) =0 for all s € S™

if p = c then

L

for all s € S™ set L (s) =c¢

else if p = p1 op p2 with op € {+,—,-} then

o

LT := probMC(M, p1, n, ﬁ")
L5 := probMC(M, p2,n, E")
for each s € S™ set Ly (s) :== L7 (s) op L3 (s)

Ise if p = P(p) then

if o = 0Oy then
L for all s € S™ set Ly (s) = ZS’ES”, webn(sh P"(s,s")
else if ¢ = 1 U 12 then
compute the unique solution v for the following equation system:
(1) ps = 0 for all states s € S™ with 11 ¢ L™(s) and ¢ ¢ L"(s), or
if no state s’ with ¥ € L™(s') is reachable from s
(2) ps =1 for all states s € S™ with ¢ € ﬁ"(s)
(3) ps = Y ycgn P"(s,8") - psr for all other states
| forall s € " set Ly (s) = v(ps)
Ise if o = 1 U *1*21yy then
for each s € S™ set PJ(s) = 1if 12 € L™(s) and P (s) = 0 otherwise
for : =1 to ko do
for eac}} s €S set P'(s) =, cqn P"(s,8") - PlLy(s) if
1 € L™(s) and P;*(s) = 0 otherwise
for all s € S™ set L7 (s) = S¢2, Pl (s)

i=ky T 0

o

return L,

HyperPCTL formula in our mapping is the following:

Q101.Q102...Qp_104-1.Qp0y. W

(
where 9’ is constructed from ) by replacing every occur- (z} e
rence of a variable z; in 9 by x,,. The given quantified
Boolean formula is true if and only if the DTMC ob- A A

tained by our mapping satisfies HyperPCTL formula (1).
We translate every assignment to the trace quantifiers to Fig.3: DTMC

a corresponding assignment of the Boolean variables, and
vice versa, as follows: Assigning state so (s1) to o; means

the proof of Thm

that z; is set to true (false). [ |

13
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5 Related Work

Probabilistic noninterference [13,14] establishes connection between information
theory and information flow by employing probabilities to address covert chan-
nels. Intuitively, it requires that the probability of every pattern of low-observable
trace be the same for every low-equivalent initial state. Most efforts in reasoning
about probabilistic noninterference is through probabilistic weak bisimulation
(e.g. [21]). More recently, Sabelfeld and Sands [19] introduce a framework to en-
sure nonintereference for multi-threaded programs, where a probabilistic sched-
uler non-deterministically manages the execution of threads. They introduce
operational semantics for a simple imperative language with dynamic thread
creation, and how compositionality is ensured.

Epistemic logic [7] is a subfield of modal logic that is concerned with rea-
soning about knowledge. The semantic model of the logic is a Kripke structure,
where a set of agents are related with each other based on which states they
consider possible. A probabilistic version of the logic [11] assigns a probability
function to each agent at each state such that its domain is a non-empty subset
of the set of possible states. Epistemic temporal logic has been used to express
information-flow security policies (e.g., [2]). The relation between the expressive
power of probabilistic epistemic logic and HyperPCTL remains an open ques-
tion in this paper. Gray and Syverson [15] propose a modal logic for multi-level
reasoning about security of probabilistic systems. The logic is axiomatic and is
based on the Halpern and Tuttle [11] framework for reasoning about knowledge
and probability. The logic is sound, but it may run into undecidability.

Clarkson and Schneider [5] introduce the notion of hyperproperties, a set-
theoretic framework for expressing security policies. A hyperproperty is a set
of sets of traces. In other words, a hyperproperty is a second-order property of
properties. The expressive power of hyperproperties do not exceed the second-
order logic, but it is currently unclear whether the full power of second-order
logic is needed to express hyperproperties of interest. Clarkson and Schneider
have shown two fundamental things: (1) a hyperproperty is an intersection of a
safety and a liveness hyperproperty, and (2) hyperproperties can express many
important requirements such as information-flow security policies (e.g., nonin-
tereference, observational determinism, etc), service-level agreement, etc.

Second-order logic is not verifiable in general, as it cannot be effectively and
completely axiomatized. Thus, temporal logics for subclasses of hyperproper-
ties have emerged [4]. HyperLTL and HyperCTL* allow explicit and simultane-
ous quantification over multiple paths to LTL and to CTL*, respectively. As the
names suggest, HyperLTL allow quantification of linear traces and HyperCTL* per-
mits quantification over multiple execution traces simultaneously while allowing
branching-time paths for each trace. HyperLTL and HyperCTL* are not equipped
with probabilistic operators and cannot reason about probabilistic systems.

14



6 Conclusion and Future Work

In this paper, we proposed the temporal logic HyperPCTL to express and reason
about probabilistic hyperproperties. HyperPCTL is a natural extension to PCTL by
allowing explicit and simultaneous quantification over model states. We defined
the syntax and semantics and presented a model checking algorithm for discrete-
time Markov chains. The complexity of the algorithm is PSPACE-hard in the
number of quantifiers in the input HyperPCTL formula. We presented multiple
examples from different domains, where HyperPCTL can elegantly express the
requirements.

We believe the results in this paper pave the path for new research direc-
tions. As for future work, an important unanswered question in this paper is to
determine tighter lower and upper bounds for the the complexity of HyperPCTL
model checking in the size of the formula. We believe most of the literature and
fundamental lines of research on PCTL verification should now be revisited in the
context of HyperPCTL. Examples include HyperPCTL model checking for Markov
decision processes (MDPs), Markov chains with costs, parameter synthesis and
model repair for probabilistic hyperproperties, HyperPCTL conditional probabili-
ties, developing abstraction/refinement, comparing expressive power to existing
related logics such as probabilistic epistemic logic [11], etc. An orthogonal di-
rection is deeper investigation of the examples presented in Section 3. Each of
those areas (e.g., differential privacy and probabilistic causation) deserve more
research to develop effective and efficient model checking techniques.
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