Less is More: Quantifying the Security Benefits of Debloating Web Applications

Babak Amin Azad
Stony Brook University
baminazad @ cs.stonybrook.edu

Abstract

As software becomes increasingly complex, its attack surface
expands enabling the exploitation of a wide range of vulnerabil-
ities. Web applications are no exception since modern HTMLS
standards and the ever-increasing capabilities of JavaScript are
utilized to build rich web applications, often subsuming the
need for traditional desktop applications. One possible way of
handling this increased complexity is through the process of
software debloating, i.e., the removal not only of dead code but
also of code corresponding to features that a specific set of users
do not require. Even though debloating has been successfully
applied on operating systems, libraries, and compiled programs,
its applicability on web applications has not yet been investigated.
In this paper, we present the first analysis of the security
benefits of debloating web applications. We focus on four
popular PHP applications and we dynamically exercise them
to obtain information about the server-side code that executes
as a result of client-side requests. We evaluate two different
debloating strategies (file-level debloating and function-level
debloating) and we show that we can produce functional web
applications that are 46% smaller than their original versions
and exhibit half their original cyclomatic complexity. Moreover,
our results show that the process of debloating removes
code associated with tens of historical vulnerabilities and
further shrinks a web application’s attack surface by removing
unnecessary external packages and abusable PHP gadgets.

1 Introduction

Despite its humble beginnings, the web has evolved into a
full-fledged software delivery platform where users increasingly
rely on web applications to replace software that traditionally
used to be downloaded and installed on their devices. Modern
HTMLS standards and the constant evolution of JavaScript en-
able the development and delivery of office suites, photo-editing
software, collaboration tools, and a wide range of other complex
applications, all using HTML, CSS, and JavaScript and all
delivered and rendered through the user’s browser.

Pierre Laperdrix
Stony Brook University
plaperdrix@ cs.stonybrook.edu

Nick Nikiforakis
Stony Brook University
nick@cs.stonybrook.edu

This increase in capabilities requires more and more complex
server-side and client-side code to be able to deliver the features
that users have come to expect. However, as the code and
code complexity of an application expands, so does its attack
surface. Web applications are vulnerable to a wide range
of client-side and server-side attacks including Cross-Site
Scripting [4, 47, 72], Cross-Site Request Forgery [3, 33, 46],
Remote Code Execution [18], SQL injection [19,41], and timing
attacks [35,40]. All of these attacks have been abused numerous
times to compromise web servers, steal user data, move laterally
behind a company’s firewall, and infect users with malware and
cryptojacking scripts [43,49,74].

One possible strategy of dealing with ever-increasing software
complexity is to customize software according to the environment
where it is used. This idea, known as attack-surface reduction and
software debloating, is based on the assumption that not all users
require the same features from the same piece of software. By
removing the features of different deployments of the same soft-
ware according to what the users of each deployment require, one
can reduce the attack surface of the program by maintaining only
the features that users utilize and deem necessary. The principle
of software debloating has been successfully tried on operating
systems (both to build unikernel OSs [53] and to remove unnec-
essary code from the Linux kernel [51,52]) and more recently on
shared libraries [56,61] and compiled binary applications [42].

In this paper, we present the first evaluation of the applicability
of software debloating for web applications. We focus on
four popular open-source PHP applications (phpMyAdmin,
MediaWiki, Magento, and WordPress) and we map the CVEs
of 69 reported vulnerabilities to the source code of each web
application. We utilize a combination of tutorials (encoded as Se-
lenium scripts), monkey testing, web crawling, and vulnerability
scanning to get an objective and unbiased usage profile for each
application. By using these methods to stimulate the evaluated
web applications in combination with dynamically profiling the
execution of server-side code, we can precisely identify the code
that was executed during this stimulation and therefore the code
that should be retained during the process of debloating.

Equipped with these server-side execution traces, we evaluate
two different debloating strategies (file-level debloating and
function-level debloating) which we use to remove unnecessary
code from the web applications and quantify the security benefits
of this procedure. Among others, we discover an average
reduction of the codebase of the evaluated web application of
33.1% for file-level debloating and 46.8% for function-level de-
bloating, with comparable levels of reduction in the applications’
cyclomatic complexity. In terms of known vulnerabilities, we
remove up to 60% of known CVEs and the vast majority of PHP
gadgets that could be used in Property Oriented Programming
attacks (the equivalent of Return-Oriented Programming attacks
for PHP applications).

Overall, our contributions are the following:

* We encode a large number of application tutorials as
Selenium scripts which, in combination with monkey
testing, crawling, and vulnerability scanning, can be used
to objectively exercise a web application. Similarly, we
map 69 CVE:s to their precise location in the applications’
source code to be able to quantify whether the vulnerable
code could be removed during the process of debloating.

* We design and develop an end-to-end analysis pipeline
using Docker containers which can execute client-side,
application stimulation, while dynamically profiling the
executing server-side code.

* We use this pipeline to precisely quantify the security
benefits of debloating web applications, finding that
debloating pays large dividends in terms of security, by
reducing a web application’s source code, cyclomatic
complexity, and vulnerability to known attacks.

To motivate further research into debloating web applications
and to ensure the reproducibility of our findings, we are releasing
all data and software artifacts.

2 Background

In this section, we briefly describe the effect of package
managers on software bloat and provide a motivating example
for debloating web applications.

2.1 Package managers and software bloat

To ease the development of software, developers reuse third-
party libraries, external packages, and frameworks for their
applications. This approach enables developers to focus on their
applications while relying on proven and tested components.
Statistics from popular package managers show that reliance
on external packages is a widely adopted practice across many
different languages. NPM, the registry hosting NodeJS packages,
reports more than 10 billion package downloads a month [73].
Similarly, PyPI, the package manager for Python, reports more

than a billion a month [30], while Packagist, the main repository
for Composer package manager for PHP, reports the download
of 500 million packages each month [29].

At the same time, it is doubtful that all the code and features
obtained through these packages and frameworks are actually
used by the applications that rely on them. For the most part,
when developers rely on external dependencies, they include
entire packages with no effective way of disabling and/or
removing the parts of these packages and frameworks that their
applications do not require.

2.2 Motivating web-application debloating

In this study, we look at the bloat of web applications and
quantify how debloating can provide concrete security benefits.
Even though debloating has been successfully applied in other
contexts, we argue that the idiosyncrasies of the web platform
(e.g. the ambient authority of cookies and the client/server
model which is standard for the web but atypical for operating
systems and compiled software) require a dedicated analysis of
the applicability of debloating for web applications.

To understand how the bloat of a web application can lead to
a critical vulnerability, we use a recent vulnerability of the Sym-
fony web framework (CVE-2018-14773 [28]) as a motivating
example. Specifically, the Symfony web framework supported
a legacy IIS header that could be abused to have Symfony return
a different URL than the one in the request header, allowing
the bypassing of web application firewalls and server-side
access-control mechanisms. If this type of header was never used
by the server, debloating the application would have removed
support for it, which ultimately would have prevented anyone
from exploiting the vulnerability. Drupal, a popular PHP Content
Management System (CMS), was also affected by the same vul-
nerability since it uses libraries from the Symfony framework to
handle parts of its internal logic [26]. Even if Drupal developers
were not responsible for the code that leads to the vulnerability,
their application could still be exploited since Symfony was an
external dependency. Even more interestingly, an analysis of the
official Symfony patch on GitHub [27] reveals that the vulnerable
lines were derived from yet another framework called Zend [31].
This shows that the structure of web applications can be very
complex with code reuse originating from many different sources.
Even if developers take all possible precautions to minimize vul-
nerabilities in their own code, flaws from external dependencies
can cascade and lead to a critical entry point for an attacker.

Opverall, there are clear benefits that debloating could have on
web applications. Assuming that we are able to pinpoint all the
code that is required by the users of a given software deployment,
all other code (including the code containing vulnerabilities) can
be removed from that deployment.

1. Vulnerability to Code Mapping

3. Record Code Coverage

{0} L5 || e
Database <I> . O3

Line
Coverage
Information

4. Analyze Unused Files / Functions

ity

5. Debloating Logic 6. Rerun Tests to Verify Correctness
LN]
| ﬁoh = S@
- o Se
I I I | I | I I I pay

7. Test Against Known Expoits

it

JAPACHE my N php

QR

u €

> <€ Ymetasploit”

Debloated Applications 8. Analyze The Results

2. Application Profiling By Usage
Simulation

Figure 1: Overview of the architecture of our pipeline for debloating web applications and assessing the effects of different debloating strategies.

3 Setup

In this section, we describe the process of gathering information
regarding known vulnerabilities (in the form of CVEs) for
web applications, designing and executing tests against web
applications of interest, and identifying the server-side code that
was executed as a result of client-side actions.

3.1 Overview

The setup for our framework is depicted in Figure 1. To
debloat target applications, we first collect information about the
vulnerabilities of the applications that we analyze in our study.
This information includes the files, functions, and line numbers
where each vulnerability resides (Step 1, Section 3.3). Then,
we simulate usage of the application through a combination of
different techniques (Step 2, Section 3.4). Using a PHP profiler
tool (XDebug), we record the lines, functions, and files, that are
triggered during the simulation (Step 3, Section 3.5).

In the middle part of our pipeline, the debloating engine takes
both the target applications and coverage information to perform
debloating at different levels of granularity, and rewrite parts of
the application to remove unused pieces of code based on the
debloating strategy being evaluated (Steps 4 and 5, Section 4).
Our framework also provides a complete reporting panel to assist
human analysts in understanding which vulnerabilities can be
removed by the present debloating strategies.

Last, we verify the correctness of our debloating process by
running a set of tests against the debloated web applications,
and verifying that no removed piece of code is triggered (Step
5). To this end, we utilize assertions in place of the removed
code blocks. An absence of error messages from these assertions
means that all tests were successfully completed without
triggering any missing server-side code. As an final step of
verification, we also test the debloated applications against a
series of exploits and verify that exploits which abuse any of

the vulnerabilities that were removed as part of the debloating
process, do not succeed (Step 6, Section 5.6).

To ease integration and facilitate the analysis of new web ap-
plications, we adopted a modular architecture that relies on three
Docker containers. The Application container hosts our web
applications. The profiler enabled on its web server is respon-
sible for collecting code coverage information. The Database
container runs a MySQL server that stores the code coverage
information along with the databases of the tested applications.
Lastly, the Debloating container which includes our debloating
logic, analyzes the coverage information and generates debloated
versions of applications. It also provides a reporting panel that
indicates which vulnerabilities are removed in each application
after debloating. To add a new vulnerability, a user simply has
to provide the details of the vulnerable file(s) and line(s).

3.2 Analyzed web applications

To understand how the process of debloating increases the
security of web applications, we decided against using toy-like
web applications. Instead, we focused on established open-
source applications with millions of users, and the presence of
a sufficient number of known historical vulnerabilities (in the
form of CVEs) to allow us to generalize from them. To this end,
we selected phpMyAdmin [60], MediaWiki [59], Magento [58],
and WordPress [75], which are representative samples of four
different types of web applications namely web-administration
tools, wikis, online shops, and blogging software. Table 1 shows
the versions of these web applications that we utilized, in order
to map CVEs to the location of the vulnerability in the source
code of each application.

3.3 Vulnerability to source-code mapping

To determine whether debloating web applications can actually
remove vulnerabilities, we performed a mapping of known CVEs

Table 1: Analyzed open-source web applications.

Web Application | Version Klg“;(; SYES
Magento 1.9.0,2.0.5 10
MediaWiki 1.19.1, 1.21.1, 1.24.0, 1.28.0 111
phpMyAdmin 4.0.0,4.4.0,4.6.0,4.7.0 130
WordPress 39.0,4.0,4.2.3,4.6,4.7,4.7.1 131

to the vulnerable lines, functions, and files, that they exploit
in each application. This way, by looking at an application
after debloating, we can determine if the files, functions, or
lines responsible for the vulnerability, are still present or were
removed during the debloating process.

Even though there exist multiple databases listing the current
and historical CVEs of popular software (including the web
applications in question) [36,37], locating the actual source code
containing the vulnerability described in a CVE, is a non-trivial
process which requires careful investigation. In some cases, the
right patch can be discovered because of a direct reference to
a CVE in a commit message, or in a bug report on official public
repositories of web applications. For others, the fix is included
within numerous commits that have to be carefully analyzed to
locate the appropriate lines of code. Since a vulnerability can
span over multiple lines, functions, and even multiple files, we
record all affected locations in a database so that this information
can be later correlated with each evaluated application.

Given the time-consuming nature of mapping CVEs to
existing code, for this study, we limited ourselves to, at most, 20
CVEs per application of interest. The complete list of CVEs we
mapped for this study can be found in Table 9 in the Appendix.
To select these CVESs, we ordered existing vulnerabilities by their
CVSS score (thereby selecting the ones that are the most critical)
and we did not consider vulnerabilities that were reported before
2013. This focus on fairly recent vulnerabilities (i.e. in the last
five years) makes our results more generalizable to the current
state of web applications, as opposed to quantifying vulnerabil-
ities in source-code which has since dramatically evolved. Note
that, because not all versions of a web application are vulnerable
to all evaluated CVEs, we had to map vulnerabilities across a
number of different versions, as shown in Table 1.

3.4 Application usage profiling

Modern web applications provide an incredibly wide range
of features and options to their users. Even though, from a
functional perspective, more features are desirable, from a
security perspective, the code that implements new features
may contain new vulnerabilities thereby further expanding a
program’s attack surface. In order for a system to be able to
remove code related to unnecessary features, one must first
identify which features are necessary for a target set of users.
Given a usage profile, the goal of our framework is to produce
debloated versions of web applications which maintain the code

and features that are part of that profile but remove the rest. To be
as objective as possible with what features are considered “nec-
essary,” we utilize four independent sources of web application
usage: 1) online tutorials describing how to use the applications
of interest, ii) web crawlers that autonomously navigate the
application, iii) vulnerability scanners that feed malicious content
to the application, and iv) monkey testing tools that click on
random parts of webpages and type random keystrokes. The
combination of all four gives our profiles both breadth (through
the crawler and monkey testing) as well as depth (through the
user following complicated paths while providing expected in-
puts and the vulnerability scanner which provides large amounts
of malicious inputs trying to exploit the web application).

34.1 Tutorials

To simulate common interactions with an application, we use
a popular search engine to search for the application’s name
followed by the word “tutorials” (e.g. “phpMyAdmin tutorials™)
and follow the tutorials from the first two pages of search results.

Specifically, we map each tutorial to a Selenium script that
allows us to both execute the same tutorial multiple times and
also assess the correctness of the results (e.g. encode that when
we delete a database using phpMyAdmin, the deleted database is
no-longer shown in the list of databases). Note that this mapping
of tutorials to Selenium scripts is yet another time-consuming
process which, occasionally, has to be repeated for different ver-
sions of the same web application. One change in a form field or
in a selector can break the complete flow of a test suite and we ob-
served a significant number of cases with slight interface changes
between two consecutive versions of the same application.

Overall, after fine-tuning the scripts for all our tested versions,
we obtained 46 tutorials which translated into 302 use cases
scripted as Selenium tests requiring 16,025 lines of code. Given
our desire for complete reproducibility of our results, we include
the complete list of tutorials in the Appendix (Table 8) along with
WebArchive links that will remain available despite potential
future domain expirations and linkrot of the original URLs [48].

Below, we provide a non-exhaustive list of actions that were
part of the followed tutorials of each web application. Full
details are available in the actual tutorials and in the Selenium
scripts which we will release together with this paper.

Actions covered by phpMyAdmin tutorials: As a web
administration tool, all phpMyAdmin functionality is protected
by an authentication mechanism. We followed the actions
described by tutorials when logged in as a root user account
with full application access. The Selenium-encoded tutorials
cover database operations including creating and dropping
databases, filling tables with data, querying, table indexes, and
importing/exporting data. They also include administration tasks
such as adding new user accounts, optimizing databases, check-
ing database server status, obtaining performance metrics, and
accessing server settings such as variables, charsets, and engines.

Actions covered by MediaWiki tutorials: MediaWiki provides
different features depending on the privileges of the user. Unau-
thenticated users can only visit and search pages. Registered ones
can post and edit content while administrators can perform moder-
ation and management operations. The tutorials that we followed
cover all these different use cases. More specifically, actions
coded in our tutorials include authentication, creating and renam-
ing pages, importing and exporting content from the wiki, as well
as changing settings such as skins, styles, and formatting options.

Actions covered by WordPress tutorials: As a blogging
software, WordPress has two distinct entry points, one for
normal unauthenticated users to read blogs and post comments,
and a separate administration panel accessible to privileged
and authenticated users. WordPress tutorials mostly focus on
administrative tasks since normal users have limited abilities.
The Selenium-encoded tutorials include actions such as creating
a new post using HTML for the content, modifying most post
options (ranging from visibility and tags to setting featured
images), as well as downloading and changing WordPress
themes. For the administration panel, the tutorials include
exporting content, setting up user accounts, and uploading media.
Finally, the tutorials include the visiting of posts and the posting
of comments as well as the management of comments, such as
approving them, marking them as spam, and deleting them.

Actions covered by Magento tutorials: Magento is the largest
evaluated web application in terms of source code and has
the most features compared to the other applications. Similar
to WordPress, the tutorials mostly target administration tasks
which include store settings, advanced product search options,
order notification via RSS, product pricing, currencies and tax
rules, delivery and payment methods, emails and notifications,
reviews and ratings and cache control. Some tutorials go in
even more details by covering product and stock management,
managing customers and groups configurations, modifying the
U, creating pages, and using widgets. On the customer side, we
followed tutorials that included registration of a new account,
authentication actions, and purchasing products until checkout.

34.2 Monkey testing

Monkey testing is a method for testing software where the
simulated user sends random clicks and keystrokes to the target
application. This unpredictable behavior can uncover bugs in
an application as it can trigger paths and actions that were not
anticipated by developers. In our case, we use such a technique
to trigger additional code, not covered by tutorials. We observe
that this approach adds breadth to the code coverage by reaching
easy to access features. In addition, by feeding random key
strokes into forms, monkey testing can bring the application in
an error state thus exercising error-handling pieces of code.

We rely on the stress-testing library called gremlins.js [7]
in conjunction with the GreaseMonkey browser extension [6]
to inject the library into web application pages. Since this kind
of testing can occasionally trigger unwanted actions, we have

to take necessary steps to stop them, e.g., prevent the test from
leaving the web application and visiting external websites. We
also want to prevent gremlins.js from getting trapped on
a single page as an unexpected JavaScript dialogue box or a
dead end page can pause our test execution. An additional
issue is that of accidentally logging out a web application by
clicking on a logout link. Given that we run monkey-testing
under three different usage profiles (public user, logged-in user,
and administrator) we took steps to avoid accidental logouts.
Overall, we perform the following modifications: i) we remove
all links that lead to external pages, ii) we remove logout buttons
for applications that require authentication, iii) we override the
aforementioned JavaScript functions and iv) we set a timeout
to detect when the monkey is stuck and reset it to a known good
state. All these actions are done using injected JavaScript on
target pages prior to starting the gremlins.js library.

To cover a large set of pages from a web application, we
run gremlins. js for 12 hours for each of the test profiles. To
guarantee the reproducibility of our experiment, we choose a
fixed seed for each run that will generate the same sequence of
pseudo-random actions.

343 Crawling

Web spiders (also known as crawlers) are a type of bot that
follows the links of a web application and optionally submits
forms with predefined content. Each newly crawled page is
added to a database of the application that the crawler uses to
prevent repeated visits to the same pages. For our study, we use
BurpSuite Spider v2.0.14beta [2] to crawl our web applications.
As aresult, we augment the application coverage with code paths
that were not triggered, either through the followed tutorials or
through monkey testing.

3.4.4 Running vulnerability scanners

Vulnerability scanners are tools that try to detect security flaws
in web applications. We use BurpSuite Scanner v2.0.14beta [2]
based on the URLSs extracted by the spider to look for vulner-
abilities in headers, URLs and forms. Notably, the scanner tries
different injection mechanisms like SQL injection, XSS, PHP file
injection, and path traversal, to trigger errors and reach unwanted
states in the application. The vulnerability scanner goes beyond
what the crawler and the monkey cover by modifying headers
and URL parameters. By inspecting the resulting coverage,
we observe that each of these four methods result in exercising
server-side code that would not have been exercised through the
other methods. We quantify this relationship in Section 5.

3.5 Recording server-side code coverage

Regardless of the method that is used to interact with a web
application, in order to be able to successfully remove unused
code (i.e. debloat the web application), we must be able to

associate client-side requests with server-side code. To record
the files and lines of code that are triggered by user requests, we
make use of PHP profilers.

PHP profilers are available as PHP extensions that modify
the PHP engine to collect code-coverage information. There
exist a number of different profilers, such as, XDebug [23],
phpdbg [16], and xhprof [24] all of which require a similar
setup to record code coverage. For our framework, we decided
to use XDebug as it is the most mature profiler and is actively
maintained.

3.5.1 Adding coverage support in a web application

Connecting a web application to XDebug. To be able to
perform dynamic analysis and record lines of code that are
triggered by user requests, our framework must add calls to
specific XDebug functions in every PHP file of a web appli-
cation. Specifically, both xdebug_start_code_coverage()
and xdebug_get_code_coverage() functions are called to,
respectively, start and receive coverage information. If the “get”
function is never called, the coverage information is lost. In the
following paragraphs, we describe challenges related to obtaining
the code coverage from XDebug and how we overcame them.

The case of unrecorded lines. Boomsma and Gross reported
on the possibility of removing unused code in a custom
PHP application [34]. By performing dynamic analysis, they
observed which files were not used and removed them from
their application. The authors utilized their own profiler and took
advantage of the auto_append built-in function of PHP to add
the necessary log functions at the very end of all PHP files [1].
For our study, we initially attempted to use the same approach
and ran preliminary tests by appending XDebug function calls
at the end of our tested files. However, we discovered that the
coverage was incomplete and that some lines were not properly
recorded. Given that any PHP file can call the exit() or die()
function at any time to terminate the current script, our XDebug
calls which were located at the end of each file, were not always
executed thus leading to under-reported code coverage.

3.5.2 Main challenges for getting full coverage

Avoiding early exits. To overcome the coverage problems due
to calls to exit functions, we utilized a specific type of PHP
callback functions, called shutdown functions. When registered,
these functions are triggered after all the code on the page has
finished running or after either exit() or die() functions are called.
This way, we are able to obtain the desired coverage information
even if a PHP script used one of the aforementioned functions.
Interestingly, we also discovered that calls to exif() inside a
shutdown function prevent the execution of other shutdown
functions including the call to collect our own code-coverage
information. To correct this issue, we statically analyzed the

evaluated applications and automatically added calls to collect
code coverage before these exit calls (e.g. Line 7 in Listing 1).

Getting correct coverage information of shutdown functions.
Another challenge, in terms of recording correct code-coverage
information, is to properly record the executed lines of
code inside shutdown functions. As mentioned by the PHP
manual [12], shutdown functions are called in the order they
were registered. This means that if our own shutdown function
is registered first, it will also be triggered first, thereby missing
any calls to subsequent shutdown functions present in the same
PHP file. To get full coverage, we use the following approach:
our own shutdown function will perform a late registration of
a final shutdown function that will be added at the very end of
the execution queue. This way, we can be certain that the very
last shutdown function that will be executed in a script will be
our own, providing us with the desired coverage information.

Getting correct coverage information of destructors. The
final challenge that we faced was to properly record covered
lines for all class destructors. PHP uses garbage collection and
reference counting to remove objects from memory, whenever
they are no longer necessary. However, there is no real way to
anticipate when the garbage collector will effectively remove
objects during program execution. If objects are destroyed before
the shutdown functions are executed, our framework has no
issue recording them. However, if they are destroyed after, our
shutdown functions are incapable of registering the execution
of these destructors.

To handle this special case, we rewrote class destructors so
that they register themselves while they are executing. Every
time a destructor is called, we query the XDebug engine to check
whether code-coverage recording is currently in progress. This
way, we can determine whether the destructor is called before
or after shutdown functions. If the destructor is called after
shutdown functions, we dynamically decide to start recording
all executed lines within the destructor and save the coverage
information when it finishes executing.

Summary. As witnessed through the above use cases, collecting
the correct code coverage information for a web application is
significantly more complicated than one would initially expect.
Through the preprocessing of code, and the use of destructors
and shutdown functions, we solve the issues that were not even
mentioned in prior work and get a precise view of the code that
executes at the server side, as a result of user requests. Listing 1
provides an example of concrete modifications in a PHP file. On
line 7, we added a code-coverage call before an exit which
happens inside a shutdown functions to prevent information loss
due to early exits. On lines 14 and 17, we wrapped the destructor
with code-coverage calls.

1 | <?php

2 | register_shutdown_function("PMA_Response::resp");
3 | class PMA_Response {

4 public static function resp() {

5 $buffer ->flush();

6 // Prepend original call to exit:

7 collect_code_coverage ();

8 exit;

9 }

10 |3}

11

12 | class TCPDF {

13 public function __destruct() {

14 // 1If called after shutdown_functions
15 // start recording code coverage

16 .

17 // 1If called after shutdown_functions
18 // stop coverage

19 b

20 |}

21 | 7>

Listing 1: Code rewritten by the debloating framework to ensure
correct code coverage of corner cases.

4 Debloating web applications

In this section, we briefly describe the evaluated debloating
strategies and the steps we took to ensure that the debloated
applications remain functional.

4.1 Debloating strategies

By combining the simulated usage of a web application (achieved
through tutorials encoded in Selenium scripts, web crawlers,
monkey testing, and vulnerability scanning) with server-side
code profiling, we can identify the code that was executed as part
of handling web requests. Consequently, code whose execution
was not triggered by any client-side request can presumably be
removed since it is not necessary for any of the functionality that
is desired by users (as quantified by the utilized usage profiles).
In this work, we evaluate the following debloating strategies:

o File-level debloating: Given that the source code of web
applications spans tens or hundreds of different files, we can
completely remove a file, when none of the lines of code in that
file were executed during the stimulation of the web application.

e Function-level debloating: In function-level debloating,
not only can we remove entire files but we can also selectively
remove some of the functions contained in other files. This is
a more fine-grained approach which allows us to remove more
code, than the more conservative, file-level debloating strategy.
More fine-grained approaches are possible, such as, the re-
moval of specific code statements from retained functions which
were not exercised during stimulation. However, such changes
essentially modify the logic of a function (e.g. removing condi-
tional code blocks) thereby increasing the probability of breaking
the resulting program when a minute change of a client-side
request would lead the execution into these blocks of code.

4.2 Detecting the execution of removed code

We replace all removed functions and files with placeholders
which, if executed, have the following tasks:

o Exit the application: If a placeholder happens to be
triggered, the PHP application will start its shutdown procedures.
This way, the application does not enter an unexpected state that
was not planned by the debloating process.

o Record information about the missing function: In order
to better understand which missing placeholders were triggered
and how, our framework logs several pieces of information, such
as, the URL that triggered the execution of the removed code,
the name of the class and function of the removed code, and the
corresponding line numbers.

To ensure that the debloating process has preserved the
functionality of the debloated web application, we rerun all
the Selenium-mapped tutorials and monkey scripts after the
debloating stage. If our placeholder code for removed files and
functions executes during this stage, this means that this code
should not have been removed.

This feedback mechanism proved invaluable during the
development of our framework since it helped us identify
problems with our coverage logic which in turn revealed the
challenges that we described in Section 3.5.2.

5 Results

To assess the impact of debloating web applications, we analyze
our results from a number of different perspectives. First,
we show the contributions of different application-profiling
methods and then compute different metrics to understand the
effectiveness of debloating in terms of reducing the attack surface
of our tested applications. Next, we focus on CVEs to determine
whether debloating can actually remove critical vulnerabilities.
Then, we take a closer look at the bloat introduced by external
packages along with the security implications that come with
using this specific development practice. Finally, we look at
what has effectively been removed in debloated applications
and test a number of exploits against the original and debloated
versions of the evaluated web applications.

5.1 Tutorials vs. Monkey Testing vs.
Crawling vs. Vulnerability Scanning

As described in Section 3.4, to ensure that we exercise web
applications in an objective and repeatable way, we utilized
tutorials, monkey testing, crawlers, and vulnerability scanners.
Figure 2 shows the coverage, in terms of server-side files,
that each method obtained on the latest version of each web
application in our testbed. We can clearly see that all four
methods are required, with each method contributing differently
for different web applications. For example, tutorials trigger

Tutorials Monkey
M S M S
17 17 0 2
39 3
15 37 54 27
140 16 1 141
14 173 0 52 398 8
3 0 0 0
0 1 32 0
T 0 \ T 11 Vv
(a) phpMyAdmin 4.7.0 (b) MediaWiki 1.28.0

Spider Vulnerability Scanner
M s M s
95 279 0 110
33 16
237 212 7 55
237 233 4 7
1248 SHeE 7 1 - 21
376 13 5 0
182 51 28 4
T 6 v T 2 v
(¢c) Magento 2.0.5 (d) WordPress 4.7.1

Figure 2: Venn Diagrams showing covered files during the execution of Tutorials, Crawler, Monkey testing and Vulnerability scanner

more files in Magento compared to other applications, while
Spider covers most unique files in WordPress.

5.2 Debloating by the numbers

To evaluate the effectiveness of our two debloating strategies,
we computed different metrics that provide insights into what
has actually been removed during the debloating process.

5.2.1 Logical lines of code

The size of a program positively correlates with the number of
programming errors (i.e. bugs). According to McConnel [55],
the industry average, at least in 2004, was to have between 1
and 25 bugs for every one thousands lines of code. Given the
importance of the size of an application to its overall security, we
start by estimating the reduction of the attack surface by looking
at the Logical Lines Of Code (LLOC, sometimes also called
Effective Lines Of Code). LLOC is intended to measure lines
of code without comments, empty lines and syntactic structure
required by the programming language. LLOC reduction is a
robust and precise indicator of how much the volume of the code
was reduced. Figure 3 reports on the LLOC for all versions of
the applications we debloated.

Number of logical lines over time. Looking at the number of
LLOC of the original applications, we can observe two different
evolution behaviors. For WordPress, the amount of code is stable
and there is even a small decrease of 2% of LLOC between
versions 4.7 and 4.7.1. For the other applications, we observe
the opposite where the source code in the latest versions spikes,
compared to the ones released just before them: 82% LLOC
increase for phpMyAdmin, 99% for MediaWiki, and 171% for
Magento. By analyzing the code of these newer versions in
an attempt to understand their sudden expansion in size, we
discovered that these spikes can be attributed to a change in
development practices, namely the reliance on external packages.
As WordPress does not rely on external packages, it does not

I Original B File Debloating Function Debloating

700K

600K

500K

400K

300K

200K |

100K}

90K

80K

70K

60K

50K

40K

30K
S o o ° © & o © ~ A (9
< © 9~ o @ < < < ~ o o

< o S <~

Logical Lines of Code

4.0.0

o

4.23
7

< <

1.10.1 [—
1.21.1 [—
1.24.0 [—

phpMyAdmin MediaWiki WordPress Magento

Figure 3: Logical Lines of Code before and after debloating

exhibit this kind of behavior. We discuss the issue of relying on
external packages in more detail in Section 5.4.

File-level debloating. Overall, file-level debloating, the most
conservative of the two evaluated debloating strategies, is already
effective in reducing the number of LLOC with an average of
33.1% reduction. The minimum observed in our experiment is
9.2% for WordPress v.4.0 and a maximum of 64.5% for Magento
v.2.0.5. For Magento, this reduction represents a removal of 393K
lines of code. This number is a clear sign that large web applica-
tions encompass many different features that may not be used by
all users and therefore result in bloated applications with an unnec-
essarily large attack surface. At the same time, it is worthwhile
repeating that all debloating results presented in this section are
conditional to how web applications are used. Therefore, these
large levels of debloating cannot be guaranteed for all possible de-
ployments of web applications. We discuss this issue in Section 7.

Il Original B File Debloating

100%{

%!

%

%

% |

%
e 2 o e 2@ o o o ~ o o n
e ¥ 9 = g m ¥ & F F =~ @ o
E N R : <« 4 4 0N

Function Debloating

@
S
2

IS
S
=

Cyclomatic Complexity
N @
S 3
R N

a

23.0
24.0

—
N

19.1

-

1
1

phpMyAdmin MediaWiki WordPress

Magento

Figure 4: Evolution of cyclomatic complexity before and after
debloating

Function-level debloating. On average, function-level
debloating is able to remove 46.8% of lines of code. For both
Magento and MediaWiki, it can remove up to 7% more code
over file-level debloating. For phpMyAdmin and WordPress,
we observe an increase of debloating capability of up to 24%.
This larger reduction (compared to MediaWiki and Magento) is
mainly due to the differences in software development practices.

Compared to the other tested applications, phpMyAdmin
and WordPress are more monolithic with a smaller number
of large source-code files. Since file-level debloating only
removes files when none of their functions were executed, the
monolithic nature of these two applications resists this kind of
coarse-level debloating. Contrastingly, Magento and MediaWiki
are developed in a much more modular fashion (many small
files each responsible for a small number of well-defined tasks)
and therefore lend themselves better to file-level debloating. The
more fine-grained, function-level debloating bypasses this issue
and can therefore reduce the attack surface of a web application,
even for more monolithic web applications.

5.2.2 Cyclomatic complexity

Next, we look at the evolution of cyclomatic complexity (CC).
CC is defined as the number of linearly independent paths
through the code of an application [54]. A high CC for a single
class implies complicated code that is difficult to debug and
maintain [39] and therefore more prone to contain vulnerabilities
when compared to code with low CC [52,69].

Figure 4 reports on the evolution of the overall CC for each
tested version in our experiment. File-level debloating decreases
CC between 5.9% to 74.3% with an average of 32.5%. Function-
level debloating decreases the program complexity between
23.8% and 80.2% with an average of 50.3%. These statistics
demonstrate that debloating can remove complex instructions
and execution paths in addition to simple ones. Moreover, the
difference between file-level and function-level debloating shows
that code removal through function-level debloating is much
more suited to all kinds of web applications as shown earlier
through LLOC reduction achieved via function-level debloating.

Table 2: Number of CVEs removed after application debloating

L. Total Removed
Application Strategy Removed CVEs | Exploitable CVEs
hoMyAdmin File Debloating 420 | 20% 3/19 | 157 %
phpMy Function Debloating | 12/20 | 60% | 11719 | 578 %
U File Debloatin; 8/21 38 % 3/16 18.7 %
MediaWiki o Debliating 1021 | 47.6% | 5716 | 312 %
WordPress File Debloaling i 020 | 0% 020 | 0%
Function Debloating | 2/20 | 10 % 2120 | 10%
Magento File Debloating 18 12.5 % 18 12.5 %
Function Debloating | 3/8 37.5% | 3/8 37.5 %

5.3 Analysis of CVEs

In this section, we investigate the number of removed CVEs
after debloating along with the effects of debloating on different
vulnerability categories.

5.3.1 CVE reduction after debloating

One practical way to measure the security benefits of debloating
web applications is to study the effects of debloating on known
historical vulnerabilities. If vulnerabilities were part of the
core functionality of the program, the evaluated debloating
strategies will not be able to remove the code associated with
them. However, if some vulnerabilities reside in parts of a
web application that are not commonly used, the process of
debloating can effectively remove them.

Table 2 compares the effectiveness of debloating strategies by
listing the fractions of removed CVEs. We consider a vulnerabil-
ity to have been successfully removed if all the lines of code and
functions associated with that vulnerability were removed during
the stage of debloating. This is a conservative approach as one
modification performed on a single line could thwart a complete
attack. As such, the numbers we report in this section can be inter-
preted as lower bounds of the actual number of removed CVEs.

In terms of configuration, we selected the default one for
each application. However, certain vulnerabilities may not
be exploitable under this configuration. For example, there
exists 5 CVEs in our dataset for MediaWiki which require
file upload functionality to be enabled. Since this option is
disabled by default, we make an explicit distinction in the table.
“Total Removed CVEs” is the total number of CVEs removed
by debloating regardless of whether the vulnerable code is
enabled or disabled through a configuration option. “Removed
Exploitable CVEs” reports on the CVEs that are reachable under
default configurations of target web applications.

On average, we discovered that up to 38 % of vulnerabilities
are removed by file debloating whereas 10-60 % are removed
by function debloating. As shown in Table 2, function-level
debloating can triple (in the case of phpMyAdmin and Magento)
the number of removed CVEs, compared to file-level debloating.
This behavior can be generalized to web applications that do
not have CVE information and demonstrates that the reduction
of a web application’s LLOC (Section 5.2.1) and its cyclomatic
complexity (Section 5.2.2) translates to a reduction of concrete

Execute Code I
Bypass a restriction or similar -
SQL Injection
Denial Of Service N
CSRF
Obtain Information
Directory traversal Jll
Crypto-

File Inclusion | Removed after debloating
Cross Site Scripting - N True

SSRF - False

Number of vulnerabilities

Figure 5: Vulnerability Categories

vulnerabilities. Wordpress is a clear negative outlier with
only 10% CVE reduction, even through the more flexible
function-debloating strategy. As mentioned earlier, WordPress
is a relatively monolithic application and most of our mapped
CVE:s are located in core WordPress code (e.g., Authentication,
CSREF tokens, and post/comment-related actions) which cannot
be removed by our debloating framework.

5.3.2 Types of CVEs in analyzed web applications

Even though our results demonstrate the ability to remove vul-
nerabilities from web applications through the use of debloating,
one may wonder whether debloating is better suited for some
types of vulnerabilities over others. Figure 5 provides details
on the categories of the CVEs we removed through debloating.
One can observe that for certain classes of vulnerabilities,
such as, Denial-of-Service attacks and Information-Revealing
vulnerabilities, debloating can almost completely remove them.
For others, such as, restriction bypassing, command execution,
and SQL injection, debloating can substantially reduce them.
Our interpretation of these findings has to do with the maturity of
the evaluated web applications. Specifically, all four web applica-
tions have been available for a long period of time, allowing many
shallow vulnerabilities to have already been discovered and cor-
rected. The remaining vulnerabilities are likely to be situated in
parts of a web application that are less commonly exercised. For
example, the code-execution vulnerabilities that can be removed
for phpMyAdmin are inside very specific features, such as, the
ability to export PHP arrays (CVE-2016-6609), the support of the
ZIP extension while importing data (CVE-2016-6633), and the
abilities to copy table definitions (CVE-2013-3238) and perform
Regex search and replace over table columns (CVE-2016-5734).
Contrastingly, the three cryptography-related vulnerabilities
we analyzed are still present in the debloated versions of web
applications. One of the CVEs related to this category is about
a flaw in the cookie encryption algorithm in phpMyAdmin
(CVE-2016-6606). Since every page interacts with user cookies
to, at the very least, verify them, vulnerable code cannot be
removed. Another vulnerability in this category relates to
an insecure random number generator used in cryptographic

operations by Magento (CVE-2016-6485). This vulnerability
exists in a constructor of the main encryption classes which
is widely used throughout the application. When considered
together, these findings suggest that cryptography-related
vulnerabilities are a core part of web applications and thus
unlikely to be removed through the process of debloating.

5.4 External packages
54.1 Quantifying the bloat from external packages

In our testbed, phpMyAdmin v.4.7.0, MediaWiki v.1.28.0 and
Magento v.2.0.5 rely on external dependencies that can be down-
loaded via Composer (WordPress does not rely on external pack-
ages). As described in Section 2, Composer is a package manager
for PHP (similar to the NPM manager for NodeJS applications)
which allows web applications to specify which external pack-
ages they rely on and have these packages be tracked and updated.

As we briefly discussed in Section 5.2.1, the number of
LLOC of these three specific versions dramatically increases
(compared to prior versions) because of this dependency on
external packages. Table 3 provides statistics on the number of
packages pulled by these applications and how much bloat they
provide against our usage profiles.

First, one can observe that external packages introduce a large
amount of unused code. For all three debloated applications,
more than 84% of their code was removed from them. This
means that the attack surface is unnecessarily large through the
dependency on external packages. The number of removed lines
from external packages for Magento is particularly noteworthy
with more than 178,000 lines of code removed. Moreover, the
number of packages that can be completely removed is also quite
large: 84% for phpMyAdmin, 60% for MediaWiki and 81% for
Magento. This confirms that most packages are unnecessary for
the usage profiles that we recorded. Finally, focusing exclusively
on the lines of code, phpMyAdmin is the only application where
external packages have more lines than the main application.
However, after debloating, this relationship is reversed with the
codebase of phpMyAdmin being three times the size of the
introduced external packages.

Despite the advantages of using package managers (e.g. the
ability to track dependencies and update vulnerable libraries
without the need to update the main application), our findings
show that these advantages come at a considerable cost in
terms of unnecessarily expanding the attack surface of a web
application with code that is seldomly executed. As such,
developers must take special care to include the bare minimum
of external packages, knowing the unwanted side-effects that
each external package brings.

54.2 Removing POI gadgets

What are POI gadgets? Property Oriented Programing (POP)
is an exploitation technique in PHP which works similarly to
Return Oriented Programming (ROP) [67] and is used to exploit

Table 3: Statistics on the external packages included in web applications and the effects of debloating in terms of reducing their LLOC.

Before debloating After function-level debloating
s # lines in main | # lines in # lines in main # lines in # packages #p ac{cages where a given %
Application . # packages L lines were removed
application packages application packages completely ~70% and
removed | >70% ~30% <30%
phpMyAdmin 4.7.0 35,739 82,604 45 26,377 (-26.2%) | 9,653 (-88.3%) | 38 (84.4%) 2 1 4
MediaWiki 1.28.0 133,019 50,898 40 54,827 (-58.8%) | 6,285 (-87.7%) | 24 (60.0%) 2 2 12
Magento 2.0.5 396,448 212,906 71 181,696 (-54.2%) | 34,038 (-84.0%) | 58 (81.7%) 6 5 2

PHP Object Injection (POI) vulnerabilities [11]. In this technique,
the attacker creates exploit gadgets from available code in the
applications. By chaining multiple gadgets within the application,
an attacker can usually run arbitrary code, write to arbitrary files,
or interact with a database. Dahse et al. have studied the auto-
matic generation of such gadget chains for PHP applications [38].

PHP unsafe deserialization. The PHP language gives devel-
opers the ability to serialize arbitrary objects in order to store
them as text, or transfer them over the network. Deserialization
reverses this process, generating PHP objects from serialized
data. This mechanism can be abused by an attacker to load
specific classes in the application and build a gadget chain.
Practical examples of this vulnerability are when unserialize
is called on a database field or value of a field within a cookie
that can be manipulated by the users.

Historically, this attack was very difficult to successfully ex-
ecute. Attackers could only build gadgets with the classes that
were present in the context of the vulnerable file. They needed
insights into how the application was built in order to know which
classes could be abused for gadgets. However, starting from PHP
5,the __autoload() magic function [10] was introduced and un-
intentionally made exploitation of deserialization vulnerabilities
easier. This new loading feature was beneficial for PHP develop-
ers who did not have to manually include all the files they wanted
to use at the very top of each of their PHP files. It also helped the
adoption of package managers like Composer, as any external
dependency could be easily called from anywhere in the applica-
tion. The downside of this new function was that it also allowed
attackers to instantiate any PHP class across the entire application
thereby enabling the easier construction of gadget chains.

In order to build a chain, attackers use these so-called “magic’
functions [13] that form the basis of their gadget chain. One of
the functions that is widely used in POI exploits is the destruct
function. In Section 3.5, we detailed the challenges in getting
complete coverage of destructors in our tested applications.
Accurate coverage of destructors also allows us to precisely
analyze the impact of debloating on gadget creation.

i

Can debloating remove gadgets from external packages?
Given the increased footprint of web applications due to their
reliance on package managers and external dependencies, one
may wonder about the possibility of abuse of these packages for

Table 4: List of packages with known POP gadget chains

Removed by
Application Package Debloating
File | Function

. Doctrine v v
phpMyAdmin 4.7.0 Guzale 7 v
MediaWiki 1.28.0 Monolog v v
Doctrine v v
Magento 2.0.5 Monolog X v
Zendframework | % v

the creation of gadgets. To measure the effect of debloating on
Property-Oriented-Programming (POP) gadgets, we utilized the
PHPGGC [17] library. PHPGGC (which stands for PHP Generic
Gadget Chains) contains a list of known gadgets in popular PHP
packages such as Doctrine, Symfony, Laravel, Yii and Zend-
Framework. When a vulnerable PHP application includes any of
the packages listed in PHPGGC, the attackers can generate gadget
chains to achieve RCE, arbitrary file writes, and SQL injections.

We analyzed the available gadget chains in PHPGGC and
checked whether any of our tested PHP applications included
these chains. Table 4 summarizes the presence of each gadget
and whether debloating removes them or not. WordPress is
not included in this table because it does not rely on external
packages. This does not make WordPress immune to POI
attacks, but universally known gadget chains in popular external
packages can not be used to exploit WordPress. For the affected
applications, file-level debloating removes 4/6 gadgets while
function debloating removes 6/6 available gadget chains. This
again demonstrates the power of debloating which can not
only remove some fraction of vulnerabilities but also make
the exploitation of the remaining ones harder by removing the
gadgets that attackers could abuse during a POI attack.

5.4.3 Utilizing development packages in production

During our analysis of external packages, we identified yet
another source of bloat in new versions of web applications.
When declaring external dependencies through Composer, two
options are available: “require” and “require-dev”. The first
option indicates packages that are mandatory for the application
to run properly. The second lists packages that should only be
used in development environments, such as, packages providing

support for unit testing, performance analysis, and profiling. We
discovered that applications downloaded from official websites
often include these development packages. As such, when these
packages are used to deploy web applications in production
mode, they will contain unnecessary development libraries. This
does not only increase the attack surface by having unnecessary
code bloating the application, but can also lead to exploitation
for misconfigured applications.

CVE-2017-9841 presents one example of such a vulnera-
bility [25]. Specifically, this CVE refers to an RCE attack in
specific versions of the PHPUnit library, which is a popular unit
testing library for PHP. By default, Composer places all external
packages under “vendor” directory. If this specific directory
happens to be accessible through a misconfiguration of the
server, PHPUnit files are then accessible and can be exploited
to conduct an RCE attack.

The four web applications that we evaluated for this study,
present different behaviors with respect to development packages.
WordPress does not rely on external packages downloaded
through Composer. MediaWiki never included development
packages in its releases. phpMyAdmin had them in version 4.7.0
but stopped including them in version 4.8.3 (the latest at the time
of writing). Magento started including them from version 2.0
and still includes them today. We have reached out to Magento
and informed them about this issue.

5.5 Qualitative analysis of the removed code

In the previous sections, we analyzed the effects of debloating
on the source code of applications from a software-engineering
perspective (i.e. LLOC and Cyclomatic Complexity reduction)
as well as from a security standpoint (i.e. number of CVEs and
gadgets removed). At the same time, one may wonder what
exactly was removed from each application during the process
of debloating.

Given that thousands of files were removed, manually analyz-
ing each file does not scale. As such, we turn to NLP techniques
that allow us to cluster the removed files together and provide
us with hints about the nature of each cluster. Specifically, we
use the k-means clustering algorithm based on text vectors
extracted from removed file names and file paths. Each file path
includes directories that indicate which library or package, the
file belongs to. For most modern web applications, this allows
for a reasonable separation of files across different application
plugins and modules. To end up with meaningful clusters, we
tuned TFIDF vectorizer parameters along with the number of
k-means clusters. We used the TFIDF maximum frequency limit
to ignore common terms appearing in more than 50% of the files.
Depending on the size and modularity of the application, 10 to
20 clusters yielded the most instructive grouping of files.

Table 5 shows the categories of the three largest removed clus-
ters from each web application. Across all four applications, we
observe the removal of source code related to external packages
(e.g. Symfony for phpMyAdmin, Elastica for MediaWiki, and

Table 5: Features and external packages with the most removed
files after file debloating (removed features are marked in italic).
Entries marked with x are packages that are indirectly pulled by other
“require-dev” packages (not used by core application) for the purpose
of test coverage reporting and coding standard enforcement.

Applications Features/Packages with most files removed

1) Guzzle [8]: “Generating API HTTP response” *
phpMyAdmin 4.7.0 | 2) Symfony [20]: “Parsing configuration files” *

3) PHP_CodeSniffer [15]: “Enforcing coding standards” *
1) Messages & Languages

2) Less.php [9]: “Generating CSS code”

3) Elastica [5]: “Elastic search interface used by
extensions”

1) Twentyfourteen theme [21]

2) Twentytwelve theme [22]

3-4) Also theme related

5) Multi-site administration

1) Zendframework]1 [14]: “Generating web pages and
database operations”

2) Sales, Orders & Credit Memo

3) Internal framework filters & Views

MediaWiki 1.28.0

WordPress 4.7.1

Magento 2.0.5

Zendframework1 for Magento), followed by localization/theme
files (e.g. twentyfourteen theme for WordPress), and unused
database drivers. We provide more application-specific details
of removed features in the next paragraphs.

phpMyAdmin’s removed features include the uploading of
plugins, GIS visualizations, and unused file formats used in
import/export (such as, Dia, EPS, PDF, SVG, and ZIP). In
addition, debloating removed unused plugins and external
packages which make up the top 3 features removed from this
web application as shown in Table 5. phpMyAdmin version
4.6.0 and 4.7.0 include unit tests which are also removed by our
system. The LLOC for the removed test files is less than 2%
of the whole code base of the application.

MediaWiki provides an API to interact with the wiki which is
separate from the regular web interface that users interact with.
Most actions within this API, including queries, file upload, and
non-default output formats for this API were removed. Top cat-
egories of removed files consist of localization of messages and
language files in addition to external dependencies (Lines 2 and
3) as listed in Table 5. The debloating process also removes file-
upload modules which are disabled, by default, in MediaWiki. It
is important to note that even if a module is “disabled,” the code
still resides on the server and could be abused by specific types
of attacks. For example, in a recent attack against a WordPress
plugin, the vulnerability could be exploited even if that plugin
was disabled [32]. Debloating removes the source code of
disabled and unused features and therefore does not suffer from
this type of attack. Finally, the process of debloating, removed
unused extensions of Mediawiki (e.g. citation, input box, pdf
handler, poem and syntax highlighting). Mediawiki 1.19.1 and
1.28.0 include unit tests, and they measure less than 1.5% of
LLOC in the whole code base of their respective versions.

WordPress takes a slightly different approach where the core
functionality is concentrated in a relatively small number

Table 6: Verifying exploitability of vulnerabilities by testing exploits
against original & debloated web applications

Exploit Successful?
CVE Target Software On{(;n 2T T Debloated
CVE-2013-3238 | phpMyAdmin 4.0.0 v v
CVE-2016-5734 | phpMyAdmin 4.4.0 v b
CVE-2014-1610 | MediaWiki 1.21.1 v v
CVE-2017-0362 | MediaWiki 1.28.0 v %
CVE-2018-20714 | WordPress 3.9 v v
CVE-2015-5731 WordPress 4.2.3 v v
CVE-2016-4010 | Magento 2.0.5 v %
CVE-2018-5301 Magento 2.0.5 v %

of large PHP files. The removed features of WordPress
include installation files, unused modules (FTP, multi-site, user
registration), disabled themes and update files (note that we
could not exercise update files during our tests because this
would change the version of the evaluated web application and
create inconsistencies in our analysis of removed CVEs). In
terms of testing, the installation files that we obtained from the
WordPress website do not contain any unit tests.

Magento consists of both external packages and internal
modules. We observed that various internal modules were
removed, including an XML API for mobile, wishlists, ratings,
and specific payment modules (such as, Paypal). Since many
packages and internal modules include the terms “sales,” ““orders,”
and “tax,” these individual files across multiple modules were
clustered into the same category by k-means. Finally, Magento
1.9.0 does not include unit tests while the test files included in
Magento 2.0.5 and its external packages measure up to 15% of
its code base. For Magento 2.0.5, Zendframework1 which is an
external dependency has most of its files removed by debloating.

5.6 Testing debloated web applications against
real exploits

To ensure the correct mapping of CVEs to source code and the
ability of debloating to stop real attacks, we collected 4 exploits
available in the Metasploit framework and augmented them with
4 POCs that we developed based on public bug-tracker records
and vulnerability details. After verifying that we can successfully
exploit the original versions of the evaluated web applications,
we tested the same exploits on the debloated versions. Half of
the previously successful exploits failed because the vulnerable
code was removed during the process of debloating. Table 6 lists
the tested exploits against original and debloated applications.

As before, this demonstrates that while debloating is not
a panacea against all possible issues, it can substantially
improve the security of web applications. Finally, we present
a demonstration of CVE-2016-4010 on Magento 2.0.5 in the
following video: https://vimeo.com/328225679.

Table 7: Measurements of the execution time, the CPU and memory
consumption for the tested web applications with XDebug and Code
Coverage (CC) and without XDebug. The reported values for the CPU
and memory correspond to the average for each application.

Application Execution (s) | CPU (%) | Memory (%)
Magento Without XDebug 317 21.7 10.7
2.0.5 With CC 584 (x1.85) | 56.9 (x2.62) | 11.82 (x1.10)
MediaWiki Without XDebug 36 30.7 52
1.2.8 With CC 121 (x3.38) | 79.3 (x2.58) 6.9 (x1.31)
phpMyAdmin | Without XDebug 102 3.7 5.7
4.7.0 With CC 116 (x1.14) | 31.5(x8.47) 5.6 (x0.97)
‘WordPress Without XDebug 68 8.2 8.2
4.7.1 With CC 170 (x2.50) | 42.6 (x5.22) | 12.5(x1.53)
~ 175
£ 150 —— Without XDebug With CC
8125
£ 100 %
2 75 ﬁ IJ__I
c
S 50
)
S 22 == m.
Magento MediaWiki phpMyAdmin WordPress

Figure 6: Measurement of the CPU consumption for the tested web
applications. 100% corresponds to the use of a single CPU core.

6 Performance analysis

It is known that code-coverage tools impose a non-negligible
overhead on web applications [65]. In this section, we report
on the results of conducting all the Selenium tests with and
without XDebug (our chosen PHP profiler) while measuring
execution time, and recording server-side CPU usage and
memory consumption. Table 7 presents the overall results and
Figure 6 focuses on CPU consumption.

First, looking at the execution time, we can see that code
coverage has a varying impact on the tested web applications. On
one hand, phpMyAdmin is lightly affected with a 14% increase.
On the other hand, the time it takes to run all tests for MediaWiki
has tripled. For CPU consumption, the overhead is noticeable
and all applications at least double their use of resources when
code coverage is active. phpMyAdmin is exhibiting the biggest
performance hit with a reported average almost 9 times higher
than the one from the base application. Figure 6 shows that all
median values are higher for applications with XDebug and
most applications, at some point, require a second core with
values above 100%. Finally, in terms of memory consumption,
the server-side code profiler incurs a relatively modest increase
for most applications. The worst overhead is observed when
evaluating WordPress with an increase of 4.3% of the total
device memory (16GB), i.e., an additional 700MB of RAM.

Even though our results show that the overall overhead is
substantial, it is important to note that this overhead is not the
overhead of the debloated web applications. Debloated web appli-
cations do not require code-coverage statistics and will therefore
execute in the exact same environment as the original application
(i.e. without XDebug). Depending on how code-coverage infor-

mation is obtained, this overhead may or may not be an issue. For
example, if the coverage is calculated in an offline fashion where
traces of application usage are replayed against a testing system,
this overhead will have no impact on the real production systems.
To allow for the online computation of code coverage (using
real-time user traffic), we need more optimized code profilers.
For example, XDebug currently overloads 43 opcodes to obtain
line-level code-coverage information that is more fine-grained
than required by our debloating techniques and incurs an unnec-
essary performance overhead [64]. We leave the development
and evaluation of faster code profilers for future work.

7 Limitations and future work

In this study, we set out to precisely quantify the security benefits
of debloating, when applied to web applications. Through a
series of experiments, we demonstrated that debloating web
applications has a number of very concrete advantages. We
showed that debloating can, on average, decrease an application’s
code base by removing hundreds of thousands of lines of code,
reduce its cyclomatic complexity by 30-50% and remove code
associated with up to half of historical CVEs. Moreover, even
for vulnerabilities that could not be removed, debloating can
remove gadgets that makes their exploitation significantly harder.
Next, we discuss some of the inherent and technical limitations
of our approach and future direction.

Lack of available exploits: The number of exploits publicly
available compared to the total number of registered CVEs is low.
At the same time, the effort to study vulnerability reports, find
the relevant patch or bug report, and track the actual vulnerability
down to source code level takes a non-negligible amount of man-
ual labor. This lack of available exploits limits our ability to test
the exploitability of vulnerabilities before debloating since certain
vulnerabilities might only be exploitable under specific configura-
tions. For example the set of five file-upload-related vulnerabili-
ties in our MediaWiki dataset (marked as gray in Table 9) require
access to file upload functionality which is disabled by default. A
maintained set of automated, replayable exploits against popular
web applications similar to “BugBox” introduced by Nilson et
al. in 2013, could substantially help researchers at this step [57].
To address this issue, we mapped the CVEs to features within
those applications. This is done by studying the architecture of
target applications based on documentation within the code and
available on their websites. We marked a CVE as unexploitable if
the underlying feature is disabled by default, and online tutorials
in our dataset do not require users to enable that functionality.
This limitation only applies to reported numbers on removed
CVEs and does not affect our results on POI gadgets since their
mere existence is enough for them to be used in gadget chains.
Our approach results in lower bounds for CVE removal since
disabling modules through application configuration does not
guarantee removal of all code paths that trigger those modules.
Taking CVE-2019-6703 as an example, a vulnerability was

discovered in the WordPress ““Total Donations™ plugin [32] and
disabling this plugin did not prevent attackers from invoking the
vulnerable end point and running their exploits.

Dynamic code coverage: Given our reliance on dynamic
code-coverage techniques, it is clear that the success of
debloating a web application is tightly related to its usage
profile. Even though we constructed profiles in a way that is
reproducible and unbiased (i.e. by relying on external popular
tutorials, monkey testing, crawlers, and vulnerability scanners),
we cannot claim that real web users would not trigger code
that was removed during the stage of debloating, while they are
interacting with a debloated web application.

More specifically, our modeled usage profiles do not cover
all possible benign states of target web applications as we
assume that users do not use all available features. Our intuition
behind debloating proves to be successful to a large degree
since removing unnecessary features brings clear security
improvements. At the same time, our current usage model may
not cover deep error states (e.g. logical errors in multi-stage
form submissions, or the invalid structure of uploaded files). As
such, we intend to follow-up this work with crowd sourcing and
user studies to understand how administrators, developers, and
regular users utilize the evaluated web applications and whether
their usage profiles would allow for similar levels of debloating.

Due to nature of our approach, we can not take advantage
of standard static-analysis techniques, since we aim to remove
the features that are not useful for a given set of users, not those
that are not reachable by other code. Using static analysis would
greatly overestimate the code that needs to be maintained through
the process of debloating and the resulting web application
would contain code (and therefore vulnerabilities) that is not
useful to all users. Going forward, we envision a hybrid approach
where dynamic analysis is used as a first step to identify the
core features that are useful for a specific set of users. These
features can then be used as a starting point for a follow-up static
analysis phase to ensure that all code related to these features
is maintained when debloating a web application.

Handling requests to removed code: A separate issue is that
of handling requests to removed code. Our current prototype
utilizes assertions to log these requests so that we can investigate
why the corresponding server-side code was not captured by
our coverage profiler. When real users utilize debloated web
applications, one must decide how these failures (i.e. client-side
requests requiring server-side code that was removed) will be
handled. Assuming that cleanly exiting the application and
showing an error to the user is not sufficient, we need methods
to authenticate the user’s request, determine whether the request
is a benign one (and not a malicious request that aims to exploit
the debloated web application) and potentially re-introduce the
removed code. The client/server architecture of web applications
lends itself well to this model since the web server can decide
to re-introduce debloated code and handle the user’s request,
without any knowledge of this happening from the side of

the user. All of this, however, requires server-side systems to
introduce the code at the right time and for the appropriate users.
We leave the design of such systems for future work.

Metrics to measure debloating effectiveness: In this paper,
we use Cyclomatic Complexity (CC), Logical Lines of Code
(LLOC), reduction in historical CVEs, and POP gadget reduction
as four metrics to measure the effects of debloating on different
web applications. However, not every line of code contributes
equally to a program’s attack surface. For example, 15% of
removed files from Magento 2.0.5 are test files for external
packages and the core of the application. Such code may not
be directly exploitable or used in a POP chain unless there is
a misconfiguration (e.g., autoloading including these files, or the
directories being publicly accessible). As such, the resulted reduc-
tion in source code metrics (CC and LLOC) may also reflect the
code that does not contribute to the attack surface. Contrastingly,
the reduction of exploitable CVEs draws a more realistic picture
of real world attacks. The drawback of this metric is its unavail-
ability for proprietary software and the manual effort required
to map CVEs to source code and verify their exploitability.

Debloating effectiveness: Through our debloating experiments
we discovered that, in terms of debloating, not all applications
are “equal”” Modular web applications debloat significantly
better than monolithic ones (such as Wordpress). We hope that
our findings will inspire different debloating strategies that lend
themselves better to monolithic web applications which resist
our current function-level and file-level debloating strategies.

8 Related work

Over the years, different approaches that target very different
parts of the software stack have been studied in the context of
software debloating.

8.1 Debloating for the web

Despite the importance of the web platform, there has been very
little work that attempts to apply debloating to it. Snyder et
al. investigated the costs and benefits of giving websites access
to all available browser features through JavaScript [70]. The
authors evaluated the use of different JavaScript APIs in the wild
and proposed the use of a client-side extension which controls
which APIs any given website would get access to, depending
on that website’s level of trust. Schwarz et al. similarly utilize
a browser extension to limit the attack surface of Chrome and
show that they are able to protect users against microarchitectural
and side-channel attacks [66]. These studies are orthogonal to
our work since they both focus on the client-side of the web
platform, whereas we focus on the server-side web applications.

Boomsma et al. performed dynamic profiling of a custom web
application (a PHP application from an industry partner) [34].
The authors measured the time it takes for their dynamic profile
system to get complete coverage and the percentage of files that

they could remove. Since the application was a custom one, the
authors were not able to report specifics in terms of the reduction
of the programs attack surface, as that relates to CVEs. Con-
trastingly, by focusing on popular web applications, and utilizing
function-level as well as file-level debloating, we were able to pre-
cisely quantify the reduction of vulnerabilities, both in terms of
known CVEs as well as gadgets for PHP object-injection attacks.

8.2 Debloating in other platforms

Regehr et al. developed C-Reduce which is a tool that works
at the source code level [63]. It performs reduction of C/C++
files by applying very specific program transformation rules.
Sun et al. designed a framework called Perses that utilizes the
grammar of any programming language to guide reduction [71].
Its advantage is that it does not generate syntactically invalid
variants during reduction so that the whole process is made faster.

Heo et al. worked on Chisel whose distinguishing feature is
that it performs fine-grained debloating by removing code even
on the functions that are executed, using reinforcement learning
to identify the best reduced program [42].

All three aforementioned approaches are founded on Delta
debugging [76]. They reduce the size of an application
progressively and verify at each step if the created variant still
satisfies the desired properties.

Sharif et al. proposed Trimmer, a system that goes further
than simple static analysis [68]. It propagates the constants that
are defined in program arguments and configuration files so that
it can remove code that is not used in that particular execution
context. However, their system is not particularly well suited
for web applications where we remove complete features. Our
framework goes beyond this contextual analysis by mapping
what is actually executed by the application.

Other works include research that revolves mainly around
static analysis to remove dead code. Jiang et al. looked at
reducing the bloat of Java applications with a tool called
JRed [45]. Jiang et al. also designed RedDroid to reduce the
size of Android applications with program transformations [44].
Quach et al. adopted a different approach by bringing dead-code
elimination benefits of static linking to dynamic linking [61].

Rastogi et al. looked at debloating a container by partitioning
it into smaller and more secure ones [62]. They perform dynamic
analysis on system-call logs to determine which components and
executables are used in a container, in order to keep them. Koo et
al. proposed configuration-driven debloating [50]. Their system
removes unused libraries loaded by applications under a specific
configuration. They test their system on Nginx, VSFTPD, and
OpenSSH and show a reduction of 78% of code from Nginx
libraries is possible based on specific configurations.

9 Conclusion

In this paper, we analyzed the impact of removing unnecessary
code in modern web applications through a process called

software debloating. We presented the pipeline details of the
end-to-end, modular debloating framework that we designed
and implemented, allowing us to record how a PHP application
is used and what server-side code is triggered as a result of
client-side requests. After retrieving code-coverage information,
our debloating framework removes unused parts of an application
using file-level and function-level debloating.

By evaluating our framework on four popular PHP applica-
tions (phpMyAdmin, MediaWiki, Magento, and WordPress) we
witnessed the clear security benefits of debloating web applica-
tions. We observed a significant LLOC decrease ranging between
9% to 64% for file-level debloating and up to an additional 24%
with function-level debloating. Next, we showed that external
packages are one of the primary source of bloat as our debloating
framework was able to remove more than 84% of unused code in
versions that used Composer, PHP’s most popular package man-
ager. By quantifying the removal of code associated with critical
CVEs, we observed a reduction of up to 60% of high-impact, his-
torical vulnerabilities. Finally, we showed that the process of de-
bloating also removes instructions and classes that are the primary
sources for attackers to build gadgets and perform POI attacks.

Our results demonstrate that debloating web applications
provides tangible security benefits and therefore should be
seriously considered as a practical way of reducing the attack
surface of web-applications deployments.

Acknowledgements: We thank our shepherd Giancarlo Pelle-
grino and the anonymous reviewers for their helpful feedback.
This work was supported by the Office of Naval Research
(ONR) under grants N00014-16-1-2264 and N00014-17-1-2541,
as well as by the National Science Foundation (NSF) under
grants CNS-1813974 and CMMI-1842020.

10 Availability

The main purpose of our work is to quantify the security benefits
of debloating web applications, allowing the community to
have informed discussions about the advantages of debloating,
without the need of vague references to attack-surface reduction.
To ensure the repeatability of our findings and to motivate more
research in this area, all developed code and data artifacts are
publicly available at: https://debloating.com.

References
[1] Automatically append or prepend files in a PHP script. https://www.php.
net/manual/en/ini.core.php#ini.auto-append-file.
[2] Burp Suite web vulnerability scanner. https://portswigger.net/burp.

[3] Cross-Site Request Forgery (CSRF) - OWASP. https://www.owasp.org/
index.php/Cross-Site_Request_Forgery_(CSRF).

[4] Cross-site Scripting (XSS) - OWASP. https://www.owasp.org/index.
php/Cross-site_Scripting_(XSS).

[5] Elastica: Elasticsearch client. https://github.com/ruflin/Elastica.
[6] Greasemonkey. https://www.greasespot.net/.
[7] gremlins.js. https://github.com/marmelab/gremlins. js.

(8]
91
(101

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

(191

[20]
[21]

[22]

(23]
[24]

[25]

[26]

[27]

(28]

[29]
[30]
(31]

[32]

[33]

[34]

[35]

Guzzle: PHP HTTP client. https://github.com/guzzle/guzzle.
less.js ported to PHP. https://github.com/oyejorge/less.php.

PHP autoload built-in function. http://php.net/manual/en/language.
oop5. autoload. php.

PHP Object Injection Vulnerability. https://www.owasp.org/index.
php/PHP_Object_Injection.

PHP: register_shutdown_function - Manual. https://secure.php.net/
manual/function.register-shutdown-function.php.

PHP wakeup built-in function. http://php.net/manual/en/language.
oop5.magic.php#object.wakeup.

PHP Zend Framework 1. https://github.com/zendframework/zf1.

PHP_CodeSniffer is a PHP package that tokenizes PHP, JavaScript and
CSS files and detects violations of a defined set of coding standards. https:
//github.com/squizlabs/PHP_CodeSniffer.

phpdbg PHP Debugger. https://github.com/krakjoe/phpdbg.

PHPGGC: PHP Generic Gadget Chains.
ambionics/phpggc.

https://github.com/

Remote Code Execution Vulnerability — Netsparker. https:
//www.netsparker.com/blog/web-security/remote-code-

evaluation-execution/.

SQL Injection: OWASP. https://www.owasp.org/index.php/SQL-
Injection.

Symfony PHP framework. https://github.com/symfony/symfony.

‘WordPress Twenty Fourteen theme. https://wordpress.org/themes/
twentyfourteen/.

WordPress Twenty Twelve theme. https://wordpress.org/themes/
twentytwelve/.

XDebug Debugger and Profiler Tool for PHP. https://xdebug.org/.

xhprof function-level hierarchical profiler for PHP. https://github.com/
phacility/xhprof.

NVD - CVE-2017-9841 (PHPUnit vulnerability). https://nvd.nist.
gov/vuln/detail/CVE-2017-9841, 2017.

Drupal Core - 3rd-party libraries -SA-CORE-2018-005 — Drupal.org.
https://www.drupal.org/SA-CORE-2018-005, 2018.

[HttpFoundation] Remove support for legacy and risky HTTP headers
- Symfony framework on GitHub. https://github.com/symfony/
symfony/commit/e447e8b92148ddb3d1956b96638600ec95e08f6b#
diff-9d63a61ac1b3720a090df6b1015822f2R1694, 2018.

NVD - CVE-2018-14773 (Symfony vulnerability). https://nvd.nist.
gov/vuln/detail/CVE-2018-14773, 2018.

Packagist statistics. https://packagist.org/statistics, 2018.
PyPI Stats. https://pypistats.org/packages/__all__, 2018.

Security Advisory: URL Rewrite vulnerability (Zend Framework). https:
//framework.zend.com/security/advisory/ZF2018-01, 2018.

WordPress sites under attack via zero-day in abandoned plugin —
ZDNet. https://www.zdnet.com/article/wordpress-sites-under-
attack-via-zero-day-in-abandoned-plugin/, 2019.

BARTH, A., JACKSON, C., AND MITCHELL, J. C. Robust Defenses for
Cross-site Request Forgery. In Proceedings of the 15th ACM Conference
on Computer and Communications Security (NY, USA, 2008), CCS, ACM.

BooMSMA, H., HOSTNET, B. V., AND GROSS, H. Dead code elimination
for web systems written in PHP: Lessons learned from an industry case.
In 2012 28th IEEE International Conference on Software Maintenance
(ICSM) (Sept 2012).

BRUMLEY, D., AND BONEH, D. Remote Timing Attacks Are Practical.
In Proceedings of the 12th Conference on USENIX Security Symposium -
Volume 12 (Berkeley, CA, USA, 2003), SSYM’03, USENIX Association.

[36]

[37]
[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

CVE Details: The ultimate security vulnerability datasource. https://
www.cvedetails. com/.

NIST: National Vulnerability Database. https://nvd.nist.gov/.

DAHSE, J., KREIN, N., AND HOLZ, T. Code Reuse Attacks in PHP:
Automated POP Chain Generation. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security (New
York, NY, USA, 2014), CCS ’14, ACM.

GILL, G. K., AND KEMERER, C. F. Cyclomatic complexity density
and software maintenance productivity. IEEE transactions on software
engineering 17,12 (1991).

GOETHEM, T. V., JOOSEN, W., AND NIKIFORAKIS, N. The Clock is
Still Ticking: Timing Attacks in the Modern Web. In Proceedings of the
22nd ACM Conference on Computer and Communications Security (CCS)
(2015).

HALFOND, W. G., VIEGAS, J., ORSO, A, ET AL. A classification of
SQL-injection attacks and countermeasures. In Proceedings of the IEEE
International Symposium on Secure Software Engineering (2006), IEEE.

HEoO, K., LEE, W., PASHAKHANLOO, P., AND NAIK, M. Effective Pro-
gram Debloating via Reinforcement Learning. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security
(2018), ACM.

HONG, G., YANG, Z., YANG, S., ZHANG, L., NAN, Y., ZHANG, Z.,
YANG, M., ZHANG, Y., QIAN, Z., AND DUAN, H. How You Get Shot in
the Back: A Systematical Study About Cryptojacking in the Real World.
In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security (2018), CCS ’18.

JIANG, Y., BAO, Q., WANG, S., LIu, X., AND WU, D. RedDroid:
Android Application Redundancy Customization Based on Static Analysis.
In Proceedings of the 29th IEEE International Symposium on Software
Reliability Engineering (ISSREIS8) (2018).

JIANG, Y., WU, D., AND LIU, P. JRed: Program Customization and
Bloatware Mitigation Based on Static Analysis. In 2016 IEEE 40th Annual
Computer Software and Applications Conference (COMPSAC), vol. 1.

JOVANOVIC, N., KIRDA, E., AND KRUEGEL, C. Preventing cross site
request forgery attacks. In Securecomm and Workshops (2006), IEEE.

KIRDA, E., KRUEGEL, C., VIGNA, G., AND JOVANOVIC, N. Noxes:
A Client-side Solution for Mitigating Cross-site Scripting Attacks. In
Proceedings of the 2006 ACM Symposium on Applied Computing (New
York, NYY, USA, 2006), SAC 06, ACM.

KOEHLER, W. A longitudinal study of Web pages continued: a considera-
tion of document persistence. Information Research 9,2 (2004).

KoNoTH, R. K., VINETI, E., MOONSAMY, V., LINDORFER, M.,
KRUEGEL, C., Bos, H., AND VIGNA, G. MineSweeper: An In-depth
Look into Drive-by Cryptocurrency Mining and Its Defense. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications
Security (2018), CCS *18.

Koo, H., GHAVAMNIA, S., AND POLYCHRONAKIS, M. Configuration-
driven software debloating. In Proceedings of the 12th European Workshop
on Systems Security (New York, NY, USA, 2019), EuroSec "19, ACM.

KURMUS, A., SORNIOTTI, A., AND KAPITZA, R. Attack surface reduc-
tion for commodity os kernels: Trimmed garden plants may attract less
bugs. In Proceedings of the Fourth European Workshop on System Security
(2011), EUROSEC "11.

KURMUS, A., TARTLER, R., DORNEANU, D., HEINLOTH, B., ROTH-
BERG, V., RUPRECHT, A., SCHRODER-PREIKSCHAT, W., LOHMANN,
D., AND KAPITZA, R. Attack Surface Metrics and Automated Compile-
Time OS Kernel Tailoring. In Proceedings of Network and Distributed
Systems Security (NDSS) (2013).

MADHAVAPEDDY, A., AND SCOTT, D. J. Unikernels: Rise of the virtual
library operating system. Queue 11, 11 (2013).

MCCABE, T. J. A complexity measure. IEEE Transactions on software
Engineering, 4 (1976).

[55]
[56]

[57]

[58]
[59]

[60]
[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

(701

(71

(721

[73]

[74]

[75]

[76]

MCCONNELL, S. Code complete. Pearson Education, 2004.

MISHRA, S., AND POLYCHRONAKIS, M. Shredder: Breaking Exploits
through API Specialization. In Proceedings of the Annual Computer
Security Applications Conference (ACSAC) (2018).

NILSON, G., WILLS, K., STUCKMAN, J., AND PURTILO, J. Bugbox: A
vulnerability corpus for PHP web applications. In Presented as part of the
6th Workshop on Cyber Security Experimentation and Test (Washington,
D.C., 2013), USENIX.

Magento: eCommerce Platform. https://magento.com/.

MediaWiki: Free and Open Source Software Wiki .
mediawiki.org/wiki/MediaWiki.

https://www.

phpMyAdmin: MySQL web administration. https://phpmyadmin.net/.

QUACH, A., PRAKASH, A., AND YAN, L. K. Debloating Software
through Piece-Wise Compilation and Loading. Proceedings of USENIX
Security (2018).

RASTOGI, V., DAVIDSON, D., DE CARLI L., JHA, S., AND MCDANIEL,
P. Cimplifier: Automatically Debloating Containers. In Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineering (New
York, NY, USA, 2017), ESEC/FSE 2017, ACM.

REGEHR, J., CHEN, Y., Cu0Q, P., EIDE, E., ELLISON, C., AND YANG,
X. Test-case Reduction for C Compiler Bugs. In Proceedings of the
33rd ACM SIGPLAN Conference on Programming Language Design and
Implementation (New York, NY, USA, 2012), PLDI *12, ACM.

RETHANS, D. Code Coverage: The Present. https://derickrethans.
nl/code-coverage.html.

RETHANS, D. Xdebug’s Code Coverage speedup. https://

derickrethans.nl/xdebug-codecoverage-speedup.html.

SCHWARZ, M., LIPP, M., AND GRUSS, D. JavaScript Zero: Real
JavaScript and Zero Side-Channel Attacks. Ndss, February (2018).

SHACHAM, H. The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86). In Proceedings of the 14th ACM
Conference on Computer and Communications Security (2007), ACM.

SHARIF, H., ABUBAKAR, M., GEHANI, A., AND ZAFFAR, F. TRIM-
MER: Application Specialization for Code Debloating. In Proceedings
of the 33rd ACM/IEEE International Conference on Automated Software
Engineering (NY, USA, 2018), ASE 2018, ACM.

SHIN, Y., AND WILLIAMS, L. An empirical model to predict security
vulnerabilities using code complexity metrics. In Proceedings of the Second
ACM-IEEE international symposium on Empirical software engineering
and measurement (2008), ACM.

SNYDER, P., TAYLOR, C., AND KANICH, C. Most Websites Don’T
Need to Vibrate: A Cost-Benefit Approach to Improving Browser Security.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security (New York, NY, USA, 2017), CCS 17, ACM.

SUN, C., L1, Y., ZHANG, Q., GU, T., AND SU, Z. Perses: Syntax-guided
Program Reduction. In Proceedings of the 40th International Conference
on Software Engineering (New York, NY, USA, 2018), ICSE ’18, ACM.

VOGT, P., NENTWICH, F., JovANOVIC, N., KIRDA, E., KRUEGEL, C.,
AND VIGNA, G. Cross Site Scripting Prevention with Dynamic Data
Tainting and Static Analysis. In NDSS (2007), vol. 2007.

Voss, L. The State of JavaScript Frameworks. https:
//www.npmjs.com/npm/the-state-of-javascript-frameworks-
2017-part-2-the-react-ecosystem, 2018.

WANG, W., FERRELL, B., XU, X., HAMLEN, K. W., AND HAO, S.
SEISMIC: SEcure In-lined Script Monitors for Interrupting Cryptojacks. In
European Symposium on Research in Computer Security (2018), Springer.

WordPress: OpenSource Content Management System. https://
wordpress. com/.

ZELLER, A., AND HILDEBRANDT, R. Simplifying and Isolating Failure-
Inducing Input. IEEE Trans. Softw. Eng. 28, 2 (Feb. 2002).

Table 8: Comprehensive list of tutorials collected from the first two

pages of Google search results

Table 9: Comprehensive list of mapped CVEs and whether vulnerable
files, functions or lines were triggered based on our usage profiles. Grey
rows indicate CVEs located in modules that are, by default, disabled.

phpMyAdmin
A | https://www.siteground.com/tutorials/phpmyadmin/ phpMyAdmin
A | https://www.reg.ca/faq/PhpMyAdminTutorial html 4 CVE Ver. | Yulnerability Triggered Affected Functionality
A | https://www.w3resource.com/mysql/administration- Files | Functions | Lines i
tools/phpmyadmin-tutorial.ph 1 | CVE-2013-3238 4.0.0 v NA X Rename table using Regex
phpmy P i i 2 | CVE20133240 | 400 | + v v | Plugins
A | https://code.tutsplus.com/tutorials/installing-and-using-phpmyadmin- 3 [CVE2014-8950 200 | % x X | GIS Editor
for-web-development—cms-21947 4 | CVE-2016-6609 400 v x % | Export as phparray
A | https://www.homeandlearn.co.uk/php/php12p2.html 5 | CVE-2016-6619 400 | ¥ x X | Recent tables
A | https://www.wpbeginner.com/beginners-guide/beginners-guide-to- OR|RCVIE2016:6620 40| &3 X &3 Tl et
wordpress-database-management-with-phpmyadmin/ 7| CVE2016-6628 400 | % x X | Create charts
press-databas g phpmyadir i 3 | CVE20166629 | 400 | X x X | Configuration option
A | http://members.ipage.com/knowledgebase/read _article.bml?kbid=5923 9 | CVE-2016-6631 .00 x x X | Create transform plugins
A | https://www.digitalocean.com/community/tutorials/how-to-install- 10 | CVE-2016-6633 4.0.0 v x X | Import ESRI shape file
and-secure-phpmyadmin-on-ubuntu-16-04 11 | CVE-2016-9866 4.0.0 v NA X User preferences
A | https://www.fastwebhost.com/tutorials/knowledge- 12 | CVE-2016-5703 440 | v x X | Central columns
base/phpmyadmin-tutorial-administration-2/ 13 | CVE-2016-5734 44.0 v X X Table search using Regex
ase/phipmyadmin-tutor $ i 14 | CVE-2016-6616 | 440 | % x X | User groups
A https://www.tutorialspoint.com/cpanel/cpanel_phpmyadmin.htm 15 | CVE-2017-1000017 | 4.4.0 v v x Replication
A | https://www.w3schools.com/php/php_mysql_intro.asp 16 | CVE-2016-6606 460 | v « | Authentication cookies
A | https://pimylifeup.com/raspberry-pi-mysql-phpmyadmin/ 17 | CVE-2016-6617 460 | ¥ x X | Export templates
A | https://www.webhostface.com/kb/knowledgebase/mysql-search- 18 | CVE-20169849 460 | v v ¥ | Authentication
ps: : : g ysq 19 | CVE20169865 | 460 | NA X | Core deserialization
replace/ 20 | CVE-2017-1000499 | 470 | v v | Navigation tree
A | https://www.eukhost.com/web-hosting/phpmyadmin.php MediaWiki
MediaWiki 21 | CVE-2013-2114 1.19.1 v x x File upload from chunks
A | https://www.siteground.com/tutorials/mediawiki/ g g:’/ﬁigijﬁgg 121 : : : ;’]e)“lf}[’j“ll’l‘;:ded il
- — — —— - - 21. plo:
A http.//he.lpw1k1.evergreen.edu/w1k1/1nde)f.php/Mt.:dla.w'llfl,Tutorlal 24 | CVE.2014.2043 il v v X [User scttings
A | https://lifehacker.com/5396832/customize-mediawiki-into-your- 25 | CVE2014-5241 2111 « x X | JSON Output formatter
ultimate-collaborative-web-site 26 | CVE-2014-9277 1211 |« x % | Flash policy output
A | https://hepmdb.soton.ac.uk/wiki/images/0/0b/Openda-Getting- 27 | CVE-2014-9276 1230 | ¥ v ¥ | Expand templates
Started-with-mediawiki.pdf 28 | CVE-2015-2936 1240 | ¢« v v Authentication
. - — - 29 | CVE-2015-2937 1.24.0 x x x XMP data reader
A https://Www.fastwebhost.cqm/?u?onals/?agmedlaw1p—tutor1av 30 | CVE2015-6728 1240 x X | Get watchiists through APT
A | https://www.semantic-mediawiki.org/wiki/Help:Getting _started 31 | CVE-2015-8002 1240 | x X File upload from chunks
A | https://www.inmotionhosting.com/support/edu/mediawiki/getting- 32 | CVE-2015-8003 1240 | x X File upload AP
started-mediawiki 33 | CVE-2015-8623 1.24.0 X X b 4 User object
- - o T 34 | CVE-2015-8624 1.24.0 x X x User object
A https.//www‘h(.)stnox.com/tutonals/mec%lankl/lTlstallatlon . 5 T CVEZOI0370 1550 v 7 & Markup parser (blackfisy
A | https://www.digitalocean.com/community/tutorials/how-to-install- 36 | CVE2017-0362 1280 |« v v | Track pages
mediawiki-on-ubuntu-14-04 37 | CVE-2017-0363 1280 | «# v v Search
A | https://computers.tutsplus.com/tutorials/how-to-build-your-own- 38 | CVE-2017-0364 1280 | + v ¥ | Search
wiki—cms-19772 39 | CVE-2017-0367 1.28.0 v v v Localization cache
. - T P 40 | CVE-2017-0368 1.28.0 v v v System messages
A https.//v&_/v&fW.tmdhostmg.com/tutorlals/medlaw1k1/h0w—t0—backup— 1T T CVE2017.8800 1380 % 7 v T APTs and RSS
mediawiki.html Magento
Magento 42 | CVE-2015-1397 1.9.0 v v v Prepare SQL condition
A | https://www.tutorialspoint.com/magento/ 43 | CVE-2015-1398 1.9.0 v v X OAluth & XML modules
A | https://www.siteground.com/tutorials/magento/ 44 | CVE-2015-1399 190 | v v ¥ | Actions predispatch
A hitos7/bl -l 45 | CVE-2015-8707 1.9.0 v % X Password reset
ttps://b og.magestore.com/mag@to—tutor{a/ . 46 | CVE-2016-2212 190 | ¢ x X | Order status RSS
A | https://www.cminds.com/the-ultimate-beginners-guide-to-magento/ 47 | CVE-2016-4010 2.0.5 v v « | Shopping cart
A | https://code.tutsplus.com/articles/from-beginner-to-advanced-in- 48 | CVE-2016-6485 2.0.5 v v v | Cryptography functions
magento-introduction-installation—cms-21969 49 | CVE-2018-5301 2.0.5 X ! rdPx X Delete customer address
- imi ot _ 1al-re - o! ress
A Ettps.//W;Nw.smucm.com/blog/best magento-tutorial-resources <0 T CVEZ0I4503 39 v v X | Widget customization
cgimnner 51 | CVE-2014-5204 39 v v « | CSRF token verification
A | https://www.cloudways.com/blog/magento/ 52 | CVE-2014-5205 3.9 v v « | CSRF token verification
A | https://magenticians.com/ 53 | CVE-2018-12895 39 v v « | Delete post thumbnail
A | https://www.mageplaza.com/kb/magento-2-tutorial/ 4 | CVE2015-2213 40 v v ¥__| Untrash comment
A hitps://devdocs.mz /etides/m/mascfordev/mage-for-d 55 | CVE-2017-14723 4.0 v v v Prepared queries
ttps://devdocs.magento.com/guides/m1x/magetordev/mage-for-dev- 56 | CVE-2014-9033 20 v v x Password reset
1.html 57 | CVE2014-9037 70 v v | Password hashing library
A | https://u.magento.com/ 58 | CVE-2016-6635 4.0 v x X | Ajax compression test
A | https://stuntcoders.com/magento-tutorials/magento-tutorial-for- 59 | CVE-2014-9038 40 v v ¥ | HTTP request API
beginners / 60 | CVE-2015-5731 423 v v x Admin panel
WordP, 61 | CVE-2016-7169 4.6 v v x Sanitize uploaded file name
orcrress 62 | CVE2017-17091 | 46 v NA % | Create new user
A | https://codex.wordpress.org/WordPress_Lessons 63 | CVE-2017-5492 47 v v + | Admin screen API, widgets
A | https://www.000webhost.com/wordpress-tutorial 64 | CVE-2017-9064 4.7 v v « | Admin file system operations
A | https://wpapprentice.com/wordpress-tutorial/ 65 | CVE-2018-10101 47 v v ¥ | HTTP request AFI
A | https://premium.wpmudev.org/blog/a-wordpress-tutorial-for- 66 | CVE-0I810100 | 47 v NA X | Login
Ps://p -Wp -org/t Pres: 67 | CVE2017-6815 47 v v « | Redirect URL validation
beginners-create-your-first-site-in-10-steps/ 68 | CVE20173611 271 | & v v | Query helper
A | https://ithemes.com/tutorial/category/wordpress-101/ 69 | CVE-2017-16510 | 4.7.1 v x X | Prepared queries
A | https://easywpguide.com/wordpress-manual/
A | https://www.siteground.com/tutorials/wordpress/
A | https://www.tutorialspoint.com/wordpress/
A | https://www.hostinger.com/tutorials/wordpress/

