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Abstract

As software becomes increasingly complex, its attack surface

expands enabling the exploitation of a wide range of vulnerabil-

ities. Web applications are no exception since modern HTML5

standards and the ever-increasing capabilities of JavaScript are

utilized to build rich web applications, often subsuming the

need for traditional desktop applications. One possible way of

handling this increased complexity is through the process of

software debloating, i.e., the removal not only of dead code but

also of code corresponding to features that a specific set of users

do not require. Even though debloating has been successfully

applied on operating systems, libraries, and compiled programs,

its applicability on web applications has not yet been investigated.

In this paper, we present the first analysis of the security

benefits of debloating web applications. We focus on four

popular PHP applications and we dynamically exercise them

to obtain information about the server-side code that executes

as a result of client-side requests. We evaluate two different

debloating strategies (file-level debloating and function-level

debloating) and we show that we can produce functional web

applications that are 46% smaller than their original versions

and exhibit half their original cyclomatic complexity. Moreover,

our results show that the process of debloating removes

code associated with tens of historical vulnerabilities and

further shrinks a web application’s attack surface by removing

unnecessary external packages and abusable PHP gadgets.

1 Introduction

Despite its humble beginnings, the web has evolved into a

full-fledged software delivery platform where users increasingly

rely on web applications to replace software that traditionally

used to be downloaded and installed on their devices. Modern

HTML5 standards and the constant evolution of JavaScript en-

able the development and delivery of office suites, photo-editing

software, collaboration tools, and a wide range of other complex

applications, all using HTML, CSS, and JavaScript and all

delivered and rendered through the user’s browser.

This increase in capabilities requires more and more complex

server-side and client-side code to be able to deliver the features

that users have come to expect. However, as the code and

code complexity of an application expands, so does its attack

surface. Web applications are vulnerable to a wide range

of client-side and server-side attacks including Cross-Site

Scripting [4, 47, 72], Cross-Site Request Forgery [3, 33, 46],

Remote Code Execution [18], SQL injection [19,41], and timing

attacks [35,40]. All of these attacks have been abused numerous

times to compromise web servers, steal user data, move laterally

behind a company’s firewall, and infect users with malware and

cryptojacking scripts [43,49,74].

One possible strategy of dealing with ever-increasing software

complexity is to customize software according to the environment

where it is used. This idea, known as attack-surface reduction and

software debloating, is based on the assumption that not all users

require the same features from the same piece of software. By

removing the features of different deployments of the same soft-

ware according to what the users of each deployment require, one

can reduce the attack surface of the program by maintaining only

the features that users utilize and deem necessary. The principle

of software debloating has been successfully tried on operating

systems (both to build unikernel OSs [53] and to remove unnec-

essary code from the Linux kernel [51,52]) and more recently on

shared libraries [56,61] and compiled binary applications [42].

In this paper, we present the first evaluation of the applicability

of software debloating for web applications. We focus on

four popular open-source PHP applications (phpMyAdmin,

MediaWiki, Magento, and WordPress) and we map the CVEs

of 69 reported vulnerabilities to the source code of each web

application. We utilize a combination of tutorials (encoded as Se-

lenium scripts), monkey testing, web crawling, and vulnerability

scanning to get an objective and unbiased usage profile for each

application. By using these methods to stimulate the evaluated

web applications in combination with dynamically profiling the

execution of server-side code, we can precisely identify the code

that was executed during this stimulation and therefore the code

that should be retained during the process of debloating.



Equipped with these server-side execution traces, we evaluate

two different debloating strategies (file-level debloating and

function-level debloating) which we use to remove unnecessary

code from the web applications and quantify the security benefits

of this procedure. Among others, we discover an average

reduction of the codebase of the evaluated web application of

33.1% for file-level debloating and 46.8% for function-level de-

bloating, with comparable levels of reduction in the applications’

cyclomatic complexity. In terms of known vulnerabilities, we

remove up to 60% of known CVEs and the vast majority of PHP

gadgets that could be used in Property Oriented Programming

attacks (the equivalent of Return-Oriented Programming attacks

for PHP applications).

Overall, our contributions are the following:

• We encode a large number of application tutorials as

Selenium scripts which, in combination with monkey

testing, crawling, and vulnerability scanning, can be used

to objectively exercise a web application. Similarly, we

map 69 CVEs to their precise location in the applications’

source code to be able to quantify whether the vulnerable

code could be removed during the process of debloating.

• We design and develop an end-to-end analysis pipeline

using Docker containers which can execute client-side,

application stimulation, while dynamically profiling the

executing server-side code.

• We use this pipeline to precisely quantify the security

benefits of debloating web applications, finding that

debloating pays large dividends in terms of security, by

reducing a web application’s source code, cyclomatic

complexity, and vulnerability to known attacks.

To motivate further research into debloating web applications

and to ensure the reproducibility of our findings, we are releasing

all data and software artifacts.

2 Background

In this section, we briefly describe the effect of package

managers on software bloat and provide a motivating example

for debloating web applications.

2.1 Package managers and software bloat

To ease the development of software, developers reuse third-

party libraries, external packages, and frameworks for their

applications. This approach enables developers to focus on their

applications while relying on proven and tested components.

Statistics from popular package managers show that reliance

on external packages is a widely adopted practice across many

different languages. NPM, the registry hosting NodeJS packages,

reports more than 10 billion package downloads a month [73].

Similarly, PyPI, the package manager for Python, reports more

than a billion a month [30], while Packagist, the main repository

for Composer package manager for PHP, reports the download

of 500 million packages each month [29].

At the same time, it is doubtful that all the code and features

obtained through these packages and frameworks are actually

used by the applications that rely on them. For the most part,

when developers rely on external dependencies, they include

entire packages with no effective way of disabling and/or

removing the parts of these packages and frameworks that their

applications do not require.

2.2 Motivating web-application debloating

In this study, we look at the bloat of web applications and

quantify how debloating can provide concrete security benefits.

Even though debloating has been successfully applied in other

contexts, we argue that the idiosyncrasies of the web platform

(e.g. the ambient authority of cookies and the client/server

model which is standard for the web but atypical for operating

systems and compiled software) require a dedicated analysis of

the applicability of debloating for web applications.

To understand how the bloat of a web application can lead to

a critical vulnerability, we use a recent vulnerability of the Sym-

fony web framework (CVE-2018-14773 [28]) as a motivating

example. Specifically, the Symfony web framework supported

a legacy IIS header that could be abused to have Symfony return

a different URL than the one in the request header, allowing

the bypassing of web application firewalls and server-side

access-control mechanisms. If this type of header was never used

by the server, debloating the application would have removed

support for it, which ultimately would have prevented anyone

from exploiting the vulnerability. Drupal, a popular PHP Content

Management System (CMS), was also affected by the same vul-

nerability since it uses libraries from the Symfony framework to

handle parts of its internal logic [26]. Even if Drupal developers

were not responsible for the code that leads to the vulnerability,

their application could still be exploited since Symfony was an

external dependency. Even more interestingly, an analysis of the

official Symfony patch on GitHub [27] reveals that the vulnerable

lines were derived from yet another framework called Zend [31].

This shows that the structure of web applications can be very

complex with code reuse originating from many different sources.

Even if developers take all possible precautions to minimize vul-

nerabilities in their own code, flaws from external dependencies

can cascade and lead to a critical entry point for an attacker.

Overall, there are clear benefits that debloating could have on

web applications. Assuming that we are able to pinpoint all the

code that is required by the users of a given software deployment,

all other code (including the code containing vulnerabilities) can

be removed from that deployment.





Table 1: Analyzed open-source web applications.

Web Application Version
Known CVEs

(≥2013)

Magento 1.9.0, 2.0.5 10

MediaWiki 1.19.1, 1.21.1, 1.24.0, 1.28.0 111

phpMyAdmin 4.0.0, 4.4.0, 4.6.0, 4.7.0 130

WordPress 3.9.0, 4.0, 4.2.3, 4.6, 4.7, 4.7.1 131

to the vulnerable lines, functions, and files, that they exploit

in each application. This way, by looking at an application

after debloating, we can determine if the files, functions, or

lines responsible for the vulnerability, are still present or were

removed during the debloating process.

Even though there exist multiple databases listing the current

and historical CVEs of popular software (including the web

applications in question) [36,37], locating the actual source code

containing the vulnerability described in a CVE, is a non-trivial

process which requires careful investigation. In some cases, the

right patch can be discovered because of a direct reference to

a CVE in a commit message, or in a bug report on official public

repositories of web applications. For others, the fix is included

within numerous commits that have to be carefully analyzed to

locate the appropriate lines of code. Since a vulnerability can

span over multiple lines, functions, and even multiple files, we

record all affected locations in a database so that this information

can be later correlated with each evaluated application.

Given the time-consuming nature of mapping CVEs to

existing code, for this study, we limited ourselves to, at most, 20

CVEs per application of interest. The complete list of CVEs we

mapped for this study can be found in Table 9 in the Appendix.

To select these CVEs, we ordered existing vulnerabilities by their

CVSS score (thereby selecting the ones that are the most critical)

and we did not consider vulnerabilities that were reported before

2013. This focus on fairly recent vulnerabilities (i.e. in the last

five years) makes our results more generalizable to the current

state of web applications, as opposed to quantifying vulnerabil-

ities in source-code which has since dramatically evolved. Note

that, because not all versions of a web application are vulnerable

to all evaluated CVEs, we had to map vulnerabilities across a

number of different versions, as shown in Table 1.

3.4 Application usage profiling

Modern web applications provide an incredibly wide range

of features and options to their users. Even though, from a

functional perspective, more features are desirable, from a

security perspective, the code that implements new features

may contain new vulnerabilities thereby further expanding a

program’s attack surface. In order for a system to be able to

remove code related to unnecessary features, one must first

identify which features are necessary for a target set of users.

Given a usage profile, the goal of our framework is to produce

debloated versions of web applications which maintain the code

and features that are part of that profile but remove the rest. To be

as objective as possible with what features are considered “nec-

essary,” we utilize four independent sources of web application

usage: i) online tutorials describing how to use the applications

of interest, ii) web crawlers that autonomously navigate the

application, iii) vulnerability scanners that feed malicious content

to the application, and iv) monkey testing tools that click on

random parts of webpages and type random keystrokes. The

combination of all four gives our profiles both breadth (through

the crawler and monkey testing) as well as depth (through the

user following complicated paths while providing expected in-

puts and the vulnerability scanner which provides large amounts

of malicious inputs trying to exploit the web application).

3.4.1 Tutorials

To simulate common interactions with an application, we use

a popular search engine to search for the application’s name

followed by the word “tutorials” (e.g. “phpMyAdmin tutorials”)

and follow the tutorials from the first two pages of search results.

Specifically, we map each tutorial to a Selenium script that

allows us to both execute the same tutorial multiple times and

also assess the correctness of the results (e.g. encode that when

we delete a database using phpMyAdmin, the deleted database is

no-longer shown in the list of databases). Note that this mapping

of tutorials to Selenium scripts is yet another time-consuming

process which, occasionally, has to be repeated for different ver-

sions of the same web application. One change in a form field or

in a selector can break the complete flow of a test suite and we ob-

served a significant number of cases with slight interface changes

between two consecutive versions of the same application.

Overall, after fine-tuning the scripts for all our tested versions,

we obtained 46 tutorials which translated into 302 use cases

scripted as Selenium tests requiring 16,025 lines of code. Given

our desire for complete reproducibility of our results, we include

the complete list of tutorials in the Appendix (Table 8) along with

WebArchive links that will remain available despite potential

future domain expirations and linkrot of the original URLs [48].

Below, we provide a non-exhaustive list of actions that were

part of the followed tutorials of each web application. Full

details are available in the actual tutorials and in the Selenium

scripts which we will release together with this paper.

Actions covered by phpMyAdmin tutorials: As a web

administration tool, all phpMyAdmin functionality is protected

by an authentication mechanism. We followed the actions

described by tutorials when logged in as a root user account

with full application access. The Selenium-encoded tutorials

cover database operations including creating and dropping

databases, filling tables with data, querying, table indexes, and

importing/exporting data. They also include administration tasks

such as adding new user accounts, optimizing databases, check-

ing database server status, obtaining performance metrics, and

accessing server settings such as variables, charsets, and engines.



Actions covered by MediaWiki tutorials: MediaWiki provides

different features depending on the privileges of the user. Unau-

thenticated users can only visit and search pages. Registered ones

can post and edit content while administrators can perform moder-

ation and management operations. The tutorials that we followed

cover all these different use cases. More specifically, actions

coded in our tutorials include authentication, creating and renam-

ing pages, importing and exporting content from the wiki, as well

as changing settings such as skins, styles, and formatting options.

Actions covered by WordPress tutorials: As a blogging

software, WordPress has two distinct entry points, one for

normal unauthenticated users to read blogs and post comments,

and a separate administration panel accessible to privileged

and authenticated users. WordPress tutorials mostly focus on

administrative tasks since normal users have limited abilities.

The Selenium-encoded tutorials include actions such as creating

a new post using HTML for the content, modifying most post

options (ranging from visibility and tags to setting featured

images), as well as downloading and changing WordPress

themes. For the administration panel, the tutorials include

exporting content, setting up user accounts, and uploading media.

Finally, the tutorials include the visiting of posts and the posting

of comments as well as the management of comments, such as

approving them, marking them as spam, and deleting them.

Actions covered by Magento tutorials: Magento is the largest

evaluated web application in terms of source code and has

the most features compared to the other applications. Similar

to WordPress, the tutorials mostly target administration tasks

which include store settings, advanced product search options,

order notification via RSS, product pricing, currencies and tax

rules, delivery and payment methods, emails and notifications,

reviews and ratings and cache control. Some tutorials go in

even more details by covering product and stock management,

managing customers and groups configurations, modifying the

UI, creating pages, and using widgets. On the customer side, we

followed tutorials that included registration of a new account,

authentication actions, and purchasing products until checkout.

3.4.2 Monkey testing

Monkey testing is a method for testing software where the

simulated user sends random clicks and keystrokes to the target

application. This unpredictable behavior can uncover bugs in

an application as it can trigger paths and actions that were not

anticipated by developers. In our case, we use such a technique

to trigger additional code, not covered by tutorials. We observe

that this approach adds breadth to the code coverage by reaching

easy to access features. In addition, by feeding random key

strokes into forms, monkey testing can bring the application in

an error state thus exercising error-handling pieces of code.

We rely on the stress-testing library called gremlins.js [7]

in conjunction with the GreaseMonkey browser extension [6]

to inject the library into web application pages. Since this kind

of testing can occasionally trigger unwanted actions, we have

to take necessary steps to stop them, e.g., prevent the test from

leaving the web application and visiting external websites. We

also want to prevent gremlins.js from getting trapped on

a single page as an unexpected JavaScript dialogue box or a

dead end page can pause our test execution. An additional

issue is that of accidentally logging out a web application by

clicking on a logout link. Given that we run monkey-testing

under three different usage profiles (public user, logged-in user,

and administrator) we took steps to avoid accidental logouts.

Overall, we perform the following modifications: i) we remove

all links that lead to external pages, ii) we remove logout buttons

for applications that require authentication, iii) we override the

aforementioned JavaScript functions and iv) we set a timeout

to detect when the monkey is stuck and reset it to a known good

state. All these actions are done using injected JavaScript on

target pages prior to starting the gremlins.js library.

To cover a large set of pages from a web application, we

run gremlins.js for 12 hours for each of the test profiles. To

guarantee the reproducibility of our experiment, we choose a

fixed seed for each run that will generate the same sequence of

pseudo-random actions.

3.4.3 Crawling

Web spiders (also known as crawlers) are a type of bot that

follows the links of a web application and optionally submits

forms with predefined content. Each newly crawled page is

added to a database of the application that the crawler uses to

prevent repeated visits to the same pages. For our study, we use

BurpSuite Spider v2.0.14beta [2] to crawl our web applications.

As a result, we augment the application coverage with code paths

that were not triggered, either through the followed tutorials or

through monkey testing.

3.4.4 Running vulnerability scanners

Vulnerability scanners are tools that try to detect security flaws

in web applications. We use BurpSuite Scanner v2.0.14beta [2]

based on the URLs extracted by the spider to look for vulner-

abilities in headers, URLs and forms. Notably, the scanner tries

different injection mechanisms like SQL injection, XSS, PHP file

injection, and path traversal, to trigger errors and reach unwanted

states in the application. The vulnerability scanner goes beyond

what the crawler and the monkey cover by modifying headers

and URL parameters. By inspecting the resulting coverage,

we observe that each of these four methods result in exercising

server-side code that would not have been exercised through the

other methods. We quantify this relationship in Section 5.

3.5 Recording server-side code coverage

Regardless of the method that is used to interact with a web

application, in order to be able to successfully remove unused

code (i.e. debloat the web application), we must be able to



associate client-side requests with server-side code. To record

the files and lines of code that are triggered by user requests, we

make use of PHP profilers.

PHP profilers are available as PHP extensions that modify

the PHP engine to collect code-coverage information. There

exist a number of different profilers, such as, XDebug [23],

phpdbg [16], and xhprof [24] all of which require a similar

setup to record code coverage. For our framework, we decided

to use XDebug as it is the most mature profiler and is actively

maintained.

3.5.1 Adding coverage support in a web application

Connecting a web application to XDebug. To be able to

perform dynamic analysis and record lines of code that are

triggered by user requests, our framework must add calls to

specific XDebug functions in every PHP file of a web appli-

cation. Specifically, both xdebug start code coverage()

and xdebug get code coverage() functions are called to,

respectively, start and receive coverage information. If the “get”

function is never called, the coverage information is lost. In the

following paragraphs, we describe challenges related to obtaining

the code coverage from XDebug and how we overcame them.

The case of unrecorded lines. Boomsma and Gross reported

on the possibility of removing unused code in a custom

PHP application [34]. By performing dynamic analysis, they

observed which files were not used and removed them from

their application. The authors utilized their own profiler and took

advantage of the auto append built-in function of PHP to add

the necessary log functions at the very end of all PHP files [1].

For our study, we initially attempted to use the same approach

and ran preliminary tests by appending XDebug function calls

at the end of our tested files. However, we discovered that the

coverage was incomplete and that some lines were not properly

recorded. Given that any PHP file can call the exit() or die()

function at any time to terminate the current script, our XDebug

calls which were located at the end of each file, were not always

executed thus leading to under-reported code coverage.

3.5.2 Main challenges for getting full coverage

Avoiding early exits. To overcome the coverage problems due

to calls to exit functions, we utilized a specific type of PHP

callback functions, called shutdown functions. When registered,

these functions are triggered after all the code on the page has

finished running or after either exit() or die() functions are called.

This way, we are able to obtain the desired coverage information

even if a PHP script used one of the aforementioned functions.

Interestingly, we also discovered that calls to exit() inside a

shutdown function prevent the execution of other shutdown

functions including the call to collect our own code-coverage

information. To correct this issue, we statically analyzed the

evaluated applications and automatically added calls to collect

code coverage before these exit calls (e.g. Line 7 in Listing 1).

Getting correct coverage information of shutdown functions.

Another challenge, in terms of recording correct code-coverage

information, is to properly record the executed lines of

code inside shutdown functions. As mentioned by the PHP

manual [12], shutdown functions are called in the order they

were registered. This means that if our own shutdown function

is registered first, it will also be triggered first, thereby missing

any calls to subsequent shutdown functions present in the same

PHP file. To get full coverage, we use the following approach:

our own shutdown function will perform a late registration of

a final shutdown function that will be added at the very end of

the execution queue. This way, we can be certain that the very

last shutdown function that will be executed in a script will be

our own, providing us with the desired coverage information.

Getting correct coverage information of destructors. The

final challenge that we faced was to properly record covered

lines for all class destructors. PHP uses garbage collection and

reference counting to remove objects from memory, whenever

they are no longer necessary. However, there is no real way to

anticipate when the garbage collector will effectively remove

objects during program execution. If objects are destroyed before

the shutdown functions are executed, our framework has no

issue recording them. However, if they are destroyed after, our

shutdown functions are incapable of registering the execution

of these destructors.

To handle this special case, we rewrote class destructors so

that they register themselves while they are executing. Every

time a destructor is called, we query the XDebug engine to check

whether code-coverage recording is currently in progress. This

way, we can determine whether the destructor is called before

or after shutdown functions. If the destructor is called after

shutdown functions, we dynamically decide to start recording

all executed lines within the destructor and save the coverage

information when it finishes executing.

Summary. As witnessed through the above use cases, collecting

the correct code coverage information for a web application is

significantly more complicated than one would initially expect.

Through the preprocessing of code, and the use of destructors

and shutdown functions, we solve the issues that were not even

mentioned in prior work and get a precise view of the code that

executes at the server side, as a result of user requests. Listing 1

provides an example of concrete modifications in a PHP file. On

line 7, we added a code-coverage call before an exit which

happens inside a shutdown functions to prevent information loss

due to early exits. On lines 14 and 17, we wrapped the destructor

with code-coverage calls.



1 <?php

2 register_shutdown_function (" PMA_Response :: resp");

3 class PMA_Response {

4 public static function resp () {

5 $buffer ->flush ();

6 // Prepend original call to exit:

7 collect_code_coverage ();

8 exit;

9 }

10 }

11

12 class TCPDF {

13 public function __destruct () {

14 // If called after shutdown_functions

15 // start recording code coverage

16 ...

17 // If called after shutdown_functions

18 // stop coverage

19 }

20 }

21 ?>

Listing 1: Code rewritten by the debloating framework to ensure

correct code coverage of corner cases.

4 Debloating web applications

In this section, we briefly describe the evaluated debloating

strategies and the steps we took to ensure that the debloated

applications remain functional.

4.1 Debloating strategies

By combining the simulated usage of a web application (achieved

through tutorials encoded in Selenium scripts, web crawlers,

monkey testing, and vulnerability scanning) with server-side

code profiling, we can identify the code that was executed as part

of handling web requests. Consequently, code whose execution

was not triggered by any client-side request can presumably be

removed since it is not necessary for any of the functionality that

is desired by users (as quantified by the utilized usage profiles).

In this work, we evaluate the following debloating strategies:

• File-level debloating: Given that the source code of web

applications spans tens or hundreds of different files, we can

completely remove a file, when none of the lines of code in that

file were executed during the stimulation of the web application.

• Function-level debloating: In function-level debloating,

not only can we remove entire files but we can also selectively

remove some of the functions contained in other files. This is

a more fine-grained approach which allows us to remove more

code, than the more conservative, file-level debloating strategy.

More fine-grained approaches are possible, such as, the re-

moval of specific code statements from retained functions which

were not exercised during stimulation. However, such changes

essentially modify the logic of a function (e.g. removing condi-

tional code blocks) thereby increasing the probability of breaking

the resulting program when a minute change of a client-side

request would lead the execution into these blocks of code.

4.2 Detecting the execution of removed code

We replace all removed functions and files with placeholders

which, if executed, have the following tasks:

• Exit the application: If a placeholder happens to be

triggered, the PHP application will start its shutdown procedures.

This way, the application does not enter an unexpected state that

was not planned by the debloating process.

• Record information about the missing function: In order

to better understand which missing placeholders were triggered

and how, our framework logs several pieces of information, such

as, the URL that triggered the execution of the removed code,

the name of the class and function of the removed code, and the

corresponding line numbers.

To ensure that the debloating process has preserved the

functionality of the debloated web application, we rerun all

the Selenium-mapped tutorials and monkey scripts after the

debloating stage. If our placeholder code for removed files and

functions executes during this stage, this means that this code

should not have been removed.

This feedback mechanism proved invaluable during the

development of our framework since it helped us identify

problems with our coverage logic which in turn revealed the

challenges that we described in Section 3.5.2.

5 Results

To assess the impact of debloating web applications, we analyze

our results from a number of different perspectives. First,

we show the contributions of different application-profiling

methods and then compute different metrics to understand the

effectiveness of debloating in terms of reducing the attack surface

of our tested applications. Next, we focus on CVEs to determine

whether debloating can actually remove critical vulnerabilities.

Then, we take a closer look at the bloat introduced by external

packages along with the security implications that come with

using this specific development practice. Finally, we look at

what has effectively been removed in debloated applications

and test a number of exploits against the original and debloated

versions of the evaluated web applications.

5.1 Tutorials vs. Monkey Testing vs.

Crawling vs. Vulnerability Scanning

As described in Section 3.4, to ensure that we exercise web

applications in an objective and repeatable way, we utilized

tutorials, monkey testing, crawlers, and vulnerability scanners.

Figure 2 shows the coverage, in terms of server-side files,

that each method obtained on the latest version of each web

application in our testbed. We can clearly see that all four

methods are required, with each method contributing differently

for different web applications. For example, tutorials trigger









Table 3: Statistics on the external packages included in web applications and the effects of debloating in terms of reducing their LLOC.

Before debloating After function-level debloating

Application
# lines in main

application

# lines in

packages
# packages

# lines in main

application

# lines in

packages

# packages

completely

removed

# packages where a given %

lines were removed

>70%
<70% and

>30%
<30%

phpMyAdmin 4.7.0 35,739 82,604 45 26,377 (-26.2%) 9,653 (-88.3%) 38 (84.4%) 2 1 4

MediaWiki 1.28.0 133,019 50,898 40 54,827 (-58.8%) 6,285 (-87.7%) 24 (60.0%) 2 2 12

Magento 2.0.5 396,448 212,906 71 181,696 (-54.2%) 34,038 (-84.0%) 58 (81.7%) 6 5 2

PHP Object Injection (POI) vulnerabilities [11]. In this technique,

the attacker creates exploit gadgets from available code in the

applications. By chaining multiple gadgets within the application,

an attacker can usually run arbitrary code, write to arbitrary files,

or interact with a database. Dahse et al. have studied the auto-

matic generation of such gadget chains for PHP applications [38].

PHP unsafe deserialization. The PHP language gives devel-

opers the ability to serialize arbitrary objects in order to store

them as text, or transfer them over the network. Deserialization

reverses this process, generating PHP objects from serialized

data. This mechanism can be abused by an attacker to load

specific classes in the application and build a gadget chain.

Practical examples of this vulnerability are when unserialize

is called on a database field or value of a field within a cookie

that can be manipulated by the users.

Historically, this attack was very difficult to successfully ex-

ecute. Attackers could only build gadgets with the classes that

were present in the context of the vulnerable file. They needed

insights into how the application was built in order to know which

classes could be abused for gadgets. However, starting from PHP

5, the autoload() magic function [10] was introduced and un-

intentionally made exploitation of deserialization vulnerabilities

easier. This new loading feature was beneficial for PHP develop-

ers who did not have to manually include all the files they wanted

to use at the very top of each of their PHP files. It also helped the

adoption of package managers like Composer, as any external

dependency could be easily called from anywhere in the applica-

tion. The downside of this new function was that it also allowed

attackers to instantiate any PHP class across the entire application

thereby enabling the easier construction of gadget chains.

In order to build a chain, attackers use these so-called “magic”

functions [13] that form the basis of their gadget chain. One of

the functions that is widely used in POI exploits is the destruct

function. In Section 3.5, we detailed the challenges in getting

complete coverage of destructors in our tested applications.

Accurate coverage of destructors also allows us to precisely

analyze the impact of debloating on gadget creation.

Can debloating remove gadgets from external packages?

Given the increased footprint of web applications due to their

reliance on package managers and external dependencies, one

may wonder about the possibility of abuse of these packages for

Table 4: List of packages with known POP gadget chains

Application Package

Removed by

Debloating

File Function

phpMyAdmin 4.7.0
Doctrine ± ±

Guzzle ± ±

MediaWiki 1.28.0 Monolog ± ±

Magento 2.0.5

Doctrine ± ±

Monolog Ï ±

Zendframework Ï ±

the creation of gadgets. To measure the effect of debloating on

Property-Oriented-Programming (POP) gadgets, we utilized the

PHPGGC [17] library. PHPGGC (which stands for PHP Generic

Gadget Chains) contains a list of known gadgets in popular PHP

packages such as Doctrine, Symfony, Laravel, Yii and Zend-

Framework. When a vulnerable PHP application includes any of

the packages listed in PHPGGC, the attackers can generate gadget

chains to achieve RCE, arbitrary file writes, and SQL injections.

We analyzed the available gadget chains in PHPGGC and

checked whether any of our tested PHP applications included

these chains. Table 4 summarizes the presence of each gadget

and whether debloating removes them or not. WordPress is

not included in this table because it does not rely on external

packages. This does not make WordPress immune to POI

attacks, but universally known gadget chains in popular external

packages can not be used to exploit WordPress. For the affected

applications, file-level debloating removes 4/6 gadgets while

function debloating removes 6/6 available gadget chains. This

again demonstrates the power of debloating which can not

only remove some fraction of vulnerabilities but also make

the exploitation of the remaining ones harder by removing the

gadgets that attackers could abuse during a POI attack.

5.4.3 Utilizing development packages in production

During our analysis of external packages, we identified yet

another source of bloat in new versions of web applications.

When declaring external dependencies through Composer, two

options are available: “require” and “require-dev”. The first

option indicates packages that are mandatory for the application

to run properly. The second lists packages that should only be

used in development environments, such as, packages providing



support for unit testing, performance analysis, and profiling. We

discovered that applications downloaded from official websites

often include these development packages. As such, when these

packages are used to deploy web applications in production

mode, they will contain unnecessary development libraries. This

does not only increase the attack surface by having unnecessary

code bloating the application, but can also lead to exploitation

for misconfigured applications.

CVE-2017-9841 presents one example of such a vulnera-

bility [25]. Specifically, this CVE refers to an RCE attack in

specific versions of the PHPUnit library, which is a popular unit

testing library for PHP. By default, Composer places all external

packages under “vendor” directory. If this specific directory

happens to be accessible through a misconfiguration of the

server, PHPUnit files are then accessible and can be exploited

to conduct an RCE attack.

The four web applications that we evaluated for this study,

present different behaviors with respect to development packages.

WordPress does not rely on external packages downloaded

through Composer. MediaWiki never included development

packages in its releases. phpMyAdmin had them in version 4.7.0

but stopped including them in version 4.8.3 (the latest at the time

of writing). Magento started including them from version 2.0

and still includes them today. We have reached out to Magento

and informed them about this issue.

5.5 Qualitative analysis of the removed code

In the previous sections, we analyzed the effects of debloating

on the source code of applications from a software-engineering

perspective (i.e. LLOC and Cyclomatic Complexity reduction)

as well as from a security standpoint (i.e. number of CVEs and

gadgets removed). At the same time, one may wonder what

exactly was removed from each application during the process

of debloating.

Given that thousands of files were removed, manually analyz-

ing each file does not scale. As such, we turn to NLP techniques

that allow us to cluster the removed files together and provide

us with hints about the nature of each cluster. Specifically, we

use the k-means clustering algorithm based on text vectors

extracted from removed file names and file paths. Each file path

includes directories that indicate which library or package, the

file belongs to. For most modern web applications, this allows

for a reasonable separation of files across different application

plugins and modules. To end up with meaningful clusters, we

tuned TFIDF vectorizer parameters along with the number of

k-means clusters. We used the TFIDF maximum frequency limit

to ignore common terms appearing in more than 50% of the files.

Depending on the size and modularity of the application, 10 to

20 clusters yielded the most instructive grouping of files.

Table 5 shows the categories of the three largest removed clus-

ters from each web application. Across all four applications, we

observe the removal of source code related to external packages

(e.g. Symfony for phpMyAdmin, Elastica for MediaWiki, and

Table 5: Features and external packages with the most removed

files after file debloating (removed features are marked in italic).

Entries marked with ∗ are packages that are indirectly pulled by other

“require-dev” packages (not used by core application) for the purpose

of test coverage reporting and coding standard enforcement.

Applications Features/Packages with most files removed

1) Guzzle [8]: “Generating API HTTP response” *

phpMyAdmin 4.7.0 2) Symfony [20]: “Parsing configuration files” *

3) PHP CodeSniffer [15]: “Enforcing coding standards” *

1) Messages & Languages

MediaWiki 1.28.0 2) Less.php [9]: “Generating CSS code”

3) Elastica [5]: “Elastic search interface used by

extensions”

1) Twentyfourteen theme [21]

WordPress 4.7.1 2) Twentytwelve theme [22]

3-4) Also theme related

5) Multi-site administration

1) Zendframework1 [14]: “Generating web pages and

Magento 2.0.5 database operations”

2) Sales, Orders & Credit Memo

3) Internal framework filters & Views

Zendframework1 for Magento), followed by localization/theme

files (e.g. twentyfourteen theme for WordPress), and unused

database drivers. We provide more application-specific details

of removed features in the next paragraphs.

phpMyAdmin’s removed features include the uploading of

plugins, GIS visualizations, and unused file formats used in

import/export (such as, Dia, EPS, PDF, SVG, and ZIP). In

addition, debloating removed unused plugins and external

packages which make up the top 3 features removed from this

web application as shown in Table 5. phpMyAdmin version

4.6.0 and 4.7.0 include unit tests which are also removed by our

system. The LLOC for the removed test files is less than 2%

of the whole code base of the application.

MediaWiki provides an API to interact with the wiki which is

separate from the regular web interface that users interact with.

Most actions within this API, including queries, file upload, and

non-default output formats for this API were removed. Top cat-

egories of removed files consist of localization of messages and

language files in addition to external dependencies (Lines 2 and

3) as listed in Table 5. The debloating process also removes file-

upload modules which are disabled, by default, in MediaWiki. It

is important to note that even if a module is “disabled,” the code

still resides on the server and could be abused by specific types

of attacks. For example, in a recent attack against a WordPress

plugin, the vulnerability could be exploited even if that plugin

was disabled [32]. Debloating removes the source code of

disabled and unused features and therefore does not suffer from

this type of attack. Finally, the process of debloating, removed

unused extensions of Mediawiki (e.g. citation, input box, pdf

handler, poem and syntax highlighting). Mediawiki 1.19.1 and

1.28.0 include unit tests, and they measure less than 1.5% of

LLOC in the whole code base of their respective versions.

WordPress takes a slightly different approach where the core

functionality is concentrated in a relatively small number





mation is obtained, this overhead may or may not be an issue. For

example, if the coverage is calculated in an offline fashion where

traces of application usage are replayed against a testing system,

this overhead will have no impact on the real production systems.

To allow for the online computation of code coverage (using

real-time user traffic), we need more optimized code profilers.

For example, XDebug currently overloads 43 opcodes to obtain

line-level code-coverage information that is more fine-grained

than required by our debloating techniques and incurs an unnec-

essary performance overhead [64]. We leave the development

and evaluation of faster code profilers for future work.

7 Limitations and future work

In this study, we set out to precisely quantify the security benefits

of debloating, when applied to web applications. Through a

series of experiments, we demonstrated that debloating web

applications has a number of very concrete advantages. We

showed that debloating can, on average, decrease an application’s

code base by removing hundreds of thousands of lines of code,

reduce its cyclomatic complexity by 30-50% and remove code

associated with up to half of historical CVEs. Moreover, even

for vulnerabilities that could not be removed, debloating can

remove gadgets that makes their exploitation significantly harder.

Next, we discuss some of the inherent and technical limitations

of our approach and future direction.

Lack of available exploits: The number of exploits publicly

available compared to the total number of registered CVEs is low.

At the same time, the effort to study vulnerability reports, find

the relevant patch or bug report, and track the actual vulnerability

down to source code level takes a non-negligible amount of man-

ual labor. This lack of available exploits limits our ability to test

the exploitability of vulnerabilities before debloating since certain

vulnerabilities might only be exploitable under specific configura-

tions. For example the set of five file-upload-related vulnerabili-

ties in our MediaWiki dataset (marked as gray in Table 9) require

access to file upload functionality which is disabled by default. A

maintained set of automated, replayable exploits against popular

web applications similar to “BugBox” introduced by Nilson et

al. in 2013, could substantially help researchers at this step [57].

To address this issue, we mapped the CVEs to features within

those applications. This is done by studying the architecture of

target applications based on documentation within the code and

available on their websites. We marked a CVE as unexploitable if

the underlying feature is disabled by default, and online tutorials

in our dataset do not require users to enable that functionality.

This limitation only applies to reported numbers on removed

CVEs and does not affect our results on POI gadgets since their

mere existence is enough for them to be used in gadget chains.

Our approach results in lower bounds for CVE removal since

disabling modules through application configuration does not

guarantee removal of all code paths that trigger those modules.

Taking CVE-2019-6703 as an example, a vulnerability was

discovered in the WordPress “Total Donations” plugin [32] and

disabling this plugin did not prevent attackers from invoking the

vulnerable end point and running their exploits.

Dynamic code coverage: Given our reliance on dynamic

code-coverage techniques, it is clear that the success of

debloating a web application is tightly related to its usage

profile. Even though we constructed profiles in a way that is

reproducible and unbiased (i.e. by relying on external popular

tutorials, monkey testing, crawlers, and vulnerability scanners),

we cannot claim that real web users would not trigger code

that was removed during the stage of debloating, while they are

interacting with a debloated web application.

More specifically, our modeled usage profiles do not cover

all possible benign states of target web applications as we

assume that users do not use all available features. Our intuition

behind debloating proves to be successful to a large degree

since removing unnecessary features brings clear security

improvements. At the same time, our current usage model may

not cover deep error states (e.g. logical errors in multi-stage

form submissions, or the invalid structure of uploaded files). As

such, we intend to follow-up this work with crowd sourcing and

user studies to understand how administrators, developers, and

regular users utilize the evaluated web applications and whether

their usage profiles would allow for similar levels of debloating.

Due to nature of our approach, we can not take advantage

of standard static-analysis techniques, since we aim to remove

the features that are not useful for a given set of users, not those

that are not reachable by other code. Using static analysis would

greatly overestimate the code that needs to be maintained through

the process of debloating and the resulting web application

would contain code (and therefore vulnerabilities) that is not

useful to all users. Going forward, we envision a hybrid approach

where dynamic analysis is used as a first step to identify the

core features that are useful for a specific set of users. These

features can then be used as a starting point for a follow-up static

analysis phase to ensure that all code related to these features

is maintained when debloating a web application.

Handling requests to removed code: A separate issue is that

of handling requests to removed code. Our current prototype

utilizes assertions to log these requests so that we can investigate

why the corresponding server-side code was not captured by

our coverage profiler. When real users utilize debloated web

applications, one must decide how these failures (i.e. client-side

requests requiring server-side code that was removed) will be

handled. Assuming that cleanly exiting the application and

showing an error to the user is not sufficient, we need methods

to authenticate the user’s request, determine whether the request

is a benign one (and not a malicious request that aims to exploit

the debloated web application) and potentially re-introduce the

removed code. The client/server architecture of web applications

lends itself well to this model since the web server can decide

to re-introduce debloated code and handle the user’s request,

without any knowledge of this happening from the side of



the user. All of this, however, requires server-side systems to

introduce the code at the right time and for the appropriate users.

We leave the design of such systems for future work.

Metrics to measure debloating effectiveness: In this paper,

we use Cyclomatic Complexity (CC), Logical Lines of Code

(LLOC), reduction in historical CVEs, and POP gadget reduction

as four metrics to measure the effects of debloating on different

web applications. However, not every line of code contributes

equally to a program’s attack surface. For example, 15% of

removed files from Magento 2.0.5 are test files for external

packages and the core of the application. Such code may not

be directly exploitable or used in a POP chain unless there is

a misconfiguration (e.g., autoloading including these files, or the

directories being publicly accessible). As such, the resulted reduc-

tion in source code metrics (CC and LLOC) may also reflect the

code that does not contribute to the attack surface. Contrastingly,

the reduction of exploitable CVEs draws a more realistic picture

of real world attacks. The drawback of this metric is its unavail-

ability for proprietary software and the manual effort required

to map CVEs to source code and verify their exploitability.

Debloating effectiveness: Through our debloating experiments

we discovered that, in terms of debloating, not all applications

are “equal.” Modular web applications debloat significantly

better than monolithic ones (such as Wordpress). We hope that

our findings will inspire different debloating strategies that lend

themselves better to monolithic web applications which resist

our current function-level and file-level debloating strategies.

8 Related work

Over the years, different approaches that target very different

parts of the software stack have been studied in the context of

software debloating.

8.1 Debloating for the web

Despite the importance of the web platform, there has been very

little work that attempts to apply debloating to it. Snyder et

al. investigated the costs and benefits of giving websites access

to all available browser features through JavaScript [70]. The

authors evaluated the use of different JavaScript APIs in the wild

and proposed the use of a client-side extension which controls

which APIs any given website would get access to, depending

on that website’s level of trust. Schwarz et al. similarly utilize

a browser extension to limit the attack surface of Chrome and

show that they are able to protect users against microarchitectural

and side-channel attacks [66]. These studies are orthogonal to

our work since they both focus on the client-side of the web

platform, whereas we focus on the server-side web applications.

Boomsma et al. performed dynamic profiling of a custom web

application (a PHP application from an industry partner) [34].

The authors measured the time it takes for their dynamic profile

system to get complete coverage and the percentage of files that

they could remove. Since the application was a custom one, the

authors were not able to report specifics in terms of the reduction

of the programs attack surface, as that relates to CVEs. Con-

trastingly, by focusing on popular web applications, and utilizing

function-level as well as file-level debloating, we were able to pre-

cisely quantify the reduction of vulnerabilities, both in terms of

known CVEs as well as gadgets for PHP object-injection attacks.

8.2 Debloating in other platforms

Regehr et al. developed C-Reduce which is a tool that works

at the source code level [63]. It performs reduction of C/C++

files by applying very specific program transformation rules.

Sun et al. designed a framework called Perses that utilizes the

grammar of any programming language to guide reduction [71].

Its advantage is that it does not generate syntactically invalid

variants during reduction so that the whole process is made faster.

Heo et al. worked on Chisel whose distinguishing feature is

that it performs fine-grained debloating by removing code even

on the functions that are executed, using reinforcement learning

to identify the best reduced program [42].

All three aforementioned approaches are founded on Delta

debugging [76]. They reduce the size of an application

progressively and verify at each step if the created variant still

satisfies the desired properties.

Sharif et al. proposed Trimmer, a system that goes further

than simple static analysis [68]. It propagates the constants that

are defined in program arguments and configuration files so that

it can remove code that is not used in that particular execution

context. However, their system is not particularly well suited

for web applications where we remove complete features. Our

framework goes beyond this contextual analysis by mapping

what is actually executed by the application.

Other works include research that revolves mainly around

static analysis to remove dead code. Jiang et al. looked at

reducing the bloat of Java applications with a tool called

JRed [45]. Jiang et al. also designed RedDroid to reduce the

size of Android applications with program transformations [44].

Quach et al. adopted a different approach by bringing dead-code

elimination benefits of static linking to dynamic linking [61].

Rastogi et al. looked at debloating a container by partitioning

it into smaller and more secure ones [62]. They perform dynamic

analysis on system-call logs to determine which components and

executables are used in a container, in order to keep them. Koo et

al. proposed configuration-driven debloating [50]. Their system

removes unused libraries loaded by applications under a specific

configuration. They test their system on Nginx, VSFTPD, and

OpenSSH and show a reduction of 78% of code from Nginx

libraries is possible based on specific configurations.

9 Conclusion

In this paper, we analyzed the impact of removing unnecessary

code in modern web applications through a process called



software debloating. We presented the pipeline details of the

end-to-end, modular debloating framework that we designed

and implemented, allowing us to record how a PHP application

is used and what server-side code is triggered as a result of

client-side requests. After retrieving code-coverage information,

our debloating framework removes unused parts of an application

using file-level and function-level debloating.

By evaluating our framework on four popular PHP applica-

tions (phpMyAdmin, MediaWiki, Magento, and WordPress) we

witnessed the clear security benefits of debloating web applica-

tions. We observed a significant LLOC decrease ranging between

9% to 64% for file-level debloating and up to an additional 24%

with function-level debloating. Next, we showed that external

packages are one of the primary source of bloat as our debloating

framework was able to remove more than 84% of unused code in

versions that used Composer, PHP’s most popular package man-

ager. By quantifying the removal of code associated with critical

CVEs, we observed a reduction of up to 60% of high-impact, his-

torical vulnerabilities. Finally, we showed that the process of de-

bloating also removes instructions and classes that are the primary

sources for attackers to build gadgets and perform POI attacks.

Our results demonstrate that debloating web applications

provides tangible security benefits and therefore should be

seriously considered as a practical way of reducing the attack

surface of web-applications deployments.

Acknowledgements: We thank our shepherd Giancarlo Pelle-

grino and the anonymous reviewers for their helpful feedback.

This work was supported by the Office of Naval Research

(ONR) under grants N00014-16-1-2264 and N00014-17-1-2541,

as well as by the National Science Foundation (NSF) under

grants CNS-1813974 and CMMI-1842020.

10 Availability

The main purpose of our work is to quantify the security benefits

of debloating web applications, allowing the community to

have informed discussions about the advantages of debloating,

without the need of vague references to attack-surface reduction.

To ensure the repeatability of our findings and to motivate more

research in this area, all developed code and data artifacts are

publicly available at: https://debloating.com.
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Table 8: Comprehensive list of tutorials collected from the first two

pages of Google search results

phpMyAdmin

A https://www.siteground.com/tutorials/phpmyadmin/

A https://www.reg.ca/faq/PhpMyAdminTutorial.html

A https://www.w3resource.com/mysql/administration-

tools/phpmyadmin-tutorial.php

A https://code.tutsplus.com/tutorials/installing-and-using-phpmyadmin-

for-web-development–cms-21947

A https://www.homeandlearn.co.uk/php/php12p2.html

A https://www.wpbeginner.com/beginners-guide/beginners-guide-to-

wordpress-database-management-with-phpmyadmin/

A http://members.ipage.com/knowledgebase/read article.bml?kbid=5923

A https://www.digitalocean.com/community/tutorials/how-to-install-

and-secure-phpmyadmin-on-ubuntu-16-04

A https://www.fastwebhost.com/tutorials/knowledge-

base/phpmyadmin-tutorial-administration-2/

A https://www.tutorialspoint.com/cpanel/cpanel phpmyadmin.htm

A https://www.w3schools.com/php/php mysql intro.asp

A https://pimylifeup.com/raspberry-pi-mysql-phpmyadmin/

A https://www.webhostface.com/kb/knowledgebase/mysql-search-

replace/

A https://www.eukhost.com/web-hosting/phpmyadmin.php

MediaWiki

A https://www.siteground.com/tutorials/mediawiki/

A http://helpwiki.evergreen.edu/wiki/index.php/Mediawiki Tutorial

A https://lifehacker.com/5396832/customize-mediawiki-into-your-

ultimate-collaborative-web-site

A https://hepmdb.soton.ac.uk/wiki/images/0/0b/Open4a-Getting-

Started-with-mediawiki.pdf

A https://www.fastwebhost.com/tutorials/cat/mediawiki-tutorial/

A https://www.semantic-mediawiki.org/wiki/Help:Getting started

A https://www.inmotionhosting.com/support/edu/mediawiki/getting-

started-mediawiki

A https://www.hostknox.com/tutorials/mediawiki/installation

A https://www.digitalocean.com/community/tutorials/how-to-install-

mediawiki-on-ubuntu-14-04

A https://computers.tutsplus.com/tutorials/how-to-build-your-own-

wiki–cms-19772

A https://www.tmdhosting.com/tutorials/mediawiki/how-to-backup-

mediawiki.html

Magento

A https://www.tutorialspoint.com/magento/

A https://www.siteground.com/tutorials/magento/

A https://blog.magestore.com/magento-tutorial/

A https://www.cminds.com/the-ultimate-beginners-guide-to-magento/

A https://code.tutsplus.com/articles/from-beginner-to-advanced-in-

magento-introduction-installation–cms-21969

A https://www.simicart.com/blog/best-magento-tutorial-resources-

beginner/

A https://www.cloudways.com/blog/magento/

A https://magenticians.com/

A https://www.mageplaza.com/kb/magento-2-tutorial/

A https://devdocs.magento.com/guides/m1x/magefordev/mage-for-dev-

1.html

A https://u.magento.com/

A https://stuntcoders.com/magento-tutorials/magento-tutorial-for-

beginners/

WordPress

A https://codex.wordpress.org/WordPress Lessons

A https://www.000webhost.com/wordpress-tutorial

A https://wpapprentice.com/wordpress-tutorial/

A https://premium.wpmudev.org/blog/a-wordpress-tutorial-for-

beginners-create-your-first-site-in-10-steps/

A https://ithemes.com/tutorial/category/wordpress-101/

A https://easywpguide.com/wordpress-manual/

A https://www.siteground.com/tutorials/wordpress/

A https://www.tutorialspoint.com/wordpress/

A https://www.hostinger.com/tutorials/wordpress/

Table 9: Comprehensive list of mapped CVEs and whether vulnerable

files, functions or lines were triggered based on our usage profiles. Grey

rows indicate CVEs located in modules that are, by default, disabled.

phpMyAdmin

# CVE Ver.
Vulnerability Triggered

Affected Functionality
Files Functions Lines

1 CVE-2013-3238 4.0.0 ± NA Ï Rename table using Regex

2 CVE-2013-3240 4.0.0 ± ± ± Plugins

3 CVE-2014-8959 4.0.0 Ï Ï Ï GIS Editor

4 CVE-2016-6609 4.0.0 ± Ï Ï Export as phparray

5 CVE-2016-6619 4.0.0 ± Ï Ï Recent tables

6 CVE-2016-6620 4.0.0 Ï Ï Ï Table tracking

7 CVE-2016-6628 4.0.0 Ï Ï Ï Create charts

8 CVE-2016-6629 4.0.0 Ï Ï Ï Configuration option

9 CVE-2016-6631 4.0.0 Ï Ï Ï Create transform plugins

10 CVE-2016-6633 4.0.0 ± Ï Ï Import ESRI shape file

11 CVE-2016-9866 4.0.0 ± NA Ï User preferences

12 CVE-2016-5703 4.4.0 ± Ï Ï Central columns

13 CVE-2016-5734 4.4.0 ± Ï Ï Table search using Regex

14 CVE-2016-6616 4.4.0 Ï Ï Ï User groups

15 CVE-2017-1000017 4.4.0 ± ± Ï Replication

16 CVE-2016-6606 4.6.0 ± ± ± Authentication cookies

17 CVE-2016-6617 4.6.0 ± Ï Ï Export templates

18 CVE-2016-9849 4.6.0 ± ± ± Authentication

19 CVE-2016-9865 4.6.0 ± NA Ï Core deserialization

20 CVE-2017-1000499 4.7.0 ± ± ± Navigation tree

MediaWiki

21 CVE-2013-2114 1.19.1 ± Ï Ï File upload from chunks

22 CVE-2013-6453 1.21.1 ± Ï Ï Verify uploaded file

23 CVE-2014-1610 1.21.1 ± Ï Ï PDF Upload

24 CVE-2014-2243 1.21.1 ± ± Ï User settings

25 CVE-2014-5241 1.21.1 ± Ï Ï JSON Output formatter

26 CVE-2014-9277 1.21.1 ± Ï Ï Flash policy output

27 CVE-2014-9276 1.23.0 ± ± ± Expand templates

28 CVE-2015-2936 1.24.0 ± ± ± Authentication

29 CVE-2015-2937 1.24.0 Ï Ï Ï XMP data reader

30 CVE-2015-6728 1.24.0 ± Ï Ï Get watchlists through API

31 CVE-2015-8002 1.24.0 ± Ï Ï File upload from chunks

32 CVE-2015-8003 1.24.0 ± Ï Ï File upload API

33 CVE-2015-8623 1.24.0 Ï Ï Ï User object

34 CVE-2015-8624 1.24.0 Ï Ï Ï User object

35 CVE-2017-0370 1.24.0 ± ± ± Markup parser (blacklist)

36 CVE-2017-0362 1.28.0 ± ± ± Track pages

37 CVE-2017-0363 1.28.0 ± ± ± Search

38 CVE-2017-0364 1.28.0 ± ± ± Search

39 CVE-2017-0367 1.28.0 ± ± ± Localization cache

40 CVE-2017-0368 1.28.0 ± ± ± System messages

41 CVE-2017-8809 1.28.0 ± ± ± APIs and RSS

Magento

42 CVE-2015-1397 1.9.0 ± ± ± Prepare SQL condition

43 CVE-2015-1398 1.9.0 ± ± Ï OAuth & XML modules

44 CVE-2015-1399 1.9.0 ± ± ± Actions predispatch

45 CVE-2015-8707 1.9.0 ± Ï Ï Password reset

46 CVE-2016-2212 1.9.0 ± Ï Ï Order status RSS

47 CVE-2016-4010 2.0.5 ± ± ± Shopping cart

48 CVE-2016-6485 2.0.5 ± ± ± Cryptography functions

49 CVE-2018-5301 2.0.5 Ï Ï Ï Delete customer address

WordPress

50 CVE-2014-5203 3.9 ± ± Ï Widget customization

51 CVE-2014-5204 3.9 ± ± ± CSRF token verification

52 CVE-2014-5205 3.9 ± ± ± CSRF token verification

53 CVE-2018-12895 3.9 ± ± ± Delete post thumbnail

54 CVE-2015-2213 4.0 ± ± ± Untrash comment

55 CVE-2017-14723 4.0 ± ± ± Prepared queries

56 CVE-2014-9033 4.0 ± ± Ï Password reset

57 CVE-2014-9037 4.0 ± ± ± Password hashing library

58 CVE-2016-6635 4.0 ± Ï Ï Ajax compression test

59 CVE-2014-9038 4.0 ± ± ± HTTP request API

60 CVE-2015-5731 4.2.3 ± ± Ï Admin panel

61 CVE-2016-7169 4.6 ± ± Ï Sanitize uploaded file name

62 CVE-2017-17091 4.6 ± NA Ï Create new user

63 CVE-2017-5492 4.7 ± ± ± Admin screen API, widgets

64 CVE-2017-9064 4.7 ± ± ± Admin file system operations

65 CVE-2018-10101 4.7 ± ± ± HTTP request API

66 CVE-2018-10100 4.7 ± NA Ï Login

67 CVE-2017-6815 4.7 ± ± ± Redirect URL validation

68 CVE-2017-5611 4.7.1 ± ± ± Query helper

69 CVE-2017-16510 4.7.1 ± Ï Ï Prepared queries


