
Monitoring Hyperproperties by Combining
Static Analysis and Runtime Verification

Borzoo Bonakdarpour1, Cesar Sanchez2, and Gerardo Schneider3

1 McMaster University, Canada, borzoo@mcmaster.ca
2 IMDEA Software Institute, Spain, cesar.sanchez@imdea.org

3 University of Gothenburg, Sweden gerardo@cse.gu.se

Abstract. Hyperproperties are properties whose reasoning involve sets of
traces. Examples of hyperproperties include information-flow security prop-
erties, properties of coding/decoding systems, linearizability and other con-
sistency criteria as well as privacy properties like data minimality. We study
the problem of runtime verification of hyperproperties expressed as Hyper-
LTL formulas that involve quantifier alternation. We first show that even for
a simple class of temporal formulas, virtually no ∀∃ property can be moni-
tored, independently of the observations performed. To manage this problem,
we propose to use a combination of static analysis with runtime verification.
By using static analysis/verification, one typically obtains a model of the
system that allows to limit the source of “hypothetical” traces to a sound
over-approximation of the traces of the system. This idea allows to extend
the effective monitorability of hyperproperties to a larger class of systems
and properties. We exhibit some examples where instances of this idea have
been exploited, and discuss general applications of the principle. A second
contribution of this paper is the idea of departing from the convention that
all traces come from executions of a single system. We show cases where
traces are extracted by the observed traces of agents, by projections of a
single global trace, or by executions of different (but related) programs.

1 Introduction

In this paper, we study how to monitor hyperproperties [17], in particular ∀∃
and ∃∀ fragments of the temporal logic HyperLTL [16]. A monitor is a piece of
software that observes and analyzes execution traces of a said monitored system
under analysis. In particular, we are concerned with runtime verification, that
aims to determine whether the given monitored program satisfies a pre-defined
property expressed in a behavioral specification language. Monitors may analyze
the executions of the program online (while the program is running) or offline
(the execution traces of the program are collected and analyzed a-posteriori)4. In
runtime verification, the monitor is generated automatically from the property,

4 The definition of offline monitoring also includes when traces are obtained from
other sources than the program running in its real environment (e.g., in a simulation
environment, or traces not coming from the real program but from a model for
instance).

written in a formal language, usually as a logical formula or as an automaton.
As in testing, runtime verification may be black box or white box, depending on
whether the monitor can only observe the behavior of the system (the input-
ouput events or states), or whether the monitor has additionally access to the
internals of the monitored program.

In the context of trace logics (where properties can be evaluated indepen-
dently on each individual trace) it is known that not all properties are moni-
torable, because the monitors can only observe finite prefixes of executions. Mon-
itorability means that there exits a monitor that can declare correctly whether
the property is permanently satisfied or violated in all future extensions of the
observed prefix traces. Previous results in trace logics show how to build monitors
for some combinations of safety and co-safety properties. Formalisms proposed
for generating monitors include LTL adapted for finite paths [8, 21, 26], regu-
lar expressions [40], rule based languages [6], rewriting [37], streams [19] and
automata [18].

In this paper we study a richer class of properties called hyperproperties [17],
that is, properties that are defined over a set of sets of traces instead of over
set of traces. Many security properties, like information-flow properties such as
non-interference, are hyperproperties. In particular, many of the common and
interesting security properties are 2-safety hyperproperties [17], meaning that it
can be expressed using universal quantification over pairs of finite traces. Moni-
toring hyperproperties requires to collect and reason about multiple finite runs,
and not only a single run under scrutiny. As with trace logics, there is a source
of uncertainty because the traces under observation are finite and correspond
to a prefix of execution. However, in monitoring hyperproperties there is an
additional source of imperfect observability, because if the collection of traces
is approximated dynamically by the traces executed, it is possible that the set
contains also traces that have not observed.

It has been shown that it is possible to construct monitors for ∀∀ hyper-
properties if the temporal formula is restricted to safety [1, 10, 24], where some
limitations of monitorability are also explored. In particular, one cannot, in gen-
eral, determine at runtime whether a ∀∀ property is satisfied because this may
require to obtain all possible executions of the system. However, one can monitor
∀∀ safety properties for violations.

In this paper, we show that ∀∃ (and ∃ ∀) are not monitorable in general. Then,
we explore new ideas on how to monitor properties of the form ∀∃ by using a grey
box approach, that is by exploiting certain information we have about the system
to perform the monitoring task. This additional information can be present as a
model or specification of the system under analysis, which soundly approximates
the set of runs of the actual system. We identified at least two different cases on
how to use such models depending on their nature: (i) when the model is the
formal specification of the ideal (expected) behavior of the program; (ii) when
the model is extracted statically from the given program. These models can
be used as a kind of oracle to instantiate one of the quantifiers of the specified
property. Consider, for example, the goal of detecting violations of a ∀∃ property.

2

The first step is to complement the property and detect satisfactions of the ∃∀
dual property. Then, at runtime, one can use the observed trace as a prefix
of a witness for the outermost quantifier (the ∃ quantifier), and use the model
to then safely check whether all traces satisfy the temporal relational formula.
If the model indeed over-approximates the actual set of traces of the system,
this approach can monitor violations of the ∀∃ property. Then, the approach we
propose reduces the monitoring activity to efficiently check the model at runtime.
We exhibit in this paper examples where bounded model checking could be used,
and others where symbolic execution and SAT solvers may be used. We also
discuss directions for developing solutions with general applicability.

Finally, we depart from the standard view of hyperproperties, where traces
that can instantiate the quantifiers are traditionally taken from the set of exe-
cutions of the very same program (that is, from the program being monitored).
Here, we generalize this view allowing different quantifiers to be instantiated
with traces from different “trace sets”. One particular case is the monitoring
approaches sketched above where one set of traces is taken from the execution of
the system under observation, while the other set of traces are runs of the model.
Other instances are possible, and we discuss some in this paper. For example, if
different quantifiers can be instantiated with the observations of different pro-
cess, nodes or agents, many properties of concurrent and distributed systems
(e.g., mutual exclusion) can be viewed as hyperproperties. We argue that this
interpretation makes sense in practice, as the traces coming from the different
(distributed or concurrent) processes are not always available at the same time
to compute a global trace view, or they are simply not available because we only
have access to the local information of a given process.

The rest of the paper is organized as follows. Section 2 presents the challenges
faced when monitoring hyperproperties, particularly when ∀∃ properties are con-
sidered. Section 3 presents examples of hyperproperties and how the approach
of instantiating quantifiers with different trace sets can lead to hyperproper-
ties. Section 4 elaborates on the idea of combining static and dynamic analysis
for monitoring two concrete hyperproperties, namely, linearizability and data
minimization. Section 5 outlines potential techniques to monitor more general
fragments of HyperLTL formulas. Finally, Section 6 presents related work and
Section 7 concludes.

2 The Challenge of Monitoring Hyperproperties

In this section, we discuss the notion of monitorability in runtime verification of
trace properties and of hyperproperties.

2.1 Monitoring Trace Properties

We first revisit monitorability of trace properties. We focus on LTL [28, 34]
as a representative language. Let u be a finite execution trace and ϕ be an
LTL formula. If all infinite traces extending u satisfy ϕ, then we say that u

3

permanently or inevitably satisfies ϕ. Similarly, if all infinite extensions of u
violate ϕ, then we say that u permanently violates ϕ. Monitoring consists on
declaring, whether u permanently satisfies or permanently violates ϕ, or none.
The latter occurs when there exists a future extension to u that satisfies ϕ and
another future extension of u that violates ϕ. For instance, consider the LTL
formula ϕ = aU b and the finite trace u = aaa. This trace can be extended
to trace u′ = aaab, which permanently satisfies ϕ, or can be extended to u′′ =
aaa(¬a ∧ ¬b), which permanently violates ϕ.

Pnueli and Zaks [35] characterize an LTL formula ϕ as monitorable for a
finite trace u, if u can be extended to another finite trace that can be evaluated
as a satisfying or violating execution with respect to ϕ at run time. We call
the extension uσ of an observation u a trace extension. For example, the LTL
formula p is monitorable, since every finite trace u can be extended to one
of the form u · · · p · · · , i.e., a finite trace in which p has become true. On the
contrary, formula p is not monitorable, because there is no way to tell at
run time whether or not in the future p will be visited infinitely often.

The above discussion clarifies the challenges in RV for LTL formulas: mon-
itoring an LTL formula boils down to determining the verdict of the formula
for a finite trace with an eye on the possible future extensions. Consequently,
a system can be monitored in a black box manner with respect to a rich class
of LTL formulas. In LTL monitoring, the monitor only needs to observe a sin-
gle evolving trace of the system without having access to the code. In the next
subsection, we show that this is not the case for hyperproperties.

2.2 Monitoring Hyperproperties

We focus now on HyperLTL [16] as a representative language for hyperproperties.
Consider the HyperLTL formula:

ϕ1 = ∀π.∀π′.(aπ ↔ aπ′)

Intuitively, this formula requires that for any instantiation of trace variables π
and π′, say to concrete traces u and u′, the value of proposition a in the i-th
position of u should agree with the value of a in the i-th position of u′. For
example, let u = (¬a)(¬a)(a)(¬a)(a) and u′ = (¬a)(a)(a)(¬a)(a). This pair
of finite traces permanently violates ϕ because u and u′ do not agree on a in
the second position of the traces. Thus, if a HyperLTL formula ϕ that is only
universally quantified and the inner LTL formula is monitorable for violations
(for traces of pairs of states) then ϕ can be monitored for violations. Declaring
satisfaction for such a formula requires, in principle, examining all traces, which
essentially becomes infeasible at run time. Even if the monitor could decide that
for all trace extensions of pairs of traces seen, the inner property holds, it cannot
know whether offending pairs of traces can be potentially emitted by the system.
Dually, for an existential HyperLTL formula only satisfaction can be detected
(and the inner formula is required to be monitorable for satisfaction).

Consider now the following HyperLTL formula with one quantifier alternation

ϕ2 = ∀π.∃π′.(aπ ↔ ¬aπ′)

4

and consider the same traces u = (¬a)(¬a)(a)(¬a)(a) and u′ = (¬a)(a)(a)(¬a)(a).
These traces do not satisfy the inner temporal formula, that is (u, u′) perma-
nently violates (aπ ↔ ¬aπ′). However, this fact alone is not a witness for a
violation of ϕ2. For instance, a trace u′′ = (a)(a)(¬a)(a)(¬a) is (at least as a
prefix) a perfect witness for ∃π′. A formula like ϕ2 can never be declared per-
manently satisfied or violated, simply because at run time, it is not possible to
tell whether for all traces, there exists another trace that satisfies the inner LTL
formula. Thus, in addition to challenges of LTL monitoring, HyperLTL moni-
toring involves reasoning about quantified traces and future extensions not just
in length, but also the observed set of traces. Agrawal and Bonakdarpour [1]
defined monitorability of HyperLTL as follows:

A HyperLTL formula ϕ is monitorable for violation if every finite set U of
finite traces can be extended to another finite set of finite traces U ′ (both by
extending traces in U and by adding new traces) that guarantees that every
extension of U ′ violates ϕ.

The definition for monitorability for satisfaction is analogous. An important
limitation of this definition (and the work in [1]) is that the technique is restricted
to the alternation-free fragment, that is, to formulas of the form ∀∀ or formulas
of the form ∃∃. Extending this notion of monitorability is infeasible in general
for ∀∃ properties, even for the simplest temporal properties. We sketch now a
very general result about the impossibility of monitoring ∀∃ hyperproperties.

Consider a (relational) state predicate P (x, x′) on two copies of variables.
The intuition of such a predicate P is to represent a relational invariant between
the corresponding states in two traces. Without loss of generality, assume that
P is such that for every valuation u there is a valuation u′ that makes P (u, u′)
true. Also, assume that if one plugs the same valuation v to x and x′, the
predicate P (v, v) is false (we call such P an irreflexive relational predicate).
This latter constraint is not a restriction as every predicate P can be extended
into (P ∧ (b↔ ¬b′)) for a fresh Boolean variable b. We claim that the following
formula is not monitoriable

ψ = ∀π∃π′.P (xπ, xπ′)

Consider an arbitrary finite observation U , collected by the monitor. We
show that U has a model Ugood (set of infinite traces) that violates ψ and an
extensionUbad that satisfies ψ. Since the monitor cannot distinguish which of the
two the system can generate, the monitor cannot declare a conclusive verdict.

– We first show that U can be extended to a counterexample Ubad that violates
ψ. Assume that all traces in U have the same length (otherwise simply add
arbitrary padding states to the shorter traces). Then, create U ′ by adding
the same state a extending every observed trace in U . Since P (a, a) is false,
every pair of traces in U falsifies P (xπ, xπ′). The set Ubad is obtained
by extending U ′ to infinite traces arbitrarily. This shows that ψ cannot be
monitored for satisfaction because every observation U can be extended to
a counterexample.

5

– We show now that U can be extended to a model Ugood that satisfies ψ, by
taking the universal set Ugood = Σω (the set of all infinite traces). It is easy
to see that the universal set satisfies ψ as every trace σ has a corresponding
trace σ′ that satisfiesP (xπ, xπ′). One can simply make, for all positions i in
the trace, σ′(i) the assignment to the state variables that make P (σ(i), σ′(i)
true. This shows that ψ cannot be monitored for violations because very
observation U can be extended to a model.

Since ψ cannot be monitored for violation or for satisfaction, ψ is not moni-
torable.

The above discussion illustrates a challenge in RV for HyperLTL formulas:
monitoring a HyperLTL formula boils down to determining the verdict of the
formula for a finite set of finite traces with an eye on the future extensions in both
size and length. Consequently, HyperLTL monitoring cannot be implemented
as a black box technique for virtually all formulas with quantifier alternations.
Thus, we advocate for the development of grey box techniques, where the monitor
observes a set of traces at run time, and can use some static information about
the system under observation to narrow down the class of plausible systems (in
order to be able to determine the verdict). In this paper, we argue that such
approximation is possible by using static analysis/verification techniques.

3 Examples of Hyperproperties

We show here examples of hyperproperties, some of which are ∀∀, others are ∀∃,
and one ∀∀∃. Some of these hyperproperties follow the “standard” viewpoint
in which traces are alternative executions of a single system under observation
(Section 3.1). Others, however, are obtained by taking a different point of view
(Section 3.2): different quantifiers can be instantiated with traces from different
systems, or from different components of a running system (e.g., the traces of
execution of two threads).

3.1 Classic Examples

In this subsection, we present requirements that are inherently hyperproperties
regardless of how execution traces are collected.

Information-flow Security Information-flow security properties stipulate how
information may propagate from inputs to outputs. Such policies may belong to
alternation-free as well as alternating HyperLTL formulas. For example, let the
observable input to a system be the atomic proposition i and the output the
atomic proposition o. Then, observational determinism can then be expressed as
the following alternation-free HyperLTL formula:

ϕobs = ∀π. ∀π′. (iπ ↔ iπ′) → (oπ ↔ oπ′),

6

This formula establishes that if two traces π and π′ agree globally on i, then they
must also globally agree on o. Following the discussion in Section 2, formula ϕobs

can be monitored to detect violations, but not satisfaction. On the contrary,
Goguen and Meseguer’s noninterference stipulates that, for all traces, the low-
observable output must not change when all high inputs are removed:

ϕgmni = ∀π.∃π′.(λπ′) ∧ (oπ ↔ oπ′)

where λπ′ expresses that all of the secret inputs in the current state of π′ have
dummy value λ, and o denotes publicly observable output propositions. GMNI is
clearly an alternating formula and following the discussion in Section 2 cannot be
monitored using a blackbox technique. We refer the reader to [9] for examples
of security properties that result in HyperLTL formulas with more quantifier
alternations.

Linearizability Informally, linearizability is a consistency model for concurrent
data structures and distributed transactions and establishes that every concur-
rent execution of a given datatype is observationally equivalent to a sequential
execution of the same datatype (or of a specified datatype like a list, set, stack,
etc). Here, observationally equivalent means that all values returned by meth-
ods of the datatype when executed concurrently are the same values returned
by some sequential execution of the same client behavior. Similarly, sequential
execution means that each method invocation is run to completion atomically
and uninterruptedly once the internal execution of the method starts. Formally,
linearizability is a hyperproperty of the form:

ϕlz = ∀π.∃π′.Seq(π′) ∧ Obs(π, π′) (1)

The first observation in (1) is that for trace variables π and π′ to be obser-
vationally equivalent (as denoted by Obs(π, π′)) the instructions that threads
execute outside an invocation to the datatype or internally within the body of
the dataype are not visible. Only the execution of calls and returns are visible,
and Obs(π, π′) claim that these events are identical in both traces.

3.2 Hyperproperties Obtained by Different Source of Traces

Properties of Concurrent and Distributed Systems Consider the well-
known mutual exclusion requirement, where two processes cannot be in the crit-
ical section at the same time. This requirement is a safety trace property and
can be expressed in LTL by the following formula:

(¬cs1 ∨ ¬cs2),

where csi for i ∈ {1, 2} indicates that process i is in the critical section. This
formula expresses mutual exclusion over the global states of the system. However,
in many concurrent and distributed systems, traces are collected from individual

7

processes or computing cores because in some circumstances it is not easy or
even possible to construct interleaved traces. This way, it is more convenient
to express a requirement such as mutual exclusion as a hyperproperty where
traces correspond to local executions. Thus, mutual exclusion can be expressed
in HyperLTL by formula

ϕme = ∀π.∀π′.(¬csπ ∨ ¬csπ′),

where π and π′ are traces collected from two different processes, cores, or threads.
A similar example is data races. A data race happens when there are two

memory accesses (at least one being a write) performed concurrently by two
threads, to the same location and that are not protected by synchronization
operations. For a given memory location, this property can be expressed as a ∀∀
property where traces are the local executions of the threads.

Some examples of ∀∃ properties in the setting of concurrent and distributed
systems include the following:

– Egalitarian schedulers. Some problems in distributed systems can only be
solved by breaking symmetries, like for example to exploit in a predictable
way that process identifiers are ordered. However, one may wish that the
system does not penalize a process unnecessarily (which for example could
cause starvation). One way to express that a scheduler or resource manager
does not unnecessarily favor a process over another is to express that for
all excutions (of the system) there is an alternative execution (of the same
system), where the actions taken by the scheduler to brake symmetries are
reversed.

– Reads preceded by writes. For any trace with a read on a given register,
there must exist a trace with a write on that register performed in a previous
moment.

– Resource waiting. If a process is blocked waiting for a resource, then there
must exist another process that acquired that resource in the past and still
holds the resource at the time the first process is waiting for it.

Data Minimization We present now another instance of alternating hyper-
properties from a different context, namely privacy. According to the Article 5 of
the General Data Protection Regulation proposal (GDPR) “Personal data must
be [. . .] limited to what is necessary in relation to the purposes for which they
are processed” [23].5 The above is usually called the data minimization princi-
ple. Though data minimization is about both the collection and the processing
of data, we are here only concerned with the former. In particular, we are taking
the point of view of Antignac et. al. [2, 3], where the concept of data minimizer
has been defined as a pre-processor that filters the input of the given program
in such a way that the functionality of the program does not change but the

5 The General Data Protection Regulation (EU —2016/679) was adopted on 27 April
2016, and it will enter into application 25 May 2018.

8

program only receives data that is necessary and sufficient for the intended com-
putation. From there they derived the concept of data minimization and they
showed how to obtain data minimizers for both the monolithic case (only one
source of input) and the distributed case (more than one, independent, source of
inputs). Note that the setting is for deterministic (functional) programs, and the
different definitions are based only on the observable behavior relating inputs
and outputs.

Results concerning the monitoring of violations of data minimization (i.e.,
non-minimality) for the monolithic case and the so-called strong distributed
minimality has been studied in [32, 33], so we will only focus here in case of
(“weak”) distributed minimality as this is a ∀∀∃ hyperproperty.

We now give a formal definition of distributed minimality as a hyperproperty.
The definition is essentially equivalent to the one in [32] but rephrased to be
consistent with the temporal style of HyperLTL6. We compare (terminating)
funcions with n parameters. We view a run of the funcion as a sequence of states,
where the state predicate end denotes that the trace reaches the function final
state and halts. In order to extend terminating executions to infinite traces, we
repeat the halting state ad infinitum. We consider the state variables in1, . . . , inn
to represent the inputs to the function, and the variable o which represents
the output, assigned once the function has been computed. We introduce the
following auxiliary predicates

output(π, π′) :
(

end(π) ∧ end(π′) ∧ o(π) = o(π′)
)

The predicate output establishes that the functions represented by the two traces
terminate, and that the computed output is the same. Similarly, we define

differj(π, π
′) : inj(π) 6= inj(π

′) almostj(π, π
′) :

∧
k 6=j

ink(π) = ink(π′)

The predicate differj establishes that the inputs to the function are different
in the parameter j, and almostj that the input to the function agree on all
parameters except possibly on j. Now we can define distributed minimality for
input j as:

ϕjdm : ∀π.∀π′.∃π′′.

output(π, π′)
∧

differj(π, π
′)

→
 almostj(π, π

′′)
∧

¬output(π, π′′)

and finially distributed minimality as

ϕdm :
∧

j=1..n

ϕjdm.

6 A stronger version of distributed minimality, which is a ∀∀ hyperproperty, is given
in [33].

9

Example 1 (From [32]). Consider the function OR : B× B→ B function, which
was shown not to be monolithic minimal [2, 3]. This function is distributed-
minimal. We have two input sources I1 and I2 both of sort B. For the first input
source, for each possible pair of distinct values in that position (that is (0,)
and (1,)), we can find satisfactory input tuples yielding different results (e.g.,
((0, 0), (1, 0)) since OR(0, 0) 6= OR(1, 0)).7 Similarly, for input source 2, for each
possible pair of distinct values in that position ((, 0) and (, 1)), we have that
the tuples (0, 0) and (0, 1) satisfy the definition (OR(0, 0) 6= OR(1, 0)). ut

Distributed non-minimality is simply the negation of the above formula, and
thus a ∃∃∀ formula. As previously discussed, none of these properties (distributed
minimality and its negation) are monitorable in a black-box fashion.

4 Monitoring with the Aid of Static Verification.
Examples

We present two practical case studies that exploit static information to perform
monitoring of specific hyperproperties.

4.1 Monitoring Linearizability

We propose the following combination of static and runtime verification to mon-
itor linearizability violations:

1. First, the code of the concurrent datatype is statically verified to satisfy the
pre-post specification of the programming abstraction that the datatype is
meant to implement, under the assumption of sequential invocations. This
activity can be performed with mature deductive verification techniques for
sequential programs, using for example the KeY infrastructure for Java pro-
grams.

2. Then, at runtime, a monitor receives events about calls and returns from
concurrent clients that exercise the concurrent datatype. This monitor ex-
haustively explores the set of possible sequences of atomic executions (using
the specification) that are observationally equivalent to the visible events in
the observed concurrent trace.

We illustrate this approach with a concrete example, the Trieber stack [41].
It is easy to prove using state-of-the-art deductive verification that the code in
Fig. 1—when executed sequentially—implements a stack. Then, at runtime, the
monitor we propose works as follows.
1. The monitor maintains a set of possible states that the datatype may be into.

In our example, the state will be concrete stacks. Additionally, the state of
the monitor also contains two sets:

7 Note that the pair ((0, 1), (1, 1)) would not satisfy the definition, but this is fine as
the definition only requires that at least one such tuple exists.

10

void push (Item e) {

Node * new_hd = new Node(e);

Node * hd;

do {

hd = top.get();

new_hd->next = hd;

}

while (!CAS(top, hd, new_hd);

}

Item pop () {

Node * hd;

Node * new_hd;

do {

hd = top.get();

if (hd == null) {

return null;

}

new_hd = hd.next;

}

while (!CAS(top, hd, new_hd);

return hd.item;

}

Fig. 1. Trieber stack implementation

– Pending operations of the form (t, f, args), where t is a thread identifier,
f the name of the method that t is executing and args is the arguments
to the method;

– Operations effectively executed but not yet returned, stored as (t, f, val)
where t and f are as above, and val is the returned value.

Each tuple (State,Pending,Executed) is a plausible state of the monitor,
where State represents the state of the stack, Pending represents the pending
operations, and Executed the operations that were performed effectively on
the object but whose return have not been observed yet.

2. The initial state of the monitor is the empty stack with no pending or exe-
cuted operations. This is the only plausible initial state.

3. When an operation invocation occurs in the observed trace, denoted by the
execution of the instruction that calls the method from the calling thread,
every plausible state maintained by the monitor is extended by adding the
invoked operation to its pending set.

4. When an operation finishes in the observed trace, as observed by the return
instruction being executed, the monitor computes—for each plausible state—
the following possible successors. A successor consists on executing, in some
order, a subset of the pending operations followed by the observed operation.
The output of the observed operation must be equal to the observed value,
otherwise the successor does not correspond to the observed outcome and it
is removed from the plausible set.

If, at some point the set of plausible states is empty, then there is a violation of
linearizability. For example, consider the following execution:

call(push,a)
t1

t2

ret(push)

call(pop)

call(push,b) ret(push)

ret(pop,a) call(pop) ret(pop,b)

11

The state of the monitor after the event “call(push,b)” executed by thread t1
will be 〈(a), {(t2, pop), (t1, push, b)}, ∅〉. This state reflects that the stack contains
only a and that there are two pending operations. After the observable event
“ret(push)” is executed, the monitor computes the following plausible states:
〈(b : a), (t2, pop), ∅〉 and 〈(b), ∅, (t2, pop, a)〉 Only later, when the pending pop
operation is observed to return an a, the first plausible state is descarded by the
monitor because executing the pop from state (b : a) would return b and not a.

Consider now an incorrect implementation of the CAS (compare-and-swap)
operation that is non-atomic. In this case, the following execution could be gen-
erated (hint: thread t2 is preempted in the middle of the CAS operation):

call(push,a)
t1

t2

ret(push)

call(pop)

call(push,b) ret(push)

ret(pop,a) call(pop) ret(pop,null)

In this case, the monitor would raise a violation of linearizability as none of
the two plausible states can lead to the event “ret(pop,null)” by t2.

4.2 Monitoring Data Minimization

We now present a second example based on detecting violations of data mini-
mization. In [2, 3] Antignac et. al. provided a white-box approach to statically
synthesize a minimizer for the different notions of data minimization. The prob-
lem of finding a minimizer is undecidable in general, and thus the approach only
works for very specific cases. In a nutshell, the approach consists in extracting
the symbolic execution tree of the program under consideration and applying a
SAT solver to the constraints given by such a symbolic tree by making a conjunc-
tion with the different possible outputs. Unfortunately, the approach does not
scale. First, the symbolic execution is in general a coarse over-approximation
of the real behavior unless the user provides more precise annotations in the
form of pre- and post-conditions and invariants. Second, if the output domain is
infinite or it is too big, it is not feasible to expect the SAT solver to terminate
in a reasonable time.

We now sketch how this approach, apart from being interesting from a the-
oretical perspective can be integrated into a runtime environment in order to
increase the possibility of detecting violations to minimality via monitoring. Let
us assume a program P which for the sake of simplicity of presentation we assume
has three different inputs from different sources, that is P : I1 × I2 × I3 → O.
We also assume that we have a model of P in the form of its symbolic tree and
that we have access to a SAT solver which is called with the program’s symbolic
tree as well as concrete inputs and outputs obtained from observed executions.
We call M the module executing the solver over the symbolic tree and the in-
put/output pairs given at run time. Roughly speaking, our approach would work
as follows:

12

1. After each execution of P, M gets the input/output pair 〈(i1, i2, i3), o〉.
2. M (symbolically) executes such a pair and puts it as belonging to a given

partition characterizing the inputs for the first input giving the same output.
3. Whenever an execution with a different value for the first input parameter is

found but with the same output as a previous execution, thenM is called in
order to find out whether there are values for the other two input parameters
giving a different output. If this is the case, then nothing can be said yet. If
such values cannot be found, then distributed minimization is violated.
The above process is in fact executed for each input (this could be done in

parallel) as the definition is symmetric with respect to all the input entries.

5 Towards Covering More General HyperLTL Fragments

We now sketch a direction to systematically generalize the previous examples to
a wider range of properties and systems.

5.1 Predictive Semantics for LTL

Employing static analysis and verification techniques in order to enhance RV has
been investigated before. For example, in [43], static analysis is introduced to al-
low predictive semantics to the 3-valued LTL, where LTL formulas are evaluated
not only with respect to a runtime finite trace, but also by assistance from an
abstract model of the system under inspection. The predictive semantics aim at
anticipating whether the satisfaction or violation of the specification is inevitable
in all continuations of the trace for the giving abstract model, even when the
observed execution by itself does not imply the inevitable verdict for all trace
extensions. More specifically, let u be a finite trace and P be a program under
inspection with respect to an LTL formula ϕ. Recall that the 3-valued semantics
of LTL prescribe that if any future extension of u satisfies (respectively, violates)
ϕ, then u permanently satisfies (respectively, violates) ϕ. Realistically, the future
extensions of interest should only be the possible continuations of u that P can
generate. One efficient way to reason about all future extensions of u in P is to
compute an over-approximate abstract model of P (denoted P̂) and then check,

given u, whether or not for all infinite extensions σ of u in the trace set of P̂ ,
uσ |= ϕ holds. If it is indeed the case that uσ |= ϕ, then we are guaranteed that

u permanently satisfies ϕ, as the trace set of P̂ subsumes the trace set of P .
Similarly, if for all extensions σ, we have uσ 6|= ϕ, then we can conclude that u
permanently violates ϕ.

5.2 The ∃∀ and ∀∃ Fragments

As discussed in Section 2, most non-trivial alternating HyperLTL formulas are
non-monitorable, unless we are able to have additional information about the
sytem (white- or grey-box approach). We now sketch a potential grey-box ap-
proach inspired by the predictive semantics of LTL to monitor HyperLTL for-
mulas. Let P be a program, ϕ = ∃π.∀π′.ψ be a HyperLTL formula, and u be a

13

finite execution trace obtained at run time. In order to monitor P with respect
to ϕ, it is sufficient to answer the following decision problem:

Is there an extension σ of u, such that
for all executions τ of P , (uσ, τ) |= ψ?

(∗)

One possibility is to use a model-checker to perform the necessary state
exploration. Intuitively, the model to be verified is the cross product of u with an
over-approximate abstract model P̂ in a way similar to self-composition [7]8. Let
us denote this new model by P ′. We also have to modify ψ to reflect what really
needs to be verified in P ′. Let us denote this formula bv ψ′. In summary, this
approach would require algorithms that generate P ′ and ψ′, such that P ′ |= ψ′

if and only if u is permanently satisfied (or permanently violated).
We sketch here an alternative approach using bounded model checking [15] to

decide (∗), for a given u for a class of HyperLTL formulas. Consider a property
ϕ = ∃π.∀π′.ψ(π, π′) where ψ is a co-safety formula, for example

ϕ = ∃π.∀π′.(aπ ∧ aπ′).

First, observe that since ψ is a co-safety property, if a prefix (u, v) satisfies ψ, then
all extensions of (u, v) will satisfy ψ as well. Then, given an over-approximation

P̂ of P , bounded model checking (BMC) can be used to unroll P̂ and compute a

product of u with all the traces of P̂ of length |u|. If the BMC instance declares
that there is no counterexample of length |u|, then there will be no extension
that becomes a counterexample of ψ. Hence, the formula ϕ will be permanently
satisfied and u is indeed a witness of the outermost existential quantifier. If, on
the other hand, BMC produces a counterexample there are three scenarios:
1. The observation u is too short to serve as a witness for the existential quan-

tifier. In particular, there may be extensions of u that satisfy the property
ϕ and can be checked by the method described above.

2. The model P̂ has not been explored to sufficent depth to prove a satisfaction
of the co-safety property ψ.

3. The approximated model P̂ is too coarse and includes spurious traces.
One research challenge for this approach is to explore to detect spurious coun-
terexamples and how to refine P̂ to continue the exploration. Another challenge
is to refine the BMC procedure to effectively compute the set of offending traces
of length |u| and design efficient methods to exploit this information to successive
BMC queries (for lengths |u|+ 1, etc), thus creating an incremental approach.

Note that if the HyperLTL formula is of the form ∀π.∃π′.ψ(π, π′), where ψ is
a safety formula, then the same procedure can be used to detect violations. One
such formula is ∀π.∃π′.(pπ ↔ pπ′). To monitor this formula, we can compute
the negation ¬ϕ = ∃π.∀π′.¬ψ. This formula is now covered by the previous case,

8 We speculate that the abstract model P̂ may be computed using different techniques,
e.g., predicate abstraction, symbolic execution, etc.

14

as ¬ψ is a co-safety formula. Given a runtime finite trace u, if BMC reports sat-
isfaction, then we can conclude that ϕ is permanently violated by any extension
of the observed trace.

5.3 More Efficient Monitoring of the ∃∃ and ∀∀ Fragments

Finally, our suggested grey-box approach can also be applied to improve the
monitoring procedure for the alternation-free fragments of HyperLTL considered
in [1, 10, 24]. Consider formula ϕ = ∃π.∃π′.ψ, where ψ is a co-safety formula.
Similar to the ∃∀ fragment explained above, given a runtime finite trace u, one
can (1) instantiate π with u, and (2) obtain a model P ′ by composing u with P̂ .
The difference with the ∃∀ procedure before is in handling ∃π′.ψ′. Unlike in the
∃∀ case, here, we verify whether P ′ |= ¬ψ′. If this results in a counterexample,
this counterexample is a positive witness to π′ and, hence, the formula ϕ is
permanently satisfied. Analogously, we can monitor for violation of formulas of
the form ∀π.∀π′.ψ, where ψ′ is a safety formula.

6 Related Work

Monitoring Hyperproperties The notion of hyperproperties was introduced
by Clarkson and Schneider [17]. HyperLTL [16] is a temporal logic for hyper-
properties. Model checking algorithms for HyperLTL were introduced in [25].
Runtime verification algorithms for HyperLTL include both automata-based al-
gorithms [1,24] and rewriting-based algorithms [10]. These RV approaches either
work for alternation-free formulas or for alternating formulas only if the size of
the trace set for monitoring does not grow. Also, the monitoring technique only
considers the traces seen, whereas in our grey-box approach, the monitor may
detect errors by exploring traces of the model that have not been seen.

Static Analysis Sabelfeld et al. [39] survey the literature focusing on static
program analysis for enforcement of security policies. In some cases, for example
just-in-time compilation techniques and dynamic inclusion of code at runtime
in web browsers, static analysis does not guarantee secure execution at runtime.
Type systems, frameworks for JavaScript [13] and ML [36] are some approaches
to monitor information flow. Several tools [22, 29, 30] add extensions such as
statically checked information flow annotations to the Java language. Clark et
al. [14] present verification of information flow for deterministic interactive pro-
grams. In [4], Assaf and Naumann propose a technique for designing runtime
monitors based on an abstract interpretation of the system under inspection.

Dynamic analysis Russo et al. [38] concentrate on permissive techniques for
the enforcement of information flow under flow-sensitivity. It has been shown
that in the flow-insensitive case, a sound purely dynamic monitor is more per-
missive than static analysis. However, they show the impossibility of such a

15

monitor in the flow-sensitive case. A framework for inlining dynamic informa-
tion flow monitors has been presented by Magazinius et al. [27]. The approach
by Chudnov et al. [12] uses hybrid analysis instead and argues that due to JIT
compilation processes, it is no longer possible to mediate every data and con-
trol flow event of the native code. They leverage the results of Russo et al. [38]
by inlining the security monitors. Chudnov et al. [11] again use hybrid analysis
of 2-safety hyperproperties in relational logic. Austin and Flanagan [5] imple-
ment a purely dynamic monitor, however, restrictions such as “no-sensitive up-
grade” were placed. Some techniques deploy taint tracking and labelling of data
variables dynamically [31, 44]. Zdancewic et al. [42] verify information flow for
concurrent programs.

SME Secure multi-execution [20] is a technique to enforce non-interference. In
SME, one executes a program multiple times, once for each security level, us-
ing special rules for I/O operations. Outputs are only produced in the execution
linked to their security level. Inputs are replaced by default inputs except in exe-
cutions linked to their security level or higher. Input side effects are supported by
making higher-security-level executions reuse inputs obtained in lower-security-
level threads. This approach is sound only for deterministic languages.

7 Conclusion

We presented in this paper preliminary work on how to monitor hyperproperties
that are not monitorable in general when considering a black-box approach. In
particular, we considered hyperproperties with one quantifier alternation (∀∃ and
∀∀∃) for which we give an informal argument about their non-monitorability. We
provided initial ideas on how to monitor a large class of formulas in the fragment
for violation, by monitoring the negation of such a fragment for satisfaction. Our
proposal is based on a suitable combination of static analysis/verification tech-
niques with runtime verification, thus taking a grey-box approach. Additionally,
our techniques consider traces coming not only from the monitored system but
also from other sources. In particular, we have explored the use of a specifi-
cation of the system as a trace generator for the inner universal quantifier, as
well as a model obtained from the system via symbolic execution and predicate
abstraction.

The main idea behind our approach is that the current real execution of the
system accounts for the outermost quantifier, while a static analysis/verification
is applied to explore “runs” of the model accounting for the innermost quantifier.
Note that we do not claim anticipation as we might need more traces or more
observations before we could get a final verdict.

Besides the above, we have departed from the view of considering global
traces of concurrent and distributed systems, and consider local traces instead.
In this way, many of the traditional properties of such systems can be casted as
hyperproperties (e.g., mutual exclusion and data races). Some of such properties
are in the fragment ∀∀ while others are of the form ∀∃.

16

Our main research agenda now is to generalize the approach and apply it to
all the cases presented in this paper while identifying other interesting hyper-
properties fitting in the fragment under consideration.

References

1. S. Agrawal and B. Bonakdarpour. Runtime verification of k-safety hyperproperties
in HyperLTL. In CSF’16, pages 239–252, 2016.

2. T. Antignac, D. Sands, and G. Schneider. Data minimisation: A language-based
approach (long version). Technical Report abs/1611.05642, CoRR–arXiv.org, 2016.

3. T. Antignac, D. Sands, and G. Schneider. Data Minimisation: A Language-Based
Approach. In IFIP SEC’17, volume 502 of IFIP Advances in Information and
Communication Technology (AICT), pages 442–456, 2017.

4. M. Assaf and D. A. Naumann. Calculational design of information flow monitors.
In CSF’16, pages 210–224, 2016.

5. T. H. Austin and C. Flanagan. Efficient purely-dynamic information flow analysis.
In ACM Trans. on Programming Languages and Systems, pages 113–124, 2009.

6. H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-based runtime verifi-
cation. In Proc. of VMCAI’04, LNCS 2937, pages 44–57. Springer, 2004.

7. G. Barthe, P. R. D’Argenio, and T. Rezk. Secure information flow by self-
composition. In CSFW’04, pages 100–114. IEEE Computer Society Press, 2004.

8. A. Bauer, M. Leucker, and C. Schallhart. Runtime verification for LTL and TLTL.
ACM T. Softw. Eng. Meth., 20(4):14, 2011.

9. B. Bonakdarpour and B. Finkbeiner. The complexity of monitoring hyperproper-
ties. In CSF’18, 2018. To appear.

10. N. Brett, U. Siddique, and B. Bonakdarpour. Rewriting-based runtime verification
for alternation-free HyperLTL. In TACAS’17, pages 77–93, 2017.

11. A. Chudnov, G. Kuan, and D. A. Naumann. Information flow monitoring as ab-
stract interpretation for relational logic. In CSF’14, pages 48–62, 2014.

12. A. Chudnov and D. A. Naumann. Information flow monitor inlining. In Proceedings
of CSF, pages 200–214, 2010.

13. R. Chugh, J. A. Meister, R. Jhala, and S. Lerner. Staged information flow for
javascript. In Proceedings of PLDI, pages 50–62, 2009.

14. D. Clark and S. Hunt. Non-interference for deterministic interactive programs. In
Proceedings of Formal Aspects in Security and Trust, pages 50–66, 2008.

15. E. M. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model checking using
satisfiability solving. Formal Methods in System Design, 19(1):7–34, 2001.

16. M. R. Clarkson, B. Finkbeiner, M. Koleini, K. K. Micinski, M. N. Rabe, and
C. Sánchez. Temporal logics for hyperproperties. In POST’14, volume 8414 of
LNCS, pages 265–284. Springer, 2014.

17. M. R. Clarkson and F. B. Schneider. Hyperproperties. Journal of Computer
Security, 18(6):1157–1210, 2010.

18. C. Colombo, G. J. Pace, and G. Schneider. LARVA — Safer Monitoring of Real-
Time Java Programs (Tool Paper). In SEFM’09, pages 33–37. IEEE Computer
Society, 2009.

19. B. D’Angelo, S. Sankaranarayanan, C. Sánchez, W. Robinson, B. Finkbeiner, H. B.
Sipma, S. Mehrotra, and Z. Manna. LOLA: Runtime monitoring of synchronous
systems. In TIME’05, pages 166–174. IEEE CS Press, 2005.

17

20. D. Devriese and F. Piessens. Noninterference through secure multi-execution. In
31st IEEE Symposium on Security and Privacy, S&P, pages 109–124, 2010.

21. C. Eisner, D. Fisman, J. Havlicek, Y. Lustig, A. McIsaac, and D. V. Campenhout.
Reasoning with temporal logic on truncated paths. In Proc. of CAV’03, volume
2725 of LNCS 2725, pages 27–39. Springer, 2003.

22. W. Enck, P. Gilbert, S. Han, V. Tendulkar, B. Chun, P. L. Cox, J. Jung, P. Mc-
Daniel, and A. N. Sheth. Taintdroid: An information-flow tracking system for
realtime privacy monitoring on smartphones. ACM Trans. Comput. Syst., 2014.

23. European Commission. Proposal for a Regulation of the European Parliament and
of the Council on the protection of individuals with regard to the processing of
personal data and on the free movement of such data (GDPR). Technical Report
2012/0011 (COD), European Commission, January 2012.

24. B. Finkbeiner, C. Hahn, M. Stenger, and L. Tentrup. Monitoring hyperproperties.
In RV’17, volume 10548 of LNCS, pages 190–207. Springer, 2017.

25. B. Finkbeiner, M. N. Rabe, and C. Sánchez. Algorithms for model checking Hy-
perLTL and HyperCTL*. In CAV’15, pages 30–48, 2015.

26. K. Havelund and G. Roşu. Synthesizing monitors for safety properties. In Proc.
of TACAS’02, LNCS 2280, pages 342–356. Springer, 2002.

27. J. Magazinius, A. Russo, and A. Sabelfeld. On-the-fly inlining of dynamic security
monitors. Computers & Security, 31(7):827–843, 2012.

28. Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems. Springer-
Verlag, 1995.

29. A. C. Myers. Jflow: Practical mostly-static information flow control. In POPL’99,
pages 228–241, 1999.

30. A. C. Myers and B. Liskov. Complete, safe information flow with decentralized
labels, 1998.

31. S. Nair, P. N. D. Simpson, B. Crispo, and A. S. Tanenbaum. A virtual machine
based information flow control system for policy enforcement. ENTCS, 197(1):3–
16, 2008.

32. S. Pinisetty, T. Antignac, D. Sands, and G. Schneider. Monitoring data minimisa-
tion. Technical Report abs/1801.02484, CoRR–arXiv.org, 2018.

33. S. Pinisetty, D. Sands, and G. Schneider. Runtime Verification of Hyperproperties
for Deterministic Programs. In FormaliSE’18. ACM, 2018. To appear.

34. A. Pnueli. The temporal logic of programs. In FOCS’77, pages 46–67. IEEE
Computer Society Press, 1977.

35. A. Pnueli and A. Zaks. PSL Model Checking and Run-Time Verification via
Testers. In 14th Int. Symp. on Formal Methods (FM), pages 573–586, 2006.

36. F. Pottier and V. Simonet. Information flow inference for ml. In POPL’02, pages
319–330, 2002.

37. G. Roşu and K. Havelund. Rewriting-based techniques for runtime verification.
Automated Software Engineering, 12(2):151–197, 2005.

38. A. Russo and A. Sabelfeld. Dynamic vs. static flow-sensitive security analysis. In
CSF’10, pages 186–199, 2010.

39. A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE
Journal on Selected Areas in Communications, 21(1):5–19, 2003.

40. K. Sen and G. Roşu. Generating optimal monitors for extended regular expressions.
ENTCS, 89(2):226–245, 2003.

41. R. K. Treiber. Systems programming: Coping with parallelism. Technical Report
RJ 5118, IBM Almaden Research Center, April 1986.

42. S. Zdancewic and A. C. Myers. Observational determinism for concurrent program
security. In Computer Security Foundations Workshop, pages 29–, 2003.

18

43. X. Zhang, M. Leucker, and W. Dong. Runtime verification with predictive seman-
tics. In NASA FM’12, pages 418–432, 2012.

44. Y. Zhu, J. Jung, D. Song, T. Kohno, and D. Wetherall. Privacy scope: A precise
information flow tracking system for finding application leaks. Technical report,
EECS Department, University of California, Berkeley, Oct 2009.

19

