Unnecessarily Identifiable: Quantifying the fingerprintability of
browser extensions due to bloat

Oleksii Starov', Pierre LaperdriXT, Alexandros Kapravelosi, Nick Nikiforakis'
+Stony Brook University
$North Carolina State University

ABSTRACT

In this paper, we investigate to what extent the page modifications
that make browser extensions fingerprintable are necessary for their
operation. We characterize page modifications that are completely
unnecessary for the extension’s functionality as extension bloat.
By analyzing 58,034 extensions from the Google Chrome store,
we discovered that 5.7% of them were unnecessarily identifiable
because of extension bloat. To protect users against unnecessary
extension fingerprinting due to bloat, we describe the design and
implementation of an in-browser mechanism that provides coarse-
grained access control for extensions on all websites. The proposed
mechanism and its built-in policies, does not only protect users
from fingerprinting, but also offers additional protection against
malicious extensions exfiltrating user data from sensitive websites.

ACM Reference Format:

Oleksii Starov', Pierre Laperdrix"', Alexandros Kapravelosj" ,Nick Nikiforakis®.

2019. Unnecessarily Identifiable: Quantifying the fingerprintability of browser
extensions due to bloat. In Proceedings of the 2019 World Wide Web Confer-
ence (WWW’19), May 13-17, 2019, San Francisco, CA, USA. ACM, New York,
NY, USA, 7 pages. https://doi.org/10.1145/3308558.3313458

1 INTRODUCTION

The past two decades have witnessed the web expanding and evolv-
ing at a tremendous rate with a similar expansion of the devices that
users utilize to browse the web. However, this booming diversity
of devices brought with it a new tracking technique called browser
fingerprinting [8, 10-13, 16, 17]. Browser extensions are a recent
addition to the fingerprinting domain [14, 18, 20, 23]. In order to
provide added functionality, many extensions require full access to
the pages that users visit. Some extensions modify existing elements
from the Document Object Model (DOM) of webpages while others
create new ones. Interacting with the DOM has the unfortunate
consequence of causing side-effects which can later be detected
and attributed back to installed extensions. In previous work, we
showed that the presence of many browser extensions can be in-
ferred just by looking at the modifications that they perform to the
DOM [23]. Any malicious script running on the same webpage can
then try to fingerprint the list of extensions installed in the browser.
This poses a serious privacy risk as extension fingerprintability can
lead to the identification of a user.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.

WWW °19, May 13-17, 2019, San Francisco, CA, USA

© 2019 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.

ACM ISBN 978-1-4503-6674-8/19/05.

https://doi.org/10.1145/3308558.3313458

Fixing the problem of fingerprintable browser extensions is not
straightforward. Browser extensions are intended to access and
modify webpages that users are visiting and, in many cases, this is
their main and desired functionality (e.g., hiding ads, highlighting
search results, or enlarging photo thumbnails). At the same time,
the question remains whether such functional side effects need to
manifest on all pages unconditionally. For example, if a webpage
does not contain ads, search results, photos, or other triggering
content, it is completely unnecessary for an extension to disclose
its presence since it will be hurting the privacy of the user while
delivering no useful functionality.

In this paper, we investigate whether the page modifications that
make extensions fingerprintable are necessary for their operation.
We define the notion of bloat in the implementation logic of browser
extensions as the unnecessary side effects that offer no functionality
to users and can be abused for extension identification. By analyzing
58,034 extensions from the Google Chrome store, we identify the
behaviors characteristic of bloat and quantify its prevalence in the
wild. We study the origin of fingerprintable bloat and discover cases
of shared libraries and common coding practices, which contribute
to it. Moreover, we show that bloat is responsible for a large fraction
of all fingerprintable on-page changes from extensions.

Orthogonally to our measurement and characterization of exten-
sion bloat, we argue that it is important for users to have client-side
control over the reach of browser extensions and their interactions
with the DOM of webpages. We provide the design and imple-
mentation details of a client-side access control mechanism that
mitigates the aforementioned privacy risks that derive from bloat
by empowering users to selectively enable/disable extensions on
arbitrary websites. Moreover, we discuss how the same client-side
access-control mechanism protects against general privacy risks of
untrustworthy browser extensions, i.e., limiting or altogether stop-
ping the leakage of browsing history and other sensitive on-page
information by buggy and malicious extensions.

2 BLOAT-RELATED FINGERPRINTABILITY
OF BROWSER EXTENSIONS

Software bloat refers to software including unnecessary code and
libraries while the process of debloating denotes the removal of the
excess components. For this paper, we focus on software bloat in
terms of unnecessary implementation logic inside browser exten-
sions, which results in them being unnecessarily fingerprintable.
We use the following definition:

Definition. Bloat-related side effects of browser extensions are arti-
facts on a web page which do not deliver functionality that is desired
by users, yet reveal the extension’s presence to trackers and finger-
printing scripts.

2.1 Types of bloat

When the user visits a page with an installed extension, both the
extension and the page have access to the same Document Object
Model (DOM), which provides a programmatic interface of the
page to JavaScript code. The extension can add or remove elements
from the DOM of the visited page by injecting JavaScript. The core
observation of our definition with regard to extension bloat, is that
an extension should not modify the DOM of the visited page, unless
it is absolutely necessary for its functionality. Unnecessary DOM
modifications by the extension disclose its presence to visited pages
and therefore to trackers situated on those pages.

Some extensions will perform changes on the visited page that
are part of their intended functionality. For example, static panels
filled with information (e.g., showing website statistics), toolbars
with URL-independent tools (e.g., CSS inspectors), and modified text
(e.g., extensions to correct the spelling of words) are all intentional.
One may notice that the common feature of all of these examples
is the presence of useful functionality, even if that functionality
manifests on all pages.

To identify cases of true extension bloat, i.e., modifications that
are unnecessary since they do not provide any useful function, we
manually analyzed the types of changes that extensions perform on
an empty page and their purpose. Our intuition was that an empty
webpage has no existing content to trigger the logic of browser ex-
tensions. As such, any DOM modifications are potentially the result
of bloat and should be investigated. Through this manual experi-
ment we identify the following extension-independent categories
of unnecessary DOM modifications:

eInjected empty placeholders. We discovered that it is a com-
mon practice among many extensions to include empty or invisible
DOM elements first, which will be filled with data later based on a
trigger (e.g., when specific content appears on a page, or when a
user clicks the extension’s icon) (Figure 1). The direct consequence
of this preemptive DOM modification is that these placeholders un-
necessarily increase the fingerprintability of extensions especially
in the cases where the extension remains otherwise inactive.

eInjected script tags. Some extensions add script tags to the page’s
DOM, which are visible to any other script executing on the page.
However, extensions have the ability to add and hide script tags,
before any original code is executed on the page, by properly regis-
tering content scripts (i.e. scripts running together with webpages
with access to a shared DOM).

eInjected style tags. Many extensions inject CSS tags into the
page’s DOM, which are visible to any script on the page. This behav-
ior is unnecessary because there exist special APIs for extensions
to inject CSS stylesheets in a page (e.g. chrome. tabs. insertCSS).
When an extension uses this API, the added styles are not visible
via standard CSS-querying APIs, such as, document. styleSheets.
Using these methods, the injection does not modify the DOM tree.
eAttributes for body/head/html tags. Bloat also occurs when
an extension sets attributes to parent DOM nodes, such as the body,
head or html tag. We discovered many cases of custom attributes
with words “installed” or “injected”, which do nothing except dis-
close the extension’s presence. Even if these attributes are used
in CSS selectors, given that they target well-defined tags, they are
unnecessary and can be removed from the corresponding CSS rules.

// Unnecessary and invisible placeholders

<div class="plugin-body" style="display:none;">
</div>

<div id="addManualImageDiv" style="display: none;">
</div>

<div id="mystickies"></div>

// Unnecessary top-level attributes

<html style="visibility: visible;">

<body screen_capture_injected ="true">

<body style="">

Figure 1: Examples of bloat-related DOM modifications of browser ex-
tensions.

Similarly to empty placeholders, attributes with empty values are
signs of bloat in the extension’s logic. The bottom half of Figure 1
illustrates several real examples of such behavior.

eWindow messages. The browser provides a programmatic way
for different JavaScript execution contexts to communicate via
messages. Extensions can send a message to the visited page using
window.postMessage, but that message can be received by any
script running on the page that has registered the appropriate
callback function. Since these messages reveal the presence of the
extension to the visited page, we consider the presence of such
messages on an empty webpage as extension bloat.

2.2 Quantification of extension bloat

To measure the fingerprintability due to browser-extension bloat,
we collected 58,034 extensions from the Chrome Store in October
2017. These include 25,779 extensions with permissions to modify
web pages on any URL. We evaluated each extension according
to the necessary condition of our bloat definition. Namely, we re-
trieved all the fingerprintable DOM modifications that an extension
introduces on any domain and filtered out ubiquitous side effects
which were part of an extension’s desirable functionality.

In order to automate the testing of extensions, we modified and
used the source code of XHounD [23]. Given the more narrow def-
inition of the bloat-related DOM modifications (compared to all
modifications that XHoUuND can uncover), we simplified XHounD
by taking each extension to a custom domain only once, simulat-
ing the visiting of an arbitrary website. Moreover, we served an
empty HTML page to extensions in order to eliminate the possibil-
ity of any specific content triggers, and we disabled the usage of
the XHounD’s OnTheFlyDOM library as we are not interested in
DOM modifications in response to specific content or user actions.
As such, we collected only those fingerprintable side-effects that
occur on an arbitrary webpage without any triggering content and
without user actions. To further minimize the probability of false
positives, we filtered out any cases of discovered “bloat” which do
not conform to our definition, therefore calculating a lower bound
of bloat-related fingerprintability.

Overall, we discovered 3,320 extensions, or 5.7% of all the exten-
sions in Chrome’s webstore, which have at least one fingerprintable
side effect because of bloat. Out of those, 2,189 inject unnecessary
nodes into the DOM (e.g., div, span, script, style), and 1,526 set
unnecessary attributes to the body, head or HTML nodes. More-
over, 65% out of 3,320 extensions had all their changes categorized
as bloat. In other words, these 2,145 extensions should have been
completely invisible on our test pages. Figure 2 shows that both
popular and less popular extensions are affected by this type of

1% Fingerprintable: MWith XHound MDue to bloat

s g ST SN SR S S

ons

10%

% of Extens
g
B

& &

N &

; N ; ; P » > / b b S

& & & (LG& (@b %Gb “é,;l» & b@b @L
Extension popularity

0%

%

Figure 2: Percentage of fingerprintable extensions, and extensions
with fingerprintable bloat, shown by extension popularity. High-
ranked extensions tend to be more fingerprintable, and bloat-related
side effects contribute to a stable large fraction of fingerprints.

bloat with more than 9% of the top 5K extensions containing bloat,
and approximately 4% of the less popular extensions.

Apart from bloat-related DOM modifications, we discovered that
213 extensions reveal their presence by posting disclosing messages
to web pages upon installation. We were surprised to find such a
large number of extensions since Chrome APIs provide the ability to
set up communication channels with only selected web pages with
the externally_connectable permission. Moreover, we discov-
ered 637 extensions listening to messages from any web page. This
means that a tracker can potentially craft and send expected mes-
sages and wait for visible side effects from extensions in response.
For example, as shown on Figure 3, Crypto-Plugin, a banking exten-
sion with 304,730 active users, responds to a specially-crafted mes-
sage if there is an input element with id CryptoPluginInstance
and a value containing a JSON-formatted command. Note that this
behavior of taking arbitrary content and treating it as command
can, in addition to make extensions unnecessarily identifiable, lead
to severe security issues.

2.3 Impact on extension fingerprintability

In this section, we compare our results to the unmodified XHounD
prototype, which deploys additional techniques for triggering the
functionality of browser extensions and can thus discover more
fingerprintable side-effects. We find that a large fraction of finger-
printable extensions are actually fingerprintable due to bloat and
could thus become invisible to trackers, if their bloat-related DOM
modifications are removed.

Overall, using XHouND, we could identify 5,323 fingerprintable
extensions. Given our earlier finding of 3,320 extensions introducing
bloat-related fingerprintable side effects, approximately 62% of all
the fingerprintable extensions have at least one bloat-related side
effect, which adds to their fingerprint. Moreover, even when using
XHounD’s on-the-fly triggering content, 1,073 extensions remain
with bloat only, suggesting that this bloat can be safely removed to
make extensions invisible from prying webpages.

The bloat-related side effects of 3,320 Chrome extensions re-
sulted in 2,032 extensions sharing their bloat-related fingerprint
with no other extension (i.e. their bloat-related DOM modifications
are unique to them and could be used to uniquely identify them). In
terms of anonymity set sizes: 61.2% had totally distinct fingerprints,
8.8% shared their fingerprint with up to 10 other extensions, 7.2%

window.addEventListener ("message", function(event) {
if (event.data.sender == "crypto.plugin.native") {
console.log(JSON.stringify(event.data));
}
}, false);

var dummy_input = document.createElement("input");
dummy_input.setAttribute("value", "{3}");
dummy_input.id = "CryptoPluginInstance";
document.body.append (dummy_input);

window.postMessage ({sender: "crypto.plugin.js"}, "*")

// CONSOLE OUTPUT:
{"answer":{"errorCode":1,"errorText":"Wrong function"},

"type":"

error", "sender":"crypto.plugin.native"}

Figure 3: Detecting the Crypto-Plugin extension by sending an
appropriately-crafted message, simulating a triggering DOM content,
and listening to the response.

shared with up to 100 extensions, while 22.8% shared their finger-
print with more than 100 extensions because of similar bloating
changes related to jQuery (we discuss this in the next section). As
a result, unnecessary bloat-related fingerprintability is, in and of
itself, a clearly dangerous extension-fingerprinting vector.

2.4 Origin of bloat in browser extensions

According to our manual analysis of extension bloat (Section 2.1),
poorly-designed internal logic is the most common reason for ex-
tension bloat. First, we discovered 1,070 extensions with the design
flaw of adding placeholders before filling them with useful content.
Second, we witnessed several cases of implementation bugs when
a DOM modification appears because of poor coding practices. For
example, the code in Figure 4 adds an empty class attribute to the
body node even if eod_disabled was not set initially.

Next to extensions having their custom logic leading to unique
cases of bloat, we discovered several libraries that perform unnec-
essary modifications in the DOM. For example, the jQuery library,
when included as a content script, injects an empty style to the body
of web pages (discovered on more than 980 extensions). Moreover,
particular versions of jQuery have other hardcoded side effects like
an injected div tag with id pg_hgfkj4kj32mda (version 1.7.2), or the
added style zoom: 1; to the body of web pages (version 1.9.0). We
also discovered the FancyBox JavaScript library on 65 extensions,
which adds custom styles to web pages. Additionally, the Cross-
riderAPI, a cloud-based extension development tool, adds its own
attribute to a page’s body, namely crossrider_data_store_temp,
on at least 45 extensions. In addition to the aforementioned cases
of bloat, we discovered other cases of the same bloat modifications
manifesting across tens of extensions but we could not attribute
them to a particular library. These types of modifications could be
due to reused code across related extensions or extensions devel-
oped by the same developers.

In summary, we discovered that a large number of browser exten-
sions introduce fingerprintable modifications that could have been
avoided and which are not necessary for the proper operation of the
extension. On the one hand, this is a positive development since this
finding suggests that the more careful design and implementation
of browser extensions would allow users to be less fingerprintable,
without the need to avoid using these extensions. On the other hand,
solely relying on extension developers to voluntarily make their

document.documentElement.className =
document.documentElement.className.replace(
/eod_disabled/g, "")

Figure 4: An example of implementation bug in browser extension,
which results in unnecessarily fingerprintable DOM modification
extensions more robust against browser fingerprinting, is likely not
going to lead to drastic improvements with regard to user privacy.
As such, we argue that there is a need to protect users, even when
extension authors are not committed to change the logic of their
extensions. We discuss such a solution in Section 3.

By comparing the set of fingerprintable/undetectable extensions
throughout the years, we discovered that most extensions retain
their original status. That is, if the first version of an analyzed ex-
tension was fingerprintable, the extension remains fingerprintable
through subsequent updates. Overall, only 258 extensions from the
initial 1,000 fingerprintable set were not fingerprintable in their
first version. Similarly, most extensions that were originally un-
detectable, remain undetectable. This finding suggests that the
fingerprintable bloat of extensions remains stable over time and
thus requires an explicit attempt to remove it (i.e. will not disappear
in future versions of extensions).

In the following, we present a few case studies of extensions
which migrated from undetectable to fingerprintable and vice-
versa. One example of an extension which became fingerprintable
is Extended JS Console. It was undetectable for two years until
the developer used the Crossrider framework to make develop-
ment across different browsers easier. This framework injects a
crossrider_data_store_temp attribute to the list of body tags
that makes the framework easily detectable. Another example is the
Dayboard extension which, after 18 undetectable versions, started
to inject a db-visibility-check empty div on all visited page.
Fortunately, there are also 72 extensions which were once finger-
printable but later became undetectable, e.g., the Web PKI, which,
since February 2018, has stopped injecting empty div placeholders.

3 COUNTERMEASURES

Since extension authors cannot be trusted to appropriately limit
the access of their own extensions (either due to the inability to
specify a finite whitelist that works for all users, a lack of motive,
or outright maliciousness), the limiting of those extensions must
happen at the client-side.

This means that, in addition to extension authors specifying
on which websites a given extension should run, there should be
a second layer of access-control which empowers users to limit
the access of extensions according to their needs. For example,
users may want to disable ad-blockers on specific websites which
they want to support with ad-revenue, even if the ad-blockers do
not support per-website whitelisting. Similarly, users may want
to disable all extensions on their banking website, to limit their
exposure, in case of accidental information leakage [22] or malicious
data exfiltration [7, 9, 15].

Instead of relying on users to whitelist/blacklist each of their
installed extensions on every domain that they visit, we argue that
we can build higher-level access-control primitives which can be
intuitively utilized by users with limited technical expertise. Specif-
ically, we propose primitives that take the form of the following
access-control modes:

{ "ExtensionSettings":{
#UBlock Origin
"cjpalhdlnbpafiamejdnhcphjbkeiagm":{
"runtime_blocked_hosts":[
"%://*.bankofamerica.com"
]
3,
#Dark Mode
"dmghijelimhndkbmpgbldicpogfkceaj":{
"runtime_blocked_hosts":[
"%://%.google.com",
"%://*.bankofamerica.com"

133

Figure 5: Example of an ExtensionSettings policy for two separate ex-
tensions.

eBlocking extensions by default. The goal of this mode is to
stop “drive-by fingerprinting”, i.e., the complete fingerprinting of a
user’s extensions just because a user visited an untrusted website.
eAutomatic disabling of extensions on sensitive domains. We
argue that there is often no need for extensions to be able to run
in any and all websites that the users visit. As such, given a list of
sensitive URLs (such as banking websites, social networks, dating
websites, and healthcare-related websites), the browser can auto-
matically disable all extensions on these domains and allow users
to re-enable only the ones that they absolutely need.
eContent-based automated blocking. Next to maintaining lists
of sensitive websites, we argue that a user’s exposure can be further
reduced if a browser disables extensions when a webpage allows
users to input content. For example, disabling extensions on login
pages could help reduce the likelihood of an extension exfiltrating
user credentials.

Given the HTTPS issues of client-side proxies and the lack of APIs
that a browser extension can use to block other browser extensions,
a client-side access control mechanism for browser extensions has
to include some level of browser modifications. By inspecting the
source code of Chromium (our browser of choice given the avail-
ability of its source code and its market share) and discussing with
developers of Chromium, we discovered the presence of an Enter-
prise mechanism built in the browser. Enterprise mechanisms are
typically utilized in corporate environments where system admin-
istrators wish to limit the features that are available to individual
deployments of powerful software, such as, a web browser. Even
though these features are completely invisible to regular users, we
discovered that the Enterprise features of Chromium were intro-
duced in 2012 and are still part of the code base of the regular
browser that users download.

Chromium’s enterprise mechanisms are driven by an enterprise
policy written in a platform-dependent format (e.g. JSON on Linux)
which allows administrators to manage the browser’s configuration
and behavior. These policies cover a wide range of browser settings,
from power management and proxy configurations, to printers,
startup pages, and the default search engine. For our purposes, the
ExtensionSetting policy allows administrators to disable specific
extensions, and stop users from installing any extension that re-
quests specific permissions [2]. The following two directives that
control which websites can be accessed by extensions, are of par-
ticular interest for our client-side access control mechanism:

eruntime_blocked_hosts:List of strings representing hosts whose
webpages the extension will be blocked from modifying.

Bmmmmsmn oo e o e o o e n e ey
8 [
g g w : H 0S loaders
S P Trigger List of
ko = b = policies -. reﬁ':l(ii;ed
2) - ’;"es“ [[| viders
il © - | 2 i
= ' ' Store the ' Load polici
] ’ lici oad policies
Lo policies €« i through each
LOGIN 2 provider
k=3
2 ¥
82 =
i3
ss| ™ In-memory
5 - g loader with
(&} m browser
extension Provide the
Tl policies to the
Fetchthe g | preferences
policies store
Generate extension
policies

Storage Policy Policy
backend loaders service

Browser extension Browser

Figure 6: Implementation overview of the client-side access control
mechanism for browser extensions.

eruntime_allowed_hosts: List of strings representing hosts that
an extension can interact with, regardless of whether they are listed
in runtime_blocked_hosts.

Figure 5 shows an example of an ExtensionSettings policy. The first
ID refers to the ad blocker “uBlock Origin” and the second to the
“Dark Mode” extension (an extension that changes the background
color of a website and which we will use in a later demonstration).
This policy instructs the browser to block both extensions from
accessing any webpages from Bank of America but only the ad
blocker is allowed to operate on google.com.

The files containing the Enterprise policies, are expected to be
present in predefined filesystem paths, according to the operating
system of the user. If such a file is discovered during the startup of
the browser, it is loaded and enforced by Chromium.

By retrofitting the already available enterprise mechanism and
exposing it to regular users through a dedicated UI that converts
user choices to JSON policies, we can enable client-side access con-
trol of extensions with minimal changes to the browser’s code. In
addition to modifying as little as possible of the browser’s existing
code (therefore increasing our chances of adoption), we also rely
on a proven mechanism that provides comprehensive extension
blocking in a way that is not possible by combining blocking direc-
tives available to extension authors (such as the exclude_matches
directive which allows extension authors to opt-out of running on
specific domains and URLs).

The source code of our modified Chromium browser along with
a fully compiled version can be found on GitHub:
https://github.com/plaperdr/extension-access-control.

3.1 Interfacing with the user

Since Enterprise policies are fully controlled by JSON-formatted
files available in obscure file paths, we cannot reasonably expect
users to directly interact with them. To bridge the Enterprise policy
mechanism with the interfaces that users are already familiar with,
we developed a browser extension that creates policies based on user
choices. Next to allowing users to individually disable extensions
on websites through our extension’s Ul we provide support for the
following three blocking strategies, which map to the access-control
primitives described in Section 3:

eFlexible mode (default mode): All extensions are allowed on
all webpages and the user can disable (or re-enable) at any time
an extension on a specific website. Note that this mode does not
interfere with the selective exclusion that extension authors may
request using the exclude_matches directive in their manifest files.
As such, extensions that were previously active only on selected
URLs (e.g. a video-downloading extension being active only on
youtube.com) remain active only on the same URLs.

eSensitive mode: This mode is similar to the Flexible mode but
comes preloaded with a list of sensitive websites where all exten-
sions are automatically blocked. For our proof-of-concept imple-
mentation, this list consists of 50 popular banking websites. This
mode also supports content-based blocking where extensions can be
disabled if our mechanism detects the presence of sensitive content
on a website that is not part of our predefined lists. Specifically, our
current implementation blocks extensions whenever a password
input field is detected in a webpage’s HTML code.

oStrict mode: In this mode, all extensions are by default blocked
on all websites. Users can selectively enable extensions wherever
they require them.

Given a desired policy of blocking and enabling browser ex-
tensions on specific websites, this policy needs to be communi-
cated to the enterprise policy-parsing mechanisms of the browser.
Chromium has a relatively complex policy-loading system that
spans dozens of files and thousands of lines of code. Figure 6 pro-
vides an overview of our modifications. First, our user-facing exten-
sion transforms all user choices and all rules derived from content-
based blocking into an ExtensionSettings policy readable by the
browser, indicating for each installed extension which hosts are
blocked and which are allowed. This policy is then stored in a
database that is available to our extension.

As mentioned earlier, the Enterprise mechanism expects poli-
cies to be available on different filesystem paths depending on the
user’s operating system. Specifically, Chrome’s policy loader uses
GPO (Group Policy Object) on Windows, XML files on MacOS, and
JSON files on Linux. All of these locations are encoded as different
“providers” in one combined mechanism called a Policy Service. For
our implementation, we modified the Policy Service and added a
new policy provider which pulls new policies directly from the data-
base of our user-facing extension. Whenever a policy changes (e.g.
because the user whitelisted/blacklisted an extension, or switched
modes), our service triggers a “refresh” which causes Chromium’s
Policy Service to pull a new copy of the policy. The policies from
all policy providers are then combined into a unique policy and
transmitted to Chromium’s Preferences Store that will parse it and

apply it.

3.2 Evaluation

Performance Overhead. To test the overhead of our client-side access
control mechanism, we visited the Alexa Top 50 websites with
the original (i.e. unmodified) version of the Google Chromium
browser (v.71) and our modified copy of the same version of the
same browser. For each visited page, we recorded the time it takes
for the browser to completely render every element. Specifically,
we collected the timestamps corresponding to the following three
events from the window.performance.timing object:

Browser

6000 8 unmodified

. Unmodified w/ extensions

40004 ES Modified w/ extensions blocked by policies

Time (ms)

2000

| ——

Content

Comlplete
Timed event

Figure 7: Performance measurements of unmodified Chromium ver-
sion 71 with and without installed extensions, against our modified
Chromium browser.

o the DOMLoading event is fired when the parser starts parsing the
received webpage.

o the DOMContentLoaded event marks the point when both the
DOM is ready and there are no stylesheets that are blocking JavaScript
execution.This means that the browser can start combining the
DOM and CSSOM into a render tree.

o the DOMComplete event is fired when the page and all of its
subresources are ready.

We tested three different configurations: unmodified Chromium
with no running extensions, unmodified Chromium with exten-
sions, and our custom Chromium in “Strict” mode with extensions
(i.e. all extensions are present but blocked by our custom policy).
For our tests, we utilized five popular extensions: AdBlock [1],
Google Keep [3], Grammarly [4], Honey [5], and LastPass [6]. The
number of extensions was chosen to match the average number of
extensions that regular users install, according to Starov et al. [23].

We repeated the measurements ten times and averaged the re-
sults, which are shown in Figure 7. The “Content” category corre-
sponds to the time between the DOMLoading event and the DOM-
ContentLoaded one. The “Complete” one is the time between DOM-
Loading and DOMComplete.

For both categories, we observe that the timings of our modified
browser with all extensions disabled by the applied “Strict” pol-
icy closely match the timings of the unmodified browser without
any extensions installed. Given that our mechanism makes use
of existing Chromium code which we retrofit to give users the
ability to make client-side access-control decisions, the obtained
performance results make intuitive sense. Overall, our findings
demonstrate that client-side access control of extensions not only
will not slow down a user’s browser but will, in fact, increase its
performance by disabling extensions when they are not necessary.

Blocking Coverage. To test whether the extensions disabled through
our access-control mechanism are completely disabled, we per-
formed the following experiment. We selected 1,000 extensions
which were introducing bloat-related fingerprintable DOM side
effects and installed them, one by one, on our modified Chromium
browser. We then used that browser together with the XHouND
tool [23] and attempted to extract fingerprints from each extension.

For the 985 extensions that we could install in our modified
browser (15 out of the 1K sample would not properly execute
on Chromium version 71), XHOUND was unable to extract finger-
printable DOM modifications, when these extensions were blocked

through the “Strict” policy of our client-side access control mecha-
nism. Given that XHouND searches for any and all DOM modifica-
tions that can be attributed to an extension, this gives us confidence
that our modified browser successfully disabled all extensions.

4 RELATED WORK

In the last few years, the privacy implications of browsers exten-
sions have received significant attention [9, 14, 18, 19, 21-23, 25]. To
the best of our knowledge, this is the first paper that i) quantifies to
what extent the fingerprintable DOM modifications performed by
extensions are necessary, ii) points out the resulting issue of bloat
in the context of browser extensions, and iii) proposes a client-side
access control mechanism for reducing the footprint of extensions
in a user’s browser which can counter many of the attacks described
in the aforementioned papers. In concurrent work, Sjsten et al.
described the privacy issues of unique extension identifiers and also
proposed a client-side access control system for extensions [19].
While the two systems are conceptually similar, our work utilizes
existing code within the Chromium browser thereby avoiding the
disabling of security checks of browser extensions and the need for
extension rewriting.

On October 1, 2018 and in parallel with our work, Google an-
nounced that future versions of their Chrome browser will allow
users to selectively enable and disable extensions on different web-
sites [24]. We find this a welcoming development and a confirmation
of the need of client-side access control for browser extensions. The
current instantiation of that mechanism allows users to whitelist
extensions on a site-by-site basis, or only enable them when the
user interacts with them through the browser’s UL We argue that
our proposed policies strike a better balance between security and
usability (e.g. extensions enabled everywhere except on sensitive
sites) and we therefore hope that Google, as well as other browser
vendors, will follow our proposed design.

5 CONCLUSION

In this paper, we investigated the fingerprintability of browser ex-
tensions due to bloat, i.e., the unnecessary side-effects caused by
faulty application logic that reveal an extension’s presence without
providing any useful functionality. Bloated extensions represent a
risk to online privacy as they facilitate the fingerprinting of installed
extensions. We analyzed 58,034 extensions from the Google Chrome
store and found that 5.7% of them contained fingerprintable bloat.
For 61% of these extensions, their bloat was unique which can be
abused for their direct identification. Finally, we presented the de-
sign and implementation of a client-side access control mechanism
for Google Chromium which enables users to control the reach
of extensions, either on a one-by-one basis, or via access modes
(e.g. automatically blocking all extensions on sensitive websites).
Overall, our paper highlights the problems associated with bloat for
both users and developers. We hope that this work will motivate the
more careful implementation of extensions by their developers and
the adoption of client-side access control by all modern browsers.
Acknowledgements: This work was supported by the Office of
Naval Research (ONR) under grant N00014-17-1-2541 and by the Na-
tional Science Foundation (NSF) under grants CNS-1813974, CMMI-
1842020, CNS-1617593, CNS-1703375, and CNS-1527086.

REFERENCES

(1]
(2]

(3]

(4]

[10]

[11

[12]

[13

2018. AdBlock - Chrome Web Store. https://chrome.google.com/webstore/
detail/adblock/gighmmpiobklfepjocnamgkkbiglidom.

2018. Extension Settings Full Description | The Chromium Projects.
https://www.chromium.org/administrators/policy-1list-3/extension-
settings-full.

2018. Google Keep Chrome Extension - Chrome Web Store. https:
//chrome.google.com/webstore/detail/google-keep-chrome-extens/
1pcaedmchfhocbbapmcbpinfpgnhiddi.

2018. Grammarly for Chrome - Chrome Web Store.
//chrome.google.com/webstore/detail/grammarly-for-chrome/
kbfnbcaeplbcioakkpcpgfkobkghlhen.

2018. Honey - Chrome Web Store. https://chrome.google.com/webstore/
detail/honey/bmnlcjabgnpnenekpadlanbbkooimhnj.

2018. LastPass: Free Password Manager - Chrome Web Store. https:
//chrome.google.com/webstore/detail/lastpass-free-password-ma/
hdokiejnpimakedhajhdlcegeplioahd.

Lawrence Abrams. 2018. MEGA Chrome Extension Hacked To Steal Login
Credentials and CryptoCurrency. https://www.bleepingcomputer.com/
news/security/mega-chrome-extension-hacked-to-steal-login-
credentials-and-cryptocurrency/.

Gunes Acar, Christian Eubank, Steven Englehardt, Marc Juarez, Arvind
Narayanan, and Claudia Diaz. 2014. The Web never forgets: Persistent tracking
mechanisms in the wild. In Proceedings of the 21st ACM Conference on Computer
and Communications Security (CCS).

Quan Chen and Alexandros Kapravelos. 2018. Mystique: Uncovering Information
Leakage from Browser Extensions. In Proceedings of the ACM SIGSAC Conference
on Computer and Communications Security (CCS).

Anupam Das, Gunes Acar, Nikita Borisov, and Amogh Pradeep. 2018. The Web’s
Sixth Sense: A Study of Scripts Accessing Smartphone Sensors. In Proceedings of
the ACM SIGSAC Conference on Computer and Communications Security (CCS).
Peter Eckersley. 2010. How Unique Is Your Browser?. In Proceedings of the Privacy
Enhancing Technologies Symposium (PETS).

David Fifield and Serge Egelman. 2015. Fingerprinting web users through font
metrics. In Financial Cryptography and Data Security. Springer, 107-124.
Alejandro Gémez-Boix, Pierre Laperdrix, and Benoit Baudry. 2018. Hiding in
the Crowd: an Analysis of the Effectiveness of Browser Fingerprinting at Large
Scale. In Proceedings of the World Wide Web Conference (WWW).

https:

[14

[15]

[16

=
)

(18

[19

[20

[21

[22

[23

[24]

[25

Gabor Gyorgy Gulyas, Doliere Francis Some, Nataliia Bielova, and Claude Castel-
luccia. 2018. To Extend or Not to Extend: On the Uniqueness of Browser Ex-
tensions and Web Logins. In Proceedings of the 2018 Workshop on Privacy in the
Electronic Society (WPES’18).

Alexandros Kapravelos, Chris Grier, Neha Chachra, Chris Kruegel, Giovanni
Vigna, and Vern Paxson. 2014. Hulk: Eliciting Malicious Behavior in Browser
Extensions. In Proceedings of USENIX Security Symposium.

Pierre Laperdrix, Walter Rudametkin, and Benoit Baudry. 2016. Beauty and the
Beast: Diverting modern web browsers to build unique browser fingerprints. In
Proceedings of the IEEE Symposium on Security and Privacy.

Nick Nikiforakis, Alexandros Kapravelos, Wouter Joosen, Christopher Kruegel,
Frank Piessens, and Giovanni Vigna. 2013. Cookieless Monster: Exploring the
Ecosystem of Web-Based Device Fingerprinting. In Proceedings of the IEEE Sym-
posium on Security and Privacy.

Iskander Sanchez-Rola, Igor Santos, and Davide Balzarotti. 2017. Extension
Breakdown: Security Analysis of Browsers Extension Resources Control Policies.
In Proceedings of USENIX Security Symposium.

Alexander Sjosten, Steven Van Acker, Pablo Picazo-Sanchez, and Andrei Sabelfeld.
2019. LATEX GLOVES: Protecting Browser Extensions from Probing and Revela-
tion Attacks. In Network and Distributed System Security Symposium (NDSS).
Alexander Sjosten, Steven Van Acker, and Andrei Sabelfeld. 2017. Discovering
Browser Extensions via Web Accessible Resources. In Proceedings of the ACM on
Conference on Data and Application Security and Privacy (CODASPY).
Alexander Sj6sten, Steven Van Acker, and Andrei Sabelfeld. 2017. Discovering
browser extensions via web accessible resources. In Proceedings of the ACM on
Conference on Data and Application Security and Privacy (CODASPY).

Oleksii Starov and Nick Nikiforakis. 2017. Extended Tracking Powers: Measuring
the Privacy Diffusion Enabled by Browser Extensions. In Proceedings of the
International Conference on World Wide Web (WWW).

Oleksii Starov and Nick Nikiforakis. 2017. XHOUND: Quantifying the Finger-
printability of Browser Extensions. In Proceedings of the IEEE Symposium on
Security and Privacy.

James Wagner. 2018. Trustworthy Chrome Extensions, by Default.
https://security.googleblog.com/2018/10/trustworthy-chrome-
extensions-by-default.html.

Michael Weissbacher, Enrico Mariconti, Guillermo Suarez-Tangil, Gianluca
Stringhini, William Robertson, and Engin Kirda. 2017. Ex-Ray: Detection of
History-Leaking Browser Extensions. In Proceedings of the ACM Annual Com-
puter Security Applications Conference (ACSAC).

