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ARTICLE INFO ABSTRACT

Keywords: Executive function is a quintessential human capacity that emerges late in development and displays different
Network controllability developmental trends in males and females. Sex differences in executive function in youth have been linked to
Neurodevelopment

vulnerability to psychopathology as well as to behaviors that impinge on health, wellbeing, and longevity. Yet, the
neurobiological basis of these differences is not well understood, in part due to the spatiotemporal complexity
inherent in patterns of brain network maturation supporting executive function. Here we test the hypothesis that
sex differences in impulsivity in youth stem from sex differences in the controllability of structural brain networks
as they rewire over development. Combining methods from network neuroscience and network control theory, we
characterize the network control properties of structural brain networks estimated from diffusion imaging data
acquired in males and females in a sample of 879 youth aged 8-22 years. We summarize the control properties of
these networks by estimating average and modal controllability, two statistics that probe the ease with which
brain areas can drive the network towards easy versus difficult-to-reach states. We find that females have higher
modal controllability in frontal, parietal, and subcortical regions while males have higher average controllability
in frontal and subcortical regions. Furthermore, controllability profiles in males are negatively related to the false
positive rate on a continuous performance task, a common measure of impulsivity. Finally, we find associations
between average controllability and individual differences in activation during an n-back working memory task.
Taken together, our findings support the notion that sex differences in the controllability of structural brain
networks can partially explain sex differences in executive function. Controllability of structural brain networks
also predicts features of task-relevant activation, suggesting the potential for controllability to represent context-
specific constraints on network state more generally.
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example, deficits in sustained attention can hamper academic and
occupational performance (Biederman et al., 2007) while impulsivity can

1. Introduction

Executive function is necessary for regulation of goal-directed
behavior, and encompasses cognitive processes including working
memory, sustained attention, inhibition, task switching, and perfor-
mance monitoring (Anderson et al., 2001). Deficits in the various sub-
domains of executive function can greatly hinder quality of life. For

lead to increased risk taking and associated consequences (Romer et al.,
2009; Barkley et al., 2002; Cross et al., 2011; Weafer and de Wit, 2014).
While many investigations of sex differences are limited by small sample
sizes (Hyde, 2014), biopsychosocial confounds (Miller and Halpern,
2014), and a focus on sex assigned at birth (Joel, 2012), meta analysis
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(Hasson and Fine, 2012) and large studies (Gur et al., 2012; Riley et al.,
2016) suggest that within the executive function domain, males exhibit
selective dysfunction in impulsivity relative to their female counterparts,
as measured by commission error, or false positives, on the continuous
performance task (CPT). Accordingly, these selective executive deficits
may underlie the higher rates of criminality (Cross et al., 2011), violence
(Cross et al., 2011), and substance use initiation (Romer et al., 2009;
Cross et al., 2011; Weafer and de Wit, 2014) among males. Current in-
terventions for disorders of executive function usually do not consider
sex and are relatively limited to psychotherapy and non-specific psy-
chopharmacology (Hosenbocus and Chahal, 2012). It remains unknown
whether and to what extent the pathophysiology of executive deficits is
sex-specific. Thus, investigating sex differences in the neurobiology
supporting executive function can be a powerful tool for revealing clin-
ically relevant variation, with potential applications for developing
personalized interventions for neuropsychiatric illness.

A basic understanding of sex-related differences in executive function
and their implications for the diagnosis and treatment of executive deficits
requires an understanding of the normative maturation of underlying
neural circuitry. Several studies highlight the fact that such maturation, and
sex differences in that maturation, span structure (Gogtay et al., 2004),
anatomical connectivity (Baum et al., 2017), activity (Schmithorst et al.,
2015; Nomi et al., 2017; Keulers et al., 2011), and functional connectivity
(Fair et al., 2009). Using structural MR], a recent study (Gennatas et al.,
2017) reported age-related, non-linear increases in gray matter density with
concurrent decreases in cortical thickness. Interestingly, the maturation of
these structural features was markedly different between the sexes, with
females showing higher gray matter density globally and higher cortical
thickness in frontal and insular regions (Gennatas et al., 2017). Using
diffusion-weighted MRI, another study found significantly greater
within-hemisphere connectivity in males and greater between-hemisphere
connectivity in females (Ingalhalikar et al., 2014). Sex differences have also
been identified in the clustered (or modular) structure in patterns of func-
tional connectivity estimated from resting state fMRI data: males display
higher between-module connectivity while females display higher
within-module connectivity (Satterthwaite et al., 2014a). Despite these
important descriptive studies, it remains difficult to specify in a mechanistic
sense how executive function might arise from such complex, multimodal
patterns of brain maturation influenced by biological sex.

We posit that such a mechanistic understanding could emerge from
recent advances in network control theory, an emerging branch of theoret-
ical physics and systems engineering that models how network dynamics
can be predictably influenced (Liu et al., 2011; Pasqualetti et al., 2014;
Kailath, 1980; Kalman et al., 1963) (Fig. 1). Prior work has demonstrated
the utility of network control theory in understanding basic brain
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architecture and function (Muldoon et al., 2016; Betzel et al., 2016; Gu
et al., 2017) across spatial scales (Wiles et al., 2017) and species (Kim
et al., 2018), posited its relation to cognition (Gu et al., 2015; Tang et al.,
2017) and psychiatric illness (Jeganathan et al., 2018), and outlined its
developmental timecourse (Tang et al., 2017). Intuitively, the control of
brain dynamics instantiated in the notion of network controllability could
prove relevant for the control of behavior as instantiated in the notion of
impulse control, a key component of executive function (Diamond, 2013).
In response to environmental demands, white matter connectivity must
allow for transitions to states of brain activity supporting cognition and
behavior (Betzel et al., 2016; Gu et al., 2017; Cornblath et al., 2018).
Control properties therefore impact a system's possible trajectories
through different states of activity, as well as the manner in which the
system responds to external stimuli (Gu et al., 2017).

We hypothesize that sex differences in impulse control in youth stem
from sex differences in the controllability of structural brain networks as
they rewire over development. Sex differences in control properties could
manifest in a reduced ability of some youths, especially males, to reach
states that support robust impulse control, or they could result in an
increased propensity to occupy states that are unfavorable for impulse
control. Thus, we did not make any directional hypotheses regarding the
effects of increasing network controllability. Accordingly, we focused on
identifying control points whose regional input can be used to drive state
transitions in a linear system. Control points are identified with metrics
that assess the ability of specific nodes to alter the state of the system,
based on the underlying network topology and a specification of network
dynamics (Pasqualetti et al., 2014) (Fig. 1). The metric of average
controllability reflects the average energy input required at a node to
move the system from some initial state to all possible states (Gu et al.,
2015; Tang et al., 2017; Jeganathan et al., 2018). In contrast, the metric
of modal controllability reflects the ease of transitioning the system from
some initial state to a difficult-to-reach state (Pasqualetti et al., 2014; Gu
et al., 2015; Tang et al., 2017).

Hence, we move forward by describing sex differences in network
controllability using the metrics of average and modal controllability,
and measuring impulse control using the false positive rate on the CPT
(Gur et al., 2010). Specifically, we predicted that (i) network controlla-
bility differs by sex, (ii) network controllability changes with age
differently in males and females, (iii) sex differences in network
controllability predict false positives on the CPT (Gur et al., 2010), and
(iv) network controllability predicts the activation of brain regions dur-
ing a working memory task demanding executive function. To test these
predictions, we constructed structural brain networks from diffusion
tensor imaging data acquired in 879 healthy youth, ages 8-22 years, in
the Philadelphia Neurodevelopmental Cohort (PNC) (Satterthwaite et al.,
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Fig. 1. Control theory and schematic of data processing. (a) Schematic depicting the basic methodological approach. Diffusion tensor imaging (DTI) data was
acquired from 879 youth between the age of 8 years and 22 years. Deterministic tractography was used to identify the number of white matter streamlines, connecting
any two regions of interest. These estimates were used to construct a structural brain network for each subject representing white matter connectivity (edges) between
brain regions (nodes). (b) Schematic (right) of a state space of a two-dimensional dynamical system where the z-value and color indicate some energetic cost associated
with occupying a particular pair of x-y coordinates, alongside a diagram (left) illustrating brain state transitions from an activated default mode system (xX,). The blue
arrow denotes a distant transition to a deactivated default mode system and activated frontoparietal/dorsal attention system (x3). The red arrow denotes a nearby
transition to a partially deactivated default mode system (x;). Regions with high modal controllability can facilitate transitions to energetically distant states while
regions with high average controllability can facilitate transitions to nearby states while requiring very little energy.
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2014b). Each brain network was comprised of 234 anatomically defined
regions (Cammoun et al., 2012) connected by white matter tracts esti-
mated from diffusion tractography. We show that regional controllability
is a significant mediator of the relationship between sex and impulse
control, and that it predicts the magnitude of fMRI BOLD signal on an
n-back task, a brain state associated with high demands on working
memory, a separate domain of executive function. As described in detail
below, our results suggest that sex differences in the controllability of
structural brain networks predict impulse control and that network
control properties explain the activity profiles that support executive
function more broadly.

2. Materials and methods
2.1. Participants

Diffusion tensor imaging (DTI) data were obtained from youth who
participated in a large community-based study of brain development,
now known as the Philadelphia Neurodevelopmental Cohort (PNC)
(Satterthwaite et al., 2014b). Here we study 879 out of a total of 1601
subjects between the ages of 8 and 22 years. Due to lack of complete
diffusion scans (n = 227) and incidental findings (n = 20), data from
244 participants was deemed unusable. The remaining 1354 participants
underwent a rigorous manual and automated quality assurance protocol
for DTI datasets (Roalf et al., 2016), eliminating an additional 147 sub-
jects with poor data quality. A subset of 93 of the remaining 1207 par-
ticipants were excluded for low quality or incomplete FreeSurfer
reconstruction of T1-weighted images (Rosen et al., 2018). Further, 235
of the remaining 1114 participants were excluded for one or more of the
following reasons: gross radiological abnormalities distorting brain
anatomy, medical history that might impact brain function, history of
inpatient psychiatric hospitalization, use of psychotropic medication at
the time of imaging, or high levels of in-scanner head motion during the
DTI scan, as defined by a mean relative displacement between
non-weighted volumes of greater than 2 mm. These exclusions left us
with a final sample of n = 879 subjects (Baum et al., 2017; Tang et al.,
2017) between the ages of 8 and 22 years (mean age = 15.06, SD = 3.15;
389 males, 490 females).

Males Females
Age (y) 15 + 3.2 15.1 + 3.1
White 48.6% 37.8%
African American 39.3% 50.2%
Other Race 12.1% 12.0%
d' (n-back) 1.94 £+ 0.75 1.87 +£0.73
CPT False Positives (z) —0.131 £ 0.72 —0.324 £ 0.71

2.2. Cognitive phenotyping

Cognition was measured outside of the scanner using the Penn
Computerized Neurocognitive Battery (CNB) (Gur et al., 2010, 2012).
Briefly, the 1-hour CNB was administered to all participants, and con-
sisted of 14 tests that evaluated a broad range of cognitive functions.
Twelve of the tests measure both accuracy and speed, while two of the
tests (motor and sensorimotor) measure only speed.

In this study, we focus our analysis of executive function on the
continuous performance task (CPT). During the CPT, the participant is
presented with 7-segment displays of vertical and horizontal lines (at a
rate of one display per second), and the participant must press a button
when the lines form a number (first 1.5 minutes) or a letter (second 1.5
minutes) (Gur et al., 2010). This task measures sustained attention via
the true positive rate, and it measures impulsivity via the false positive
rate (Gur et al., 2010). A previous study (Gur et al., 2012) that admin-
istered the CPT via the Penn CNB (Gur et al., 2010) found a higher true
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positive rate in females, while other measures of executive function such
as working memory did not exhibit sex differences. In our sample, we
observed no significant difference in CPT true positive rate between
males and females. However, the CPT false positive rate on the same task
was higher in males, consistent with a sex difference in impulse control.
Because impulse control intuitively relies on the coordination of spatially
distributed brain networks (Brewer and Potenza, 2008), we focus the
cognitive portion of the present analysis on CPT false positives. Of note,
10 subjects in our sample had missing data for the CPT and thus were
excluded from analyses involving CPT data (Figs. 6 and 7).

2.3. Imaging data acquisition

MRI data were acquired on a 3 Tesla Siemens Tim Trio whole-body
scanner and 32-channel head coil at the Hospital of the University of
Pennsylvania. DTI scans were acquired via a twice-refocused spin-echo
(TRSE) single-shot echo-planar imaging (EPI) sequence (TR = 8100 ms,
TE=82ms, FOV=240mm?/240mm?% Matrix = RL:128/AP:128/Sli-
ces:70, in-plane resolution (x and y) 1.875 mmz; slice thickness = 2 mm,
gap = 0; flip angle =90,/180/180°, volumes =71, GRAPPA factor = 3,
bandwidth = 2170 Hz/pixel, PE direction = AP). This sequence utilizes a
four-lobed diffusion encoding gradient scheme combined with a 90-180-
180 spin-echo sequence designed to minimize eddy-current artifacts. The
complete sequence consisted of 64 diffusion-weighted directions with
b =1000s/mm? and 7 interspersed scans where b = 0 s/mm?. Total scan
time was approximately 11 min. The imaging volume was prescribed in
axial orientation covering the entire cerebrum with the topmost slice
being located just superior to the apex of the brain.

In addition to the DTI scan, a BO map of the main magnetic field was
derived from a double-echo, gradient-recalled echo (GRE) sequence,
allowing us to estimate field distortions in each dataset. Prior to DTI
acquisition, a 5-min magnetization-prepared, rapid acquisition gradient-
echo T1-weighted (MPRAGE) image (TR 1810ms, TE 3.51 ms, FOV
180 x 240 mm, matrix 256 x 192, effective voxel resolution of 1 x 1 x
1 mm) was acquired. This high-resolution structural image was used for
tissue segmentation and parcellating gray matter into anatomically
defined regions in native space. Rigorous manual and automated quality
assurance protocols for the T1-weighted structural imaging data were
performed for the 879 subjects considered here (Vandekar et al., 2015).
Subsequently, all structural images were processed using FreeSurfer
(version 5.3) (Fischl, 2012). FreeSurfer reconstructions underwent
rigorous quality assurance protocols (Vandekar et al., 2015; Rosen et al.,
2018). The T1 image was parcellated into 234 regions by FreeSurfer
according to the Lausanne Atlas (Cuadra et al., 2004). We define the
subcortex of this 234-region parcellation to be comprised of the left and
right hemispheric counterparts of the thalamus proper, caudate, puta-
men, pallidum, nucleus accumbens area, hippocampus, and amygdala,
while excluding the brainstem (14 regions). We define the cortex of this
234-region parcellation to be comprised of the remaining areas (219
regions).

fMRI BOLD data were acquired as subjects completed a version of the
n-back working memory task using fractal images (Ragland et al., 2002).
See the Ref. (Satterthwaite et al., 2013) for details regarding task pre-
sentation and structure. Functional images were obtained using a
whole-brain, single-shot, multislice, gradient-echo echoplanar sequence
(231 vol; TR = 3000 ms; TE = 32 ms; flip angle = 90 degrees; FOV =
192 x 192 mm; matrix = 64 x 64; slices = 46; slice thickness = 3 mm;
slice gap = 0 mm; effective voxel resolution = 3.0 x 3.0 x 3.0 mm).

2.4. Imaging data preprocessing

All DTI datasets were subject to a rigorous manual quality assessment
procedure involving visual inspection of all 71 volumes (Roalf et al.,
2016). Each volume was evaluated for the presence of artifact, with the
total number of volumes that were impacted summed over the series.
This scoring was based on previous work describing the impact of
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removing image volumes when estimating the diffusion tensor (Jones
and Basser, 2004; Chen et al., 2015). Data was considered “Poor” if more
than 14 (20%) volumes contained artifact, “Good” if between 1 and
14 volumes contained artifact, and “Excellent” if no visible artifacts were
detected in any volumes. All 879 subjects included in the present study
had diffusion datasets identified as “Good” or “Excellent,” and had less
than 2 mm mean relative displacement between interspersed b = 0 vol-
umes. As described below, even after this rigorous quality assurance
protocol, motion was included as a covariate in all analyses.

The skull was removed for each subject by registering a binary mask
of a standard fractional anisotropy (FA) map (FMRIB58 FA) to each
subject's DTI image using an affine transformation (Jenkinson et al.,
2002). Eddy currents and subject motion were estimated and corrected
using the FSL eddy tool (Andersson and Sotiropoulos, 2016). Diffusion
gradient vectors were then rotated to adjust for subject motion estimated
by eddy. After the field map was estimated, distortion correction was
applied to DTI data using FSL's FUGUE (Jenkinson et al., 2012).

BOLD time series were processed as described in (Satterthwaite et al.,
2013; Shanmugan et al., 2016). Briefly, FSL 5 (Jenkinson et al., 2012) was
used to analyze time series data from three condition blocks (0-back,
1-back and 2-back), with the primary contrast being 2-back> 0-back. BOLD
images were co-registered to the T1 image using boundary-based regis-
tration (Greve and Fischl, 2009) with integrated distortion correction as
implemented in FSL. Generalized linear model (GLM) beta weights were
averaged across all voxels in each parcel of the 234-node Lausanne atlas. In
our assessment of n-back performance-related activation, we use the dif-
ference in GLM beta weights between the 2-back and 0-back condition. For
all analyses of fMRI data, we excluded 42 subjects with incomplete data or
excessive head motion (mean relative displacement > 0.5 mm or
maximum displacement > 6 mm), leaving n = 837 remaining.

2.5. Structural network estimation

Structural connectivity was estimated from DTI data in order to
generate the adjacency matrix representing the pattern of white matter
tracts between large-scale brain areas. DSI Studio was used to estimate
the diffusion tensor and perform deterministic whole-brain fiber tracking
with a modified FACT algorithm that used exactly 1,000,000 streamlines
per subject after removing all streamlines with length< 10 mm (Gu et al.,
2015). To extend regions into white matter, parcels defined using the
Lausanne atlas were dilated by 4 mm (Gu et al., 2015; Tang et al., 2017)
and registered to the first non-weighted (b =0) volume using an affine
transform (Gu et al., 2015; Tang et al., 2017). The number of streamlines
connecting node i and node j in the 234-region parcellation was used to
weight the edge A; of the adjacency matrix A.

2.6. Network controllability

We represent the streamline-weighted structural network estimated
from diffusion tractography as the graph & = (7", &), where 7" and &
are the vertex and edge sets, respectively. Let A; be the weight associated
with the edge (i,j) € #, and define the weighted adjacency matrix of &
as A = [A;], where A; = 0 whenever (i,j) ¢ #. We associate a real value
with each node to generate a vector describing the network state, and we
define the map x : N>og — RV to describe the dynamics of the network
state over time.

It is worth noting that this method assumes that the number of
streamlines is proportional to the strength of structural connectivity with
regards to propagation of activity between nodes according to a specified
model of dynamics. Here we employ a simplified noise-free linear
discrete-time and time-invariant model of such dynamics:
x(r+ 1) = Ax(r) + Byu (1), (€D)

where x describes the state (i.e. voltage, firing rate, BOLD signal) of brain
regions over time. Thus, the state vector x has length N, where N is the
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number of brain regions in the parcellation, and the value of x; describes
the activity level of that region. The matrix A is symmetric, with the
diagonal elements satisfying A; = 0. Prior to calculating controllability
values, we divide A by 1 + &y(A), where & (A) is the largest eigenvalue of
A. The input matrix B ; identifies the control point .7 in the brain, where
W =k, ....kn and

@

By = [ex, ex, ],

and e; denotes the i-th canonical vector of dimension N. The input u :
Rso — RM denotes the control strategy.

To study the dynamics by which the activity of one brain region in-
fluences structurally connected regions, we apply the control theoretic
notion of controllability to our dynamical model. Classic results in con-
trol theory ensure that controllability of the network, x(t+ 1) = Ax(t) +
B uy(t), from the set of network nodes .7 is equivalent to the
controllability Gramian W being invertible, where

W, = ZA’B;/BI}/A’A

=0

3)

We calculate W, or rather W;, with B set equal to one canonical
vector e; and repeat this process for all N nodes (Gu et al., 2015; Tang
et al., 2017). Although it is well known that the activity of several brain
regions and neuronal ensembles are related via non-linear dynamics, it
has been shown that a linear approximation can explain features of the
resting state fMRI BOLD signal (Honey et al., 2009); this suggests that a
linear approximation can effectively capture the controllability proper-
ties of the original non-linear dynamics.

2.7. Controllability metrics

Following Ref. (Gu et al., 2015; Tang et al., 2017), controllability
metrics for structural brain networks were calculated for two different
control strategies that describe the ability to change x(t) in a particular
fashion (Pasqualetti et al., 2014). Average controllability describes the
ease of transition to energetically similar states, while modal controlla-
bility describes the ease of transition to difficult-to-reach states (Pas-
qualetti et al., 2014).

Average controllability of a network equals the average input energy
applied to a set of control nodes required to reach all possible target
states. It is known that average input energy is proportional to
Trace(W}/l), the trace of the inverse of the controllability Gramian.
Following Refs. (Gu et al., 2015; Tang et al., 2017), we use Trace(W_) as
an alternative measure of average controllability because (i) Trace(W )
and Trace(W}}) are related via inverse proportionality, and (ii)
Trace(W}}) tends to be very ill-conditioned and cannot be accurately
computed even at more coarse connectome parcellations. In addition to
its relationship with Trace(W}/1 ), Trace(W ;) describes the energy of the
network impulse response, or, equivalently, the network H, norm (Kai-
lath, 1980; Kalman et al., 1963). In summary, to compute the average
controllability value for node i in A, we compute the Trace(W ) when
node i is the only control node (i.e. By = ¢;).

Modal controllability refers to the ability of a node to control the
evolutionary modes of a dynamical network, and is most interpretable
when used to identify states that are poorly controllable given B . To
calculate modal controllability, one must first obtain the eigenvector
matrix V = [v] of the adjacency matrix A. If v; is small, then the j-th
evolutionary mode of the input-independent form of Eq. (1), x(t) =
Ax(t), is poorly controllable from node i. Following prior work (Pas-
qualetti et al., 2014), we define ¢; = 37, (1 — & (A))v} as a scaled
measure of the modal controllability of each of the N modes &,(A), ...,
én-1(A) from node i.

Finally, we calculate the mean of the regional controllability values
either across the whole brain (Fig. S1) or within the cortex and subcortex
separately (Figs. 3-6). For each subject, we define the mean modal
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controllability to be the sum of the values of ¢; for each node within A,
divided by the number of regions. Similarly, we define the mean average
controllability to be the sum of the values of Trace(W) for each node
within A, divided by the number of regions.

2.8. Linear regressions involving network control metrics and cognitive
performance

For all analyses of network control metrics, we examined the effect of
sex while controlling for age, total brain volume (segmented brain vol-
ume, as defined by FreeSurfer BrainSegVol metric), handedness, and
motion during the diffusion scan. We used multiple ordinary least
squares (OLS) linear regression with the Im() command in R (R Core
Team, 2017) to fit the following general equation:

C=1+pa+pyv+ph+Ppama+Bs (4)

where C is the controllability statistic (either ¢; for modal controllability
or ./ for average controllability), a is age, v is total intracranial volume,
my is the mean framewise displacement as a summary measure of in-
scanner head motion during the diffusion imaging sequence, h is hand-
edness, and s is sex. We then used the R package visreg (Breheny and
Burchett, 2013) to calculate 95% confidence intervals around fitted lines
and generate partial residuals. Multicollinearity between predictors in
regression models can confound estimates of individual predictor
weights. Therefore, we computed the variance inflation factors (VIFs)
(Obrien, 2007; Fox et al., 2012) for age, brain volume, handedness, head
motion, and sex as a predictor set. This analysis demonstrated VIFs
ranging from near 1 (the minimum possible VIF) to 1.5, well below the
conservative threshold of 5 (Obrien, 2007), suggesting that collinearity
between predictors was low (Fig. S7b).

We also used linear regression to test whether regional network
control metrics explain variance in CPT false positives while controlling
for age, total brain volume, handedness, head motion, and sex. We car-
ried this out by fitting the following equation:

F=1+p.C+p,a+pyv+ph+puma+pPs, (5)

where F is the false positive rate on the CPT and all other variables are the
same as above. For node-level analyses of controllability, we applied a
false discovery rate (FDR) correction (Benjamini and Hochberg, 1995)
(g < 0.05) over all nodes to control for Type I error due to multiple
testing.

2.9. Non-linear fits of network metrics

Following Ref. (Tang et al., 2017), we used non-linear models to
examine the relationships between synchronizability, average control-
lability, and modal controllability (Fig. 5). Synchronizability measures
the tendency of a network to maintain a stable, global activity state (Tang
et al., 2017; Pecora and Carroll, 1998), in contrast to network control-
lability, which quantifies the capacity for each node to drive transitions
to new states (Gu et al., 2015). By assaying the contrasting metric of
synchronizability, we provide support for the specificity of sex differ-
ences to control dynamics. We generated estimates of parameters for
models of the form y = a + b exp(cx) via non-linear least squares using
the nis() function in R. To compare these fits between males and females,
we performed an analysis of variance (ANOVA). For example, when
considering sex differences in the nonlinear relation between modal
controllability and average controllability, we examined the expression:

¢ = (a+as) + (b+ ps)exp((c + 15):7), ®)

where ¢; is modal controllability, .«/ is average controllability, and s is
sex, coded as O for males and 1 for females, so that a, 8, and y each equal
zero for males and the equation is reduced to the base form. The pre-
dicted values for males or females obtained from the full model were
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used to generate the curves shown in Fig. 5.

2.10. Linear regression of bold data on network control metrics

Finally, and in keeping with our linear systems framework, we sought
to test whether controllability would predict brain state (x(t)) as defined
by BOLD activation during a working memory task. In these analyses
(Fig. 8), we used the residuals from Eq. (4) for controllability. For acti-
vation, we used the residuals from the following equation:

M =1+ p.a+ pyh+ p,m, + P,s, @)
where M is 2-back minus 0-back activation (hereafter referred to as
“activation™), a is age, h is handedness, m, is the mean framewise
displacement during the n-back working memory scan, and s is sex.
Because we had no prior knowledge about where controllability might
predict activation, we fit linear models between controllability and
activation at every possible pair of nodes; that is, we performed 234 x
234 regressions of controllability residuals at each node with activation
residuals at each node. The 234 x 234 matrices of p-values for the slope
of controllability on activation were FDR corrected (q < 0.05) separately
for average controllability and for modal controllability. To identify re-
gions where activation was associated with executive function, we fol-
lowed previous work (Satterthwaite et al., 2013; Shanmugan et al., 2016)
by examining d , a composite measure of n-back task performance which
takes both correct responses and false positives into account to separate
performance from response bias.

When testing for an interaction between controllability and sex as a
predictor of n-back activation, we defined C, as the residuals from the
following equation:

C=1+4p.a+py+ph+fama, ©)]
and we defined M, as the residuals from the following equation:
M =1+p.a+py+fih+ B, 9

where all variable names are the same as above. We carried out this
procedure so as to remove biases of other covariates from controllability
and activation values while not removing the effects of sex, in order to fit
the following model:

M, =1 +ﬁC,. Cr+Pys +ﬂCs,,,,SCr ) 10$)
again for every possible pair of 234 x 234 nodes for average and modal
controllability, where ¢, represents the coefficient for the interaction
term between controllability residuals and sex. We applied FDR correc-
tion (g < 0.05) separately for average and modal controllability.

3. Results
3.1. Sex differences in executive function

Our analysis of sex differences in the development of executive
function and its neurobiological underpinnings began with a sex-
stratified comparison of performance on the continuous performance
task (CPT) (Gur et al., 2010), a task designed to measure sustained
attention and impulsivity. In our sample, there was no sex difference in
CPT true positive rate, which reflects sustained attention. Thus, we
focused on the false positive rate in order to capture impulsivity. Sex
differences in CPT impulsivity have been replicated in large studies
(Hasson and Fine, 2012; Riley et al., 2016), may underlie increased risk
taking in males (Cross et al., 2011), and map intuitively to the notion of
brain network control. CPT false positives were significantly higher in
males (full model > = 0.25, df = 866, p = 3.8 x 1075, Cohen's fszex
0.02, Cohen's fige = 0.31; Fig. 2a) with no interaction between age and



E.J. Cornblath et al.

a. b.
4 o ® Females ® Males ‘
Pp.., < 10 3
|

. 1S

~ 5

P (TN

2

£ 21

(7]

o

i

[0

@

&

&

O 04 [
<
©
=

8 10 12 14 16 18 20 22
Age (y)
a.
= z
Ko =
£ g
EE B
£5 1 £E
SO SR
O ($35}
g 10 g
(e}
z =
Females Males Females Males
C. Average Controllability ~ Sex

h)
o IF 7Y

£ 1 7 -\

Neurolmage 188 (2019) 122-134

Fig. 2. Cognitive development and
network controllability by sex. (a) False
positive rate on the continuous performance
task (Gur et al., 2010), a measure of impul-
sivity and inhibition, displayed a linear rela-
tionship to age. Red and blue data points and
curves represent females and males, respec-
tively. Each point represents a subject's par-
tial residual with respect to sex; solid lines
represent the predicted mean for males and
females separately, and shaded envelopes
denote 95% confidence intervals of the pre-
diction. (b) Rank of mean average controlla-
bility values at each node across 389 male
subjects and 490 female subjects, separately.
The Spearman rank correlation between
regional average controllability averaged
across males and regional average controlla-
bility averaged across females was r =
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Fig. 3. Sex differences in regional controllability. (a-b) Controllability estimates averaged over 219 cortical nodes (a) and 14 subcortical nodes (b), for average
controllability and modal controllability. Females have higher cortical average controllability, cortical modal controllabillity, and subcortical modal controllability,
but males have higher subcortical average controllability. In panels a-b, red and blue represent females and males, respectively. Each point represents a subject's partial
residual with respect to sex; bar height represents the predicted mean for males and females separately, and shaded grey envelopes denote 95% confidence intervals of
the prediction. (c-d) Heatmaps where color intensity corresponds to standardized regression coefficients for sex, with warmer colors indicating higher controllability in
females. Average controllability is depicted in panel (c¢) and modal controllability is depicted in panel (d). Colors reflect values of standardized regression coefficients
for controllability at each node as a predictor of executive function while controlling for covariates (Eq. (4)). *, p < 0.05, **, p < 0.01, ***, p < 1x 107%.

sex. Furthermore, CPT false positives decreased with age (p < 10715;
Fig. 2a). This result suggests that the development of impulse control
occurs via a similar course for males and females, but that males exhibit
higher impulsivity in this particular task for all ages studied. After per-
forming this sex-stratified analysis of the developmental course of
impulsivity, we next turned to a consideration of its potential neurobi-
ological underpinnings (Fig. 1a).

3.2. Sex differences in regional network controllability

Our general hypothesis was that sex differences in executive function
in youth stem from sex differences in the controllability of structural
brain networks as they rewire over development. Notably, this notion
bridges the control of behavior (executive function, impulse control)
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with the control of brain dynamics (network controllability). To test this
hypothesis, we examined the anatomical distribution of control points in
the structural brain networks of males and females separately. We ranked
the mean average controllability value at each region for males and fe-
males separately, which revealed that the distribution of controller
strength is virtually identical between males and females (r = 0.99;
Fig. 2b). This result suggests that there is no sex difference in the spatial
distribution of controllers when classified by their relative magnitudes.
This finding is consistent with meta-analyses suggesting that if sex dif-
ferences in neurological and cognitive phenotypes exist, they are limited
to a few specific cognitive domains (Hyde, 2014; Joel, 2012).

We next investigated whether the actual (rather than ranked)
regional controllability estimates differed by sex. We addressed this
question first by considering the cortex and subcortex separately, moti-
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Fig. 4. Network controllability as a function of age. (a-d) Relationship be-
tween age and controllability estimates, averaged over 219 cortical nodes (a-b)
and 14 subcortical nodes (c-d), for average controllability (a, ¢) and modal
controllability (b, d). Modal controllability increases with age in the cortex and
in the subcortex; average controllability increases with age in the cortex. In the
subcortex, the p-value for the age-by-sex interaction for average controllability
was < 0.05, although it was not significant after correcting for the false dis-
covery rate (g < 0.05). Moreover, the simple slopes for males (8,,) and females
(Bage + Pagexsex) Were mot significantly different from 0. Age-by-sex interactions
in panels a, b, and d were not significant. Red and blue represent females and
males, respectively. Each point represents a subject's partial residual with
respect to age; lines represent regression slopes for males and females sepa-
rately, and shaded envelopes denote 95% confidence intervals of the slopes. The
p values for f,, are shown in panels (a,b,d) and for fug..x are shown in
panel (c).

vated by the notion of top-down (i.e. cortical) versus bottom-up (i.e.
subcortical) control of behavior (Heatherton and Wagner, 2011) relevant
to impulse control (Brewer and Potenza, 2008). Specifically, we
computed mean controllability values for each subject across 219 cortical
regions and 14 subcortical regions. In the cortex, mean average
controllability (> = 0.083, df =873,p =0.018, Cohen's f%_ = 0.0065;
Fig. 3a) and mean modal controllability (r?> =0.13,df =873,p =0.016,
Cohen's f2_ = 0.0067; Fig. 3a) are higher in females. Mean modal
controllability in the subcortex is also higher in females (r> = 0.046,
df =873,p =7.5x 1075, Cohen‘sfszex = 0.018; Fig. 3b), whereas mean
average controllability in the subcortex is higher in males (r> = 0.036,
df =873,p =0.041, Cohen's szex = 0.0048; Fig. 3b). All analyses of sex
differences in cortical and subcortical average and modal controllabillity
were statistically significant after controlling the false discovery rate
(g < 0.05). Only in the subcortex did males have higher average
controllability than females; this result suggests that the connectivity
profile of subcortical regions may contribute to sex differences in func-
tional brain dynamics.

In a finer-grained analysis, we investigated whether the controlla-
bility of single regions differed by sex. Modal and average controllability
were separately examined at each region, while accounting for age, total
brain volume, handedness, and mean in-scanner head motion as model
covariates. We found that average and modal controllability differed by
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sex at a subset of network nodes after FDR correction (q < 0.05) for
multiple comparisons. Nodes with average controllability values that
differed by sex were almost all (4/5) higher in males and located in the
frontal lobe or subcortex (Fig. 3c-d). Conversely, nodes with modal
controllability values that differed by sex were all (18/18) higher in fe-
males and located in frontoparietal and subcortical systems. Cohen's 2
effect sizes for sex as a predictor of regional controllability ranged from
0.0097 — 0.030, indicating small effects. Average and modal controlla-
bility may be highly negatively correlated depending on the network
topology (Wu-Yan et al., 2018), but we show that the covariance between
average and modal controllability depends on both the subject and the
brain region (Figs. S2a-c), supporting distinct interpretations of each
metric. We also analyzed sex differences in boundary controllability,
which quantifies the extent to which a region is poised to coordinate
activity between modules (Gu et al., 2015). However, we only found a sex
difference at one region (see Supplemental Text for discussion of find-
ings; Fig. S8b) and thus we focus the remainder of our analysis on average
and modal controllability. These results suggest that controller strength
differs between males and females in a regionally specific and control
strategy specific manner.

3.3. Development of network controllability across the sexes

We next turned to an assessment of whether developmental trends of
network controllability differed by sex. We found that controllability in
the cortex and subcortex tended to increase with age, with the exception
of average controllability in the subcortex. In the cortex (r> = 0.13, df =
873,p =5.5x 10719, Cohen‘sfﬁge = 0.045; Fig. 4b) and subcortex (2
0.046, df =873, p = 1.2x 1075, Cohen's f%,, = 0.022; Fig. 4d), mean
modal controllability increases with age for males and females. Mean
cortical average controllability also increases with age (r> = 0.083, df =
873,p =1.7 x 10~15, Cohen's fige = 0.075; Fig. 4b). Interestingly, there
was a weak age-by-sex interaction only with subcortical average
controllability that did not survive FDR correction (q < 0.05), such that
the slope was positive for males and negative for females (r> = 0.041,
df =872,p =0.024, Cohen‘sfizm = 0.0059; Fig. 4c). However, we found
that subcortical average controllability remains stable throughout
development for both males (4, =0.51,t =1.30,p =0.19, df =872)
and females ((Buge + Bagersex) = — 0.68,p =0.06,t = —1.89,df =872)
(Preacher et al., 2004). Taken together, these results suggest that
controllability changes with age similarly for males and females, but that
average controllability in the subcortex is static during development,
unlike modal controllability or cortical average controllability.

With the knowledge that controllability has a sex-independent rela-
tionship with age, we were interested in testing the hypothesis that sex
influences the relationship between different types of controllability in
the developing brain. Following prior work characterizing the develop-
mental course of network control properties (Tang et al., 2017), we fit the
relationships between average and modal controllability with the expo-
nential function y = a + b exp(cx) separately for each sex (Eq. (6)). Our
results showed that males and females did not have a statistically
different relationship between average and modal controllability aver-
aged across the whole brain (p = 0.14, df = 3; Fig. 5a,e). In the cortex
alone, average and modal controllability followed an increasing expo-
nential form (Fig. 5b,f), similar to that of the whole brain. In contrast, in
the subcortex alone average and modal controllability followed a
decreasing exponential form (Fig. 5d,h). When sex was included in the

model, fits improved significantly (cortex: p = 1.8 x 1078, df = 3,
Fig. 5b,f; subcortex: p = 7.0 x 107°, df = 3, Fig. 5¢,g), suggesting that
these regions may contain sex-dependent differences in structural con-
nections important for controlling brain network state transitions via
different strategies.

Next, we performed a specificity analysis to determine whether our
results could be further confirmed by sex differences in a contrasting
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metric — synchronizability — that probed the susceptibility of the network metrics of network control and dynamics.

to be constrained within a narrow (rather than broad) range of dynamics.

We found that synchronizability did not differ between males and fe- 3.4. Sex differences in network controllability predict individual differences
males (S1b) and decreased with age in a sex-independent fashion (S1d). in executive function

Moreover, the exponential relationship between synchronizability and

average controllability did not differ by sex (p = 0.33, df = 3; Fig. 5d,h), While sex differences in network controllability are of interest in
confirming the local (Fig. 3c-d) rather than global (Fig. 2b) differences in understanding the structural drivers of brain dynamics, their impact on
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Fig. 7. Controllability mediates the relationship between sex and execu-
tive function. (a-b) Sobel mediation testing (Sobel, 1982; Baron and Kenny,
1986; Wang, 2018) for sex — controllability — CPT false positive rate, using
control nodes that are associated with sex and predict CPT false positive rate.
The only regions displaying these relationships are the right medial orbito-
frontal lobe (average controllability; panel (a)) and the left postcenteral gyrus
(modal controllability; panel (b)). Associations between sex and controllability
from Fig. 3c and d are shown; cooler colors indicate higher controllability in
males. Age, total brain volume, handedness, and head motion were regressed
out of controllability values and age was regressed out of CPT false positives
prior to Sobel testing.

behavior requires a link to cognition. Here we examine the relation be-
tween impulsivity on the CPT and network controllability across cortex
and subcortex separately, and then at individual brain regions, while
controlling for age, brain volume, handedness, head motion, and sex.
When considering mean subcortical controllability and CPT false posi-
tives we found that neither average (r> = 0.25, df = 862, p = 0.23,
Cohen's fﬁve = 0.0017; Fig. 6¢) nor modal (r> = 0.25, df = 862, p =
0.48, Cohen's f2 , = 5.8 x 10~%; Fig. 6d) controllability in the subcortex
was associated with impulsivity. A different trend was apparent in the
cortex: average controllability was not significantly related to false pos-
itives (r> = 0.25, df = 862, p = 0.37, Cohen's f2 , = 9.3x 107%
Fig. 6a), while modal controllability was significantly negatively related
to false positives after FDR correction (r> = 0.25, df = 862, p = 4.3 x
1073, Cohen's f2_; = 0.0095; Fig. 6b).

Next, we considered the 21 brain areas that we had previously found
to display sex differences in controllability values (5 nodes for average
controllability and 18 nodes for modal controllability, with 2 nodes
overlapping). Among nodes with sex differences in average controlla-
bility, average controllability at the right medial orbitofrontal cortex was
higher in males and positively related to impulsivity (Cohen's five =
0.014, FDR corrected, g < 0.05; Fig. 6e). Among nodes with sex differ-
ences in modal controllability, modal controllability at the left post-
central gyrus was higher in females and negatively related to impulsivity
(Cohen's f2 ; = 0.011, FDR corrected, g < 0.05; Fig. 6e).

One parsimonious explanation for these results is that controllability
mediates the relationship between sex and impulsivity. We explicitly
tested for such a mediation and found that, indeed, average controlla-
bility at the right medial orbitofrontal cortex (Fig. 7a) and modal
controllability at the left postcentral gyrus (Fig. 7b) were statistically
significant mediators of the relationship between sex and CPT false
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positives. Taken together, these results suggest that increased orbito-
frontal average controllability and decreased postcentral modal
controllability may be biomarkers of impulsivity in males. Interestingly,
however, we found that controllability at several regions without sex-
associated controllability values was associated with impulsivity
(Figs. S9a-b), suggesting that structural network controllability may
explain individual differences in impulsivity outside of the context of sex
differences. We also tested for interactions between sex and regional
controllability values as predictors of CPT false positives, which would
indicate a sex-dependent relationship between regional controllability
and impulsivity. We found statistically significant interactions between
sex and average controllability at somatomotor regions, but the simple
slopes for males and females did not differ from 0 (see Supplemental Text
for discussion of results; Fig. S9c).

3.5. Relationship between sex, n-back task activation magnitudes, and
controllability

Describing the relationship between sex, regional controllability, and
impulsivity provides us with a better understanding of the importance of
structural brain networks in sex differences in executive function. The
final aspect of our hypothesis pertains to whether network control theory
can be used to explain how differences in brain network structure pro-
duce divergent patterns of brain activity that underpin other domains of
executive function, such as working memory. We hypothesized that
regional controllability values would predict regional n-back task acti-
vation magnitudes, and that associations between controllability and
activation would differ by sex.

To obtain a reference point for activation profiles associated with
strong executive function, we separately regressed activation at each
node ond (Satterthwaite et al., 2013). This analysis identified 113 nodes
for which activation was associated with successful task performance
(Fig. 8a, left). Note that in contrast to the use of CPT false positive rate in
the previous analyses, here we considered the d measure to summarize
performance on the n-back task only (Snodgrass and Corwin, 1988) so
that the performance measure is directly related to the context in which
activation values are measured. Consistent with prior results (Sat-
terthwaite et al., 2013), we found that relative deactivation of default
mode network regions (Raichle, 2015) (i.e. posterior cingulate and
medial prefrontal cortex) as working memory load increased was pre-
dictive of performance. Interestingly, males exhibited reduced deacti-
vation in the posterior cingulate cortex with increasing working memory
load (FDR corrected, g < 0.05; Fig. 8a, right).

After identifying regions at which activation was associated with
executive function, we sought to relate these activation values to
controllability metrics of structural brain networks. We found that
increasing average controllability was only positively related to activa-
tion (Fig. 8b). Average controllability at the right transverse temporal
gyrus was associated with activation at 7 different regions, which cluster
together in a symmetric fashion in inferior temporal cortex (Fig. 8c).
Modal controllability was not significantly associated with activation.

Next, we tested our hypothesis that the relationship between regional
controllability and activation depends on sex. Specifically, we performed
the same analysis on males and females, separately. Consistent with the
pooled analysis, the profile of controllability-activation associations
overlapped significantly between the sexes (Fig. 8d, Fig. S5a). While
there was no overlap in the precise regions involved in these sex-split
analyses, there were gross anatomical similarities between males and
females. In both sexes, controllability at temporal regions was associated
with activation at lateral frontal regions. We observed significant in-
teractions between controllability and sex in predicting activation
(Fig. S5¢), such that controllability at middle and inferior temporal lobe
were more positively related to activation in females (Fig. S5a) than in
males (Fig. S5b). These results support the notion that both similarities
and differences in structure-function relationships exist across the sexes.
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data. (b) Heatmap depicting standardized multiple linear regression f's for regional average controllability as a predictor of regional 2-back minus 0-back activation.
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472 females, separately. Modal controllability was not significantly associated with activation. For panels (c,d), corresponding colors indicate association between

control node and regional activation.

4. Discussion

Our study demonstrates that network control theory can be used to
explain how differences in brain network structure produce divergent
patterns of brain activity that underpin executive function and its
domain-specific differences across males and females. We first showed
that the relative locations of controllers by strength did not differ be-
tween males and females, suggesting that the overall structure of control
points is similar across the sexes. Then, we showed that controllability
covaried with age in a sex-independent fashion in both the cortex and
subcortex. While global and developmental sex differences appear min-
imal, local sex differences in controllability exist and predict false posi-
tives on a CPT, a common measure of impulsivity. Notably, average and
modal controllability significantly mediated the associations between sex
and CPT false positive rate, such that male controllability profiles are
negatively associated with impulsivity on the CPT. Crucially, consistent
with predictions from network control theory, we also observed associ-
ations between nodal average controllability and n-back task BOLD
activation magnitudes that differ by sex, suggesting that network control
theory can help predict how differences in brain network structure may
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manifest in different activity patterns.
4.1. Implications for cognitive and clinical neuroscience

Impulsivity is generally higher in males (Hasson and Fine, 2012; Gur
et al., 2012; Riley et al., 2016; Chapple and Johnson, 2007), which is
reflected in higher rates of criminality (Cross et al., 2011) and substance
use (Romer et al., 2009; Weafer and de Wit, 2014). While it is known that
sex differences exist in the prevalence of disorders of executive function
(Cross et al., 2011) and the putative neural circuitry involved (Castella-
nos and Tannock, 2002; Pohjalainen et al., 1998), it is unclear whether
the pathophysiology of such disorders is sex-specific or sex-independent.
Our study significantly extends the boundaries of knowledge in demon-
strating neurophysiological markers of sex differences in CPT false pos-
itive rate, and in couching such markers within a general network control
theory of brain function.

The present work also provides important groundwork for clinical
therapy. The delivery of psychiatric care is shifting towards personalized,
targeted interventions. This shift can be supported by the methodology
and computational tools of network neuroscience, where accurate
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models of brain structure and dynamics can be constructed for single
individuals (Stephan et al., 2017; Izhikevich and Edelman, 2008). Such
subject-, age-, and sex-specific models of brain structure and function can
directly inform neuromodulatory therapies such as transcranial magnetic
stimulation by offering predictions about how stimulation will affect
both the area being stimulated, and other areas connected to it, thereby
producing a complex spatiotemporal influence on brain state. Specif-
ically, assuming a model of brain dynamics allows us to determine which
nodes could most easily drive transitions in the state of brain activity via
some stimulatory input. The network control theory that we use here to
study the internal modulation of brain state (via undertaking a task
requiring executive function) also makes explicit predictions about the
external modulation of brain state (via stimulation or neurofeedback)
(Murphy and Bassett, 2017). Indeed, average controllability values were
associated with sex-dependent, symmetric patterns of brain activity
(Fig. 8c—d). Our results suggest that average controllability values ex-
plains variance in brain state, beyond what can be predicted from a
simple streamline-weighted adjacency matrix. Notably, however, esti-
mated effect sizes of sex on controllability, and of controllability on
performance, were in ranges considered small, and thus the practical
importance of the observed sex differences are still unclear. Nevertheless,
these observations are the first steps towards a characterization of brain
dynamics that would allow clinicians to predict the impact of stimulation
given a subject-, age-, and sex-specific network architecture, thereby
producing predictable changes in brain state.

An understanding of the relation between network controllability,
sex, and executive function could provide important context for the study
and diagnosis of neurological disease and psychiatric disorders whose
prevalence may differ by sex and whose presentation includes alterations
in executive function. In our study, the most robust associations between
controllability, sex, and impulsivity were found in the right ventromedial
prefrontal cortex and the left superior parietal lobe.

It is widely known that the prefrontal cortex is important for behav-
ioral planning and working memory (Tanji and Hoshi, 2008; Euston
et al., 2012; Eriksson et al., 2015), two key components of executive
function. Decreased volume in the right ventromedial prefrontal cortex
(vimPFC) specifically has been previously implicated in impulsive be-
haviors among adolescent males (Boes et al., 2008). Injury to vimPFC has
been associated with reduced motor impulse control, aggression, and
violence (Brower and Price, 2001; Bechara and Van Der Linden, 2005).
Activity in right vmPFC has been shown to increase in adults during
response inhibition (Horn et al., 2003), yet is reduced in individuals with
alcohol dependence (Li et al., 2009). Moreover, regional activation in
medial prefrontal cortex has been shown to differ between males and
females (Straube et al., 2009; Goldstein et al., 2005). Clearly, both
structure and function of right medial prefrontal cortex play an important
role in impulse control and may differ by sex. Our demonstration that the
local control properties of right vinPFC differ by sex and explain impul-
sive behaviors helps link these prior findings to a dynamical systems
framework. Specifically, individuals with high average controllability in
vmPFC may exhibit local structural topology that facilitates transitions
away from brain states underlying impulsive behavior.

Activity in the superior parietal cortex is also critical for working
memory (Eriksson et al., 2015), especially in rearranging or manipulating
information (Koenigs et al., 2009). While superior parietal cortex is not
typically tied to impulse control, gray matter volume in the parietal lobe
has been found to peak earlier in females than in males (Lenroot et al.,
2007; Giedd et al., 1999). In light of these previous findings, our study
provides an important account of sex differences in white matter con-
nectivity profiles at medial frontal and superior parietal cortex from the
dynamical perspective of network control theory. For instance, the
relationship between average controllability and working memory task
activation might suggest that this task involves transitions to nearby
states. Additionally, the finding that impulsivity was more strongly
related to somatomotor average controllability in males suggests that
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increasing average controllability can also support transitions that are
unfavorable for certain behaviors. Superior parietal modal controllability
was higher in females and negatively associated with impulsivity, which
may indicate that these regions exhibit greater support in females for
transitions to distant states important for impulse control. Overall, our
results suggest that the connectivity profile of frontoparietal structures is
related to sex and is important for executive function, supporting the
notion that altered structural connectivity is a key feature of disorders of
executive function.

4.2. Methodological considerations

Several methodological considerations are pertinent to this work.
First, we use a time-invariant, linear model of brain dynamics because its
network control properties have been well characterized mathematically.
However, it is known that the brain is highly non-linear and explained
well by models incorporating noise (Izhikevich and Edelman, 2008; Deco
et al., 2011). Yet, the associations between controllability and brain ac-
tivity that we uncover here suggest that a simple linear model is sufficient
to capture some aspect of the underlying brain dynamics. Our observa-
tions beg the question of how and when linear approximations of
nonlinear dynamics can be useful. As is relatively intuitive, linear ap-
proximations of nonlinear dynamics hold true over short time horizons
and in the vicinity of the system's current operating point (Leith and
Leithead, 2000). Additional evidence suggests that time averaged dy-
namics and slow fluctuations in the blood-oxygen-level-dependent signal
can also be reasonably modeled with assumptions of linearity (Honey
etal., 2009; Galan et al., 2008; Gu et al., 2018). Moreover, even when the
dynamics of a system are truly nonlinear, one can ask whether the pre-
dictions of control from the linear model can be used to infer the response
of the nonlinear system, either statistically or formally (Coron, 2009;
Whalen et al., 2015). Initial evidence in neural systems suggests that
controllability statistics derived from the linear model of network dy-
namics can be used to predict transitions into and out of bursting regimes
in neuronal ensembles (Wiles et al., 2017) and changes in activity states
induced by stimulation in Wilson-Cowan oscillator models of cortical
columns (Muldoon et al., 2016). Nevertheless, it remains an important
and interesting direction to build on the emerging approaches for
nonlinear control in the physics and engineering literature (Motter,
2015) to better understand the control of nonlinear brain dynamics.

Second, axons transmit information in a unidirectional fashion, but
diffusion imaging and associated tractography tools cannot elucidate the
directionality of large axonal fiber bundles. Thus, we construct a sym-
metric adjacency matrix A, assuming bidirectional influence between
network nodes, and all interpretations of regional controllability depend
on the realism of that assumption. The assumption is supported by evi-
dence from tract tracing in macaques that the majority of connections at
this large scale are bidirectional (Bassett and Bullmore, 2017), and by
computational studies demonstrating that controllability statistics are
largely conserved across directed and undirected mesoscale connectomes
(Kim et al., 2018). Yet, it is nevertheless important to acknowledge that
the eigenvalues of a symmetric matrix can only ever be real and thus the
system will not oscillate, as neural systems are known to do. It will be
interesting in future to consider approaches to study the control of
oscillatory activity in the brain, and to validate those approaches with
high-resolution data such as electrocorticography.

Additionally, streamline counts and network density vary between
scans (Zhu et al., 2011) and with different tract reconstruction methods
(Maier-Hein et al., 2017), which can complicate interpretation. Head
motion can systematically bias estimates of structural connectivity
(Baum et al., 2018), and thus we undertook a rigorous protocol to ensure
data quality (see Methods: Imaging Data Preprocessing). However,
despite assuring maximum reliability of structural connectivity esti-
mates, we must acknowledge that subjects with worse head motion
might comprise an important population to which our results may not
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generalize. Despite these limitations common to nearly all network
analysis of DTI, numerous DTI-based studies of neuropsychiatric illness
have described differences in structural brain networks consistent with
clinical and neuroscientific priors (Kubicki et al., 2007; Pievani et al.,
2011), suggesting that quality-controlled DTI is capable of capturing
subtle but meaningful variation in structural connectivity.

It is also important to acknowledge that our analysis of sex differences
focuses on sex assigned at birth, which we refer to as “sex” throughout
this paper. Our data does not include endocrinological measurements
relevant to sex, nor does it include any psychosocial assessment of gender
identity. Thus, we were not able to control for or assess gender-based
differences in brain structure. Furthermore, while there exist two
distinct classes of human genitalia, this fact does not imply that brains are
also sexually dimorphic (Joel et al., 2015). Both “male” and “female”
features exist in both male and female brains, although some features are
more common in one sex than the other (Joel et al., 2015; Joel and
McCarthy, 2017). As a result, there may be more meaningful variance in
neurologic phenotypes within each sex than between sexes. The diver-
gent controllability-activation profiles in Fig. 8d may be in part due to
this fact. Nevertheless, biological sex is an easily measured variable and
identifying correlates of sex makes it a useful biomarker. In the future,
identification of additional covariates might help uncover a more ubiq-
uitous reason for sex-associated brain features (Joel and McCarthy,
2017).

5. Conclusion

First and foremost, our analysis of sex differences in structural brain
networks showed that males and females are highly similar from the
perspective of network controllability. The organization of relative
controller strength was almost identical between males and females, and
sex was not significantly associated with controllability values at most
brain regions. However, the differences in average and modal control-
lability between males and females predicted differences in cognitive
performance and effects were most robust in frontal and parietal regions.
Given that BOLD signal is associated with network controllability, an
interesting future study might use time-invariant, linear dynamics to
predict changes in brain activity after stimulation of regions with high
versus low controllability. Additionally, our results pave the way for a
future study to consider how sex and age may influence the effects of
diffusion imaging-guided brain stimulation. Such an approach may help
clinicians tune parameters for stimulation a priori based on sex and age,
aiding the delivery of personalized psychiatric care.

Acknowledgments

This work was supported by an administrative supplement to NIH
R21-M MH-106799 (Satterthwaite/Bassett MPI). DSB also acknowledges
support from the John D. and Catherine T. MacArthur Foundation, the
Alfred P. Sloan Foundation, the Army Research Office through contract
number W911NF-14-1-0679, the Army Research Laboratory through
contract number W911NF-10-2-0022, the National Institute of Health (2-
R01-DC-009209-11, 1R0O1HDO086888-01, R01-MH107235, RO1-
MH107703, RO1MH109520, 1R01NS099348 and R21-M MH-106799),
the Office of Naval Research, and the National Science Foundation (BCS-
1441502, CAREER PHY-1554488, BCS-1631550, and CNS-1626008).
TDS was supported by RO1MH107703. DRR was supported by
KO01MH102609. FP acknowledges support from NSF-BCS-1631112 and
NSF-BCS-1430279. The content is solely the responsibility of the authors
and does not necessarily represent the official views of any of the funding
agencies.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.neuroimage.2018.11.048.

Neurolmage 188 (2019) 122-134

References

Anderson, V.A., Anderson, P., Northam, E., Jacobs, R., Catroppa, C., 2001. Dev.
Neuropsychol. 20, 385.

Andersson, J.L.R., Sotiropoulos, S.N., 2016. Neuroimage 125, 1063.

Barkley, R.A., Murphy, K.R., Dupaul, G.J., Bush, T., 2002. J. Int. Neuropsychol. Soc. 8,
655.

Baron, R.M., Kenny, D.A., 1986. J. Pers. Soc. Psychol. 51, 1173.

Bassett, D.S., Bullmore, E.T., 2017. Neuroscientist 23, 499.

Baum, G.L., Ciric, R., Roalf, D.R., Betzel, R.F., Moore, T.M., Shinohara, R.T., Kahn, A.E.,
Vandekar, S.N., Rupert, P.E., Quarmley, M., Cook, P.A., Elliott, M.A., Ruparel, K.,
Gur, R.E., Gur, R.C., Bassett, D.S., Satterthwaite, T.D., 2017. Curr. Biol. 27, 1561.

Baum, G.L., Roalf, D.R., Cook, P.A., Ciric, R., Rosen, A.F., Xia, C., Elliott, M.A.,
Ruparel, K., Verma, R., Tung, B, et al., 2018. Neuroimage 173, 275.

Bechara, A., Van Der Linden, M., 2005. Curr. Opin. Neurol. 18, 734.

Benjamini, Y., Hochberg, Y., 1995. J. Roy. Stat. Soc. B 289.

Betzel, R.F., Gu, S., Medaglia, J.D., Pasqualetti, F., Bassett, D.S., 2016. Sci. Rep. 6, 30770.

Biederman, J., Petty, C.R., Fried, R., Doyle, A.E., Spencer, T., Seidman, L.J., Gross, L.,
Poetzl, K., Faraone, S.V., 2007. Acta Psychiatr. Scand. 116, 129.

Boes, A.D., Bechara, A., Tranel, D., Anderson, S.W., Richman, L., Nopoulos, P., 2008. Soc.
Cognit. Affect Neurosci. 4, 1.

Breheny, P., Burchett, W., 2013. R package 1.

Brewer, J.A., Potenza, M.N., 2008. Biochem. Pharmacol. 75, 63.

Brower, M.C., Price, B., 2001. J. Neurol. Neurosurg. Psychiatr. 71, 720.

Cammoun, L., Gigandet, X., Meskaldji, D., Thiran, J.P., Sporns, O., Do, K.Q., Maeder, P.,
Meuli, R., Hagmann, P., 2012. J. Neurosci. Methods 203, 386.

Castellanos, F.X., Tannock, R., 2002. Nat. Rev. Neurosci. 3, 617.

Chapple, C.L., Johnson, K.A., 2007. Youth Violence Juv. Justice 5, 221. https://doi.org/
10.1177/1541204007301286.

Chen, Y., Tymofiyeva, O., Hess, C.P., Xu, D., 2015. Neuroimage 109, 160.

Cornblath, E.J., Ashourvan, A., Kim, J.Z., Betzel, R.F., Ciric, R., Baum, G.L., He, X.,
Ruparel, K., Moore, T.M., Gur, R.C., et al., 2018. arXiv preprint arXiv:1809.02849.

Coron, J.-M., 2009. Control and Nonlinearity. American Mathematical Society.

Cross, C.P., Copping, L.T., Campbell, A., 2011. Psychol. Bull. 137, 97.

Cuadra, M.B., Pollo, C., Bardera, A., Cuisenaire, O., Villemure, J.-G., Thiran, J.-P., 2004.
IEEE Trans. Med. Imag. 23, 1301.

Deco, G., Jirsa, V.K., McIntosh, A.R., 2011. Nat. Rev. Neurosci. 12, 43.

Diamond, A., 2013. Annu. Rev. Psychol. 64, 135.

Eriksson, J., Vogel, E.K., Lansner, A., Bergstrom, F., Nyberg, L., 2015. Neuron 88, 33.

Euston, D.R., Gruber, A.J., McNaughton, B.L., 2012. Neuron 76, 1057.

Fair, D.A., Cohen, A.L., Power, J.D., Dosenbach, N.U., Church, J.A., Miezin, F.M.,
Schlaggar, B.L., Petersen, S.E., 2009. PLoS Comput. Biol. 5, e1000381.

Fischl, B., 2012. Neuroimage 62, 774.

J. Fox, S. Weisberg, D. Adler, D. Bates, G. Baud-Bovy, S. Ellison, D. Firth, M. Friendly, G.
Gorjanc, S. Graves, et al., Vienna: R Foundation for Statistical Computing (2012).

Galan, R.F., Ermentrout, G.B., Urban, N.N., 2008. J. Neurophysiol. 99, 277.

Gennatas, E.D., Avants, B.B., Wolf, D.H., Satterthwaite, T.D., Ruparel, K., Ciric, R.,
Hakonarson, H., Gur, R.E., Gur, R.C., 2017. J. Neurosci. https://doi.org/10.1523/
JNEUROSCI.3550-16.2017.

Giedd, J.N., Blumenthal, J., Jeffries, N.O., Castellanos, F.X., Liu, H., Zijdenbos, A.,
Paus, T., Evans, A.C., Rapoport, J.L., 1999. Nat. Neurosci. 2, 861.

Gogtay, N., Giedd, J.N., Lusk, L., Hayashi, K.M., Greenstein, D., Vaituzis, A.C., Nugent, T.
F. r., Herman, D.H., Clasen, L.S., Toga, A.W., Rapoport, J.L., Thompson, P.M., 2004.
Proc. Natl. Acad. Sci. U. S. A. 101, 8174.

Goldstein, J.M., Jerram, M., Poldrack, R., Anagnoson, R., Breiter, H.C., Makris, N.,
Goodman, J.M., Tsuang, M.T., Seidman, L.J., 2005. Neuropsychology 19, 509.

Greve, D.N., Fischl, B., 2009. Neuroimage 48, 63.

Gu, S., Pasqualetti, F., Cieslak, M., Telesford, Q.K., Alfred, B.Y., Kahn, A.E.,

Medaglia, J.D., Vettel, J.M., Miller, M.B., Grafton, S.T., et al., 2015. Nat. Commun. 6.

Gu, S., Betzel, R.F., Mattar, M.G., Cieslak, M., Delio, P.R., Grafton, S.T., Pasqualetti, F.,
Bassett, D.S., 2017. Neuroimage 148, 305.

Gu, S., Cieslak, M., Baird, B., Muldoon, S.F., Grafton, S.T., Pasqualetti, F., Bassett, D.S.,
2018. Sci. Rep. 8, 2507.

Gur, R.C., Richard, J., Hughett, P., Calkins, M.E., Macy, L., Bilker, W.B., Brensinger, C.,
Gur, R.E., 2010. J. Neurosci. Methods 187, 254.

Gur, R.C., Richard, J., Calkins, M.E., Chiavacci, R., Hansen, J.A., Bilker, W.B.,
Loughead, J., Connolly, J.J., Qiu, H., Mentch, F.D., et al., 2012. Neuropsychology 26,
251.

Hasson, R., Fine, J.G., 2012. J. Atten. Disord. 16, 190.

Heatherton, T.F., Wagner, D.D., 2011. Trends Cognit. Sci. 15, 132.

Honey, C., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J.-P., Meuli, R., Hagmann, P.,
2009. Proc. Natl. Acad. Sci. Unit. States Am. 106, 2035.

Horn, N., Dolan, M., Elliott, R., Deakin, J., Woodruff, P., 2003. Neuropsychologia 41,
1959.

Hosenbocus, S., Chahal, R., 2012. J. Can. Acad. Child Adolesc. Psychiatr. 21, 223.

Hyde, J.S., 2014. Annu. Rev. Psychol. 65, 373.

Ingalhalikar, M., Smith, A., Parker, D., Satterthwaite, T.D., Elliott, M.A., Ruparel, K.,
Hakonarson, H., Gur, R.E., Gur, R.C., Verma, R., 2014. Proc. Natl. Acad. Sci. Unit.
States Am. 111, 823. http://www.pnas.org/content/111/2/823.full.pdf.

Izhikevich, E.M., Edelman, G.M., 2008. Proc. Natl. Acad. Sci. Unit. States Am. 105, 3593.

Jeganathan, J., Perry, A., Bassett, D.S., Roberts, G., Mitchell, P.B., Breakspear, M., 2018.
Neuroimage: Clin. 19, 71.

Jenkinson, M., Bannister, P., Brady, M., Smith, S., 2002. Neuroimage 17, 825.

Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M., 2012.
Neuroimage 62, 782.

Joel, D., 2012. Biol. Sex Differ. 3, 27.


https://doi.org/10.1016/j.neuroimage.2018.11.048
https://doi.org/10.1016/j.neuroimage.2018.11.048
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref1
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref1
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref2
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref3
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref3
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref4
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref5
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref6
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref6
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref6
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref7
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref7
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref8
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref9
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref10
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref11
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref11
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref12
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref12
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref13
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref14
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref15
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref16
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref16
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref17
https://doi.org/10.1177/1541204007301286
https://doi.org/10.1177/1541204007301286
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref19
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref21
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref22
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref23
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref23
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref24
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref25
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref26
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref26
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref27
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref28
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref28
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref29
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref31
https://doi.org/10.1523/JNEUROSCI.3550-16.2017
https://doi.org/10.1523/JNEUROSCI.3550-16.2017
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref33
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref33
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref34
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref34
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref34
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref35
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref35
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref36
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref37
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref37
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref38
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref38
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref39
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref39
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref40
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref40
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref41
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref41
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref41
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref42
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref43
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref44
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref44
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref45
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref45
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref46
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref47
http://www.pnas.org/content/111/2/823.full.pdf
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref49
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref50
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref50
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref51
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref52
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref52
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref53

E.J. Cornblath et al.

Joel, D., McCarthy, M.M., 2017. Neuropsychopharmacology 42, 379.

Joel, D., Berman, Z., Tavor, L., Wexler, N., Gaber, O., Stein, Y., Shefi, N., Pool, J., Urchs, S.,
Margulies, D.S., et al., 2015. Proc. Natl. Acad. Sci. Unit. States Am. 112, 15468.

Jones, D.K., Basser, P.J., 2004. Magn. Reson. Med. 52, 979.

Kailath, T., 1980. Linear Systems. Prentice Hall, Englewood Cliffs.

Kalman, R.E., Ho, Y.C., Narendra, K.S., 1963. Contrib. Differ. Equ. 1, 189.

Keulers, E.H., Stiers, P., Jolles, J., 2011. Neuroimage 54, 1442.

Kim, J., Soffer, J.M., Kahn, A.E., Vettel, J.M., Pasqualetti, F., Bassett, D.S., 2018. Nat.
Phys. 14, 91.

Koenigs, M., Barbey, A.K., Postle, B.R., Grafman, J., 2009. J. Neurosci. 29, 14980.

Kubicki, 1M., McCarley, R., Westin, C.-F., Park, H.-J., Maier, S., Kikinis, R., Jolesz, F.A.,
Shenton, M.E., 2007. J. Psychiatr. Res. 41, 15.

Leith, D.J., Leithead, W.E., 2000. Int. J. Contr. 73, 1001.

Lenroot, R.K., Gogtay, N., Greenstein, D.K., Wells, E.M., Wallace, G.L., Clasen, L.S.,
Blumenthal, J.D., Lerch, J., Zijdenbos, A.P., Evans, A.C., et al., 2007. Neuroimage 36,
1065.

Li, C.-s. R., Luo, X., Yan, P., Bergquist, K., Sinha, R., 2009. Alcohol Clin. Exp. Res. 33, 740.

Liu, Y.Y., Slotine, J.J., Barabasi, A.L., 2011. Nature 473, 167.

Maier-Hein, K.H., Neher, P.F., Houde, J.-C., Coté, M.-A., Garyfallidis, E., Zhong, J.,
Chamberland, M., Yeh, F.-C., Lin, Y.-C., Ji, Q., et al., 2017. Nat. Commun. 8, 1349.

Miller, D.I., Halpern, D.F., 2014. Trends Cognit. Sci. 18, 37.

Motter, A.E., 2015. Chaos 25, 097621.

Muldoon, S.F., Pasqualetti, F., Gu, S., Cieslak, M., Grafton, S.T., Vettel, J.M., Bassett, D.S.,
2016. PLoS Comput. Biol. 12, e1005076.

Murphy, A.C., Bassett, D.S., 2017. Curr. Opin. Biomed. Eng. 1, 63.

Nomi, J.S., Bolt, T.S., Ezie, C.E.C., Uddin, L.Q., Heller, A.S., 2017. J. Neurosci. 37, 5539.

Obrien, R.M., 2007. Qual. Quantity 41, 673.

Pasqualetti, F., Zampieri, S., Bullo, F., 2014. IEEE Trans. Contr. Net. Syst. 1, 40.

Pecora, L.M., Carroll, T.L., 1998. Phys. Rev. Lett. 80, 2109.

Pievani, M., de Haan, W., Wu, T., Seeley, W.W., Frisoni, G.B., 2011. Lancet Neurol. 10,
829.

Pohjalainen, T., Rinne, J.O., Nigren, K., Syvalahti, E., Hietala, J., 1998. Am. J. Psychiatr.
155, 768.

Preacher, K., Curran, P., Bauer, D., 2004. Simple Intercepts, Simple Slopes, and Regions of
Significance in Mlr 2-way Interactions.

R Core Team, R., 2017. A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria.

Ragland, J.D., Turetsky, B.I., Gur, R.C., Gunning-Dixon, F., Turner, T., Schroeder, L.,
Chan, R., Gur, R.E., 2002. Neuropsychology 16, 370.

Raichle, M.E., 2015. Annu. Rev. Neurosci. 38, 433.

Riley, E., Okabe, H., Germine, L., Wilmer, J., Esterman, M., DeGutis, J., 2016. PLoS One
11, e0165100.

Neurolmage 188 (2019) 122-134

Roalf, D.R., Quarmley, M., Elliott, M.A., Satterthwaite, T.D., Vandekar, S.N., Ruparel, K.,
Gennatas, E.D., Calkins, M.E., Moore, T.M., Hopson, R., et al., 2016. Neuroimage 125, 903.

Romer, D., Betancourt, L., Giannetta, J.M., Brodsky, N.L., Farah, M., Hurt, H., 2009.
Neuropsychologia 47, 2916.

Rosen, A.F., Roalf, D.R., Ruparel, K., Blake, J., Seelaus, K., Villa, L.P., Ciric, R., Cook, P.A.,
Davatzikos, C., Elliott, M.A., et al., 2018. Neuroimage 169, 407.

Satterthwaite, T.D., Wolf, D.H., Erus, G., Ruparel, K., Elliott, M.A., Gennatas, E.D.,
Hopson, R., Jackson, C., Prabhakaran, K., Bilker, W.B., et al., 2013. J. Neurosci. 33,
16249.

Satterthwaite, T.D., Wolf, D.H., Roalf, D.R., Ruparel, K., Erus, G., Vandekar, S.,
Gennatas, E.D., Elliott, M.A., Smith, A., Hakonarson, H., et al., 2014. Cerebr. Cortex
25, 2383.

Satterthwaite, T.D., Elliott, M.A., Ruparel, K., Loughead, J., Prabhakaran, K., Calkins, M.E.,
Hopson, R., Jackson, C., Keefe, J., Riley, M., Mentch, F.D., Sleiman, P., Verma, R.,
Davatzikos, C., Hakonarson, H., Gur, R.C., Gur, R.E., 2014. Neuroimage 86, 544.

Schmithorst, V.J., Vannest, J., Lee, G., Hernandez-Garcia, L., Plante, E., Rajagopal, A.,
Holland, S.K., Consortium, C.A., 2015. Hum. Brain Mapp. 36, 1.

Shanmugan, S., Wolf, D.H., Calkins, M.E., Moore, T.M., Ruparel, K., Hopson, R.D.,
Vandekar, S.N., Roalf, D.R., Elliott, M.A., Jackson, C., et al., 2016. Am. J. Psychiatry
173, 517.

Snodgrass, J.G., Corwin, J., 1988. J. Exp. Psychol. Gen. 117, 34.

Sobel, M.E., 1982. Socio. Methodol. 13, 290.

Stephan, K., Schlagenhauf, F., Huys, Q., Raman, S., Aponte, E., Brodersen, K., Rigoux, L.,
Moran, R., Daunizeau, J., Dolan, R., Friston, K., Heinz, A., 2017. Neuroimage 145,
180 (individual Subject Prediction).

Straube, T., Schmidt, S., Weiss, T., Mentzel, H.-J., Miltner, W.H., 2009. Hum. Brain Mapp.
30, 689.

Tang, E., Giusti, C., Baum, G.L., Gu, S., Pollock, E., Kahn, A.E., Roalf, D.R., Moore, T.M.,
Ruparel, K., Gur, R.C., Gur, R.E., Satterthwaite, T.D., Bassett, D.S., 2017. Nat.
Commun. 8, 1252.

Tanji, J., Hoshi, E., 2008. Physiol. Rev. 88, 37.

Vandekar, S.N., Shinohara, R.T., Raznahan, A., Roalf, D.R., Ross, M., DeLeo, N.,
Ruparel, K., Verma, R., Wolf, D.H., Gur, R.C,, et al., 2015. J. Neurosci. 35, 599.

Wang, B., 2018. R package 1.

Weafer, J., de Wit, H., 2014. Addict. Behav. 39, 1573.

Whalen, A.J., Brennan, S.N., Sauer, T.D., Schiff, S.J., 2015. Phys. Rev. X 5, 011005.

Wiles, L., Gu, S., Pasqualetti, F., Bassett, D.S., Meaney, D.F., 2017. Scientific Reports in
Press.

Wu-Yan, E., Betzel, R.F., Tang, E., Gu, S., Pasqualetti, F., Bassett, D.S., 2018. J. Nonlinear
Sci. 1.

Zhu, T., Hu, R., Qiu, X., Taylor, M., Tso, Y., Yiannoutsos, C., Navia, B., Mori, S.,
Ekholm, S., Schifitto, G., et al., 2011. Neuroimage 56, 1398.


http://refhub.elsevier.com/S1053-8119(18)32129-3/sref54
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref55
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref55
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref56
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref57
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref58
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref59
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref60
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref60
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref61
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref62
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref62
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref63
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref64
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref64
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref64
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref65
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref66
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref67
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref67
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref67
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref67
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref68
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref69
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref70
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref70
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref71
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref72
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref73
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref74
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref75
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref76
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref76
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref77
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref77
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref77
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref78
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref78
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref79
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref79
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref80
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref80
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref81
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref82
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref82
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref83
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref83
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref84
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref84
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref86
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref86
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref87
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref87
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref87
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref88
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref88
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref88
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref89
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref89
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref89
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref90
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref90
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref91
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref91
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref91
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref92
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref93
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref94
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref94
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref94
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref95
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref95
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref96
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref96
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref96
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref97
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref99
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref99
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref100
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref101
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref102
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref103
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref103
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref104
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref104
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref105
http://refhub.elsevier.com/S1053-8119(18)32129-3/sref105

	Sex differences in network controllability as a predictor of executive function in youth
	1. Introduction
	2. Materials and methods
	2.1. Participants
	2.2. Cognitive phenotyping
	2.3. Imaging data acquisition
	2.4. Imaging data preprocessing
	2.5. Structural network estimation
	2.6. Network controllability
	2.7. Controllability metrics
	2.8. Linear regressions involving network control metrics and cognitive performance
	2.9. Non-linear fits of network metrics
	2.10. Linear regression of bold data on network control metrics

	3. Results
	3.1. Sex differences in executive function
	3.2. Sex differences in regional network controllability
	3.3. Development of network controllability across the sexes
	3.4. Sex differences in network controllability predict individual differences in executive function
	3.5. Relationship between sex, n-back task activation magnitudes, and controllability

	4. Discussion
	4.1. Implications for cognitive and clinical neuroscience
	4.2. Methodological considerations

	5. Conclusion
	Acknowledgments
	Appendix A. Supplementary data
	References


